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Abstract001

Effective cross-lingual transfer remains a crit-002
ical challenge in scaling the benefits of large003
language models from high-resource to low-004
resource languages. Towards this goal, prior005
studies have explored many approaches to com-006
bine task knowledge from task-specific data007
in a (high-resource) source language and lan-008
guage knowledge from unlabeled text in a (low-009
resource) target language. One notable ap-010
proach proposed composable sparse fine-tuning011
(SFT) for cross-lingual transfer that learns task-012
specific and language-specific sparse masks to013
select a subset of the pretrained model’s pa-014
rameters that are further fine-tuned. These015
sparse fine-tuned vectors (SFTs) are subse-016
quently composed with the pretrained model017
to facilitate zero-shot cross-lingual transfer to018
a task in a target language, using only task-019
specific data from a source language. These020
sparse masks for SFTs were identified using a021
simple magnitude-based pruning. In our work,022
we introduce DEFT-X, a novel composable023
SFT approach that denoises the weight matri-024
ces of a pretrained model before magnitude025
pruning using singular value decomposition,026
thus yielding more robust SFTs. We evaluate027
DEFT-X on a diverse set of extremely low-028
resource languages for sentiment classification029
(NusaX) and natural language inference (Amer-030
icasNLI) and demonstrate that it performs at031
par or outperforms SFT and other prominent032
cross-lingual transfer baselines.033

1 Introduction034

Pretrained language models (LMs) are the de-facto035

choice for NLP, achieving state-of-the-art results036

across diverse benchmarks. However, effectively037

adapting these models to specific tasks remains a038

challenge owing to their large model sizes and the039

substantial training costs incurred during full fine-040

tuning. Furthermore, full fine-tuning approaches041

are prone to issues such as catastrophic forgetting042

and negative interference when adapted to multi- 043

ple tasks. To mitigate these challenges, parameter- 044

efficient fine-tuning (PEFT) techniques are a popu- 045

lar choice (Pfeiffer et al., 2024). These approaches 046

include sparse fine-tuning (SFT) that refers to iden- 047

tifying a sparse subnetwork of the full model to 048

train, and adapter-based methods that insert addi- 049

tional trainable modules while keeping the original 050

model parameters fixed (Pfeiffer et al., 2020; Hu 051

et al., 2022). 052

Multilingual NLP introduces an additional layer 053

of complexity, especially in the context of low- 054

resource languages. A key objective of recent 055

work in multilingual NLP has been to facilitate 056

cross-lingual transfer by leveraging high-resource 057

language data to improve performance on low- 058

resource languages. Zero-shot cross-lingual trans- 059

fer refers to the more constrained setting of having 060

access only to task-specific labeled data in a high- 061

resource (source) language and no labeled data in 062

a low-resource (target) language. PEFT-based ap- 063

proaches such as MAD-X (Pfeiffer et al., 2020) 064

and LT-SFT (Ansell et al., 2022) are designed to 065

support zero-shot cross-lingual transfer. In MAD- 066

X, a task adapter is learned using labeled data 067

in a source language and a language adapter is 068

learned using unlabeled data in a target language. 069

To achieve zero-shot cross-lingual transfer, the task 070

adapter in the source language is combined with the 071

language adapter in the target language. LT-SFT 072

(Lottery Ticket Sparse Fine-Tuning) removes the 073

need for new trainable modules as in adapters by 074

first identifying sparse subnetworks (a.k.a. “lottery 075

tickets") within the model using magnitude prun- 076

ing. Fine-tuning these subnetworks while keeping 077

the rest of the model frozen yields sparse vectors; 078

these vectors can be estimated independently to 079

learn task-specific and language-specific knowl- 080

edge. These vectors are composed via simple ad- 081

dition to obtain the final model for zero-shot cross- 082

lingual transfer. 083
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Figure 1: A graphical representation of DEFT-X. The pretrained model θ (gray, left) undergoes full fine-tuning to
obtain θFFT. The difference ∆W (blue and red, left) captures the magnitude difference between θ and θFFT. Each
weight matrix in ∆W is denoised by pruning higher-order components (i.e., lower singular value components) while
retaining lower-order components (i.e., high singular value components). The denoised ∆W is then magnitude-
pruned and sparsely fine-tuned to produce ϕ. Finally, the language-specific component ϕL and task-specific
component ϕT are combined via addition to form the target language-task model θTL(left).

