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Abstract: Decision Transformers (DT) have drawn upon the success of Trans-
formers by abstracting Reinforcement Learning as a target-return-conditioned, se-
quence modeling problem. In our work, we claim that the distribution of DT’s
target-returns represents a series of different tasks that agents must learn to han-
dle. Work in multi-task learning has shown that separating the representations of
input data belonging to different tasks can improve performance. We draw from
this approach to construct ConDT (Contrastive Decision Transformer). ConDT
leverages an enhanced contrastive loss to train a return-dependent transformation
of the input embeddings, which we empirically show clusters these embeddings
by their return. We find that ConDT significantly outperforms DT in Open-Al
Gym domains by 10% and 39% in visually challenging Atari domains. Addition-
ally, ConDT shows promising application to robot learning by outperforming DT
by 20% in the Adroit Robotic HandGrip Experiments.
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1 Introduction

Decision-making is a reasoning process resulting in the selection of a belief or a course of actions
that leads to a desired outcome [1]. Decision-making has been conventionally approached by Rein-
forcement Learning (RL) methods [2] in robotics [3, 4, 5], game-playing [6, 7, 8], and multi-agent
collaboration [9, 10, 11, 12, 13, 7, 14, 15], as well as by Learning from Demonstration (LfD) meth-
ods [16, 17]. In RL, decision-making is framed as learning a mapping from a state observation to
an action that maximizes the cumulative discounted environment rewards (i.e., return), and has seen
success with traditional methods that fit value functions [18] or compute policy gradients [19]. Re-
cently, Chen et al. [20] introduced the Decision Transformer (DT) to the realm of RL to draw from
the simplicity and scalability of transformer architectures [21]. DT abstracts the decision-making
process in RL as a sequence modeling problem and attempts to learn a return-conditioned state-
action mapping [20]. The return-conditionality means that given a history of return-state-action
tokens, such that the last token represents the desired return at the current-state, the DT predicts the
action required to achieve this desired return. DT achieved promising performance in many decision-
making problems [20, 22], but there still exists a sizable margin for transformers to improve in the
realm of RL as shown in the results of Chen et al. [20] where DT matched or performed worse than
existing offline RL baselines in a bevy of tasks.

In this work, we hypothesize that integrating Contrastive Representation Learning (CRL) into the
DT architecture will help DT learn a higher quality state-to-action mapping (i.e., policy) and achieve
better convergence results. The objective of CRL is to cluster data representations with respect to
their respective classes in order to strengthen the discriminability of the representations generated
by Neural Networks (NN) [23, 24]. The power of CRL can be seen from its success in a large
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range of learning problems [23, 25]. Therefore, we investigate decision transformers trained with
a contrastive loss, since DT is an inherently return-conditioned system (i.e., the predicted optimal
action depends on the magnitude of user-defined returns at the current time-step).

The distribution of the target returns with which the DT is conditioned upon represents a distribu-
tion of sub-tasks with which the DT must learn to handle. To simultaneously handle the conflicting
gradients of differing tasks, we posit that modifying the DT architecture to include a contrastive loss
and an input transformation layer to transform the input data into mutually separated sub-spaces
of the input-dimension. We posit that this will implicitly help with the performance of DTs. We
accomplish this process by introducing Contrastive Decision Transformers (ConDT), which enables
learning discriminable input-space embeddings for DT by categorizing the embeddings and the sub-
task to which they belong. Our new modified architecture allows DT to more easily choose the
optimal action corresponding to the current state, desired return, and history of information. Our re-
sults in Atari and Open-AI-Gym environments show consistent improvements over the conventional
DT by achieving significantly higher return-performance. Our contributions are as follows:

1. We propose ConDT, a modified, contrastive DT architecture and training procedure that uti-
lizes CRL and return-dependent embedding-space transformations to effectively discrimi-
nate state and action embeddings belonging to different return classes.

2. We propose an enhanced CRL objective, which we call the Lgimrcry loss, for optimiz-
ing representational distance of state and action embeddings. We show that our LsimrcrL
results in better separation of these embeddings in representation space.

