

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OKBENCH: DEMOCRATIZING LLM EVALUATION WITH FULLY AUTOMATED, ON-DEMAND OPEN KNOWLEDGE BENCHMARKING

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Knowledge-intensive question answering is central to large language models
014 (LLMs) and is typically assessed using static benchmarks derived from sources
015 like Wikipedia and textbooks. However, these benchmarks fail to capture evolving
016 knowledge in a dynamic world, and centralized curation struggles to keep
017 pace with rapid LLM advancements. To address these drawbacks, we propose
018 OpenKnowledgeBench (**OKBench**), a fully automated framework for generating
019 high-quality, dynamic knowledge benchmarks on demand. Focusing on the news
020 domain where knowledge updates daily, **OKBench** is an agentic framework that
021 automates the sourcing, creation, validation, and distribution of benchmarks. Our
022 approach democratizes benchmark creation and facilitates thorough evaluation
023 of retrieval-augmented methods by reducing overlap with pretraining data. We
024 evaluate our framework on multiple open-source and proprietary LLMs of various
025 sizes and configurations, both with and without retrieval over freshly generated
026 knowledge. Our results reveal distinct model behaviors when confronted with new
027 information and highlight how retrieval narrows the performance gap between
028 small and large models. These findings underscore the importance of evaluating
029 LLMs on evolving knowledge benchmarks.¹

030 1 INTRODUCTION

031 One of the most common uses of large language models (LLMs) is for answering knowledge-intensive
032 questions. However, this task is challenging as factual knowledge in the real world evolves rapidly.
033 Well-trained models can quickly become outdated (Li et al., 2024), raising the need for continual
034 model updates (Liska et al., 2022) or improved retrieval-augmented generation (RAG) techniques
035 (Lewis et al., 2020). At the same time, the lack of transparency in training data makes it difficult
036 to assess how recent a model’s knowledge truly is (Cheng et al., 2024). Existing benchmarks also
037 struggle to keep pace: once released, their contents may be absorbed into future training data,
038 weakening their utility and leading to benchmark contamination. This phenomenon complicates the
039 evaluation of retrieval-based methods, as models may have already memorized the relevant facts
040 during training. In this paper, we propose that the solution to these challenges is **fast, automated,**
041 **decentralized curation of dynamic knowledge benchmarks** that can track LLM development in
042 real time and offer a clean testbed for evaluating retrieval augmented methods.

043 Despite the rapid advancement of LLMs and the growing need for accurate knowledge assessment,
044 most popular benchmarks remain *static* after creation. Widely used datasets such as Natural Questions
045 (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), and HotpotQA (Yang et al., 2018) are
046 primarily drawn from Wikipedia or curated text snapshots over a fixed time period. While instrumental
047 in advancing open-domain question answering (QA) research, these benchmarks quickly become
048 outdated and are often included in model pretraining corpora, leading to data contamination and
049 inflated performance estimation (Li et al., 2024). More recent efforts such as StreamingQA (Liska
050 et al., 2022), RealTimeQA (Kasai et al., 2023) and FreshQA (Vu et al., 2024) have begun including
051 fresh facts. However, these dynamic benchmarks still rely on partial human curation and infrequent
052 updates, or focus on a different task like forecasting. As a result, they don’t enable continuous

¹Code is available at <https://anonymous.4open.science/r/OKBench-0830>.

054
 055 Table 1: Comparison of our benchmark with some previous knowledge QA & dynamic benchmarks
 056 in terms of objective, automation, update frequency, and scale.

Benchmark	Objective	Automation	Update Freq.	Scale
StreamingQA	Factual QA	Partial	Static	36,800 QA pairs
RealTime QA	Factual QA	Partial	Weekly	~ 30 QA pairs
FreshQA	Factual QA & Debunking	Low	Weekly	600 QA pairs, only update answers
LiveBench	Reasoning	Partial	Monthly	40 – 100 questions per task
Daily Oracle	Forecasting	Full	Daily	~ 17.2 QA pairs
FutureX	Future Event Prediction	Full	Daily & Weekly	500 events
Ours	Factual QA	Full	Any time	~ 2000 QA pairs

064
 065 evaluation of LLMs’ capabilities. Finally, these previous efforts are *centralized*, making it difficult
 066 and expensive to reproduce them on demand.

067 We propose an approach that addresses these challenges and democratizes dynamic knowledge
 068 benchmarking, by making it easy and practical for anyone to generate a new reproducible benchmark
 069 anytime. Specifically, we introduce **OKBench** (**OpenKnowledgeBench**), a fully automated frame-
 070 work for generating knowledge benchmarks for fair LLM evaluation. Focusing on the news domain
 071 where new knowledge emerges daily, our system automates the entire pipeline from information
 072 extraction to benchmark construction, producing multiple-choice QA items (with optional open-ended
 073 variants). **OKBench** is an agentic framework built on state-of-the-art LLMs, in which specialized
 074 agents for QA generation and validation collaborate to promote quality and consistency.

075 To enable benchmark generation at any time, we introduce a distribution and version control protocol
 076 that assigns each benchmark a unique signature, assuring consistent tracking and fair comparison
 077 across models and evaluations. The framework is fully *open-source*, empowering *any user* to
 078 generate up-to-date benchmarks *at any time*. This enables diverse use cases such as monitoring LLM
 079 knowledge freshness or evaluating retrieval-augmented models on clean, non-memorized data.

080 To assess the quality of the automatically generated benchmarks, we conduct manual validation of
 081 one of our question sets and find it to be of high quality.

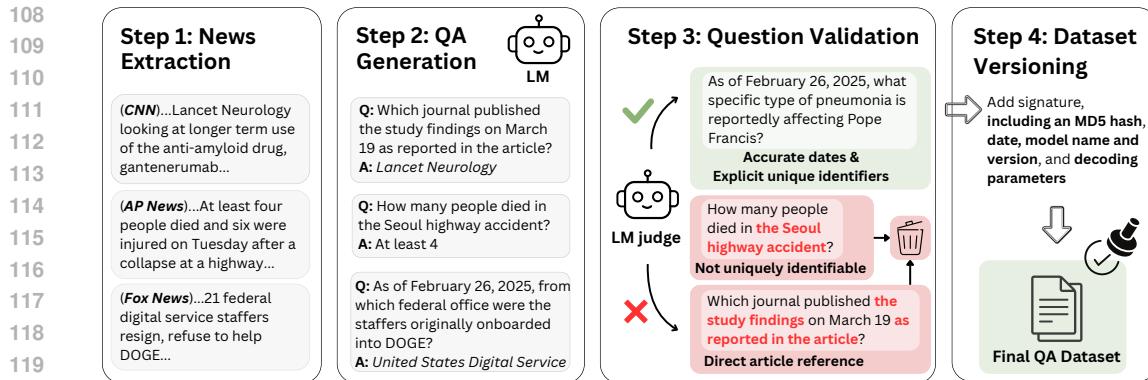
082 To demonstrate the utility of our framework and assess current model capabilities, we evaluate a
 083 range of open-source and proprietary LLMs across multiple model sizes, with and without retrieval
 084 augmentation, using several retrieval strategies. Our results show a predictably large drop in perfor-
 085 mance when models are tested on new knowledge. Interestingly, when retrieval is introduced, the
 086 performance gap between smaller and larger models narrows significantly on knowledge not seen
 087 during training.

090 2 RELATED WORK

091 **Evaluating Retrieval-Augmented Generation (RAG)** Retrieval-augmented generation (RAG) is a
 092 key strategy to equip large language models (LLMs) with up-to-date information by retrieving relevant
 093 external documents at inference time. However, existing RAG evaluations are often undermined by
 094 *data contamination*, where evaluation examples overlap with the model’s pretraining corpus. This
 095 allows models to answer without retrieval, simply relying on memorized content (Li et al., 2024).
 096 Prominent QA datasets such as Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
 097 2017), and HotpotQA (Yang et al., 2018) are sourced from Wikipedia or the open web, making it
 098 likely that models already “know” the answers. This undermines robust assessment of retrieval:
 099 models can appear strong simply by regurgitating seen content, and including training examples in
 100 prompts can further inflate performance (Wang et al., 2022). As a result, current benchmarks struggle
 101 to test whether models can truly retrieve and reason over novel information.

102 **Dynamic Knowledge Question Answering** To address the limitations of static benchmarks, recent
 103 work has introduced *dynamic* QA benchmarks that reflect the evolving state of world knowledge.²
 104 StreamingQA (Liska et al., 2022) organizes questions chronologically over years of news data, but
 105 it does not support continual updates. RealTime QA (Kasai et al., 2023) delivers weekly quizzes

106
 107 ²For detailed descriptions of each benchmark, see Appendix A.

Figure 1: Automated dynamic knowledge benchmark construction pipeline for **OKBench**.

sourced from current news headlines, though coverage is limited by its limited breadth of news feeds and manual curation. FreshQA (Vu et al., 2024) is a centrally maintained benchmark of roughly 600 author- and freelancer-written, time-sensitive questions whose answers are periodically updated through extensive human annotation, making its ongoing maintenance costly and dependent on a single coordinating team.

Dynamic Benchmarking Beyond QA Dynamic evaluation extends beyond question-answering to other formats. LiveCodeBench (Jain et al., 2025) harvests fresh programming-contest tasks to build a contamination-free, time-stamped suite for code generation, self-repair, execution, and test prediction; however, public releases so far reach only 2024-06-01 and still rely on semi-manual update scripts. LiveBench (White et al., 2025) is a challenging, contamination-limited LLM benchmark across multiple reasoning domains and offers partial updates monthly to guarantee a fresh suite of questions bi-yearly. AntiLeakBench (Wu et al., 2025) focuses on preventing data contamination by automatically constructing benchmarks sourced from Wikipedia, but it is constrained to Wikipedia updates. DeepScholar-Bench (Patel et al., 2025) focuses on automatic evaluation for generative research synthesis. Besides factual evaluation on recent knowledge, automatic benchmarks like Daily Oracle (Dai et al., 2025), ForecastBench (Karger et al., 2025) and FutureX (Zeng et al., 2025) test models on the task of forecasting near-future events. However, forecasting tasks aren't suitable for evaluating retrieval-based methods, as there's often no ground truth database to retrieve from. Therefore our focus is factual knowledge from the recent past.