In this work, we propose DEFT-X, a novel084

sparse composable approach for zero-shot cross-085

lingual transfer. Adopting the LT-SFT template,086

DEFT-X aims to identify subnetworks for further087

finetuning using a low-rank approximation and088

improves the quality of sparse fine-tuned vectors089

by denoising higher-order components. Specifi-090

cally, we use Singular Value Decomposition (SVD)091

(Sharma et al., 2023; Zhao et al., 2025) to decom-092

pose each weight matrix into lower and higher-093

order components (corresponding to high and low094

singular values, respectively). The higher-order095

components are denoised and added to the SVD096

lower-order components, resulting in a signal-097

amplified weight matrix (refer to §3.1). Next, we098

apply magnitude pruning to identify a more ef-099

fective sparse subnetwork by removing noise, fol-100

lowed by fine-tuning to obtain the final sparse fine-101

tuned vectors (detailed in §3.1). These vectors are102

finally composed via simple addition for effective103

cross-lingual transfer (as shown in §3.2). An illus-104

tration of DEFT-X is shown in Figure 1.105

We evaluate the zero-shot cross-lingual perfor-106

mance of DEFT-X on sentiment analysis (SA)107

and natural language inference (NLI) tasks for ex-108

tremely low-resource Indonesian/indigenous lan-109

guages in the NusaX/AmericasNLI benchmarks,110

respectively. Our results demonstrate that DEFT-X111

outperforms state-of-the-art baselines. Our findings112

highlight the importance of each step in the DEFT- 113

X pipeline – denoising the model before selecting a 114

sparse subnetwork, enforcing sparsity after denois- 115

ing and fine-tuning the subnetwork, particularly in 116

low-resource settings. 117

2 Background 118

2.1 Lottery Ticket Hypothesis (LTH) 119

The Lottery Ticket Hypothesis (LTH) (Frankle and 120

Carbin, 2019; Malach et al., 2020) states that within 121

a randomly initialized, dense neural network, there 122

exists a subnetwork referred to as a winning ticket 123

that when trained in isolation with its original ini- 124

tialization, can achieve comparable or even su- 125

perior performance to the full network. Simple 126

pruning techniques such as magnitude-based prun- 127

ing can be used to identify such trainable subnet- 128

works in fully connected and convolutional net- 129

works (Han et al., 2015, 2016; Yang et al., 2017). 130

To identify a winning ticket, a neural network 131

f(x; θ(0)) is first initialized with random parame- 132

ters θ(0). The network is trained for j iterations, re- 133

sulting in parameters θ(j). Next, p% of the smallest- 134

magnitude weights are pruned, creating a binary 135

mask m. Finally, the remaining parameters are re- 136

set to their original values from θ(0) to yield the 137

winning ticket f(x;m⊙ θ(0)). However, if a win- 138

ning ticket’s parameters are randomly re-initialized, 139

its performance deteriorates, highlighting the im- 140
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portance of proper initialization for effective train-141