3. We demonstrate that ConDT improves return performance by an average of 10% in Open-
Al Gym, 39% in Atari, and 20% in the Adroit Robotic Handgrip experiments. These
notable gains indicate the strength of applying CRL to the transformers’ input embeddings.

2 Related Work

RL has seen great success in decision-making problems in robotics [3, 4], game-playing [6, 7],
and multi-agent collaboration [15, 10, 11, 26]. For improved sample-efficiency, researchers have
studied offline RL [4], in which the agent learns from a pre-recorded dataset rather than environment
interactions. Offline RL methods are highly applicable to robot learning tasks with effective perfor-
mance and has been leveraged in robotic hand and object manipulation tasks in prior work [27, 28].
Q-learning is one of the most successful offline methods [18, 29], and with other methods, has
benefited from observing a history of states and actions, rather than just the last state [30]. We refer
to this "history” as temporal context. Recurrent-based architectures [31] were generally used with
RL to solve domains (i.e., games) with temporal context, and with the introduction of transformers
[21, 32], researchers have investigated replacing RNNs with transformers in offline RL [33, 34, 20].
In the following, we discuss the latest applications of transformers to RL with respect to ConDT.

Transformers in RL — Chen et al. [20] introduced Decision Transformer (DT) as a replacement
to recurrent-based RL architectures for cases when temporal context is known. Additionally, Jan-
ner et al. [35] introduced Trajectory Transformer as a long-term planning framework for RL. In
this work, we propose a modular input-embedding space transformation and contrastive procedure
(ConDT), which was tested on DT, but applicable to other transformers. ConDT achieves success
because its methods effectively categorize the distribution of returns as distinguishable sub-tasks.
This is notably distinctive from Multi Game DT (MGDT), which augment the input sequence of DT
with observations from multiple-games showing that a single DT can generalize to multiple different
games. MGDT trains a DT to solve multiple games, while ConDT trains a DT to better solve the
sub-tasks within a single game.

Contrastive Learning for Transformers — Contrastive Learning has been applied to RL, contrast-
ing representations in the state space [24, 36, 37] and the action space [38]. Liu et al. [39] recently
introduced Return-Based Contrastive Learning (RCRL) which applies a contrastive loss across the
return-space in RL. Contrastive methods for transformers generally take advantage of the InfoNCE
loss [24], which has seen success in auto-regressive tasks. The InfoNCE loss has been success-
fully applied to multi-modal video Transformers [40] and bi-directional language Transformers [23].
These methods are relevant to non-RL domains, but our method, ConDT, attempts to apply RCRL
to the input embedding layers of DT, because DT’s architecture is inherently return-conditioned.



Pre-Training Objectives for Transformers — Transformers, in both vision and NLP applications,
have benefited from pre-training [41, 42]. These works benefit from either introducing pre-training
tasks related to the original objective [42], whereas other works perform pre-training on a different
training set and then fine-tune on the main set [43, 44]. ConDT builds off the intuition of the former
works, but utilizes a return-based contrastive objective to train the input-embedding space, unlike
the pretraining techniques introduced by Devlin et al. [42].

3 Preliminaries

Problem Formulation — We consider the problem of learning in a Markov Decision Process (MDP)
defined by the four-tuple: (S, A, P, R), where S represents the state-space and A represents the
action space. A particular state and action at a time-step, t is represented by s;, a;, respectively. P
represents the transition function 0 < P(sy11]|st, a¢) < 1, and R represents the reward function and
the reward is defined as: r, = R(s, a;). In this paper, we follow convention of the original DT
and define return, (g;), as the non-discounted rewards-to-go: g; = >, ry. As stated earlier, DT
is an offline RL method where the learner only from some fixed limited dataset (i.e., environment
trajectories) instead of obtaining data via environment interactions. Offline RL is known to be more
challenging as it removes an agent’s ability to explore [20].

