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Abstract

Generalization bounds which assess the difference between the true risk and the
empirical risk have been studied extensively. However, to obtain bounds, current
techniques use strict assumptions such as a uniformly bounded or a Lipschitz
loss function. To avoid these assumptions, in this paper, we follow an alternative
approach: we relax uniform bounds assumptions by using on-average bounded loss
and on-average bounded gradient norm assumptions. Following this relaxation,
we propose a new generalization bound that exploits the contractivity of the log-
Sobolev inequalities. These inequalities add an additional loss-gradient norm term
to the generalization bound, which is intuitively a surrogate of the model complexity.
We apply the proposed bound on Bayesian deep nets and empirically analyze the
effect of this new loss-gradient norm term on different neural architectures.

1 Introduction

Deep neural networks are ubiquitous across disciplines and often achieve state-of-the-art results.
Despite the fact that deep nets are able to encode highly complex input-output relations, in practice,
they do not tend to overfit [Zhang et al., 2016]. This tendency to not overfit has been investigated in
numerous works on generalization bounds. Indeed, many generalization bounds apply to composite
functions specified by deep nets. However, most of these results assume that the loss function satisfies
various assumptions, such as uniformly bounded [Alquier et al., 2016], Lipschitz [Alquier et al.,
2019], sub-Gaussian [Bégin et al., 2016, Alquier and Guedj, 2018], sub-gamma [Germain et al.,
2016], or self-bounding [Haddouche et al., 2021]. Unfortunately, these assumptions exclude many
state-of-the-art deep nets, whose properties cannot be statistically determined per data distribution.

In this work, we take a different route and use the deep net gradient-norm as a measure for PAC-
Bayesian generalization. For this purpose, we treat the loss function as a random function that is
generated by a high-dimensional probability space, which is governed by the generating process
of the training data. This view allows us to introduce new tools from high-dimensional probability
theory that relate measure concentration to the expansion of the loss function, as determined by its
gradient-norm [van Handel, 2016].

We begin by adjusting a theorem (Herbst theorem) to estimate the measure concentration via the
entropy of the loss function (Lemma 3.1). We then derive a term for the entropy tailored to the
multiclass classification setting (discrete labels which condition Gaussian data), (Lemma 3.2). Finally
we bound the entropy using a log-Sobolev inequality (Lemma 3.3).

Importantly, these steps result in a PAC-Bayesian bound which depends on the norm of the gradient of
the loss. Intuitively this norm measures the complexity of the loss function, i.e., the model. Different
from prior work, the bound hence depends on the structure of the employed model and its gradient
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norm. This result admits a bound for multi-class classification with linear models and Lipschitz loss
(Theorem 3.4), extending a result of Alquier et al. [2016], and multi-class classification with deep
nets when the loss function and its gradient are on-average bounded (Theorem 3.5 and Theorem 3.6).
The assumptions for the derived bound (Theorem 3.5 and Theorem 3.6) are closer to present-day
deep net practice emphasizing the importance of the gradients in learning: in addition to the critical
importance of controlling the loss gradient to better optimize a deep net, the gradient-norm also
controls the generalization of the loss function (as measured by the deep net).

Our contributions: (1) We present a new PAC-Bayesian generalization bound that depends on the
gradient-norm of the loss function. Consequently, we replace the uniform bound assumptions with an
on-average bounded loss and an on-average bounded gradient norm. This answers an open problem
raised by Bartlett et al. [2017a] (cf. Sec. 4) in the PAC-Bayesian setting. This result is presented in
Theorem 3.5. (2) We extend the PAC-Bayesian bounds of Alquier et al. [2016] for the hinge-loss
to any linear model with a Lipschitz loss function. This result appears in Theorem 3.4. (3) We
empirically demonstrate that our bounds produce tighter generalization performance than the baseline
methods. This helps to bridge the gap between theory and practice towards tighter bounds that have
more realistic assumptions that match modern deep nets.

2 Background

Generalization bounds provide statistical guarantees on learning algorithms. They assess how the
learned parameters w of a model perform on test data given the model’s result on the training data
S = {(x1, y1), . . . , (xm, ym)}, where xi is the data instance and yi is the corresponding label.
The performance of the parametric model is measured by a loss function ℓ(w, x, y). The risk
LD(w) = E(x,y)∼D ℓ(w, x, y) of this model is its average loss when the data instance and its label
are sampled from the true but unknown distribution D. The empirical risk is the average training set
loss LS(w) = 1

m

∑m
i=1 ℓ(w, xi, yi).