Table 1 compares **OKBench** to other benchmarks along several dimensions. In summary, existing dynamic knowledge benchmarks still involve at least partial human curation, infrequent updates, or a narrow focus, and none offer a fully automated, large-scale solution for real-time factual knowledge evaluation. To our knowledge, **OKBench** is the first fully automated benchmark for evaluation of factual question answering ability.

3 AUTOMATED DYNAMIC BENCHMARKING WITH **OKBENCH**

3.1 BENCHMARK CONSTRUCTION PIPELINE

We design an agentic framework for dynamic knowledge benchmarking. The pipeline consists of four steps: (1) News extraction, (2) QA generation, (3) question validation, and (4) dataset versioning. An overview of the pipeline is shown in Figure 1.

News Extraction We collect and preprocess news articles published within the past 24 hours from a diverse set of outlets, including both mainstream and specialized publications. The categorization and considered sources of news are presented in Table 2. Articles are retrieved via RSS feeds and parsed. For each article, we retain a structured representation that includes metadata such as the title, publication date, author, content body, and source URL. The output of this step is a curated, timestamped feed of news articles, which serves as the raw knowledge base for dynamic benchmark construction in subsequent stages.

162

163

Table 2: News sources used for dynamic knowledge extraction.

164

165

Category	Sources
General / Mainstream News	CNN, BBC, Reuters, The Guardian, Fox News, NBC News, USA Today, HuffPost, CBS News
International Coverage	Al Jazeera, DW, RT, Channel News Asia (CNA), Times of India, South China Morning Post (SCMP)
Political Focus	Politico, The Hill, NPR
Technology and Science	TechCrunch, The Verge, Engadget, Ars Technica, Gizmodo, PC Gamer, TechRadar
Business / Finance	Bloomberg
Lifestyle / Culture	GQ, Vanity Fair
Open-Source Community News	WikiNews

166

167

168

169

170

171

172

QA Generation We use an LLM-based agent to generate initial multiple-choice question–answer pairs from curated news articles. The final questions can be delivered in either multiple-choice or open-ended format. The agent is instantiated using an LLM³ guided by a prompt designed to elicit high-quality, time-sensitive questions (see Section B). The generation process involves identifying salient facts from each article, drafting a corresponding question, and producing one correct answer along with plausible distractor options. The agent is instructed to prioritize recent and unique facts, particularly entities, events, and developments that are unlikely to appear in older training data.

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

Question Validation Despite detailed prompting, LLM-generated questions may not always be well suited for reliable model evaluation. In particular, the question sometimes explicitly refers to “the article,” which is undesirable because we want every question to stand alone.

To address this, we introduce a dedicated question validation agent (see validation prompt in Section B) that assesses the quality and clarity of each question. The agent is tasked with verifying whether each question can be answered uniquely and unambiguously.

Specifically, it checks whether the question: (1) avoids direct references to the source article, (2) includes accurate and clear date references, (3) uses explicit identifiers for entities such as people, organizations, or events, and (4) avoids vague or ambiguous phrasing. Questions that fail any of these criteria are automatically discarded. Some example QA pairs created by our pipeline are shown in Table 3.

Dataset Versioning To support reproducibility and fair comparison, each benchmark release is assigned a unique *signature* serving as its version identifier. Because dataset content can shift due to changes in daily news and the inherent stochasticity of LLM generation, we adopt a versioning approach inspired by SacreBLEU’s reproducibility framework (Post, 2018). Each signature encodes the agent LLM model name and version (e.g., “gpt-4.1-2025-04-14”), the decoding hyperparameters (temperature, top- p , etc.), the dataset generation date and timestamp, and a randomly generated hash (specifically, MD5) as a unique identifier.

Users reporting results on our benchmarks should explicitly cite the full dataset signature and share the corresponding dataset snapshot. This enables precise reproduction and fair evaluation by others. By versioning each dataset and requiring explicit references, future work can reliably evaluate on the same benchmark instance, which is an essential safeguard in our decentralized benchmarking protocol, since numerous independently generated datasets may potentially exist.

3.2 HUMAN VALIDATION

To evaluate the quality of the generated QA pairs, we ran a human validation study on a set of pipeline outputs with two evaluation aspects:

- **Question Quality Check:** Does the question meet the clarity and unambiguity criteria?
- **Answer Correctness Check:** Does the provided correct option exactly match the source article?

Two independent panels of four computer-science PhD students (all native- or near-native English speakers) carried out the evaluations. The first panel is for evaluating question quality, where each evaluator assessed 60 multiple-choice questions. To better control for agreement, 20 questions in each annotator’s part were simultaneously evaluated by 2 other annotators, each person 10 questions.

³We use gpt-4.1-2025-04-14 in our pipeline.

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Table 3: Example generated QA pairs. The date of dataset generation is February 26, 2025.

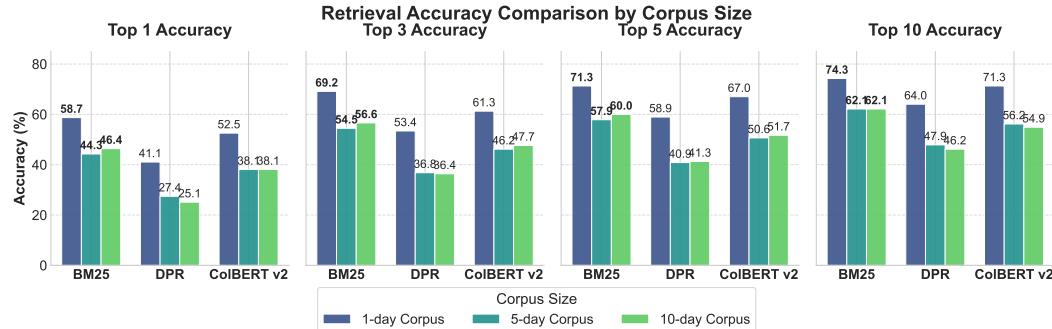
Question	Choices	Ground Truth
As of February 26, 2025, what percentage of GDP has UK Prime Minister Keir Starmer announced the country will spend on defense?	A. 2.3% of its GDP B. 3% of its GDP C. 2.5% of its GDP D. 7% of its GDP	C. 2.5% of its GDP
On February 14, 2025, at which hospital was Pope Francis hospitalized for a respiratory infection?	A. St. Peter’s Hospital B. Vatican Medical Center C. Gemelli Hospital D. Apostolic Palace Clinic	C. Gemelli Hospital
In which year did Pope Francis have a piece of one lung removed?	A. 1967 B. 1955 C. 1947 D. 1957	D. 1957
On February 26, 2025, which individual from the Department of Psychiatry at the University of Cambridge emphasized the urgent need for new dementia treatments?	A. Dr. Marc Siegel B. Dr. Ben Underwood C. Dr. Chris Vercammen D. Melissa Rudy	B. Dr. Ben Underwood
As of March 22, 2025, which journal published the study findings on March 19 that detailed the impact of gantenerumab on delaying Alzheimer’s symptoms?	A. The Lancet Psychiatry B. JAMA Neurology C. Neurology D. The Lancet Neurology	D. The Lancet Neurology

Table 4: Example questions that do not pass the human evaluation.

Question	Choices	Rationale
On what date was Pope Francis admitted to the hospital as of March 22, 2025?	A. Feb. 7 B. Feb. 14 C. Feb. 15 D. March 22	Ambiguity; might rely on past information
When was George Foreman born?	A. September 24, 2011 B. October 30, 1974 C. January 10, 1949 D. June 3, 2009	Rely on past information
Which streaming service is associated with Severance and previously known for hosting Ted Lasso, as of March 21, 2025?	A. Amazon Prime Video B. Apple TV+ C. Hulu D. Netflix	Rely on past information
As of March 22, 2025, updated HPV shots protect against how many strains of the virus?	A. nine B. two C. seven D. eleven	Ambiguity and might rely on past information

Based on question clarity, the average correctness rate is 92% over 4 annotators on 200 questions in total. Table 4 shows some QA pairs that did not pass human evaluation. In the second panel, each evaluator independently rated answer correctness out of 25 QA pairs, and achieved 100% correctness in the sampled questions.

The complete annotation guidelines and survey interfaces used in this study are provided in Section D and Section E. The complete evaluation results are in Section F. Because we aim for fully automated, decentralized usage, a small level of noise is acceptable to maintain scalability, freshness, and real-time evaluation. We also release a daily version of all news collected, enabling on-demand dataset generation under evolving knowledge conditions. As proprietary LLMs change over time, we will do periodic audits and updates to maintain consistent quality. By keeping human validation separate from the core pipeline, our framework remains cost-effective and adaptive, while still supporting quality control when needed.