Decision Transformer (DT) Objective — DT [20] takes as input a sequence of three-tokens:
({gt—k, St—K,at—K ), , {Gt, St,ar)), where K is the game-specific context length. DT encodes
each token into an embedding and adds a positional encoding to each embedding. The embeddings
are then fed into the GPT-2 Causal Transformer [45] where an attention mechanism is applied to
predict a left-shifted version of the input: ({8;— g, d¢t—rc, Gt—FK+1)s " 5 {8t, 4t, Gr+1)). During in-
ference, a; is unknown and therefore, a; is a null-token. For training, and for inference, the only
relevant output token is a;, which represents the model’s predicted action that will maintain the re-
turn in the current-state. Considering the true-optimal action as a; and predicted action as a., the
training objective of DT in discrete and continuous environments can be shown as in Eq. 1.
{|dt —a?, if continuous,
Lpr = L e o . 1
—atlog(at[ay]), if discrete, a; is an integer and a; € A

Return-Based Contrastive Learning (RCRL) Objective — RCRL performs contrastive represen-
tation learning on state-action embeddings [39]. In any offline dataset, we are given a series of
return-state-action tuples, (g, ¢, at). Returns will range from [¢pmin, Gmaz], Which we will split
into L distinct return buckets, Vb : [bk (lower), by, (upper)] , where by, refers to the k-th return
bucket that ranges from by, (lower) to by (upper). RCRL adds a discriminator, D(z, y), to the network
architecture, which returns a scalar indicating the degree of correlation between embeddings x and
y. The RCRL loss (Eq. 2) samples a batch of 3 anchor state-action embeddings, z,5, whom each
have some bin designation, by, as well as B positive embeddings, z,, whom have bin designation
by s.t. b, = bgp, and also B embeddings, z,,, whom each have bin designation by, s.t. b,, # bgp,.

LRrcrRL = % Z ((D(Zah, Zp) — 1)2 + (D(Zah7 Zn))Q) 2)

ZahyZpyZn

4 Methodology

Overview — The full architecture of the proposed Contrastive Decision Transformer, ConDT, is
shown in Fig. 1. Contrary to the original DT [20], we create a sub-space transformation layer
that represents a return-dependent transformation of the state and action embedding spaces. The
transformation layer is trained by our modified contrastive objective, the SImMRCRL loss introduced
in Eq. 4, to discriminate state-action embeddings depending on target return.

Next, we present a theoretical motivation for our following sections on return-based sub-space trans-
formations and our contrastive learning objective, SimRCRL.

Motivation and Insight — Consider a simplistic reduction of the problem formulation, wherein we
are given a memory bank B containing a set of three-tuples (g;, s}, a;) where the distribution of
returns is approximately uniform. Now, given some ¢; and s;, what is the optimal a, that could
achieve this g;? A simple search-based solution could use k-nearest neighbors, whose complexity



ooo Causal Transformer: Lpr ooe

:

Embedding sub-space Embedding sub-space i
transformation: T, _, - - transformation: Ty, | |
1

i : :

I T :

1

1

d

SimRCRL Loss:
> e

LsimRcRL

Decision-boundaries
represent RCRL buckets

Figure 1: The architecture of the proposed Contrastive Decision Transformer. We create a sub-
space transformation layer that represents a return-dependent transformation of the state and action
embedding spaces. The transformation layer is trained by our modified contrastive objective, the
SimRCRL loss in Eq. 4, to discriminate state-action embeddings depending on target return, as
shown in the box on right. The purple box is a state and action embedding compression layer.

is O(|B|(|G| + |S]), where |G| is the size of the return-space and |S]| is the size of state-space. Upon
finding a subset of tuples that match the return, g;, and state, s;, their associated a} can be chosen
as the optimal action. However, imagine if the memory bank was organized by g¢; before-hand,
ie{g, : [(s},a}), -], - }. We can index the memory bank by g; in O(1), resulting in |B|/|G]|
state-action 2-tuples, and apply the k-NN across the state-space of the 2-tuples to find the optimal
aj. Therefore, restructuring the memory bank reduces complexity to O(|B||S|/|G|). This is a sim-
plistic reduction of the problem formulation, because transformers effectively search through many
combinatorial permutations of (g;, s, a;), dependent on the context-length; however, this analysis
motivates the benefit of pre-indexing the data by return. Since our data is high-dimensional, we turn
to the transformations and contrastive methods in the following sections to effectively “index” the
state and action embeddings by return.