ing. This process of pruning and resetting helps142

uncover subnetworks that retain strong learning143

abilities when trained in isolation.144

2.2 Lottery Ticket Sparse Fine-Tuning145

(LT-SFT)146

Inspired by the LTH, Ansell et al. (2022) pro-147

posed a lottery ticket-based algorithm (LT-SFT)148

for efficient zero-shot cross-lingual transfer learn-149

ing for low-resource languages. LT-SFT proposes150

a parameter-efficient fine-tuning approach that is151

both modular like adapters (Pfeiffer et al., 2021a,152

2020) (i.e., it can be easily combined to adapt153

a model to different knowledge sources) and ex-154

pressive like sparse fine-tuning (i.e., it changes155

the behavior of all components). LT-SFT outper-156

formed the state-of-the-art MAD-X adapter-based157

approach for low-resource cross-lingual transfer;158

the algorithm is detailed below.159

LT-SFT: Generate Sparse Fine-tuned Vectors160

(SFTs). The LT-SFT algorithm generates sparse161

fine-tuned vectors (SFTs) in two phases: (1) Pre-162

trained model parameters θ(0) are fine-tuned on a163

target task or language to obtain θ(1). From the top-164

K winning tickets based on the greatest absolute165

difference |θ(1)i − θ
(0)
i |, a binary mask b ∈ {0, 1}166

is constructed where b = 1 for selected parame-167

ters and b = 0 otherwise. (2) All the parameters168

are reset to θ(0) and the model is retrained with169

keeping all non-winning parameters frozen using b.170

The resulting fine-tuned parameters θ(2) yield the171

sparse fine-tuned vector (SFT) ϕ = θ(2) − θ(0).172

LT-SFT: Zero-shot Transfer using SFTs. For173

each target language l, a language-specific SFT174

ϕl
L is estimated via the masked language modeling175

(MLM) objective on text from language l, initial-176

ized with the pretrained model weights θ0. For177

each task t, a task-specific SFT ϕt
T is learned by178

training LT-SFT on annotated data in the source179

language s. For learning the task SFT, the LT-SFT180

algorithm first adapts the pre-trained model to the181

source language by adding the source language182

SFT ϕs
L to the model initialization i.e, θ0 + ϕs

L.183

The model is then trained on the task to obtain up-184

dated parameters θ
′
. Finally, the task-specific SFT185

is computed by removing the source language SFT:186

ϕt
T = θ

′ − (θ(0) + ϕs
L). During task training, a187

classifier head is learned and fully fine-tuned in188

both phases of LT-SFT, with its random initializa-189

tion reset at the start of each phase. For zero-shot190

cross-lingual transfer, the language-specific SFT 191

ϕL and task-specific SFT ϕT are composed with 192

the pretrained model as θTL = θ(0) + ϕT + ϕL to 193

yield the target language-task model. The classifier 194

head trained for the task is stacked on top to obtain 195

the final model. 196

3 Methodology 197

3.1 DEFT-X: Motivation 198

Sparse fine-tuned vectors enable parameter- 199

efficient cross-lingual transfer, but its effectiveness 200

depends heavily on the quality of the identified 201

sparse vectors. In LT-SFT, these vectors might 202

capture noise or irrelevant information. DEFT-X 203

mitigates this by introducing a low-rank denoising 204

step prior to sparse fine-tuning. DEFT-X prunes 205

the higher-order (lower singular value) components 206

from the model weights, which are more likely to 207

capture uninformative or noisy artefacts. The re- 208

sulting denoised sparse vectors lead to more effec- 209

tive and robust transfer, especially in low-resource 210

language scenarios. 211

Denoising using Low-Rank Approximation. In 212

DEFT-X, we start with identifying the ‘winning 213

tickets’ for efficient cross-lingual transfer. We com- 214

pute the difference between the pretrained model 215

parameters θ(0) and the fully fine-tuned model pa- 216

rameters θ(1) to obtain 217

δ = θ(1) − θ(0) (1) 218

To extract the winning tickets in δ, we first obtain 219

a low-rank approximation (Zhao et al., 2025) by 220

decomposing each weight matrix W ∈ Rm×n in δ 221

using Singular Value Decomposition (SVD): 222

W = UΣV T (2) 223

where U ∈ Rm×m and V ∈ Rn×n are the left and 224

right singular vector matrices of W and Σ ∈ Rm×n 225

is the diagonal matrix of singular values. We con- 226

struct a low-rank approximation of W by retaining 227

its lower-order (high singular value) components 228

while pruning noise from the higher-order (low sin- 229

gular value) components: 230

L = UrΣrV
T
r , S = m⊙ (W − L) (3) 231

where Ur and Vr denote the first r columns of U 232

and V , respectively. The matrix L captures the 233

lower-order components, while S represents the 234
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Task Target
Dataset

Target Languages Source
Language

Source Task
Dataset

Sentiment
Analysis (SA)

NusaX
(Winata
et al., 2023)

Acehnese, Balinese, Ban-
jarese, Madurese, Minangk-
abau

Indonesian SMSA (Purwarianti
and Crisdayanti, 2019;
Wilie et al., 2020)

Natural
Language
Inference
(NLI)

AmericasNLI
(Ebrahimi
et al., 2022)

Aymara, Asháninka, Bribri,
Guarani, Náhuatl, Otomí,
Quechua, Rarámuri, Shipibo-
Konibo, Wixarika

English MultiNLI (Williams
et al., 2018)

Table 1: Details of the tasks, datasets, and languages involved in our zero-shot cross-lingual transfer evaluation. All
target languages are low-resource and were unseen during XLM-R pretraining. All the training data was obtained
from the authors of Ansell et al. (2022, 2023a). Further details are provided in Appendix B.

denoised higher-order components. The mask m is235

defined as:236

mi =

{
1, if i ∈ Top-n-indices of |W − L|
0, otherwise.

(4)237

Here, the higher-order components (W −L) are238

pruned using magnitude-based selection, where the239

mask m retains the n largest absolute values while240

discarding the rest. The final low-rank approxima-241

tion of W is reconstructed as:242

W ≈ L+ S (5)243

Sparse Fine-Tuning. After obtaining the low-244

rank approximation of δ by altering each matrix as245

shown in Eqn 5, we apply magnitude pruning to246

obtain a sparse structure for efficient model compo-247

sition. Sparsity is crucial to avoid destructive inter-248

ference during model composition. For magnitude249

pruning, we construct a binary mask µ ∈ {0, 1}250

where µ = 1 for the top-k entries in the denoised251

δ with the highest absolute values, and µ = 0 oth-252

erwise. We reset all the parameters to pretrained253

weights θ(0) and perform sparse fine-tuning while254

keeping the non-winning parameters frozen using255

µ. The resulting fine-tuned parameters θ(2) yield256

the sparse fine-tuned vector ϕ = θ(2) − θ(0).257

3.2 Zero-shot Cross-lingual Transfer258

Learning259

The sparse fine-tuned vector obtained from DEFT-260

X can be easily composed similar to LT-SFT. For261

each target language l, a language-specific vector262

ϕl
L is learned via the DEFT-X algorithm using263

masked language modeling (MLM) with unlabeled264

text from language l. For each task t, a task-specific265

vector ϕt
T is learned by training DEFT-X on an- 266

notated data in the source language s. Similar to 267

LT-SFT, for task vector training we first adapt the 268

model to the source language by applying the lan- 269

guage SFT of the source language ϕs
L and then 270

train the model on the task. During task training, a 271

classifier head is also learned, which is randomly 272

initialized and fully fine-tuned. For zero-shot cross- 273

lingual transfer, these language and task-specific 274

vectors can be easily composed with the pretrained 275

model to obtain the desired language-task model as 276

follows: θTL = θ(0) + ϕT + ϕL, where θTL repre- 277

sents the target language-task model. The classifier 278

head learned for task t is stacked on top to obtain 279

the final model that is used for zero-shot inference. 280

The algorithm for DEFT-X, including the steps 281

for cross-lingual transfer, is given in Appendix A. 282

4 Experimental Setup 283

We evaluate zero-shot cross-lingual transfer learn- 284

ing on two low-resource benchmarks: Sentiment 285

Analysis (NusaX) and Natural Language Inference 286

(AmericasNLI). Table 1 summarizes the experi- 287

mental setup, including the datasets and target lan- 288

guages considered. 289

4.1 Baselines 290

Our primary baseline is LT-SFT (Ansell et al., 291

2022), the current state-of-the-art framework for 292

zero-shot cross-lingual transfer. We train all task- 293

specific and target-language SFTs using the dataset 294

provided by the LT-SFT authors and report the 295

corresponding results. Additionally, we compare 296

against the MAD-X 2.0 variant (Pfeiffer et al., 297

2021b), using previously reported MAD-X results 298

from Ansell et al. (2022). 299
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Model Method mad bjn ban ace min Avg.

