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ABSTRACT

Variational autoencoders with deep hierarchies of stochastic layers have been
known to suffer from the problem of posterior collapse, where the top layers fall
back to the prior and become independent of input. We suggest that the hierarchical
VAE objective explicitly includes the variance of the function parameterizing
the mean and variance of the latent Gaussian distribution which itself is often a
high variance function. Building on this we generalize VAE neural networks by
incorporating a smoothing parameter motivated by Gaussian analysis to reduce
higher frequency components and consequently the variance in parameterizing
functions and show that this can help to solve the problem of posterior collapse. We
further show that under such smoothing the VAE loss exhibits a phase transition,
where the top layer KL divergence sharply drops to zero at a critical value of the
smoothing parameter that is similar for the same model across datasets. We validate
the phenomenon across model configurations and datasets.

1 INTRODUCTION

Variational autoencoders (VAE) [10] are a popular latent variable model for unsupervised learning
that simplifies learning by the introduction of a learned approximate posterior. Given data x and
latent variables z, we specify the conditional distribution p(x|z) by parameterizing the distribution
parameters by a neural network. Since it is difficult to learn such a model directly, another conditional
distribution q(z|x) is introduced to approximate the posterior distribution. During learning the
goal is to maximize the evidence lower bound (ELBO), which lower bounds the log likelihood,
log p(x) ≥ Eq(z|x)

[
log p(x|z)+log p(z)− log q(z|x)

]
. In their simplest form, the generative model

p(x|z) and the approximate posterior q(z|x) are Gaussian distributions optimized in unison.

A natural way to increase the modeling capacity of VAE is to incorporate a hierarchy of stochastic
variables. Such models, however, turn out to be difficult to train and higher levels in the hierarchy
tend to remain independent of input data – a problem termed posterior collapse. Posterior collapse in
VAEs manifests itself by the latent distribution tending to fall back to the prior. With hierarchical
VAEs the effect is found to be more pronounced in the top layers farther from the output. For the
purpose of the paper and for clarity of exposition, we focus on the simplest extension of hierarchical
variational autoencoders where stochastic layers are stacked serially on top of each other [2, 21] ,
p(x, z) = p(x|z1)p(zL)

∏L−1
i=1 p(zi|zi+1) and q(z|x) = q(z1|x)

∏L−1
i=1 q(zi+1|zi). The intermediate

distributions in this model are commonly taken to be Gaussian distributions parameterized by
neural network functions, so that p(zi|zi+1) = N (zi|µ(zi+1), σ(zi+1)), where µ(z), σ(z) are neural
networks computing the mean and variance of the Gaussian distribution. We refer to them as vanilla
hierarchical variational autoencoders. For each stochastic layer in this model there is a corresponding
KL divergence term in the objective given by

E[KL(q(zi|zi−1)||p(zi|zi+1)]. (1)

As described later, expression 1 can be easily decomposed to show an explicit dependence on the
variance of the parameterizing functions µ(zi), σ(zi) of the intermediate Gaussian distribution. We
further show the KL divergence term to be closely related to the harmonics of the parameterizing
function. For complex parameterizing functions the KL divergence term has large high frequency
components (and thus high variance) which leads to unstable training causing posterior collapse.
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Building on this, we suggest a method for training the simplest hierarchical extension of VAE that
avoids the problem of posterior collapse without introducing further architectural complexity [13, 21].
Given a hierarchical variational autoencoder, our training method incorporates a smoothing parameter
(we denote this by ρ) in the neural network functions used to parameterize the intermediate latent
distributions. The smoothing is done such that expected values are preserved, the higher frequencies
are attenuated and the variance is reduced. Next, the gradients computed with the smooth functions
are used to train the original hierarchical variational autoencoder.

For the construction of the smoothing transformations for VAEs with Gaussian latent spaces we make
use of ideas from the analysis of Gaussian spaces. We analyze the stochastic functions in vanilla
hierarchical VAEs as Hermite expansions on Gaussian spaces [9]. The Ornstein-Uhlenbeck (OU)
semigroup from Gaussian analysis is a set of operators that we show to smoothly interpolate between
a random variable and its expectation. The OU semigroup provides the appropriate set of smoothing
operators which enable us to control variance and avoid posterior collapse.

We further show that by smoothing the intermediate parameterizing functions µ(z), σ(z) in the
proposed manner, the KL divergence of the top layer sees a sudden sharp drop toward zero as the
amount of smoothing is decreased. This behaviour is retained when we evaluate the KL divergence on
the original unsmoothed variational autoencoder model. This behaviour is reminiscent of phase transi-
tions from statistical mechanics and we adopt the same terminology to describe the phenomenon. Our
experiments suggest that the phenomenon is general across datasets and commonly used architectures.
Furthermore, the critical value of the smoothing parameter ρ at which the transition occurs is fixed
for a given model configuration and varies with stochastic depth and width.