2.1 PAC-Bayesian bounds

PAC-Bayesian theory bounds the expected risk Ew∼q LD(w) of a model when its parameters are
averaged over the learned posterior distribution q. The posterior distribution is learned from the
training data S. In our work, we start from the following PAC-Bayesian bound:

Theorem 2.1 (Alquier et al. [2016]). Let KL(q||p) =
∫
q(w) log(q(w)/p(w))dw be the KL-

divergence between two probability density functions p, q. For any λ > 0, for any δ ∈ (0, 1)
and for any prior distribution p, with probability at least 1− δ over the draw of the training set S,
the following holds simultaneously for any posterior distribution q:

Ew∼q[LD(w)] ≤ Ew∼q[LS(w)] +
1

λ
[C(λ, p) +KL(q||p) + log(1/δ)], (1)

where C(λ, p) ≜ log
(
Ew∼p,S∼Dm [eλ(LD(w)−LS(w))]

)
.

Unfortunately, the complexity termC(λ, p) of this bound is challenging to compute exactly in general:
it requires to integrate (and maximize if the log-sum-exp trick is used) over large parameter and data
spaces. Using different assumptions, e.g., learning with sub-Gaussian or sub-gamma loss functions,
learning with specific losses, etc., it is possible to analytically bound the complexity term C(λ, p) as
we briefly illustrate next.

We say that a loss function ℓ is sub-Gaussian with variance ν2 if it can be described by a sub-Gaussian
random variable, i.e., if its log-moment generating function is upper bounded by ν2/2:

log
(
E(x,y)∼D[e

λ(LD(w)−ℓ(w,x,y))]
)
≤ λ2ν2

2
. (2)

Alquier et al. [2016] use Hoeffding’s lemma to show that a uniformly bounded loss function, namely
0 ≤ ℓ(w, x, y) ≤ B is a sub-Gaussian loss function with variance B2 and hence derive from
Theorem 2.1 and Equation (2) a PAC-Bayesian bound for bounded loss functions.
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2.2 Measure concentration in high-dimension

However, the Hoeffding lemma, which asserts the sub-Gaussian property to a bounded loss function,
treats the value of the loss as a real-valued random variable ℓ(w, x, y) while entirely ignoring the
high-dimensional probability space (x, y) that generates this random value. Said differently: any
properties of a function F transforming the data (x, y) are ignored, and all functions F are treated
identically. This is sub-optimal. In the following, we describe an entropy method that utilizes the
measure concentration phenomena that exist in the high-dimensional random space of (x, y), cf.
Chapter 3 of van Handel [2016]. The entropy of a non-negative random variable F is

Ent[F ] ≜ E[F logF ]− E[F ] logE[F ]. (3)

The Herbst theorem connects Ent[F ] to measure concentration by providing a bound on the log-
moment generating function, as summarized next.
Theorem 2.2 (Herbst). Suppose that for all λ > 0 the following bound for the entropy holds:

Ent[eλF ] ≤ λ2σ2

2
E[eλF ]. (4)

Then the scaled log-moment generating function which we also refer to as ψ(λ)/λ is bounded as
follows:

ψ(λ)

λ
≜

1

λ
log
(
E[eλF ]

)
≤ E[F ] +

λσ2

2
. (5)

Proof. First, we note that due to the fundamental theorem of calculus

ψ(λ)

λ
=
ψ(0)

0
+

∫ λ

0

(
ψ(α)

α

)′

dα. (6)

Using l’Hopital rule, we verify that limα→0
ψ(α)
α = E[F ], which yields the first term of the bound.

The following identity (
ψ(α)

α

)′

=
Ent[eαF ]

α2 E[eαF ]
, (7)

which is obtained from the definition of ψ(α)/α and where (·)′ refers to the derivative w.r.t. α,
derives the theorem after plugging Equation (7) into Equation (6) and using Equation (4) to bound
the integral.

Importantly, note that this is a step forward. Different from classical PAC-Bayesian bounds discussed
in Section 2.1, which use the fact that a uniformly bounded loss function is sub-Gaussian, the Herbst
theorem asserts that any random variable that satisfies Equation (4) is σ2 sub-Gaussian.

To take advantage of this step, in this work, we benefit from the (modified) log-Sobolev inequality
(LSI) for Gaussian random variables, which bounds the entropy.
Theorem 2.3 (Gaussian log-Sobolev inequality (LSI), Gross [1975]). Let Z1, ..., Zd be independent
Gaussian random variables, i.e., Zi ∼ N (µi, σ

2
i ). We then have

EntN [ef(Z1,...,Zd)] ≤ 1

2
EN [∥σ · ∇Zf(Z1, ..., Zd)∥2ef(Z1,...,Zd)], (8)

where σ · ∇Zf(Z1, ..., Zd) is an element-wise multiplication.

Proof. See supplementary material.