270 3.3 DATASET STATISTICS AND COST ESTIMATION
271272 Our pipeline ingests news articles from the previous 24 hours and typically yields $\sim 2,000$ multiple-
273 choice questions per run. For example, the snapshot generated on 22 March 2025 contains 2,350 ques-
274 tions. The end-to-end expense is modest: generating 2,350 raw questions with GPT-4.1-2025-04-14
275288 Figure 2: **Top- k Retrieval Accuracy** for BM25, DPR, and ColBERT v2 across news corpora of
289 different time windows (1-day, 5-day, and 10-day).
290291 costs \$2.48. Validating the same 2,350 questions with the model costs an additional \$1.73.
292 Consequently, a full daily benchmark costs roughly \$4.21, making on-demand generation practical for
293 continuous evaluation.
294295 3.4 QUESTION FORMATS
296297 While the primary format of **OKBench** is multiple-choice questions, our pipeline can also generate an
298 open-ended variant: for each article the generation agent poses a factoid question whose answer is a
299 short span (≤ 10 tokens) copied verbatim from the article; during evaluation we let the model produce
300 up to 100 tokens and pass its first non-empty line to a separate LLM judge, which simply checks
301 string equality (after normalising case and punctuation) against the ground-truth span—that span
302 being identical to the correct option in the MC version—and returns a binary correctness decision.
303304 4 LLM EVALUATION EXPERIMENTS WITH **OKBENCH**
305306 In the following experiments, we evaluate a set of models on the *March 22 snapshot* of the dataset
307 (Section 3.3).⁴ We evaluate a variety of open-source and proprietary LLMs. For the full list of models,
308 please see Table 8.
309310 **Evaluation Settings** We test each LLM under three information-access paradigms:
311

- (i) **No-Context**: The model sees only the question and answer choices. We simply provide the
312 prompt: “*Question: {Q}. Provide the most accurate answer.*” This reflects a purely parametric
313 recall scenario, where the model must rely solely on its memorized knowledge.
- (ii) **Oracle-Context**: The model is given the ground-truth article (i.e., the document originally used
314 to generate the question) as additional context. Here, the model input is of the form: “*Context:
315 /Article}. Question: {Q}.*”
- (iii) **Retrieval**: We simulate a scenario where the model queries a recent news corpus and retrieves
316 relevant articles before answering. We provide the top- k passages (where $k \in \{1, 3, 5, 10\}$)
317 returned by a retrieval system, concatenated into the prompt. The corpus is drawn from the last
318 24 hours (1-Day), the preceding 5 days (5-Day), or the preceding 10 days (10-Day). As the
319 corpus grows, more outdated or irrelevant content is introduced, increasing retrieval difficulty.

320
321 ⁴We focus on this single-day snapshot to provide a concrete, recent evaluation, though our framework can
322 generate new benchmarks daily.
323

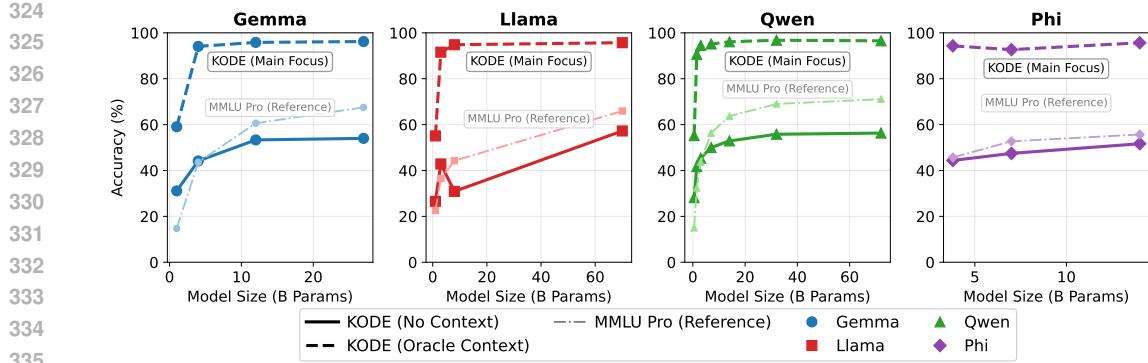


Figure 3: **No-Context vs. Oracle-Context QA Accuracy on OKBench**, plotted alongside each model’s performance on MMLU Pro (lighter lines) as a reference for memorized knowledge. We show three representative model families (Gemma, Llama, Qwen) at various parameter scales (Billion Parameters). Solid lines denote *No-Context* accuracy (fresh knowledge), and dashed lines denote *Oracle-Context* accuracy when the ground-truth article is provided.

We implement a variety of retrievers to provide context in the Retrieval setting. Each daily snapshot of news is indexed using **BM25 (lexical)** (Robertson & Zaragoza, 2009), a classic inverted-index-based method leveraging term frequency and inverse document frequency; **ColBERT v2 (dense)** (Santhanam et al., 2022), which encodes queries and documents at the token level and only then matches each query token to its most similar document token; and **DPR (dense)** (Karpukhin et al., 2020), a dual-encoder approach producing a single embedding per document and question, scored via dot product. For both dense retrievers, we use FAISS (Douze et al., 2025) with a flat index for approximate nearest neighbor search. We measure top-1, top-3, top-5, and top-10 retrieval accuracy (the fraction of queries where the ground-truth article is among the top- k retrieved documents), as well as final QA performance after the model consumes those retrieved contents.

5 EVALUATION RESULTS AND DISCUSSION

5.1 LLM KNOWLEDGE VS. ORACLE-CONTEXT

Figure 3 summarizes the performance of four representative model families (Gemma, Llama, Qwen, Phi) on **OKBench** in both No-Context and Oracle-Context settings. Table 8 in Section G provides results for a more complete set of models. In addition to multiple-choice questions, we also report open-ended question-answering results in Section H. We find that the open-ended variant of the benchmark shows a trend similar to the multiple-choice variant, so we focus on the multiple-choice version here.

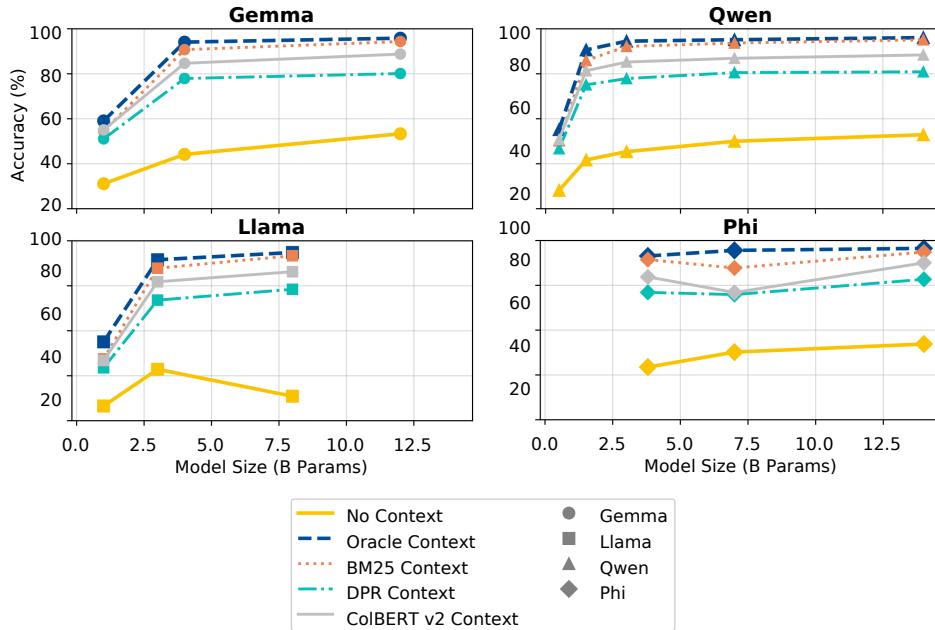
Observation 1: Impact of Fresh Knowledge. When models must rely solely on parametric memory (No-Context), their performance is far from perfect across all sizes. This reflects the challenge of truly new facts that arise after the model’s pretraining cutoff. Nevertheless, larger models do retain a slight edge. For instance, gemma-3-1b-it only achieves 31.1% accuracy in No-Context mode, whereas gemma-3-27b-it reaches 54.0%. The same trend appears in other families like Llama (26.6% vs. 57.2%) and Qwen (28.2% vs. 56.3%) when comparing the smallest and largest variants. In No-Context mode, Some “fresh-knowledge” questions still reference ongoing stories, such as an election that has been in the news for months, so even a small model can draw on background it has already seen and score above the 25% random-guess level. Bigger models possess an even richer store of that prior context, which is why they outperform the smaller ones despite the questions targeting very recent facts.

Observation 2: Oracle-Context and a “Cutoff” for Reading Comprehension. Once the ground-truth article is appended to the query, most models (above a certain size threshold) quickly climb to high accuracy ($\sim 95\%$). Even a 4–7 B parameter model can answer correctly given the right passage, suggesting that *timely, precise* context is the main determinant of success. These findings underscore

378 that for fresh or real-time information, building robust retrieval pipelines may be more critical than
 379 simply scaling up model size.
 380

381 However, contrary to the idea that *all* models do well with the article, Figure 3 and Table 8 in
 382 Section G show a sharp performance *cutoff*. Models around or above roughly 3–4 B parameters can
 383 read and understand the article sufficiently to push their Oracle accuracy to 90–95%. Yet *very small*
 384 LLMs (e.g., ≤ 1 B parameters) achieve only around 55–60% even with the ground-truth article. This
 385 indicates a bound on reading comprehension capacity for extremely small models: they simply lack
 386 the representational power to parse the passage and correctly pinpoint the answer.
 387

388 **Observation 3: Model Size Scaling behavior on Fresh Data vs. Memorized Knowledge.** The
 389 gap between smaller and larger models in the *No context* setting is smaller than one might expect
 390 from standard benchmarks that rely heavily on memorized knowledge. To illustrate this point, we
 391 also measured each model’s performance on **MMLU Pro**, a knowledge-intensive benchmark widely
 392 used for assessing factual recall from pretraining. Figure 3 and Table 9 (in Section G.1) show that on
 393 MMLU Pro, scaling from a 1B to a 27B (or 70B) model often yields improvements of 40–50% or
 394 more; in contrast, for our newly generated QA data, the improvement over the same size range is
 395 20–25%. Therefore, while model scale is critical for memorizing facts during pretraining, its benefits
 396 are more limited for *emergent* knowledge.
 397



417 Figure 4: **QA Accuracy with Retrieval-Augmented Context.** Each panel shows QA accuracy (%)
 418 for four model families (Gemma, Llama, Qwen, Phi) across different parameter sizes, evaluated on
 419 dynamically generated news questions. Lines indicate performance with context retrieved by BM25
 420 (dashed red), ColBERT v2 (solid gray), DPR (dash-dotted cyan), the Oracle (dashed blue, upper
 421 bound), and No-Context (solid yellow, lower bound) using top-3 retrieved passages from the 1-day
 422 news corpus.
 423

424 5.2 RETRIEVAL PERFORMANCE

425 We experiment with three retrievers: **BM25**, **DPR**, and **ColBERT v2**. Figure 2 shows their top- k
 426 accuracy on daily news, while more detailed numerical results (e.g., top-1, top-3, etc.) are presented
 427 in **Appendix I** (Tables 11 and 12). Overall, BM25 achieves the highest top- k accuracy in most
 428 settings, outperforming both DPR and ColBERT v2.
 429

430 Interestingly, even though dense retrievers like DPR and ColBERT v2 often excel on standard
 431 benchmarks (Bajaj et al., 2018; Thakur et al., 2021), BM25 proves more robust for this dynamic
 432

432
 433 Table 5: Final QA accuracy (%) of LLMs under Retrieval settings, using Llama-3.1-8B-Instruct
 434 as the QA backbone. Retrieval is performed over 1-day, 5-day, and 10-day news corpora, returning
 435 top- k passages ($k \in \{1, 3, 5, 10\}$).