XLM-RBASE MAD-X (Ansell et al., 2022) 68.5 77.6 78.0 74.9 79.9 75.8
LT-SFT 79.0 82.7 80.4 75.7 83.0 80.2

DEFT-X (rl = rt = 90% var) 80.5 83.5 82.7 74.2 85.2 81.2
DEFT-X (rl = rt = 100) 79.8 83.8 81.4 76.8 85.1 81.4

DEFT-X (rl = 90% var; rt= 100) 79.8 84.1 82.2 76.3 83.8 81.2
DEFT-X (rl = 100; rt= 90% var) 79.3 82.8 81.5 75.1 85.0 80.7

XLM-RLARGE LT-SFT 74.9 86.7 83.4 80.0 87.1 82.4
DEFT-X (rl = rt = 90% var) 74.0 86.0 82.4 78.9 89.0 82.1

DEFT-X (rl = rt = 200) 76.1 87.2 84.8 79.2 88.7 83.2
DEFT-X (rl = 90% var; rt= 200) 75.8 87.0 82.7 77.9 87.8 82.2
DEFT-X (rl = 200; rt= 90% var) 76.3 86.0 84.6 79.9 88.2 83.0

Table 2: Zero-shot cross-lingual transfer evaluation (F1-Score) on SA task (NusaX) using XLM-RBASE and XLM-
RLARGE. XLM-RLARGE numbers are without ϕs

L initialization for task. For MAD-X baseline, we present the
numbers reported in Ansell et al. (2022). Here, rl and rt denote the rank used for language and task sparse vectors
respectively. Bold indicates performance surpassing the baselines, while underline denotes the best performance.

4.2 Training Setup300

For our experiments, we use the pretrained XLM-301

RBASE and XLM-RLARGE models and conduct all302

training on a single NVIDIA A100 80GB GPU.303

To ensure fair comparisons, we adopt the same304

training setup used in LT-SFT (Ansell et al., 2022,305

2023a) for both language and task training. Im-306

plementation details including the training steps,307

optimizer settings, etc. are detailed in Appendix C.308

For language SFTs trained using the MLM ob-309

jective, the number of trainable parameters k is set310

to 7.6M (i.e., 2.8% and 1.4% of the parameters311

in XLM-RBASE and XLM-RLARGE, respectively).312

And for task SFTs, k is set to 14.2M (i.e., 5.2%313

and 2.6% of the parameters in XLM-RBASE and314

XLM-RLARGE respectively). This choice of k is315

consistent with the LT-SFT baseline, and the value316

of k was selected such that it matches the number317

of parameters in the MAD-X adapters.1 During318

task adaptation, we always apply the source lan-319

guage SFT from LT-SFT (Ansell et al., 2022) to320

the XLM-RBASE model , while the XLM-RLARGE321

model is trained without source language initializa-322

tion due to the unavailability of source language323

SFT for the large model.324

Denoising using Low-Rank Approximation.325

We denoise all trainable weight matrices of the326

model, except for the bias terms; we apply direct327

1The LT-SFT (Ansell et al., 2022) uses a reduction factor of
2 and 1 for language and task MAD-X adapters, respectively.

magnitude-based pruning for the latter. The SVD 328

operations on each weight matrix are computed 329

in parallel. We explore two methods for select- 330

ing the appropriate rank to separate higher- and 331

lower-order components in the matrix. Following 332

Chang et al. (2022), we choose the rank r that cap- 333

tures 90% of the total variance for each matrix i.e, 334

we first calculate the total variance from all singu- 335

lar values in the matrix, then retains the minimum 336

number of singular vectors needed such that their 337

cumulative variance reaches 90% of the total vari- 338

ance. Additionally, we investigate a uniform rank 339

selection across layers by setting a uniform rank r 340

= {100, 200, 300}, based on our empirical obser- 341

vation that most rank values derived from the 90% 342

variance criterion fall within this range. To denoise 343

the higher-order components, we apply magnitude 344

pruning while retaining only 5% of the higher-order 345

components in each matrix. 346

4.3 Evaluation Datasets 347

As shown in Table 1, NusaX is an SA benchmark 348

covering five low-resource Indonesian languages.2 349

There are 400 test samples in each language to 350

be classified as either positive, negative or neu- 351

tral. AmericasNLI (Ebrahimi et al., 2022) is an 352

extension of XNLI (Conneau et al., 2018) to 10 353

low-resource indigenous languages of the Ameri- 354

cas with 750 test samples each. We use F1-score 355

2There are four other test languages in NusaX. However,
no monolingual corpora were available for these languages;
hence, these are omitted from our results and LT-SFT.
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Method bzd oto hch tar cni shp aym gn nah quy Avg.

XLM-RBASE

MAD-X (Ansell et al., 2022) 44.0 46.8 41.5 43.9 47.6 48.9 58.8 63.5 53.7 58.3 49.5
LT-SFT 43.6 45.6 42.9 44.8 47.5 49.2 60.4 63.3 50.9 62.1 51.0

DEFT-X (rl = rt = 90% var) 43.3 47.6 44.0 41.1 45.6 49.0 58.8 63.0 49.6 61.9 50.4
DEFT-X (rl = rt = 200) 42.9 43.8 45.6 44.1 48.0 49.3 58.5 63.6 53.9 61.7 51.2

DEFT-X (rl = 90% var; rt= 200) 42.4 45.4 44.0 42.8 46.5 48.8 58.1 63.5 51.5 62.8 50.6
DEFT-X (rl = 200; rt= 90% var) 44.3 44.5 43.6 44.0 48.1 50.5 58.1 64.5 53.2 62.3 51.3