Return-Based Embedding Sub-Space Transformation — As stated in Section 1, the distribution of
potential, conditionable returns represents a distribution of sub-tasks which DT must solve. Cheung
et al. [46] proposed several transformations that could be applied to the input data, such that data
corresponding to different tasks existed in orthogonal sub-spaces of RV, where N is the dimension
of the input, x. They considered a task-dependent context transformation, C, where k € L and L is
the distribution of possible tasks. For a single-layer, linear network (W), the output corresponding
to the k-th task can be written as y;, = W(Cjx).

In our formulation, we denote the transformation C}, as T, which indicates a return-dependent, g;,
transformation applied to each embedding space. We note that, here we remove g; from DT’s input
set of tokens, since the T}, should effectively encode g, into the representations of s; and a;, the 2}
and z7, respectively. Therefore, we modify the input to the GPT [45] portion of DT as follows:

GPT ([Tgtszf—K7Tgt—ng—K7'”Tgt’zf7T£]tZta]> — [St—K, 0t K, Gt— K41, St5 a1, gey1] (3)

Now, we need to choose an optimal transformation function, Ty,. To this end, we follow the static
rotation-based approach proposed by Cheung et al. [46]. Following the return-bin notation of the
RCRL objective in Section 3, we can generate the relevant rotation matrix, Ry, , associated with
some given return bucket-label, by, by sampling some orthogonal matrix from the Haar Distribu-
tion [46] for each possible bucket. Thus each sequence of (g, s, a;) tokens can appropriately be
transformed by defining T, = Ry, , s.t. k is the return bucket index that g; belongs to. Addition-
ally, we design T}, to be a learnable transformation, by considering Ty, as a diagonal matrix whose
entries are populated by the embedding generated by g;. In this case, T}, is simply equivalent to
the vector-product of the embedding generated by g; and the embeddings generated by s; and a;.
However, with a learnable T, there is no guarantee that the transformed embeddings be distant in
representation space. Accordingly, we develop a contrastive objective for Ty, .



Contrastive Learning of the Embedding Transformation — We explore contrastive learning as a
direct optimization objective to train T}, to push state and action embeddings belonging to differ-
ent by to be more distant in representation space. The was also the motivation behind the RCRL
loss [39], introduced in Section 3, which claims that training a discriminator on pairs of state-action
embeddings will cause the embeddings to grow distant/together in representation space. This claim
was supported through an analysis of the cosine-similarity change over time [39], although, in our
experiments, we found that optimization of the discriminator required by RCRL did not always
strictly achieve this result.

Here, we improve upon the RCRL objective, in Eq. 2, by first sampling a batch, 5, of bins from
L. Then, for each bin we sample two sets of (g¢, s¢, a;) tuples, where the first is considered the
the anchor and the second the positive sample associated with the anchor. Therefore the loss con-
siders a total of 28 samples. For a given anchor and its associated positive, the rest of the other
anchors/positives serve as negative samples (i.e., 2N — 2), with which we may contrast the embed-
dings upon. We define the strict-RCRL objective as the normalized-temperature-cross entropy loss
of the state-action embeddings, whose construction is drawn from SimCLR [47]. We call our objec-
tive SImRCRL, which is defined as in Eq. 4, where the compressed representation of the ¢-th anchor,
which is a state-action embedding, is indicated by 2!, and its associated positive pair embedding
as z;, 1(4, ) is the indicator function that is O when ¢ = j and 1 if not, and 7 as the temperature
hyper-parameter. B¢ is the batch-size used in LgjmrcrrL-

B exp((z%, -22) /7

LsimRCRL = Z —log Bo p(( a;-l 2)/7) —
i=0 Zj:() 14, j)[exp((2hy, - zop)/T) +exp((24y, - 2)/7)]

“4)

Now, putting everything together, our total contrastive loss for training ConDT, Lconpr, is the sum
of DT’s objective and our improved contrastive objective, weighted by a [ parameter that weighs
how much the contrastive objective should affect the DT during training. Lcoupr is shown in Eq. 5.
During experimentation, we consider pre-training the embeddings layers with Lgimrcrr, followed
by training the entire DT with a slowed learning rate on the embedding layers and Lpr loss.