Retriever	1-Day Corpus				5-Day Corpus				10-Day Corpus			
	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10
BM25	90.47	93.49	93.40	92.60	88.43	91.79	92.89	92.04	88.30	91.15	92.26	92.09
DPR	66.26	77.66	81.28	84.21	59.49	70.89	74.34	78.13	57.53	68.60	71.57	75.96
ColBERT v2	80.09	86.13	87.79	89.32	74.17	82.55	85.02	86.43	73.06	80.72	83.49	85.45

441
 442 news scenario. The strong lexical cues (e.g., named entities, event-specific phrasing) may favor exact
 443 term matching. It also suggests that domain shift can hurt dense matching unless the models are
 444 further adapted, as they are typically trained on MS MARCO (Bajaj et al., 2018) (for ColBERT v2)
 445 or Natural Questions (Kwiatkowski et al., 2019)(for DPR) rather than on this news domain.

447 5.3 FINAL QA ACCURACY WITH RETRIEVED PASSAGES

448 Finally, we measure how these retrieval methods impact final question answering performance.
 449 Figure 4 shows the results using the 1-day news corpus and appending the top 3 retrieved documents
 450 across different models (full results in Section J). In line with the earlier retrieval results (cf. Figure 2),
 451 BM25-based retrieval also yields the highest end-to-end QA performance.

452 We also feed the top- k passages from each retriever (BM25, DPR, ColBERT v2) into a moderate-scale
 453 Llama-3.1-8B-Instruct model and evaluate its QA accuracy. The complete results, including the
 454 final QA accuracy (%) across three corpus sizes (1-day, 5-day, and 10-day) and various k values,
 455 are presented in Table 5. Overall, these results confirm that *accurate retrieval* is vital for time-
 456 sensitive QA, perhaps even more so than having a very large model. Even a 1.5B-parameter Qwen
 457 model achieves high QA accuracy (above 90%). Thus, for ever-evolving knowledge, robust retrieval
 458 pipelines can often compensate for a model’s limited parametric memory.

461 6 CONCLUSION

462 We introduce a fully automated framework for dynamic knowledge benchmarking, enabling timely
 463 and decentralized evaluation of LLMs. Our agentic pipeline generates high-quality, news-driven QA
 464 datasets, supporting robust analysis of model knowledge and retrieval performance. Through experi-
 465 ments on a range of open-source and proprietary models, we demonstrate performance disparities on
 466 newly introduced knowledge and the benefits of retrieval augmentation. This work highlights the
 467 importance of evaluating LLMs on evolving, non-memorized knowledge to better understand and
 468 improve their real-world capabilities.

471 STATEMENT ON LLM USAGE

472 We acknowledge the use of Large Language Models (LLMs) to assist in the preparation of this
 473 manuscript. Specifically, LLMs were utilized to improve grammar and clarity, aid in literature
 474 discovery, and generate boilerplate code snippets for our experiments and testing scripts. The authors
 475 have carefully reviewed and edited all LLM-generated outputs and take full responsibility for the
 476 final content and scientific integrity of this work.

479 LIMITATIONS

480 While our framework democratizes the creation of *dynamic* knowledge benchmarks, several caveats
 481 remain:

482 • **Domain & Language Bias.** We currently target English-language online news. This excludes non-
 483 English, local, pay-walled, or multimedia sources and limits the benchmark’s cultural and topical

486 coverage. Extending the pipeline to multilingual or domain-specific corpora (e.g., biomedical
 487 literature) will require tailored scraping, prompting, and validation strategies.
 488

- 489 • **Dependence on Proprietary LLMs.** Generation and validation agents rely on proprietary frontier
 490 models. Model drift, API quota changes, or access restrictions may affect future reproducibility
 491 despite our version-signature protocol. Moreover, researchers without paid API access may face a
 492 cost barrier.
- 493 • **Legal and Ethical Considerations.** We scrape full-text news articles that remain under copyright.
 494 Our release distributes articles for research under fair-use assumptions, but downstream users
 495 bear responsibility for local licensing compliance. Automated harvesting also risks propagating
 496 misinformation if upstream outlets publish retracted or false content.

497 Addressing these limitations remains important future work for making dynamic knowledge evalua-
 498 tion truly global, robust, and sustainable.
 499

500 REFERENCES

501 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
 502 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
 503 Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
 504 dataset, 2018. URL <https://arxiv.org/abs/1611.09268>.

505 Jeffrey Cheng, Marc Marone, Orion Weller, Dawn Lawrie, Daniel Khashabi, and Benjamin
 506 Van Durme. Dated data: Tracing knowledge cutoffs in large language models. In *First Con-
 507 ference on Language Modeling*, 2024.

508 Hui Dai, Ryan Teehan, and Mengye Ren. Are LLMs prescient? a continuous evaluation using daily
 509 news as the oracle. In *Forty-second International Conference on Machine Learning*, 2025. URL
 510 <https://openreview.net/forum?id=v2nV83Q849>.

511 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
 512 Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2025. URL <https://arxiv.org/abs/2401.08281>.

513 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 514 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 515 evaluation of large language models for code. In *The Thirteenth International Conference on
 516 Learning Representations*, 2025. URL <https://openreview.net/forum?id=chfJJYC3iL>.

517 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly su-
 518 pervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.),
 519 *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
 520 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational
 521 Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

522 Ezra Karger, Houtan Bastani, Chen Yueh-Han, Zachary Jacobs, Danny Halawi, Fred Zhang, and
 523 Philip E. Tetlock. Forecastbench: A dynamic benchmark of ai forecasting capabilities. In
 524 *International Conference on Learning Representations (ICLR)*, 2025. URL <https://iclr.cc/virtual/2025/poster/28507>.

525 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 526 Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020. URL
 527 <https://arxiv.org/abs/2004.04906>.

528 Jungo Kasai, Keisuke Sakaguchi, yoichi takahashi, Ronan Le Bras, Akari Asai, Xinyan Velocity Yu,
 529 Dragomir Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. Realtime QA: What’s the answer
 530 right now? In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and
 531 Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=HfKOIPCvsv>.

532 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 533 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 534 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav

540 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 541 *Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 542 <https://aclanthology.org/Q19-1026/>.

543 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 544 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 545 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 546 9459–9474, 2020.

547 Yucheng Li, Yunhao Guo, Frank Guerin, and Chenghua Lin. An open-source data contamination
 548 report for large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 549 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 528–541, Miami,
 550 Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 551 2024.findings-emnlp.30. URL <https://aclanthology.org/2024.findings-emnlp.30/>.

552 Adam Liska, Tomas Kociský, Elena Gribovskaya, Tayfun Terzi, Eren Sezener, Devang Agrawal,
 553 Cyprien De Masson D’Autume, Tim Scholtes, Manzil Zaheer, Susannah Young, Ellen Gilsean-
 554 McMahon, Sophia Austin, Phil Blunsom, and Angeliki Lazaridou. StreamingQA: A benchmark
 555 for adaptation to new knowledge over time in question answering models. In Kamalika Chaudhuri,
 556 Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of*
 557 *the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine*
 558 *Learning Research*, pp. 13604–13622. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/liska22a.html>.

559 Liana Patel, Negar Arabzadeh, Harshit Gupta, Ankita Sundar, Ion Stoica, Matei Zaharia, and Carlos
 560 Guestrin. Deepscholar-bench: A live benchmark and automated evaluation for generative research
 561 synthesis, 2025. URL <https://arxiv.org/abs/2508.20033>.

562 Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian
 563 Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
 564 Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
 565 Specia, Marco Turchi, and Karin Verspoor (eds.), *Proceedings of the Third Conference on Machine*
 566 *Translation: Research Papers*, pp. 186–191, Brussels, Belgium, October 2018. Association for
 567 Computational Linguistics. doi: 10.18653/v1/W18-6319. URL <https://aclanthology.org/W18-6319/>.

568 Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
 569 *Found. Trends Inf. Retr.*, 3(4):333–389, April 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
 570 URL <https://doi.org/10.1561/1500000019>.

571 Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Colbertv2:
 572 Effective and efficient retrieval via lightweight late interaction, 2022. URL <https://arxiv.org/abs/2112.01488>.

573 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A
 574 heterogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth*
 575 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*,
 576 2021. URL <https://openreview.net/forum?id=wCu6T5xFjeJ>.

577 Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung,
 578 Denny Zhou, Quoc Le, and Thang Luong. FreshLLMs: Refreshing large language models with
 579 search engine augmentation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings*
 580 *of the Association for Computational Linguistics: ACL 2024*, pp. 13697–13720, Bangkok, Thailand,
 581 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.813.
 582 URL <https://aclanthology.org/2024.findings-acl.813/>.

583 Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, Siqi Sun, Ruochen Xu, Chenguang Zhu, and
 584 Michael Zeng. Training data is more valuable than you think: A simple and effective method by
 585 retrieving from training data. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 586 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume*
 587 *1: Long Papers)*, pp. 3170–3179, Dublin, Ireland, May 2022. Association for Computational
 588 Linguistics. doi: 10.18653/v1/2022.acl-long.226. URL [https://aclanthology.org/2022.acl-long.226/](https://aclanthology.org/2022.acl-long.226).