One can apply the LSI to the Herbst theorem to attain measure concentration bounds for high-
dimensional Lipschitz functions: a differentiable function f(z1, ..., zd) is said to be g-Lipschitz
if |f(z1, ..., zd) − f(z′1, ..., z

′
d)| ≤ g∥z − z′∥, or equivalently if ∥∇f(z1, ..., zd)∥ ≤ g for any

z1, ..., zd. The LSI for g-Lipschitz functions with s ≜
∑d
i=1 σ

2
i variance reduces to the bound

Ent[eλf(z1,...,zd)] ≤ λ2g2s
2 E[eλf(z1,...,zd)], which in turn provides a bound on the log-moment

generating function of f(z1, ..., zd) using Theorem 2.2.
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3 PAC-Bayesian bounds with log-Sobolev inequalities

Different from prior work, we suggest measuring the generalization of neural nets by taking into
account the expected gradient-norm of the loss function with respect to the data generation process.

For this, we note that classical PAC-Bayesian generalization bounds depend on measure concentration,
as described in Theorem 2.1 and Equation (2.1). However, the sub-Gaussian assumption used
in classical PAC-Bayesian generalization bounds seamlessly bypasses the measure concentration
phenomena. This is too restrictive and enforces all loss functions, and consequently, all neural nets,
to have the same measure concentration phenomena.

Instead, we first use the Herbst theorem to estimate the measure concentration by taking into account
the entropy. In a second step we use Log-Sobolev inequalities (LSI) to bound the entropy, which
allows us to consider the high-dimensional probability space (x, y) ∼ D that controls the measure
concentration of the loss function ℓ(w, x, y). This differs from the use of a crude worst-case bound
on the loss function (e.g., ℓ(w, x, y) ≤ B for any w, x, y) in classical PAC-Bayesian generalization
bounds, which entirely ignores the neural net that generates the loss function.

1) Herbst theorem to estimate measure concentration: As just discussed, we first adjust the Herbst
theorem to our setting:

Lemma 3.1 (Herbst). For any λ > 0 we have

log
(
ES∼Dm

[
eλ(LD(w)−LS(w))

])
= λ

∫ λ
m

0

EntD[e
−αℓ(w,x,y)]

α2 ED[e−αℓ(w,x,y)]
dα. (9)

Proof. First, we use the statistical independence of the training samples to decompose the moment
generating function

M (λ) ≜ E(x,y)∼D[e
λ(−ℓ(w,x,y))] (10)

as follows:

ES∼Dm

[
eλ(LD(w)−LS(w))

]
= eλLD(w) ES∼Dm [eλ

1
m

∑m
i=1(−ℓ(w,xi,yi))] (11)

= eλLD(w)
m∏
i=1

E(xi,yi)∼D[e
λ
m (−ℓ(w,xi,yi))] (12)

= eλLD(w)M

(
λ

m

)m
. (13)

We apply the differential representation of Theorem 2.2 with ψ(λ) = logM (λ) and obtain:

ψ(λ)

λ
=

∫ λ

0

(
ψ(α)

α

)′

dα+
ψ(0)

0
=

∫ λ

0

EntD[e
−αℓ(w,x,y)]

α2 ED[e−αℓ(w,x,y)]
dα− E(x,y)∼D[ℓ(w, x, y)]. (14)

Since M (λ/m) = eψ(λ/m) and E(x,y)∼D[ℓ(w, x, y)] = LD(w), we obtain from Equation (14) the
identity

M

(
λ

m

)m
= e

λ
∫ λ

m
0

EntD [e−αℓ(w,x,y)]

α2 ED [e−αℓ(w,x,y)]
dα−λLD(w)

, (15)

which completes the proof when being combined with Equation (13).

2) Entropy bound: In the second step we now aim to bound the entropy EntD[e
−αℓ(w,x,y)].

Since we focus on the classification setting, the label y is discrete. We further assume that for
any (discrete) label y its corresponding data x = (x1, ..., xd) is generated from a d-dimensional
Gaussian distribution that consists of d i.i.d. Gaussian random variables xi ∼ N (µy,i, σ

2
y,i). We

denote this Gaussian distribution by x ∼ N (µy, σ
2
y) and abbreviate it by x ∼ Ny. The data

generation distribution of x is the Gaussian mixture model D =
∑
y Dy ·Ny, where Dy is the

marginal distributions of D w.r.t y.