XLM-RLARGE

LT-SFT 43.9 42.1 45.2 42.5 46.9 48.7 58.0 54.7 39.6 50.1 47.2
DEFT-X (rl = rt = 90% var) 44.5 40.5 44.9 43.5 46.8 50.8 57.5 52.5 37.8 50.8 47.0

DEFT-X (rl = rt = 300) 44.5 41.4 45.2 43.1 46.1 49.7 58.8 55.9 39.3 51.2 47.5
DEFT-X (rl = 90% var; rt= 300) 44.5 41.2 43.9 43.5 46.7 51.3 57.5 55.2 40.4 51.6 47.6
DEFT-X (rl = 300; rt= 90% var) 44.8 40.1 45.6 43.5 47.2 50.7 58.5 55.9 38.9 49.7 47.5

Table 3: Zero-shot cross-lingual transfer evaluation (accuracy) on NLI task (AmericasNLI) using XLM-RBASE and
XLM-RLARGE. XLM-RLARGE numbers are without ϕs

L initialization for task. For MAD-X baseline, we present the
numbers reported in Ansell et al. (2022). Here, rl and rt denote the rank used for language and task sparse vectors
respectively. Bold indicates performance surpassing the baselines, while underline denotes the best performance.

and accuracy as the evaluation metrics for SA and356

NLI, respectively.357

5 Results and Discussion358

We report F1 scores for NusaX using both methods359

of rank selection: 90% variance and uniform rank r,360

as shown in Table 2. For XLM-RBASE, we use uni-361

form r = 100 and for XLM-RLARGE we use a higher362

rank r = 200; these rank values were selected by363

observing the overall rank that covers 90% vari-364

ance. For XLM-RBASE, DEFT-X consistently out-365

performs the baselines MAD-X and LT-SFT. Our366

best-performing configuration, with rl = rt = 100,367

surpasses MAD-X and LT-SFT with average gains368

of 5.6 and 1.2, respectively. For XLM-RLARGE, we369

report the numbers without source language ini-370

tailization for the task since the source language371

sparse vectors are not available for XLM-RLARGE372

model. DEFT-X also outperforms the baseline373

LT-SFT on various settings using XLM-RLARGE.374

Similarly, we report the accuracy for Americas-375

NLI using both methods of rank selection: 90%376

variance and uniform rank r = 200 and r = 300 for377

the base and large model respectively, as shown378

in Table 3. XLM-RBASE, with rl = 200 and rt379

= 90% variance, surpasses MAD-X and LT-SFT380

by 1.8% and 0.3%, respectively, on average. We381

observed that the languages in AmericasNLI are382

Method SA NLI
(F1-Score) (Accuracy)

LT-SFT 80.2 51.0
LT-SFT w/o ϕs

L for task 79.6 50.4

DEFT-X 81.4 51.3
DEFT-X w/o ϕs

L for task 81.1 51.3

Table 4: Comparison of LT-SFT and DEFT-X without
source language initialization for task vectors, using
XLM-RBASE on the SA and NLI tasks. We use rl = rt
= 100 for SA and rl = 200, rt= 90% variance for NLI.
Bold indicates best performing model.

more low-resource than those in NusaX and require 383

a higher rank rl = 200 to capture useful lower-order 384

components. However, both baseline methods and 385

DEFT-X show degraded performance with XLM- 386

RLARGE compared to the base model. This could be 387

attributed to stronger biases towards high-resource 388

languages during XLM-RLARGE’s pretraining that 389

make it less amenable to adapt to extremely low- 390

resource languages in AmericasNLI. Even in such 391

challenging settings, DEFT-X maintains a consis- 392

tent albeit modest improvement over LT-SFT. 393

In summary, we observe that denoising higher- 394

order components before selecting the sparse sub- 395

network (via magnitude pruning) improves the 396
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Method mad bjn ban ace min Avg.

DEFT-X 79.8 83.8 81.4 76.8 85.1 81.4
w/o higher-order components 79.8 82.8 82.1 73.4 84.9 80.6
w/o magnitude pruning + sparse fine-tuning 77.4 81.7 79.7 74.6 82.7 79.2
w/o sparse fine-tuning 72.0 75.4 67.7 57.4 81.4 70.8

Table 5: Analyzing the impact of higher-order components, sparsity(magnitude pruning), and the necessity of
re-training (sparse fine-tuning) in DEFT-X using the NusaX dataset on XLM-RBASE with rl = rt = 100. Underline
denotes the best performance.
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Figure 2: Comparing the overlap between the sparse
language vectors and its corresponding task vectors. For
DEFT-X, we compare using rl = rt =100.

quality of sparse vectors for composition. Both uni-397

form rank selection and 90% variance-based rank398

selection perform comparably well. However, very399

low-resource languages may benefit from a higher400

rank to capture more meaningful knowledge.401

Source Language Initialization for Task Vectors.402

We analyze the impact of source language initial-403

ization on training task sparse vectors in Table 4.404

Our findings indicate that the baseline LT-SFT is405

sensitive to source language initialization, as its406

performance drops in its absence. In contrast, our407

approach, DEFT-X, maintains comparable perfor-408

mance even without source language initialization.409

This suggests that denoising higher-order compo-410

nents before selecting the subnetwork (via magni-411

tude pruning) leads to a more robust network com-412

pared to LT-SFT, which relies solely on magnitude413

pruning for subnetwork selection.414

Benefits of Denoising, Sparsity and Re-Training.415

We investigate the need to retain de-noised higher-416

order parameters by comparing DEFT-X with an417

alternative that entirely removes these parameters,418

as shown in Table 5. We observe that higher-order419

components contain useful information, making it420
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Figure 3: Overlap (in percentage) between the sparse
language vectors of DeFT-X at rl=100.