594 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
 595 Schwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha,
 596 Siddhartha Venkat Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and
 597 Micah Goldblum. Livebench: A challenging, contamination-free LLM benchmark. In *The*
 598 *Thirteenth International Conference on Learning Representations*, 2025.

599 Xiaobao Wu, Liangming Pan, Yuxi Xie, Ruiwen Zhou, Shuai Zhao, Yubo Ma, Mingzhe Du, Rui
 600 Mao, Anh Tuan Luu, and William Yang Wang. AntiLeakBench: Preventing data contamination by
 601 automatically constructing benchmarks with updated real-world knowledge. In Wanxiang Che,
 602 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 603 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 604 pp. 18403–18419, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
 605 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.901. URL <https://aclanthology.org/2025.acl-long.901/>.

607 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
 608 Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
 609 ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings*
 610 *of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–2380,
 611 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 612 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>.

613 Zhiyuan Zeng, Jiashuo Liu, Siyuan Chen, Tianci He, Yali Liao, Yixiao Tian, Jinpeng Wang, Zaiyuan
 614 Wang, Yang Yang, Lingyue Yin, Mingren Yin, Zhenwei Zhu, Tianle Cai, Zehui Chen, Jiecao
 615 Chen, Yantao Du, Xiang Gao, Jiacheng Guo, Liang Hu, Jianpeng Jiao, Xiangsheng Li, Jingkai
 616 Liu, Shuang Ni, Zhoufutu Wen, Ge Zhang, Kaiyuan Zhang, Xin Zhou, Jose Blanchet, Xipeng Qiu,
 617 Mengdi Wang, and Wenhao Huang. Futurex: An advanced live benchmark for llm agents in future
 618 prediction, 2025. URL <https://arxiv.org/abs/2508.11987>.

621 A ADDITIONAL BENCHMARK DETAILS

623 **StreamingQA.** Builds a time-indexed dataset from a large news corpus (14 years), enabling
 624 retrospective testing of how QA models adapt to new information at specific points in history. Once
 625 published, it is no longer updated.

627 **RealTime QA.** Scrapes around 30 weekly questions from news quizzes (e.g., CNN, The Week).
 628 Offers a rolling evaluation but is constrained by external quiz sources and weekly time slots, rather
 629 than daily updates.

631 **FreshQA.** Uses a fixed set of around 600 human-written questions whose answers evolve (often
 632 involving false premises or rapidly changing facts). Relies on regular human intervention for quality
 633 control and updating answers.

634 **Daily Oracle.** Automatically generates daily forecasting questions (T/F or multiple-choice) from
 635 current news, evaluating models’ abilities to predict near-future outcomes. Fully automated, but does
 636 not focus on post-event factual retrieval or user-driven updates.

638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 B PROMPT FOR GENERATING MCQs

```

649
650
651 # News article
652
653 **ARTICLE TITLE**:
654 {article_title}
655
656 **ARTICLE TEXT**:
657 {article_text}
658
659 **ARTICLE RELEASE DATE**:
660 {article_release_date}
661
662 # Your task
663
664 Generate 5 exceptionally challenging multiple-choice questions based on
665 the article. Follow these requirements:
666
667 1. **Question Style**
668 - Use a simple, direct tone. For example:
669 - "Who was elected president of France in 2022?"
670 - "Which country hosted the 2023 Climate Summit?"
671
672 2. **Question Content**
673 - Each question must focus on factual information about the events or
674 details within the article.
675 - Formulate every question so it can be answered exclusively from the
676 provided content.
677 - Avoid referencing the article directly (do not use phrases like "
678 According to the article..." or "The text indicates...").
679 - For time-sensitive information, incorporate the article's release
680 date. Use "as of {article_release_date}" when referring to ongoing
681 or current information, or "on {article_release_date}" when
682 indicating that an event occurred on that specific day.
683 - Use explicit identifiers for individuals and organizations (e.g., "
684 InfoWars reporter Jamie White"), never ambiguous references like "
685 the official" or "his statement".
686 - Ensure the question is only answerable if one has access to the
687 article (low no-context accuracy).
688
689 3. **Answer Choices**
690 - Provide four (4) plausible choices, each of which is the same entity
691 type (person, organization, place, date, number, etc.).
692 - The correct answer must be an entity present or derivable from the
693 article.
694 - Include distractors that are contextually plausible (either
695 mentioned in the article or logically related).
696 - At least one distractor should closely resemble the correct answer
697 to increase difficulty (e.g., a similar name or date).
698 - Use partial truths or common misconceptions for other distractors,
699 ensuring all choices appear equally plausible without thorough
700 reading.
701
702 4. **Answer Format**
703 - Each question must have a single correct answer (entity) that is
704 taken verbatim from the article.
705 - The answer must not be open-ended: it should be a specific entity (
706 person, organization, place, time, date, number, etc.).
707
708 5. **Question Diversity**
709 - Cover different significant elements or events in the article (avoid
710 repeating the same fact).
711 - Use a variety of question types (who, what, when, where, why, how)
712 and difficulty levels, from moderate to very challenging.

```

702 - Aim to require different levels of reasoning (recall, inference,
703 analysis).

704

705 6. ****Article Release Date** [IMPORTANT]**
706 - The article includes a release date provided as `{'
707 article_release_date}`. Ensure that this date is incorporated
708 appropriately in questions, using "as of {article_release_date}"
709 for current or ongoing contexts and "on {article_release_date}"
710 when referencing a specific event or fact that happened that day.

711 7. ****Response Format****
712 - Return your final output as a JSON array of exactly 5 objects.
713 - Each object must contain the following keys:
714 - `question_idx`: An integer from 1 to 5.
715 - `question`: A string containing the question text.
716 - `choices`: An array of 4 strings, each a distinct answer option.
717 - `ground_truth`: A string identical to the correct answer choice
718 from `choices`.
719 - `rationale`: A string explaining why the correct choice is
720 correct and why the others are incorrect.

721 Now generate the JSON array with the specified structure:

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 C PROMPT FOR MCQ QUALITY CHECK

758 You are given a multiple-choice question in this format:

759 {qa_pair}

760 Check if it meets ****all**** of the following requirements:

761 1. ****No direct reference to the article****

- 762 - The question does not begin or contain phrases like "in the article
763 ", "According to the article..." or "As reported in the article
764 ...".

765 2. ****Date references are accurate and clear****

- 766 - If the question references an event or information that took place
767 on a specific date, it can mention that date directly (e.g., "on
768 February 25, 2025").
- 769 - If the question references a continuing/ongoing situation relative
770 to the article's publication, it should use "as of {
771 article_release_date}" or "on {article_release_date}".
- 772 - The question should not give ambiguous timing (e.g., "recently"
773 without any date).

774 3. ****Explicit identifiers for individuals or organizations****

- 775 - Any person or group mentioned must be named clearly (e.g., "The
776 Transportation Ministry" instead of "They" or "That ministry").
- 777 - Avoid vague references like "the company" or "the government" if a
778 specific entity is known.

779 4. ****No ambiguous references****

- 780 - If referencing a particular event, location, or study, the question
781 must include all critical details known (e.g., event date,
782 location, or official event name) so that it's clear which event
783 or study is being discussed.
- 784 - General phrases like "the collapse," "the incident," or "the study"
785 are not acceptable. They must include identifying details such as
786 the location, date, or name.

787 ****Output "1" if **all** the requirements above are met, and "0" otherwise**

788 ******

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **D HUMAN ANNOTATION GUIDELINES**
811812 **D.1 QUESTION QUALITY CHECK**
813814 We are evaluating the quality of a fresh knowledge benchmark dataset designed to test the latest infor-
815 mation extracted from up-to-date news articles. This dataset consists of questions, multiple-choice
816 answer candidates, and ground truth answers. Your task is to review the quality of this benchmark-
817 ing data, specifically checking for clarity and freshness of questions, and the reasonableness of
818 multiple-choice answers based on the provided news.819 Please examine both the question and its multiple-choice options for major quality issues. Note that
820 questions were generated on July 16, 2025, based on news articles published on that day.821 Here are some guidelines on potential quality issues:
822823 **Ambiguity**824 The question itself should be clear and stand-alone. It should also have an unambiguous answer that
825 is precisely one of the four choices. If you were given a set of articles containing the day's relevant
826 news, you should be able to choose the correct answer. Consider the following:
827

- 828 • Questions should be answerable on their own. For example, phrasing like “...according to
829 the article...” makes a question unclear.
- 830 • The time scope of the information requested should be clear. For current information, use
831 phrasing such as “as of [Date]”; for past events on a given date, use “on [Date].”
- 832 • References to events, people, and entities should be clear. For example, use specific names
833 (e.g., “Dr. Ben Underwood”), not vague references like “the official.” However, titles or
834 abbreviations are acceptable if they are unambiguous in context (e.g., “On July 16, 2025,
835 the US President...”).

836 **Freshness**
837838 We would like questions to be answerable using only the corresponding day's news, not previously
839 known information. Examples of issues that diminish freshness include:
840

- 841 • Questions that rely on common sense or widely known facts, and can likely be answered
842 without reading the source article.
- 843 • Historical trivia, such as questions with static answers (e.g., “What is Albert Einstein’s
844 birthday?” or “What was the US population in 2024?”), as these could be answered well
845 before the question date of July 16, 2025.

846 **Question Quality Decision**
847

848 Question: [PLACE HOLDER]

849 Answer Candidate: [PLACE HOLDER]

850 Please indicate whether the question meets our quality criteria. If you are unsure, make your best
851 guess and provide a comment explaining the uncertainty.

- 852 • Question passes the quality check
- 853 • Question is ambiguous/unanswerable
- 854 • Question is not fresh
- 855 • Question quality is not good for other reasons (please specify below)

856 **Any additional comments?**
857858 Please use this space for any comments, such as if your question quality decision is uncertain, or if
859 the question is of poor quality for unlisted reasons.
860862 **D.2 QUESTION CORRECTNESS CHECK**
863**Human Evaluation Instructions**

864 You will work through 25 multiple-choice questions drawn from 5 different news articles.
865

866 The Google Form is organized into 15 sections—three sections for each article—so that you can
867 follow the same three-step procedure every time.