We begin by decomposing the entropy of the (exponent) of the loss function according to the labels:
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Lemma 3.2. Let D =
∑
yDy · Ny be a mixture model, whose label marginal probabilities are Dy

and set fw(x, y) = e−αℓ(w,x,y). One can show that

EntD[fw] =
∑
y

Dy EntNy
[fw] + EntDy

[Ex∼Ny
[fw]]. (16)

Proof. From the definition of the entropy of a function ℓ(w, x, y) with respect to its measure (x, y) ∼
D we have

EntD[f ] ≜ ED fw(x, y) log fw(x, y)− (ED[fw(x, y)]) log (ED[fw(x, y)]) . (17)
The result is attained by adding and subtracting the quantity
Ey∼D

(
Ex∼Ny [fw(x, y)]

)
log
(
Ex∼Ny [fw(x, y)]

)
. The result then follows from the defini-

tions of entropies of the mixed components, while setting g(y) = Ex∼Ny [fw(x, y)]. Specifically, we
have

EntNy [fw] ≜ ENy [fw(x, y) log fw(x, y)]−
(
ENy [fw(x, y)]

)
log
(
ENy [fw(x, y)]

)
, (18)

EntDy [g] ≜
∑
y

Dyg(y) log(g(y))−

(∑
y

Dyg(y)

)
log

(∑
y

Dyg(y)

)
. (19)

It is important to note that the number of components in the mixture model is not limited. Such a
Gaussian mixture model can approximate any smooth density [Titterington et al., 1985, Scott, 1992,
Goodfellow et al., 2016].

Next, we use the LSI to bound the loss function entropy using its expected gradient-norm with respect
to the data generation process.
Lemma 3.3. Assume that the loss per label is balanced, namely Ex∼Ny

[e−αℓ(w,x,y)] = c for every
w and y, then under the conditions of Lemma 3.2.

log
(
ES∼Dm

[
eλ(LD(w)−LS(w))

])
≤ 1

2
λED

[
∥σy · ∇xℓ(w, x, y)∥2

∫ λ
m

0

e−αℓ(w,x,y)

ED[e−αℓ(w,x,y)]
dα
]
. (20)

Proof. Lemma 3.2 asserts that EntD[e−αℓ(w,x,y)] is composed of the entropies EntNy [e
−αℓ(w,x,y)]

and EntDy
[Ex∼Ny

[e−αℓ(w,x,y)]]. The assumption Ex∼Ny
[e−αℓ(w,x,y)] = c implies the

identity EntDy
[Ex∼Ny

[e−αℓ(w,x,y)]] = EntDy
[c] = 0. Thus EntD[e

−αℓ(w,x,y)] =∑
yDy EntNy

[e−αℓ(w,x,y)]. We use Theorem 2.3 to bound

EntNy
[e−αℓ(w,x,y)] ≤ 1

2
α2 ED

[
∥σy · ∇xℓ(w, x, y)∥2e−αℓ(w,x,y)

]
. (21)

Combination with Lemma 3.1 concludes the proof.

Note, the per-label loss balance originates from bounding the term EntDy
[Ex∼Ny

[fw]] in Lemma 3.2.
If the loss is per-label balanced, the entropy equals zero. In fact, the per-label balance can be relaxed
by assuming that the loss is per-label bounded within an amplitude (Sec. 3.16 in van Handel [2016]).

Notably, the above lemma is more theoretical than practical: to estimate it in practice, one needs to
avoid integrating over α. Nevertheless, it serves as an essential generalization of the Herbst theorem
and the LSI that is useful to derive PAC-Bayesian bounds for various settings. We look at these
different settings next.

3.1 Linear models

In the following, we consider differentiable and Lipschitz loss functions1 over linear models in a
multi-class setting of the form ℓ(w, x, y) ≜ ℓ̂(Wx, y). Included in these assumptions are the popular
NLL loss − log p(y|x,w) = −(Wx)y + log(

∑
ŷ e

(Wx)ŷ ) that is used in logistic regression and the
multi-class hinge loss maxŷ{(Wx)ŷ − (Wx)y + 1[y ̸= ŷ]} that is used in support vector machines.

1It is enough to assume that the loss function is continuous and almost everywhere differentiable with respect
to x.
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Theorem 3.4. Let ℓ(w, x, y) ≜ ℓ̂(Wx, y) be a differentiable loss function over x = (x1, ..., xd) and
k classes y ∈ {1, ..., k}, with Lipschitz constant g, i.e., ∥∇tℓ̂(t, y)∥ ≤ g. Consider a Gaussian prior
distribution p ∼ N(0, σ2

p). Under the conditions of Lemma 3.3, for any 0 < λ ≤
√

m
16/gσpσy and

δ ∈ (0, 1), with probability at least 1− δ over the draw of the training set S, we have

Ew∼q[LD(w)] ≤ Ew∼q[LS(w)] +
kd log(

√
4/3) +KL(q||p) + log(1/δ)

λ
. (22)

Proof. This bound is derived by applying Lemma 3.3. We begin by realizing the gradient of ℓ̂(Wx, y)

with respect to x. Using the chain rule, ∇xℓ̂(Wx, y) =W⊤∇Wxℓ̂(Wx, y). Hence, we obtain for the
gradient norm ∥∇xℓ̂(Wx, y)∥2 ≤ ∥∇Wxℓ̂(Wx, y)∥2 ·

∑k
y=1

∑d
j=1 w

2
y,j ≤ g2

∑k
y=1

∑d
j=1 w

2
y,j .