Leconpt = Lot + B * LsimrerL &)

S Empirical Evaluation

Baselines - We tested our improvements upon the original DT architecture Chen et al. [20] by testing
the below five methods. For each experiment, we examine the following methods where (1) is the
original baseline DT [20] architecture, (2-3) are ablations that study the impact of learnable vs fixed
return-transformations of the state and action embeddings, and (4-5) study the combination of (1)
and (3) with the LgimrcrL contrastive objective:

. DT — Baseline DT proposed by Chen et al. [20]

. DT+Rot — Baseline DT with fixed-rotation embedding sub-space-transformation

. DT+Prod — Baseline DT with learnable input-embedding transformation

. ConDT w/o Prod (Ours) — Baseline DT trained with our Lcoupt l0ss

. ConDT (Ours) — DT+Prod trained with our Lconpr 1088

hn AW N =

Evaluation Environments — We empirically validate the enhanced performance of ConDT against
the baselines in several decision-making domains, including Atari 2600, Open-Al Gym, and the
Adroit Handgrip Environments. For environment descriptions and details, please refer to the pro-
vided supplementary material. Next, we present our evaluation results and investigative studies of
the learned representations. We note that we publicly provide our code-base (including ConDT
implementation and the baselines) at https://github.com/CORE-Robotics-Lab/ConDT.

5.1 Results, Ablation Studies, and Discussion

Open-Al Gym — We first measure return performance across three standard Open-Al Gym locomo-
tion domains: hopper, halfcheetah, and walker2d. We did not test in the Reacher domain, as done
in DT [20], since the dataset for this domain was not publicly available. Agents are tasked with
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achieving human-level return performance (i.e., 3600 in hopper, 12000 in halfcheetah, and 5000 in
walker2d for results in Table 1). In Gym and Atari, we report the mean, y, and standard error, SE,
of the return achieved in three random seeds.

We train the agents using the Medium (M.), Medium-Replay (M.R.), and Medium-Expert (M.E.)
datasets provided by Fu et al. [48]. These datasets differ in size and the policies used to generate
them. Thus, we tested on all three variations to study ConDT’s robustness. Details of the distinction
between these datasets can be found in the supplementary and in the original DT paper [20].

Dataset Env. DT [20] DT+Rot DT+Prod ConDT w/o Prod (Ours) ConDT (Ours)
hopper 2097+38.9  1397425.8  2330+33.2 2293439.3 2403+30.6
M. halfcheetah  4981+£28.1  50354+36.8  5038+14.9 5020+11.7 5060+11.7
walker2d 3466+56.3 34534559  3521430.5 3609+44.8 3545+49.4
hopper 2393+43.4 13.6+0.07  2959+16.3 2869+29.2 3076+27.7
M.R. halfcheetah  4070+52.4  703.4+39.4  4791+30.6 4491+35.8 4803+36.2
walker2d 2988+114  968.3+96.1  3717+65.7 33224774 3332476.6
hopper 3133+61.0  1528+65.5  3354+56.9 35054+26.3 3571+8.49
M.E. halfcheetah  107794+29.2  8956+189  11021+62.1 10821449.5 11218+14.5
walker2d 49414129  11954+73.4  4951+2.61 4850+35.6 5011+1.44

Table 1: Baseline Gym test results for medium (M), medium-replay (M.R.), and medium-expert
(ML.E.) datasets (as described in [20]) of hopper, half-cheetah, and walker2d, shown as p == SE

As shown in Table 1, DT+Prod and ConDT w/o Prod exceed the performance of DT, while ConDT
exceeds or matches DT+Prod and ConDT w/o Prod in 8/9 tasks. This shows that learnable, return-
based transformations benefit return performance, which can be further enhanced with the con-
trastive training objective. DT+Rot either matches or performs slightly worse than DT, although
this trend dramatically falters across the datasets in Medium-Replay. We hypothesize the reason for
the significant performance dip is because the return distribution in medium-replay is much more
left-skewed than medium or medium-expert. This would cause the inputs to DT+Rot to only be
transformed with Ry, where by, corresponded to bins in the lower range of the return-distribution,
and thus harm inference when larger returns were provided to DT+Rot.