868 **Three-step procedure (repeated for every article)**

869

- 870 1. Initial guess — prior knowledge only
871 Read the question without looking at the article or any other source and choose the answer
872 you think is correct.

- 873 2. Article-based answer
874 Now read the accompanying news article carefully. Based solely on the information in the
875 article, select the option that best answers the question.

- 876 3. Ground-truth check
877 The ground-truth answer will be shown. Decide whether that answer is exactly supported by
878 the article:
879 Yes — it matches the article perfectly | No — it is contradicted or not stated.

880

881 **Form navigation**

882

- 883 1. Complete all three steps for the current article before clicking Next. Once you move to the
884 next section you will not be able to return and edit earlier answers.
- 885 2. Repeat the three-step cycle until you have finished all 15 sections.

886 Thank you for taking the time to provide careful, accurate responses.

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 E HUMAN ANNOTATION INTERFACE
919920 E.1 QUESTION QUALITY CHECK
921922 Figures 5 to 7 demonstrates the survey we used to collect human annotation results for quality
923 checking our benchmark. We asked 4 annotators with various backgrounds and interests to each
924 label 60 questions. Figure 5 is our general instructions which guides our annotators to label the 60
925 multiple-choice questions in Figure 6. We also collects each annotator’s feedback after they finish
926 evaluating all 60 questions to understand human concerns towards our benchmark.
927928 E.2 QUESTION CORRECTNESS CHECK
929930 Figures 8 to 13 walk annotators through the three-step Google Form we use for the *Question*
931 *Correctness Check*. Figure 8 presents the instructions page, which explains the task and navigation
932 rules. In Step 1, shown in Figure 9, annotators make an *initial guess* for each multiple-choice question
933 without reading the article. Step 2 begins with the full news article (Figure 10); after reading it,
934 annotators answer the same questions again based solely on the article (Figure 11). Finally, Step 3
935 displays the ground-truth answers and asks annotators to judge whether they are exactly supported by
936 the article (Figures 12 and 13).
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Open Knowledge Benchmark QA Quality Review

General Instructions

We are evaluating the quality of a fresh knowledge benchmark dataset designed to test the latest information extracted from up-to-date news articles. This dataset consists of questions, multiple-choice answer candidates, and ground truth answers. Your task is to review the quality of this benchmarking data, specifically checking for clarity and freshness of questions, and the reasonableness of multiple-choice answers based on the provided news. Please examine both the question and its multiple-choice options for major quality issues.

Note that questions were generated on **July 16, 2025**, based on news articles published on that day.

Quality Guidelines for QA Human Eval

Here are some guidelines on potential quality issues:

1. Ambiguity:

The question itself should be clear and stand-alone. It should also have an unambiguous answer that is precisely one of the four choices. If you were given a set of articles containing the day's relevant news, you should be able to choose the correct answer. Consider the following:

- **Questions should be answerable on their own.** For example, phrasing like "...according to the article..." makes a question unclear.
- **The time scope of the information requested should be clear.** For current information, use phrasing such as "as of [Date]"; for past events on a given date, use "on [Date]."
- **References to events, people, and entities should be clear.** For example, use specific names (e.g., "Dr. Ben Underwood"), not vague references like "the official." However, titles or abbreviations are acceptable if they are unambiguous in context (e.g., "On July 16, 2025, the US President...").

2. Freshness:

We would like questions to be answerable using only the corresponding day's news, not previously known information. Examples of issues that diminish freshness include:

- **Questions that rely on common sense or widely known facts**, and can likely be answered without reading the source article.
- **Historical trivia**, such as questions with static answers (e.g., "What is Albert Einstein's birthday?" or "What was the US population in 2024?"), as these could be answered well before the question date of July 16, 2025.

Thank you for taking time to complete our survey.

* Indicates required question

Figure 5: Instructions page of the Google Form used for the Question Quality Check. We ask our human annotators to assess clarity and freshness of the multiple-choice questions, based on the provided instructions.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Question Quality Decision

Please indicate whether the question meets our quality criteria. If you are unsure, make your best guess and provide a comment explaining the uncertainty. There are 60 questions in total.

What is the primary reason given by Rep. Mark Harris for seeking to revoke the National Education Association's federal charter, as reported on July 16, 2025? *

A. The NEA opposed increased teacher salaries.
 B. The NEA failed to support public charter schools.
 C. The NEA mismanaged federal funds.
 D. The NEA has become a partisan advocacy group.

Question passes the quality check
 Question is ambiguous/unanswerable
 Question is not fresh
 Question quality is not good for other reasons (please specify below)
 Other: _____

Figure 6: One QA pair example taken from our Question Quality Check survey.

Any additional comments?

Thank you for completing our survey! Please use this optional space for any comments, such as if your question quality decision is uncertain, or if the question is of poor quality for unlisted reasons.

1 response

I think often it's quite hard to determine if a question is "fresh". Just as one example, if there was a bill introduced in the Senate in May 2025. I believe all bills are available to read on some website covering its specifics. However, no one cared enough about this bill to write news articles on it until it was being voted on in July. Then, is a question about the specifics of the bill considered "fresh"? I think this generally be applied to a couple of other scenarios.

Figure 7: Comments section in our Question Quality Check Survey.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Human Evaluation

Instructions

You will work through **25 multiple-choice questions drawn from 5 different news articles**.

The Google Form is organized into **15 sections**—three sections for each article—so that you can follow the same three-step procedure every time.

Three-step procedure (repeated for every article)

- 1. Initial guess – prior knowledge only**
Read the question *without* looking at the article or any other source and choose the answer you think is correct.
- 2. Article-based answer**
Now read the accompanying news article carefully. Based solely on the information in the article, select the option that best answers the question.
- 3. Ground-truth check**
The ground-truth answer will be shown. Decide whether that answer is *exactly* supported by the article:
Yes – it matches the article perfectly | No – it is contradicted or not stated.

Form navigation

- 1. Complete all three steps for the current article before clicking Next.** Once you move to the next section you will not be able to return and edit earlier answers.
2. Repeat the three-step cycle until you have finished all 15 sections.

Thank you for taking the time to provide careful, accurate responses.

yanhongli@uchicago.edu [Switch account](#)

 Not shared

[Next](#) [Clear form](#)

Figure 8: Instructions page of the Google Form used for the Question Correctness Check. It summarises the three-step workflow and navigation rules for annotators.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Human Evaluation

yanhongli@uchicago.edu
[Switch account](#)
?

Not shared

* Indicates required question

Section 1 (Article 1, Step 1)

Read the question *without* looking at the article or any other source and choose the answer you think is correct.

Who is the army chief leading Sudan's military advances as of March 21, 2025? *

Gen. Mohammed Hamdan Dagalo
 Gen. Omar al-Bashir
 Gen. Abdel-Fattah Burhan
 Gen. Khaled al-Aiser
 I do not know

Which location did Sudan's military retake on March 21, 2025? *

Arab Market
 Al-Maliha
 Republican Palace
 Khartoum International Airport
 I do not know

Figure 9: Step 1 (**Initial guess**). Annotators answer each multiple-choice question based only on prior knowledge, before seeing the article.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Human Evaluation

yanhongli@uchicago.edu [Switch account](#)

Not shared

* Indicates required question

Section 2 (Article 1, Step 2)

Now read the accompanying news article carefully. Based solely on the information in the article, select the option that best answers the question.

Sudan's military says it has retaken Khartoum's Republican Palace, seat of country's government

Fox News Flash top headlines are here. Check out what's clicking on Foxnews.com. Sudan's military on Friday retook the Republican Palace in Khartoum, the last heavily guarded bastion of rival paramilitary forces in the capital, after nearly two years of fighting. The seizure of the Republican Palace, surrounded by government ministries, was a major symbolic victory for Sudan's military against the paramilitary Rapid Support Forces — though it likely doesn't mean the end of the war as the RSF holds territory in Sudan's western Darfur region and elsewhere. SUDAN'S ARMY DENOUNCES VIDEO ALLEGEDLY SHOWING ITS TROOPS CARRYING SEVERED HEADS OF ENEMIES Social media videos showed Sudanese soldiers inside the palace, giving the date as the 21st day of Ramadan, the holy Muslim fasting month, which corresponds to Friday. A Sudanese military officer wearing a captain's epaulettes made the announcement in the video and confirmed the troops were inside the compound. The palace appeared to be in ruins, with soldiers' stepping on broken tiles. Troops carrying assault rifles and rocket-propelled grenade launchers chanted: "God is the greatest!" Khaled al-Aiser, Sudan's information minister, said the military had retaken the palace in a post on the social platform X. An army soldier walks in front of the Republican Palace in Khartoum, Sudan, after it was taken over by Sudan's army Friday, March 21, 2025. (AP Photo) "Today the flag is raised, the palace is back and the journey continues until victory is complete," he wrote. Later, curious residents wandered through the palace. Walls stood pockmarked by rifle rounds. Smears of blood led to dead bodies, covered haphazardly with blankets. Palace's fall a symbolic and strategic moment The fall of the Republican Palace — a compound along the Nile River that was the seat of government before the war erupted and is immortalized on Sudanese banknotes and postage stamps — marks another battlefield gain for Sudan's military, which has made steady advances in recent months under army chief Gen. Abdel-Fattah Burhan. It also means that the rival RSF fighters, under Gen. Mohammed Hamdan Dagalo, have been mostly expelled from the capital, Khartoum. Sporadic gunfire could be heard throughout the capital Friday, though it wasn't clear if it involved fighting or was celebratory. Brig. Gen. Nabil Abdullah, a spokesperson for the Sudanese military, said its troops are holding the palace, surrounding ministry buildings

Figure 10: Step 2 (Article reading). The news article is presented in full so annotators can consult it before answering again.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

grounds, shelling and firing on the compound. Sudan has faced years of chaos and war Sudan, a nation in northeastern Africa, has been unstable since a popular uprising forced the removal of longtime autocratic President Omar al-Bashir in 2019. A short-lived transition to democracy was derailed when Burhan and Dagalo led a military coup in 2021. The RSF and Sudan's military began fighting each other in 2023. Since the start of the year, Burhan's forces, including Sudan's military and allied militias, have advanced against the RSF. They retook a key refinery north of Khartoum, pushed in on RSF positions around Khartoum itself. The fighting has led to an increase in civilian casualties. Al-Bashir faces charges at the International Criminal Court over carrying out a genocidal campaign in the early 2000s in the western Darfur region with the Janjaweed militia, the RSF precursor. Rights groups and the U.N. accuse the RSF and allied Arab militias of again attacking ethnic African groups in this latest war. CLICK HERE TO GET THE FOX NEWS APP Since the war began, both the Sudanese military and the RSF have faced allegations of human rights abuses. Before U.S. President Joe Biden left office, the State Department declared the RSF are committing genocide. The military and the RSF have denied committing abuses.