Plugging this result into Lemma 3.3, we obtain the following bound:

ED

[
∥σy∇ℓ(w, x, y)∥2

∫ λ
m

0

e−αℓ(w,x,y)

M(α)
dα
]
≤ σ2

yg
2

k∑
y=1

d∑
j=1

w2
y,j

∫ λ
m

0

ED
[
e−αℓ(w,x,y)

]
M(α)

dα.

Since M(α) ≜ ED
[
e−αℓ(w,x,y)

]
, the ratio in the integral equals one and the integral

∫ λ
m

0
dα = λ

m .
Finally, whenever λgσpσy ≤

√
m/4 we follow the Gaussian integral and derive the bound

log
(
Ew∼p e

σ2
yλ2g2

2m

∑
y,j w

2
y,j

)
≤ kd · log

(√ m

m−m/4

)
= kd · log(

√
4/3). (23)

Finally, we obtain Equation (22) by plugging the above into Theorem 2.1. A detailed proof is provided
in Appendix.

Notice, in the linear case, the gradients of the model are a function of W . Thus they are not uniformly
bounded for every W . Since we assume the loss to be Lipschitz, we can bound C(λ, p), and by
further assuming bounded λ, and Gaussian W , we obtain kd · log(4/3).
Theorem 3.4 provides a PAC-Bayesian bound for classification using the NLL loss. This extends the
result of Alquier et al. [2016] for binary hinge-loss to the multi-class hinge loss (cf. [Alquier et al.,
2016], Sec. 6).

While the above result can be applied to deep nets, obtaining a value for the bound requires computing
the Lipschitz constant, which is an NP-hard problem even for two-layer neural nets [Virmaux and
Scaman, 2018]. Moreover, common Lipschitz constant approximation algorithms tend to overestimate
the constant and are exponential in the network’s depth [Virmaux and Scaman, 2018, Combettes and
Pesquet, 2019].

3.2 Non-linear models

Sadly, the bound proposed in the previous sub-section cannot be applied to non-linear loss functions
since their gradient-norm is not bounded, as evident by the exploding gradients property in deep nets.
To mitigate this, we suggest utilizing on-average bounded losses and gradients. Formally, one can
show the following:
Theorem 3.5. Consider smooth loss functions that are on-average bounded, i.e., for every w the
following holds: ED ℓ(w, x, y) ≤ b and ED

[
∥∇xℓ(w, x, y)∥2

]
≤ g. Under the conditions of

Lemma 3.3 for any 0 < λ ≤ m and δ ∈ (0, 1), with probability at least 1− δ over the draw of the
training set S, we obtain

Ew∼q[LD(w)] ≤ Ew∼q[LS(w)] +

λ2ebgσ2
y

2m +KL(q||p) + log(1/δ)]

λ
. (24)

Proof. This bound is derived by applying Lemma 3.3 and bounding
∫ 1

0
e−αℓ(w,x,y)

M(α) dα ≤ eb. We

derive this bound in three steps: First, from ℓ(w, x, y) ≥ 0 we obtain e−αℓ(x,x,y) ≤ 1. Then, we lower
bound M(α) ≥M(1) for any 0 ≤ α ≤ λ/m. Also, since ℓ(w, x, y) ≥ 0 the function e−αℓ(w,x,y) is
monotone in α within the unit interval and M(α) ≥ M(1) for any α ≤ 1. Lastly, the assumption
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Figure 1: (a-b) ED[ℓ(w, x, y)] as a function of different priors for the model parameters. (c-d)
ED
[
∥∇xℓ(w, x, y)∥2

]
as a function of the different variance levels of the prior distribution. Results

are reported for MNIST (a, c) using MLPs, and CIFAR10 (b, d) using CNNs.

ED[−ℓ(w, x, y)] ≥ −b and the monotonicity of the exponential function result in the lower bound
eED[−ℓ(w,x,y)] ≥ e−b.

From convexity of the exponential function we have ED e
−ℓ(w,x,y) ≥ eED[−ℓ(w,x,y)]. Combining

these bounds and replacing ED
[
∥σy∇ℓ(w, x, y)∥2

]
with gσ2

y , we obtain the upper bound

C(λ, p) ≤
λ2ebgσ2

y

2m
. (25)

Finally, we obtain Equation (24) by plugging Equation (25) into Theorem 2.1. A detailed proof is
provided in Appendix.