Atari 2600 — We also tested on Atari 2600 environments [49], which contains of suite of classic
Atari Games that are generally considered challenging due to the high dimensionality of the obser-
vation space ((210 x 160) RGB image) and time-delayed credit assignment of rewards. We train
each baseline on 1% of all samples in the DQN-replay dataset provided by Agarwal et al. [29],
representing 500K out of the 50 million transitions observed by an online DQN. We tested all the
baselines across four domains, Breakout, Qbert, Seaquest, and Pong, and results are in Table 2.

Env. Target g; DT [20] DT+Rot DT+Prod  ConDT w/o Prod (Ours) ConDT (Ours)
Breakout 90 48.846.69 42.7+2.08 70.4+4.73 67.8+£4.73 71.1+2.46
Qbert 14000  3763+348 6877+£302 3677+303 107354346 64324314
Pong 20 16.8+£0.57 11£0.59  16.7+0.29 13.24+0.59 17.9+0.48
Seaquest 1150 948+34.7 880+32.1 1018+32.7 1364+29.0 1250+27.3

Table 2: Baseline Atari test results for Breakout, Qbert, Pong and Seaquest, shown as p + SE.

Causal attention allows GPT [45] to understand the relation between each token and its preceding
sub-sequence. Therefore, the removal of the return tokens from the input to GPT, as is the case
in DT+Rot, DT+Prod, and ConDT, gives rise to the concern of whether the removal will have a
negative effect on the performance of the overall DT. As shown in Table 2, even without learn-
able return-transformation, DT+Rot performs only slightly worse than DT across 3/4 of the Atari
domains and doubles the performance of DT in Qbert, indicating return has successfully been en-
coded into the state and action embeddings. With learned transformations, DT+Prod and ConDT
w/o Prod outperform DT in 3/4 of the experiments, except in Pong, where DT+Prod matches DT’s
performance, but most notably, in Qbert, ConDT w/o Prod nearly triples the performance of DT.
We hypothesize that ConDT w/o Prod outperforms ConDT in 2/4 tasks, because its causal attention
allows it to relate return embeddings from any preceding time-step to a specific state, action embed-
ding, whereas in ConDT, return embeddings are only related to the state, action embeddings at the
same specific timestep.



(a) Pen: orientate a pen (b) Hammer: hammer a nail (c) Relocate: move blue ball

Figure 2: The Adroit Robotic HandGrip, a 24 degree-of-freedom simulated robot hand domain,
including three difficult manipulation tasks (i.e, Pen, Hammer, and Relocate).

Robotic HandGrip Manipulation — Previous works have studied the application of offline RL to
robotics [27, 28]. In our work, to study the applicability of ConDT to robot learning, we investigate
the Adroit Robotic HandGrip Environments [27], wherein a 24 degree-of-freedom robotic hand
is trained to hammer a nail (i.e., Hammer), orient a pen (i.e., Pen), and relocate an object (i.e.,
Relocate). Fig. 2 shows a sample demonstration of these complex manipulation tasks. We detail
ConDT’s performance gains in Table 3, and provide visualizations of the trained policies in the
supplementary material. We also provide a video demonstration of the simulated Adroit Robotic
HandGrip executing the learned policies by DT and ConDT for each task as supplementary material.
The demo showcases the superior policy learned through our ConDT over the base DT.

Env. Target g; DT [20] DT+Prod ConDT w/o Prod (Ours) ConDT (Ours)
Pen 4000 1465+159 18834192 15601162 2016+179
Hammer 12000 14036+446 16036+187 16078+98 16364+210
Relocate 4500 4331+£465 43624477 44834402 4526+210

Table 3: The Adroit Robotic HandGrip test results for ConDT and baselines, shown as p + SE.