essential to retain them after denoising. We also an- 421

alyze the impact of magnitude pruning and sparse 422

fine-tuning after denoising in Table 5. We find that 423

magnitude pruning, when combined with sparse 424

fine-tuning, effectively refines the parameter se- 425

lection beyond denoising, leading to performance 426

gains. In contrast, applying magnitude pruning 427

alone without sparse fine-tuning results in a sub- 428

stantial drop in performance, underscoring the ne- 429

cessity of fine-tuning after pruning. This ablation 430

study highlights the importance of each step in the 431

DEFT-X algorithm. 432

Parameter Overlap in Language and Task Vec- 433

tors. One of the key challenges in composing 434

models for cross-lingual transfer is minimizing neg- 435

ative interference. Reducing parameter overlap can 436

mitigate this interference by ensuring that language 437

and task specific vectors learn distinct subnetworks. 438

In Figure 2, we compare the parameter overlap be- 439

tween sparse fine-tuned language vectors and their 440

corresponding task vectors for LT-SFT and DEFT- 441

X. Our findings show that DEFT-X results in lower 442

overlap across languages, indicating that denoising 443

7



higher-order components helps remove redundan-444

cies while preserving language and task specific445

information. This leads to efficient cross-lingual446

transfer with minimized negative interference. We447

also analyze the overlap between language vectors448

in Figure 3 and find the overlap to be merely ∼5%,449

suggesting that each language learns a distinct sub-450

network within the pretrained model.451

6 Related Work452

Parameter-Efficient Fine-Tuning. Parameter-453

efficient fine-tuning (PEFT) adapts large pretrained454

models to downstream tasks with minimal trainable455

parameters. DiffPruning (Guo et al., 2021) learns456

sparse task-specific deltas using a differentiable457

L0 penalty, while BitFit (Zaken et al., 2022) re-458

stricts the updates to bias terms. Adapters (Pfeiffer459

et al., 2021a) insert lightweight task-specific bot-460

tlenecks into Transformer layers, keeping the rest461

frozen. LoRA (Hu et al., 2022) introduces train-462

able low-rank decomposition matrices into each463

Transformer layer. Wanda (Sun et al., 2023) prunes464

weights based on the elementwise product of its465

magnitude and the corresponding input activation466

norm. These approaches significantly reduce the467

number of trainable parameters while preserving468

performance. Similarly, our approach DEFT-X469

uses magnitude-based pruning, while further miti-470

gating noise through low-rank denoising.471

Task Arithmetic and Multi-Task Transfer472

Learning. Ilharco et al. (2023) introduces task473

vectors obtained by subtracting the weights of a474

pretrained model from those of a fine-tuned model.475

These task vectors can be manipulated through476

arithmetic operations to steer model behavior. Ap-477

proaches like Ansell et al. (2024) and DARE (Yu478

et al., 2024) propose identifying better task vectors479

by dynamically dropping and learning parameters.480

Various approaches were proposed to mitigate the481

destructive interference during task arithmetic in482

multi-task setting like resolving sign conflicts while483

merging (Yadav et al., 2023) and learning mutually484

sparse vectors (Panda et al., 2024). DEFT-X can485

also be used in multi-task setting to obtain better486

task vectors by denoising the redundant task infor-487

mation and mitigating destructive interference.488

Cross-Lingual Transfer Learning. Cross-489

lingual transfer learning improves task perfor-490

mance in low-resource languages by leveraging491

knowledge from high-resource languages. Ap-492

proaches like MAD-X (Pfeiffer et al., 2020) use 493

modular language and task specific adapters for 494

composable transfer. MAD-G (Ansell et al., 495

2021) introduces a contextual parameter generator 496

trained on typological features from URIEL to 497

build efficient adapters for low-resource languages. 498

LT-SFT (Ansell et al., 2022) proposes sparse task 499

and language vectors that can be arithmetically 500

composed for zero-shot transfer. Subsequent 501

works combine few-shot fine-tuning with LT-SFT 502

(Ansell et al., 2023a) and explore scaling in task 503

arithmetic (Parović et al., 2024). Ansell et al. 504

(2023b) proposes a bilingual distillation approach 505

to extract language-specific models from massively 506

multilingual transformers for cross-lingual transfer. 507

Layer swapping for transferring linguistic knowl- 508

edge to reasoning tasks has also been explored 509

(Bandarkar et al., 2024). Our approach DEFT-X, 510

builds on LT-SFT by improving sparse vector 511

quality via SVD-based denoising. 512

Low-Rank Approximation using SVD. Singu- 513

lar Value Decomposition (SVD) is widely used 514

for low-rank approximation, aiding both efficiency 515

and interpretability in neural networks. LASER 516

(Sharma et al., 2023) shows that pruning small 517

singular components from Transformer weight ma- 518

trices can improve reasoning by denoising internal 519

representations without retraining. LoRS-Merging 520

(Zhao et al., 2025) merges multilingual speech mod- 521

els using coarse-grained singular value pruning to 522

retain essential structures and fine-grained magni- 523

tude pruning to remove redundancy. Our approach 524

DEFT-X, applies similar low-rank denoising to 525

enhance the quality of sparse fine-tuned vectors. 526

7 Conclusion and Future Work 527

We introduced DEFT-X, a composable, denoised, 528

sparse fine-tuning approach for efficient zero-shot 529

cross-lingual transfer. By leveraging SVD to de- 530

noise model weights, DEFT-X identifies better sub- 531

networks for sparse fine-tuning. We also explored 532

different strategies for selecting the matrix rank 533

during denoising. Compared to the state-of-the- 534

art LT-SFT approach, DEFT-X demonstrates im- 535

provements in SA and NLI tasks for low-resource 536

languages. In future work, we plan to explore the 537

broader applicability of DEFT-X beyond cross- 538

lingual transfer, including its potential in multi- 539

modal learning and domain adaptation. 540
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Limitations541