In contrast to prior work that assumes the loss function to be uniformly bounded, i.e., ℓ(w, x, y) ≤ B
for every w, x, y [Alquier et al., 2016], in Theorem 3.5, we assume an on average bounded loss and
an on average bounded gradient norm, i.e., ED ℓ(w, x, y) ≤ b and ED

[
∥∇ℓ(w, x, y)∥2

]
≤ g for all

w.

The above bound corresponds to an open problem raised by Bartlett et al. [2017a], wondering about
the existence of generalization bounds that assume on-average bounds on the loss and/or the gradient
norm. Nevertheless, this bound is more theoretical than practical, as it enforces global on-average
bounds b ≥ ED ℓ(w, x, y) and g ≥ ED

[
∥∇ℓ(w, x, y)∥2

]
.

For a more practical perspective, in the following, we consider the on-average loss and gradient norm
to be functions of the model parameters.
Theorem 3.6. Consider smooth loss functions and the conditions of Lemma 3.3. For any 0 < λ ≤ m
we obtain

C(λ, p) ≤ log

(
Ew∼p

[
exp

(
λ2eED ℓ(w,x,y) ED

[
∥∇ℓ(w, x, y)∥2

]
σ2
y

2m

)])
. (26)

The proof of this Theorem follows the proof of Theorem 3.5. However, in this case, we cannot remove
the expectation over the prior distribution since we assume the bound over the loss and gradients to
depend on w.

The above derivation upper bounds the complexity term C(λ, p) by the expected gradient-norm of
the loss function, i.e., the flow of its gradients through the model’s architecture. We show empirically
that the rate of the bound λ can be as high as m, dependent on the gradient-norm. This is a favorable
property since the convergence of the bound scales as 1/λ. Therefore, one would like to avoid
exploding gradient-norms, which effectively harm the true risk bound. While one may achieve
a fast rate bound by forcing the gradient-norm to vanish rapidly, practical experience shows that
vanishing gradients prevent the deep net from fitting the model to the training data when minimizing
the empirical risk. In our experimental evaluation, we demonstrate the influence of the expected
gradient-norm on the bound of the true risk.

4 Experiments

In this section, we evaluate our PAC-Bayesian bounds experimentally, both for linear and non-linear
models. We begin by verifying our assumptions, comparing the proposed bound to prior work, and
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Figure 2: Complexity study: In (a-b), we present the complexity term as a function of λ. Furthermore,
in (c), we present the complexity term C(λ, p) as a function of the network depth for both CIFAR and
MNIST. Note, the bound on the complexity term decreases as a function of the depth of the network.

estimating its predictive generalization capabilities. Next, we study the behavior of the complexity
term C(λ, p) for different architectures, both for linear models and deep nets. We conclude the
section with an evaluation of the effectiveness of the proposed bound at predicting generalization
performance and analyzing its different components during optimization. All reported results were
averaged over three runs using different seeds. The complete experimental setup can be found in the
Appendix.

Verifying assumptions: In Lemma 3.3 we assume that the loss per label is balanced. To verify that
this assumption holds, we use ten different architectures (ResNet18, PreActResnet18, GoogLeNet,
VGG11, VGG13, VGG16, VGG19, DenseNet121, MobileNet, EfficientNetB0) on CIFAR10 and
CIFAR100 [Krizhevsky, 2009, Simonyan and Zisserman, 2014, Szegedy et al., 2015, He et al., 2016,
Huang et al., 2017, Howard et al., 2017, Tan and Le, 2019]. The maximum standard deviation across
the labels is 0.022, while the mean value is 4.605. Hence, it is evident that this assumption holds in
practice. In Theorem 3.6 we assume that the loss is unbounded but it is on-average bounded by a
function depending on w, i.e., ED ℓ(w, x, y) ≤ b(w). The results to verify this for MNIST [LeCun
et al., 1998] and CIFAR10 are provided in Fig. 1a and Fig. 1b. We observed that until σ2

p = 0.1, the
loss is on-average bounded by ∼ 2. Moreover, for σ2

p ≤ 0.01, the on-average loss bound is about 1,
and its effect on the complexity term C(λ, p) is minor. This validates empirically our assumptions
that the on-average bounds ED ℓ(w, x, y) are small although maxw,x,y ℓ(w, x, y) is much larger (see
Tab. 1 for its impact on the generalization).

Complexity of neural nets: We now turn to estimate our bounds over C(λ, p), both for linear and
non-linear models. Recall that λ determines the rate of the generalization bound, and one would like
to set 0 < λ ≤ m as large as possible while C(p, λ) to be as small as possible. As the bound on
C(λ, p) is controlled by the expected gradient-norm ED

[
∥∇xℓ(w, x, y)∥2

]
, we present in Fig. 1c

and Fig. 1d the expected squared gradient-norm as a function of different variance levels for the prior
distribution p over the model parameters, again using both MNIST and CIFAR10 data.