5.2 Investigating the Learned Representations

We hypothesize that our return-based transformation, T},, of the input embedding-space with the
LconpT Objective helps distance the state and action embeddings based on the return-class they be-
long to. To support this hypothesis, we study how the distance in the state and action embeddings
change over time. Additionally, we visually investigate clustering behavior in the embedding-space.
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0.8 0.8
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(a) Positive Similarity during Pre-Training (b) Negative Similarity during Pre-Training

Figure 3: Comparing the loss convergence between Lrcrr and LgimrcrL

Cosine Similarity Analysis — For this analysis, we seek to understand how the representation dis-
tance of state-action embeddings from ConDT change over time w.r.t. two loss functions: LrcrpL
and Lsimrcre. For this purpose, we utilize the cosine similarity as the distance metric [47]. Here
a value of 1 represents parallel embeddings, and O represents orthogonal embeddings. Therefore,
state-action embeddings of the same bins should desirably have similarity value close to 1 (i.e.,
high positive similarity or low intra-class distance) while representations belonging to different bins
should have a similarity value close to 0 (i.e., low negative similarity or high inter-class distance).



During pre-training of ConDT with our modified LsimrcrL Objective, we sampled a fixed number of
data samples across different return bins. Then we measure the average cosine similarity to samples
within the same return bin and different return bins, which we call positive and negative similarity
respectively in accordance with [47]. In Fig. 3a and Fig. 3b, we show the positive and negative
similarities from the contrastive training of ConDT for the Atari-Breakout experiment, compar-
ing LgimrerL With Lrerr. LsimrerL results in more stable convergence of the positive-similarity
and negative-cosine similarity, whereas Lrcrr loss does not result in a monotonic increase of the
positive-similarity, nor strict convergence to either 1 or O for positive and negative similarity. There-
fore, our enhanced LgsimrcrL Objective is more effective in achieving the transformation-based ob-
jective we formulated for application to DTs.

Embedding-Space Visualization — Here, we intend to visualize the state-action embedding-space
for a comparison between DT and ConDT. The goal is to observe a clustering behavior as result of
our embedding-space transformation with contrastive learning, such that the between-class distances
would increase and the within-class distances would decrease between the embeddings. To visualize
the joint state-action embedding space, we sampled a batch of ten return bins, with 30 samples per
bin. Then, we generated the state-action embeddings of this input data for DT and ConDT, and
created a 2D TSNE visualization of the embeddings, shown in Fig. 4. As shown, DT demonstrates
no clustering behavior of the state-action embeddings based on return; points of the same color
are scattered amongst points of different colors (i.e., colors indicate the return bins). However,
for ConDT, points of the same color are clearly clustered together and have distance to points of
different color, indicating that the contrastive embedding effectively pushes state-action embeddings
of different returns apart, and similar returns together.

= Bin 1 Bin 2 = Bin 3 = Bin 4 = Bin 5 = Bin 6 Bin 7 = Bin 8 Bin 9 = Bin 10
DT ConDT
© e Q
20 g;: 20+
o o~
e ©§ £V e e
o 0 ") o p ()
(0] ()
—_ —
2 ® 2 -10 @
© -10 © Q
(0] () .
[ [T —20-
-20 @
, | o . . =30 @
-30 -20 -10 0 10 20 30 -20 -10 O 10 20
Feature Dim 1 Feature Dim 1

Figure 4: TSNE 2D visualization of state-action embedding-spaces for DT and ConDT.

5.3 Limitations

A limitation DT [20], which is shared in ConDT, is the size and distribution of returns in the offline
data. As mentioned in the Open-Al Gym analysis, the left-skewed nature in the return distribution
of medium-replay dataset harmed the performance of DT+Rot. The original DT [20] addresses
this concern by sampling trajectories according to the magnitude of their cumulative return; thus,
causing higher return trajectories to be sampled more often. Therefore, sampling techniques and the
return distribution of the dataset can become a bottleneck in decision transformer methods.

6 Conclusion

Decision Transformer (DT) was one of the first introductions of transformers to RL, and while
experimentation showed promise, there still lies a performance gap between DT and existing offline
RL methods [20]. In this work, we hypothesized that performing a return-dependent transformation
of the input embeddings to the DT can help enhance return performance. We proposed Contrastive
Decision Transformer (ConDT). ConDT performs an embedding-space transformation of the state
and action embeddings, where the transformation is trained using our enhanced LsinrcrL Objective,
which we empirically show can better maximize distance in state-action embedding space. We
verify the applicability to robot learning and strength of ConDT’s return-based transformation and
contrastive learning objective by testing across several Atari and Open-Al Gym domains, as well as
multiple 24-DoF robotics handgrip tasks, in which we show significant performance gains.
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