Who is the army chief leading Sudan's military advances as of March 21, 2025? *

- Gen. Mohammed Hamdan Dagalo
- Gen. Omar al-Bashir
- Gen. Abdel-Fattah Burhan
- Gen. Khaled al-Aiser
- I do not know

Which location did Sudan's military retake on March 21, 2025? *

- Arab Market
- Al-Maliha
- Republican Palace
- Khartoum International Airport
- I do not know

Figure 11: Step 2 (**Article-based answer**). After reading the article, annotators choose the option that best answers each question.

1290

1291

1292

1293

1294

1295

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Human Evaluation

yanhongli@uchicago.edu [Switch account](#)

Not shared

* Indicates required question

Section 3 (Article 1, Step 3)

The ground-truth answer will be shown. Decide whether that answer is *exactly* supported by the article:

Yes – it matches the article perfectly | No – it is contradicted or not stated.

Sudan's military says it has retaken Khartoum's Republican Palace, seat of country's government

Fox News Flash top headlines are here. Check out what's clicking on Foxnews.com. Sudan's military on Friday retook the Republican Palace in Khartoum, the last heavily guarded bastion of rival paramilitary forces in the capital, after nearly two years of fighting. The seizure of the Republican Palace, surrounded by government ministries, was a major symbolic victory for Sudan's military against the paramilitary Rapid Support Forces – though it likely doesn't mean the end of the war as the RSF holds territory in Sudan's western Darfur region and elsewhere. **SUDAN'S ARMY DENOUNCES VIDEO ALLEGEDLY SHOWING ITS TROOPS CARRYING SEVERED HEADS OF ENEMIES** Social media videos showed Sudanese soldiers inside the palace, giving the date as the 21st day of Ramadan, the holy Muslim fasting month, which corresponds to Friday. A Sudanese military officer wearing a captain's epaulettes made the announcement in the video and confirmed the troops were inside the compound. The palace appeared to be in ruins, with soldiers' stepping on broken tiles. Troops carrying assault rifles and rocket-propelled grenade launchers chanted: "God is the greatest!" Khaled al-Aiser, Sudan's information minister, said the military had retaken the palace in a post on the social platform X. An army soldier walks in front of the Republican Palace in Khartoum, Sudan, after it was taken over by Sudan's army Friday, March 21, 2025. (AP Photo) "Today the flag is raised, the palace is back and the journey continues until victory is complete," he wrote. Later, curious residents wandered through the palace. Walls stood pockmarked by rifle rounds. Smears of blood led to dead bodies, covered haphazardly with blankets. Palace's fall a symbolic and strategic moment The fall of the Republican Palace – a compound along the Nile River that was the seat of government before the war erupted and is immortalized on Sudanese banknotes and postage stamps – marks another battlefield gain for Sudan's military, which has made steady advances in recent months under army chief Gen. Abdel-Fattah Burhan. It also means that the rival RSF fighters, under Gen. Mohammed Hamdan Dagalo, have been mostly expelled from the capital, Khartoum.

Figure 12: Step 3 (**Ground-truth verification instructions**). The form explains how to judge whether the provided ground-truth answer is exactly supported by the article.

1350
1351
1352
1353
1354
1355
1356

1357 malnourished children at Al Bashir Hospital on Khartoum's outskirts. "Commercial supplies
1358 and humanitarian aid have been blocked for more than three months due to ongoing
1359 conflict along key routes," UNICEF warned. "The result is a severe shortage of food,
1360 medicine and other essentials, with thousands of civilians trapped in active fighting." The
1361 war has killed more than 28,000 people, forced millions to flee their homes and left some
1362 families eating grass in a desperate attempt to survive as famine sweeps parts of the
1363 country. Other estimates suggest a far higher death toll. The Republican Palace became the
1364 seat of power during the British colonization of Sudan. It also saw some of the first flags of
1365 independent Sudan raised in 1956. The complex had also been the main office of Sudan's
1366 president and other top officials. The Sudanese military has long targeted the palace and its
1367 grounds, shelling and firing on the compound. Sudan has faced years of chaos and war
1368 Sudan, a nation in northeastern Africa, has been unstable since a popular uprising forced
1369 the removal of longtime autocratic President Omar al-Bashir in 2019. A short-lived transition
1370 to democracy was derailed when Burhan and Dagalo led a military coup in 2021. The RSF
1371 and Sudan's military began fighting each other in 2023. Since the start of the year, Burhan's
1372 forces, including Sudan's military and allied militias, have advanced against the RSF. They
1373 retook a key refinery north of Khartoum, pushed in on RSF positions around Khartoum itself.
1374 The fighting has led to an increase in civilian casualties. Al-Bashir faces charges at the
1375 International Criminal Court over carrying out a genocidal campaign in the early 2000s in
1376 the western Darfur region with the Janjaweed militia, the RSF precursor. Rights groups and
1377 the U.N. accuse the RSF and allied Arab militias of again attacking ethnic African groups in
1378 this latest war. [CLICK HERE TO GET THE FOX NEWS APP](#) Since the war began, both the
1379 Sudanese military and the RSF have faced allegations of human rights abuses. Before U.S.
1380 President Joe Biden left office, the State Department declared the RSF are committing
1381 genocide. The military and the RSF have denied committing abuses.
1382

1383

1384 Who is the army chief leading Sudan's military advances as of March 21, 2025? *

1385 **Ground Truth: Gen. Abdel-Fattah Burhan**

1386 Yes
1387 No

1388

1389 Which location did Sudan's military retake on March 21, 2025? *

1390 **Ground Truth: Republican Palace**

1391 Yes
1392 No

1393

1394 Figure 13: Step 3 (**Ground-truth judgment**). Annotators indicate *Yes* if the ground-truth matches
1395 the article or *No* otherwise for each question.

1396

1397

1398

1399

1400

1401

1402

1403

Annotator	Question Range	Failed Clarity	Failed Freshness	Correctness	Agreement
	indices	# ambiguous questions	# outdated questions	# passed questions	# matched failures
1	1-60	5	4	51	0/20
2	51-110	1	11	45	0/20
3	101-160	3	26	31	3/20
4	1-10, 151-200	10	17	31	1/20

Annotator	Part 1	Part 2	Part 3
	# correct guesses	# matched answers	# “Yes” judgments
1	1	25	25
2	1	25	25
3	2	25	13
4	6	25	25
Total (out of 100)	10	100	88

F HUMAN ANNOTATION RESULTS

F.1 QUESTION QUALITY CHECK

Table 6 shows the human evaluation results of *Question Quality Check*. Across four annotators, the average correctness rate is 92% based on clarity only. It's noteworthy that our human annotators mostly disagree on freshness, since none of the questions was labeled as ambiguous by both annotators. Out of 40 overlapped questions, there are 2 questions labeled as not fresh by both annotators, and 1 question where both annotators labeled as fail out of different reasons. We observe that assessing question freshness is generally more difficult, due to the limitations of news articles, humans and LLMs. As noted by one of our annotators, it's challenging to determine if a question is "fresh" in multiple scenarios, since some seemingly trivial information from the past may be randomly covered by future news articles. Therefore, we consider clarity as the primary metric to assess the quality of our benchmark, as freshness can be easily affected by a lot of uncontrollable factors. When evaluated on both clarity and freshness, the average correctness rate is 66% on 200 multiple-choice questions.

F.2 QUESTION CORRECTNESS CHECK

Table 7 summarises the outcomes of the three-step *Question Correctness Check*. Part 1 measures how often annotators could guess the correct answer *before* reading the article; the low 10 % accuracy confirms that the questions are not answerable from prior knowledge alone. After consulting the article (Part 2), all annotators selected the ground-truth multiple-choice option in every case (100% agreement), indicating the questions are clear and the correct choice is recoverable from the article. In Part 3, annotators judged whether the ground-truth answer is *exactly* supported by the article; 88 % of judgments were “Yes”. All 12 disputed items were produced by the same annotator, who later acknowledged that they were unsure of the date of the new passage and therefore over-thought their answers. Therefore, the misunderstanding stems from the questionnaire design, not from the answers being incorrect.

1458 **G COMPLETE MODEL BENCHMARKING RESULTS (MULTIPLE CHOICE**
 1459 **FORMAT)**
 1460

1461 Table 8 shows the final QA accuracy (%) for a broad range of open-sourced and proprietary LLMs
 1462 under both *No-Context* and *Oracle* settings. As discussed in the main paper, these results highlight
 1463 the importance of timely context for questions involving fresh, real-world information and illustrate a
 1464 performance “cutoff” phenomenon for smaller model sizes (e.g., 1B parameters) versus larger ones
 1465 (e.g., 7B or more). “Oracle” accuracy steadily approaches near-ceiling for models above roughly
 1466 3–4B parameters, indicating a scaling threshold for effective reading comprehension on time-sensitive
 1467 content.