We note that the linear model has the largest expected gradient-norm. Further, note that the deeper
the network, the smaller its gradient-norm. As a result, deeper nets can use larger values of λ for
the generalization bound. Thus, we present our complexity bound as a function of λ in Fig. 2a and
Fig. 2b. Note, the complexity term C(λ, p) reaches its minimum around λ = m. Fig. 2c studies
the effect of a network’s depth on the complexity term. We observe that, as expected based on
the earlier plots, deeper networks have a lower complexity term. We attribute this phenomenon to
vanishing gradients which create a contractivity property that stabilizes the loss function, i.e., reduces
its variability. However, this comes at the expense of the expressivity of the deep net, since deep nets
with vanishing gradients cannot fit the training data in the learning phase.

Comparison to prior PAC-Bayesian bounds: We compare the proposed bound to Alquier et al.
[2016] (bounded version), Germain et al. [2016], and Dziugaite and Roy [2017] on both MNIST and
CIFAR. Unlike our bound which assumes the expected loss to be bounded, both Alquier et al. [2016]
and Germain et al. [2016] assume the loss to be uniformly bounded by a constant B. Hence, for a fair
comparison, we estimated B to be the maximum and average loss over the training set and use it to
bound the maximum and expected loss respectively. Results are summarized in Tab. 1. Notice, our
bound produces tighter generalization bounds compared to the baseline methods for both datasets.
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Table 1: Comparison of the full PAC-Bayesian generalization bound versus Alquier et al. [2016],
Germain et al. [2016], and Dziugaite and Roy [2017]. For MNIST we use a three layer fully connected
model, while for CIFAR-10 we use a CNN with three convolutional layers. In all settings we used
λ = m and σ2

p = 0.01.

DATASET ALQUIER GERMAIN DZIUGAITE OURS

MNIST 3.36 ± 5E-4 1.86 ± 4E-3 0.41 ± 3E-4 0.04 ± 5E-4
CIFAR-10 4.81 ± 1E-2 8.37 ± 9E-2 - 0.05 ± 4E-3

5 Related work

Generalization bounds for deep nets were explored in various settings. VC-theory provides both
upper bounds and lower bounds to the network’s VC-dimension, which are linear in the number
of network parameters [Bartlett et al., 2017b, 2019]. While VC theory asserts that such a model
should overfit as it can learn any random labeling (e.g., [Zhang et al., 2016]), surprisingly, deep nets
generally do not overfit.

Rademacher complexity allows to apply data-dependent bounds to deep nets [Bartlett and Mendelson,
2002, Neyshabur et al., 2015, Bartlett et al., 2017a, Golowich et al., 2017, Neyshabur et al., 2018].
These bounds rely on the loss and the Lipschitz constant of the network and consequently depend on
a product of norms of weight matrices, which scales exponentially in the network depth. Wei and
Ma [2019] developed a bound over the gradient-norm of training examples. In contrast, our bound
depends on average quantities of the gradient-norm. Thus we answer an open question of Bartlett
et al. [2017a] about the existence of bounds that depend on average loss and average gradient-norm,
albeit in a PAC-Bayesian setting. PAC-Bayesian bounds that use Rademacher complexity have also
been studied [Kakade et al., 2009, Yang et al., 2019].

Stability bounds may be applied to unbounded loss functions and in particular to the negative log-
likelihood (NLL) loss [Bousquet and Elisseeff, 2002, Rakhlin et al., 2005, Shalev-Shwartz et al., 2009,
Hardt et al., 2015, Zhang et al., 2016]. However, stability bounds for convex loss functions, e.g., for
logistic regression, do not apply to deep nets since they require the NLL loss to be a convex function
of the parameters. Alternatively, Hardt et al. [2015] and Kuzborskij and Lampert [2017] estimate
the stability of stochastic gradient descent dynamics, which strongly relies on early stopping. This
approach results in weaker bounds for the non-convex setting. Stability PAC-Bayesian bounds for
bounded and Lipschitz loss functions were developed by London [2017]. Li et al. [2019] utilized the
log-Sobolev inequality to bound the KL divergence under the PAC-Bayesian setting while assuming
a bounded loss function. In contrast, we assume an unbounded loss function and a Gaussian prior
distribution over the model weights. The latter allows us to compute the KL divergence. Holland
[2019] studies PAC-Bayesian learning guarantees for heavy-tailed losses. Haddouche et al. [2021]
relax the boundness assumption by modifying the range of the loss to depend on each predictor.
Differently, through the log-Sobolev inequality, our bound relies on the expected gradient-norm of
the loss function, which may be unbounded as well.