While DEFT-X shows promising results, our study542

has a few limitations. First, we evaluate the method543

only on encoder-only architectures, specifically544

transformer-based language models, leaving its ef-545

fectiveness on decoder-only or encoder-decoder546

models unexplored. Second, our experiments are547

restricted to classification tasks (SA, NLI), and the548

applicability of DEFT-X to other tasks remains to549

be investigated. Finally, the choice of the optimal550

rank for denoising via SVD is currently model and551

task-specific and requires manual tuning.552
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A DEFT-X Algorithm765

Algorithm 1 Cross-Lingual Transfer with DEFT-X

1: function DEFT-X(D,L, θ(0), η, k, n)
2: θ(1) ← θ(0) ▷ Full fine-tuning
3: while not converged do
4: θ(1) ← θ(1) − η∇L(θ(1), D)

5: end while

6: δ ← θ(1) − θ(0) ▷ SVD-based magnitude pruning
7: for each weight matrix W ∈ δ do
8: UΣV T ← SV D(W )

9: L← UrΣrV
T
r

10: mi ←

1 if i ∈ Top-n-indices of |W − L|

0 otherwise
11: S ← m⊙ (W − L)

12: W ← L+ S

13: end for

14: µi ←

1 if i ∈ Top-k-indices of |δ|

0 otherwise

15: θ(2) ← θ(0) ▷ Sparse fine-tuning
16: while not converged do
17: θ(2) ← θ(2) − µ⊙ η∇L(θ(2), D)

18: end while
19: ϕ← θ(2) − θ(0)

20: return ϕ

21: end function

22: function CROSSLINGUAL(Dsrc, Dtar, Dtask, Ltask, θ
(0), η, k, n)

23: ϕsrc ← DEFT-X(Dsrc, LMLM , θ(0), η, k, n)

24: ϕtask ← DEFT-X(Dtask, Ltask, θ
(0) + ϕsrc, η, k, n)

25: ϕtar ← DEFT-X(Dtar, LMLM , θ(0), η, k, n)

26: return θ(0) + ϕtask + ϕtar

27: end function
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B Dataset Details766