1468
 1469 Table 8: Final QA accuracy (%) of open-sourced and closed-sourced LLMs under No-Context and
 1470 Oracle (Context) settings.
 1471

Model	No-Context Acc	Oracle Acc
Open-Sourced Models		
gemma-3-1b-it	31.11	59.06
gemma-3-4b-it	44.17	94.09
gemma-3-12b-it	53.32	95.83
gemma-3-27b-it	54.00	96.21
Llama-3.2-1B-Instruct	26.55	55.06
Llama-3.2-3B-Instruct	42.85	91.57
Llama-3.1-8B-Instruct	30.89	94.81
Llama-3.3-70B-Instruct	57.23	95.70
Phi-3-mini-128k-instruct	44.38	94.30
Phi-3-small-128k-instruct	47.45	92.68
Phi-3-medium-128k-instruct	51.66	95.66
Phi-4-mini-instruct	43.57	93.62
Qwen2.5-0.5B-Instruct	28.17	55.19
Qwen2.5-1.5B-Instruct	41.70	90.64
Qwen2.5-3B-Instruct	45.36	94.51
Qwen2.5-7B-Instruct	50.00	95.15
Qwen2.5-14B-Instruct	52.89	96.09
Qwen2.5-32B-Instruct	55.79	96.77
Qwen2.5-72B-Instruct	56.30	96.51
Mistral-7B-Instruct-v0.2	35.96	90.21
Mistral-Small-24B-Instruct-2501	53.23	96.43
Mixtral-8x7B-Instruct-v0.1	33.36	93.40
Proprietary Models		
GPT-4o	59.96	96.60
GPT-o1-mini	32.38	96.34
GPT-o3-mini	55.36	97.28
Gemini-1.5-pro	55.36	97.28

1512 G.1 MMLU PRO: MEMORIZED KNOWLEDGE ASSESSMENT
1513
15141515 Table 9: **MMLU Pro Results** (% accuracy). We report performance on a knowledge-intensive QA
1516 benchmark, reflecting memorized or static knowledge from pre-training.
1517

Model	Size	Accuracy (%)
Llama-3.2-1B-Instruct	1B	22.6
Llama-3.2-3B-Instruct	3B	36.5
Llama-3.1-8B-Instruct	8B	44.3
Llama-3.3-70B-Instruct	70B	65.9
Gemma-3-1B	1B	14.7
Gemma-3-4B	4B	43.6
Gemma-3-12B	12B	60.6
Gemma-3-27B	27B	67.5
Qwen-2.5-0.5B	0.5B	15.0
Qwen-2.5-1.5B	1.5B	32.4
Qwen-2.5-3B	3B	43.7
Qwen-2.5-7B	7B	56.3
Qwen-2.5-14B	14B	63.7
Qwen-2.5-32B	32B	69.0
Qwen-2.5-72B	72B	71.1

1535 In Table 9, we report the accuracy of various models on the MMLU Pro benchmark, a knowledge-
1536 intensive QA dataset aimed at evaluating factual recall from pre-training. These results offer insight
1537 into how well each model retains *static* domain knowledge, in contrast to the *dynamic*, newly
1538 emerging facts tested by our daily-updated QA benchmark. We observe that scaling model size
1539 often brings significant improvements in MMLU Pro accuracy, reflecting the growing capacity for
1540 memorizing factual content. Notably, the performance gains on MMLU Pro can be substantially
1541 larger than the gains observed on our fresh-news dataset under No-Context conditions, underscoring
1542 the difference between learned “long-term” knowledge and newly introduced facts.
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 **H COMPLETE MODEL BENCHMARKING RESULTS (OPEN ENDED QUESTIONS)**
1567

1568 Table 10 reports the open-ended question-answering accuracy (%) of every model we evaluated
 1569 under both *No-Context* and *Oracle* settings. The table consolidates results for open-sourced and
 1570 closed-sourced LLMs, making it easy to trace how providing the exact answer-containing passage
 1571 (“Oracle”) closes the gap that appears when models must rely solely on their parametric knowledge
 1572 (“No-Context”). Reading downward, you can also see the scale threshold—around 3-4B parameters—
 1573 beyond which Oracle accuracy plateaus near ceiling, while smaller models lag substantially
 1574 without context.

1575
 1576 Table 10: Final accuracy (%) of all tested models in the *No-Context* and *Oracle* settings using open-
 1577 ended question format.

1579 Model	1580 No-Context Acc	1581 Oracle Acc
Open-Sourced Models		
1582 gemma-3-1b-bit	4.64	70.09
1583 gemma-3-4b-bit	10.51	86.09
1584 gemma-3-12b-bit	14.17	89.79
1585 gemma-3-27b-bit	17.19	89.79
1586 Llama-3.2-1B-Instruct	2.81	74.72
1587 Llama-3.2-3B-Instruct	5.19	86.64
1588 Llama-3.1-8B-Instruct	2.68	82.94
1589 Llama-3.3-70B-Instruct	16.13	90.13
1590 Phi-3-mini-128k-instruct	8.26	82.64
1591 Phi-4-mini-instruct	8.98	75.19
1592 Qwen2.5-0.5B-Instruct	4.47	70.94
1593 Qwen2.5-1.5B-Instruct	7.02	85.53
1594 Qwen2.5-3B-Instruct	6.98	86.85
1595 Qwen2.5-7B-Instruct	9.36	89.62
1596 Qwen2.5-14B-Instruct	10.43	84.68
1597 Qwen2.5-32B-Instruct	11.36	91.02
1598 Qwen2.5-72B-Instruct	13.79	90.94
1599 Mistral-7B-Instruct-v0.2	5.19	84.47
1600 Mistral-Small-24B-Instruct-2501	12.77	90.64
1601 Mixtral-8x7B-Instruct-v0.1	8.60	86.34
Closed-Sourced Models		
1603 GPT-4o-2024-08-06	17.74	91.79
1604 o1-mini-2024-09-12	4.43	88.30
1605 o3-mini-2025-01-31	15.79	92.38
1606 Gemini-1.5-pro	17.83	90.13

1620 I ADDITIONAL RETRIEVAL RESULTS

1621
 1622 To provide a fuller picture of how our retriever stack behaves under different temporal scopes, Table
 1623 11 details the Top- k hit rates—the fraction of questions whose gold article appears within the first k
 1624 results—while Table 12 complements this view with Top- k mean reciprocal rank (MRR), capturing
 1625 average ranking quality. We report both metrics for BM25, DPR, and ColBERT v2 across three corpus
 1626 sizes (news from the last 1, 5, and 10 days) and four cut-off values ($k = 1, 3, 5, 10$). Together, these
 1627 tables reveal how retrieval effectiveness degrades as the candidate pool widens, and how each method
 1628 trades off early-precision (Top-1/3) versus broader recall (Top-10) under increasingly challenging
 1629 settings.

1630
 1631 Table 11: Top- k hits accuracy (%) for different retrieval methods across 1-day, 5-day, and 10-day
 1632 corpora. Each cell represents the fraction of questions for which the ground-truth article is ranked
 1633 within the top k results.

Retriever	1-Day Corpus				5-Day Corpus				10-Day Corpus			
	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10
BM25	58.72	69.15	71.28	74.26	44.26	54.47	57.87	62.13	46.38	56.60	60.00	62.13
DPR	41.06	53.40	58.94	64.04	27.45	36.81	40.85	47.87	25.11	36.38	41.28	46.17
ColBERT v2	52.55	61.28	67.02	71.28	38.09	46.17	50.64	56.17	38.09	47.66	51.70	54.89

1640
 1641 Table 12: Top- k Mean Reciprocal Rank (MRR) for different retrieval methods across 1-day, 5-day,
 1642 and 10-day corpora. Each cell represents the average reciprocal rank of the ground-truth article.

Retriever	1-Day Corpus				5-Day Corpus				10-Day Corpus			
	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10
BM25	0.59	0.63	0.64	0.64	0.44	0.49	0.50	0.50	0.46	0.51	0.52	0.52
DPR	0.41	0.47	0.48	0.49	0.27	0.32	0.32	0.33	0.25	0.30	0.31	0.32
ColBERT v2	0.53	0.56	0.58	0.58	0.38	0.42	0.43	0.43	0.38	0.43	0.43	0.44

1674
 1675 Table 13: End-to-end QA accuracy (%) on the 1-day news corpus with the top-3 retrieved passages
 1676 appended to each query.

Model	BM25	DPR	ColBERT v2
Gemma-3-1B-IT	54.43	51.06	55.06
Gemma-3-4B-IT	90.72	77.91	84.68
Gemma-3-12B-IT	94.34	80.11	88.77
Gemma-3-27B-IT	95.28	77.19	86.77
Llama-3.2-1B-Instruct	47.49	43.53	46.77
Llama-3.2-3B-Instruct	87.83	73.62	81.79
Llama-3.1-8B-Instruct	93.36	78.43	86.26
Llama-3.3-70B-Instruct	94.98	78.13	86.98
Qwen 2.5-0.5B-Instruct	50.17	46.68	50.77
Qwen 2.5-1.5B-Instruct	85.96	75.11	81.36
Qwen 2.5-3B-Instruct	92.17	77.87	85.23
Qwen 2.5-7B-Instruct	93.66	80.51	86.89
Qwen 2.5-14B-Instruct	95.11	80.89	88.38
Qwen 2.5-32B-Instruct	96.00	84.21	89.96
Qwen 2.5-72B-Instruct	95.45	85.02	90.43
Phi-3-mini-128k-Instruct	91.49	76.85	83.74
Phi-4-mini-Instruct	91.79	78.55	83.45
Phi-3-small-128k-Instruct	87.74	75.87	76.81
Phi-3-medium-128k-Instruct	94.85	82.68	90.04

J COMPLETE END-TO-END QA RESULTS

1699 Table 5 reports the final question-answering accuracy (%) when each LM receives the top 3 passages
 1700 returned by three retrievers—BM25, DPR, and ColBERT v2—on the 1-day news corpus. These
 1701 numbers complement Figure 4 by revealing how retrieval quality interacts with model size *across the*
 1702 *full model set*. Higher accuracies for BM25 corroborate our main-text claim that lexical cues (named
 1703 entities, dates) dominate in rapidly evolving news, while dense retrievers lag unless adapted to the
 1704 domain.

1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727