PAC-Bayesian bounds were recently applied to deep nets [McAllester, 2013, Dziugaite and Roy,
2017, Neyshabur et al., 2017, Pérez-Ortiz et al., 2021]. In contrast to our work, those related works
all consider bounded loss functions. An excellent survey on PAC-Bayesian bounds was provided
by Germain et al. [2016]. Alquier et al. [2016] introduced PAC-Bayesian bounds for linear classifiers
trained with a hinge-loss by explicitly bounding its moment generating function. Dziugaite et al.
[2021] investigate the role of data in learning a PAC-Bayesian prior. Closely, Foong et al. [2021] study
the tightness of PAC-Bayesian bounds for small datasets. Alquier et al. [2012] provide an analysis
for PAC-Bayesian bounds with Lipschitz functions. Our work differs as we derive PAC-Bayesian
bounds for non-Lipschitz functions. Work by Germain et al. [2016] is closer to our setting and
considers PAC-Bayesian bounds for linear models and quadratic loss functions. In contrast, our work
considers the multi-class setting and non-linear models. PAC-Bayesian bounds for the NLL loss in
the online setting were put forward too [Takimoto and Warmuth, 2000, Banerjee, 2006, Bartlett et al.,
2013, Grünwald and Mehta, 2017]. The online setting does not consider the whole sample space
and therefore is simpler to analyze in the Bayesian setting. Recently, a PAC-Bayesian generalization
bound for meta-learning was proposed [Rothfuss et al., 2020, Amit and Meir, 2018, Farid and
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Majumdar, 2021, Ding et al., 2021]. In contrast to our work, Amit and Meir [2018] and Farid and
Majumdar [2021] focus on bounded loss functions while Rothfuss et al. [2020] assume the loss
function to be sub-gamma.

PAC-Bayesian bounds for the NLL loss function are intimately related to learning Bayesian infer-
ence Germain et al. [2016]. Recently, many works applied various posteriors in Bayesian deep nets.
Gal and Ghahramani [2015], Gal [2016] introduce a Bayesian inference approximation using Monte
Carlo (MC) dropout, which approximates a Gaussian posterior using Bernoulli dropout. Srivastava
et al. [2014], Kingma et al. [2015] introduced Gaussian dropout, which effectively created a Gaussian
posterior that couples the mean and the variance of the learned parameters and explored the relevant
log-uniform priors. Blundell et al. [2015], Louizos and Welling [2016] suggest taking a complete
Bayesian perspective and learning the mean and the variance of each parameter separately.

Stochastic gradient Langevin dynamics (SGLD) bounds [Pensia et al., 2018, Mou et al., 2018, Negrea
et al., 2019, Haghifam et al., 2020] suggest bounding the generalization gap by investigating the
dynamics of the parameters through Langevin dynamics and Fokker-Planck equations. Broadly,
the Fokker-Planck equation defines a Markov process, and these works measure the KL-divergence
between a prior and posterior distribution of this process in the parameter space using gradient norms
of the parameters. Differently, our work utilizes the Herbst theorem to measure the KL-divergence (in
the form of functional entropy) between prior and posterior in the input space. This distinction leads
to a computation of the gradients with respect to different quantities, i.e., parameters vs. input data.

6 Discussion and future work

In this study, we present new PAC-Bayesian generalization bounds that depend on the gradient-norm
of the loss function. We explore their properties in our experimental validation in various deep
learning settings, reinforcing the importance of gradients in contemporary deep nets. Our framework
allows for new PAC-Bayesian bounds that assume an on-average bounded loss and an on-average
bounded gradient norm assumption. These findings answer an open problem raised by Bartlett et al.
[2017a] under the PAC-Bayesian setting. Moreover, we extend the current generalization bounds
proposed for the hinge-loss to any linear model with a Lipschitz loss function. Finally, we empirically
show that our bounds produce tighter generalization performance than the baseline methods. These
results are another step towards bridging the gap between theory and practice while having more
realistic assumptions for modern deep nets.

Our framework can be extended in different directions. Log-Sobolev inequalities (LSIs) are intimately
related to hypercontractivity. Our generalization bounds also imply that deep nets hyper-contracts
their input and therefore generalize. While the relation between generalization and hypercontractivity
is under explored, with the small-ball theorem as a notable exception [Lecué and Mendelson, 2017,
Mendelson, 2014], we believe it is a fundamental concept in contemporary deep nets that require
further research. Additionally, our framework focuses on bounding the complexity term. It is
interesting future work to also consider the KL term.

We assume that the labels are balanced with respect to the loss, or equivalently, the influence of all
labels is equal. The theory of influence of discrete functions is well-developed and very relevant
to LSIs, hypercontractivity, and measure concentration, and further investigation on its relation to
generalization is desired [O’Donnell, 2014].

Acknowledgements: This work is supported in part by NSF under Grant # 2008387, and, BSF under
Grant # 2019783.
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