We use publicly available data for training and eval-767

uation with CC-BY-SA license. Table 6 provides a768

comprehensive overview of languages, their codes,769

linguistic families, and monolingual data sizes. For770

training the task vectors, we utilize the SMSA771

dataset (Purwarianti and Crisdayanti, 2019; Wilie772

et al., 2020) and the MultiNLI dataset (Williams773

et al., 2018).774

Note: Since the NusaX dataset (Winata et al.,775

2023) was created through human translation of776

a subset of the SMSA dataset and we use the777

NusaX test set used by Ansell et al. (2023a) where778

they carefully removed every example from SMSA779

which appears in its original or modified form in780

the NusaX test set to avoid a data leak.781

C Detailed Training Setup782

Language Adaptation. The language vector is783

trained on the Masked Language Modeling (MLM)784

objective for the lesser of 100 epochs or 100,000785

steps, using a batch size of 8 and a maximum se-786

quence length of 256. However, training is subject787

to an absolute minimum of 30,000 steps, as 100788

epochs appeared insufficient for some languages789

with very small corpora. Model checkpoints are790

evaluated every 1,000 steps on a held-out set com-791

prising 5% of the corpus, and the checkpoint with792

the lowest validation loss is selected at the end of793

training. We use the AdamW optimizer with an794

initial learning rate of 5e−5, which is linearly de-795

cayed to 0 over the course of training. For language796

SFTs, the number of trainable parameters, k is set797

to 7.6M (i.e., 2.8% of the parameters in XLM-798

RBASE). For adapters, the reduction factor (i.e., the799

ratio between model hidden size and adapter size)800

is set to 2 to ensure the number of trainable param-801

eters matches that of SFT. Additionally, layer nor-802

malization parameters are kept fixed, while all other803

parameters remain trainable. For language adapta-804

tion, we apply L1 regularization with λ = 0.1. The805

specified training regime is applied consistently806

across both phases of LT-SFT.807

Task Adaptation. The task vector for SA is808

trained for 10 epochs with a batch size of 16, with809

checkpoint evaluation on the validation set every810

250 steps, and the best checkpoint is taken at the811

end of training based on F1-score. The task vector812

for NLI is trained for 5 epochs with a batch size of813

32, with checkpoint evaluation on the validation set814

every 625 steps, and the best checkpoint is taken 815

at the end of training based on accuracy. Similarly 816

to language adaptation, the task SFT training uses 817

the AdamW optimizer with an initial learning rate 818

of 5e−5, which is linearly decayed to 0 over the 819

course of training. A two-layer multi-class clas- 820

sification head is applied atop the XLM-R model 821

output corresponding to the [CLS] token. For task 822

SFTs, the number of trainable parameters k is set 823

to 14.2M (i.e., 5.1% of the parameters in XLM- 824

RBASE). For adapters, the reduction factor is set 825

to 1 to ensure the number of trainable parameters 826

matches that of SFT. During task adaptation, we al- 827

ways apply the source language SFT from LT-SFT 828

(Ansell et al., 2022). 829

D Ablation Experiments using Uniform 830

Rank 831

We conducted ablation experiments on the uniform 832

rank variant by setting rank r = {100, 200} for the 833

SA and NLI tasks. The results are presented in 834

Table 7 and Table 8. 835

E mE5BASE 836

In Table 9, we show the results for SA task on 837

mE5BASE. Multilingual E5 text embedding mod- 838

els (mE5) (Wang et al., 2024) are initilizalized 839

from XLM-R models and trained using weakly- 840

supervised contrastive pre-training on billions of 841

text pairs, followed by supervised fine-tuning on 842

a small quantity of high-quality labeled data. Due 843

to the lack of availability of source lang initializa- 844

tion ϕs
L for mE5BASE, we compare the performance 845

without source lang initialization ϕs
L for task vec- 846

tors. We observe an improvement of 2% using 847

DEFT-X in mE5BASE model. 848
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Task Language ISO Code Family Corpus size (MB)

SA Madurese mad Austronesian, Malayo-Sumbawan 0.84
Banjarese bjn Austronesian, Malayo-Sumbawan 28.40
Balinese ban Austronesian, Malayo-Sumbawan 42.50
Acehnese ace Austronesian, Malayo-Sumbawan 89.70

Minangkabau min Austronesian, Malayo-Sumbawan 92.80

NLI Bribri bzd Chibchan, Talamanca 0.32
Otomí oto Oto-Manguean, Otomian 0.40

Wixarika hch Uto-Aztecan, Corachol 0.45
Rarámuri tar Uto-Aztecan, Tarahumaran 0.61
Asháninka cni Arawakan 1.40

Shipibo-Konibo shp Panoan 2.00
Aymara aym Aymaran 2.20
Guarani gn Tupian, Tupi-Guarani 6.60
Náhuatl nah Uto-Aztecan, Aztecan 7.70
Quechua quy Quechuan 16.00

Table 6: Details of languages, their codes, linguistic families, and monolingual data sizes used for MLM training of
language vectors.

Method mad bjn ban ace min Avg.

MAD-X (Ansell et al., 2022) 68.5 77.6 78.0 74.9 79.9 75.8
LT-SFT 79.0 82.7 80.4 75.7 83.0 80.2

DEFT-X (rl = rt = 100) 79.8 83.8 81.4 76.8 85.1 81.4
DEFT-X (rl = rt = 200) 78.4 83.0 81.0 73.9 83.4 80.0

DEFT-X (rl = 100; rt= 200) 79.1 83.4 80.7 74.1 83.9 80.2
DEFT-X (rl = 200; rt= 100) 78.5 82.5 83.0 76.5 84.6 81.3

Table 7: Zero-shot cross-lingual transfer evaluation (F1-Score) on SA task (NusaX) for different uniform rank
values using XLM-RBASE. Here, rl and rt denote the rank used for language and task sparse vectors respectively.
Bold indicates performance surpassing the baseline, while underline denotes the best performance.

Method bzd oto hch tar cni shp aym gn nah quy Avg.

MAD-X (Ansell et al., 2022) 44.0 46.8 41.5 43.9 47.6 48.9 58.8 63.5 53.7 58.3 49.5
LT-SFT 43.6 45.6 42.9 44.8 47.5 49.2 60.4 63.3 50.9 62.1 51.0

DEFT-X (rl = rt = 100) 44.0 45.4 42.3 40.0 46.1 50.7 60.3 63.0 52.0 61.1 50.5
DEFT-X (rl = rt = 200) 42.9 43.8 45.6 44.1 48.0 49.3 58.5 63.6 53.9 61.7 51.2

DEFT-X (rl = 100; rt= 200) 43.2 45.3 44.4 41.5 47.3 50.1 60.4 62.0 54.6 61.5 51.0
DEFT-X (rl = 200; rt= 100) 44.7 43.3 42.7 43.7 46.7 49.3 57.6 63.9 53.9 61.6 50.7

Table 8: Zero-shot cross-lingual transfer evaluation (accuracy) on NLI task (AmericasNLI) for different uniform rank
values using XLM-RBASE. Here, rl and rt denote the rank used for language and task sparse vectors respectively.
Bold indicates performance surpassing the baseline, while underline denotes the best performance.
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Model Method mad bjn ban ace min Avg.

mE5BASE LT-SFT 59.0 82.1 73.6 68.9 77.0 72.1
DEFT-X (rl = rt = 100) 67.0 83.1 70.9 64.7 77.2 72.6

DEFT-X (rl = 90% var; rt= 90% var) 68.8 83.5 73.0 67.7 76.9 74.0
DEFT-X (rl = 100; rt= 90% var) 66.2 83.5 70.3 63.8 77.0 72.1
DEFT-X (rl = 90% var; rt= 100) 69.3 83.5 72.5 68.2 76.7 74.1

Table 9: Zero-shot cross-lingual transfer evaluation (F1-Score) on SA task (NusaX) using mE5BASE without ϕs
L

initialization for task. For each model, bold indicates performance surpassing the baseline LT-SFT, while underline
denotes the best performance.
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