We make the following contributions. First, we establish a connection between higher harmonics,
variance, posterior collapse and phase transitions in hierarchical VAEs. Second, we show that by
using the Ornstein-Uhlenbeck semigroup of operators on the generative stochastic functions in
VAEs we reduce higher frequencies and consequently variance to mitigate posterior collpase. We
corroborate our findings experimentally and further obtain in CIFAR-10 likelihoods competitive with
more complex architectural solutions alongside a reduction in model size. We refer to the proposed
family of models as Hermite variational autoencoders (HVAE).

2 HERMITE VARIATIONAL AUTOENCODERS

2.1 ANALYSIS ON GAUSSIAN SPACES

The analysis of Gaussian spaces studies functions of Gaussian random variables. These are real-
valued functions defined on Rn endowed with the Gaussian measure. Many functions employed in
machine learning are instances of such functions: decoders for variational autoencoders, as is the
case in this work, and generators for generative adversarial networks being two examples.

By way of summary, the main facts we use from this field are that a function on a Gaussian space
can be expanded in an orthonormal basis, where the basis functions are the Hermite polynomials.
This orthonormal expansion is akin to a Fourier transform in this space. The second fact is that the
coefficients of such an expansion can be modified in a way to reduce the variance of the expanded
function by applying an operator from the Ornstein-Uhlenbeck semigroup of operators. Next, we
give a brief introduction. For further details on Gaussian analysis we refer to [9].

Gaussian Spaces: Let L2(Rn, γ) be the space of square integrable functions, f : Rn → R, with the
Gaussian measure γ(z) =

∏
iN (zi|0, 1). Given functions f, g in this space, the inner product is

given by 〈f, g〉 = Eγ(z)[f(z)g(z)].

Basis functions for L2(R, γ): Taking the space of univariate functions L2(R, γ) , it is known that
the polynomial functions φi(z) = zi are a basis for this space. By a process of orthonormalization
we obtain the normalized Hermite polynomial basis for this space. The first few Hermite polynomials
are the following: h0(z) = 1, h1(z) = z, h2 = z2−1√

2
, . . ..

Basis functions for L2(Rn, γ): Letting α ∈ Nn be a multi-index, the basis functions for L2(Rn, γ)
are obtained by multiplying the univariate basis functions across dimension, hα(z) =

∏
i hαi

(zi).
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Hermite expansion: A function in L2(Rn, γ) can be expressed as f =
∑
α∈Nn f̂(α)hα, where

f̂(α) are the Hermite coefficients of f and are computed as f̂(α) = 〈f, hα〉 = Eγ(z)[f(z)hα(z)].
Plancherel’s theorem is the following relation between the norm of f and f̂ which follows from
orthnormality of the basis functions.

〈f, f〉 =
∑
α

f̂(α)2, (2)

Ornstein-Uhlenbeck (OU) Semigroup: Given a parameter ρ ∈ [0, 1] and a Gaussian variable z,
we construct a correlated variable z′ as z′ = ρz +

√
1− ρ2zω, where zω ∼ N (0, 1) is a random

standard Gaussian sample. The OU semigroup is a set of operators, denoted Uρ and parameterized by
ρ ∈ [0, 1]. The action of Uρ on f at z is to average the function values on correlated z′s around z,

Uρf(z) = Ez′|z[f(z′)] = Ezω [f(ρz +
√
1− ρ2zω)] (3)

The action of the Uρ operators on the Hermite expansion of function f(z) is to decay Hermite
coefficients according to their degree, Uρf(z) =

∑
α∈Nn ρ|α|f̂(α)hα. where |α| =∑i αi.

If z is reparameterized as z = σε1 + µ, the correlated OU sample is given by z′ = σ(ρε1 +√
1− ρ2ε2) + µ, where ε1, ε2 are standard Gaussian variables. This can also be expressed in terms

of z as
z′ = ρz + (1− ρ)µ+ σ

√
1− ρ2ε2, (4)

2.2 HERMITE EXPANSIONS FOR VAES

Our proposed method is a new training procedure for the vanilla hierarchical variational autoencoder
that builds upon Hermite expansions of Gaussian functions and properties of the OU semigroup.

In the context of hierarchical variational autoencoders, the Gaussian function f is the generative
model µi(zi+1) and σi(zi+1) that receives as inputs the latent variable zi+1 to return the Gaussian
latent variable of the next layer, zi ∼ N (µi(zi+1), σi(zi+1)).

We make use of the following properties of the OU semigroup to construct Gaussian functions of
lower variance. The first property we employ is that the OU semigroup of operators interpolates
between a random variable (ρ = 1) and its expectation (ρ = 0), where the parameter ρ controls the
extent of the interpolation.

Proposition 1 The operators Uρ retain the expected value of the operated function, E[f ] = E[Uρf ].

Proposition 2 The operators Uρ interpolate between a random variable and its expectation. In
particular, as ρ→ 1, Uρf = f . and as ρ→ 0, Uρf = E[f ]

The second property we exploit is that the new random variable Uρf(z) has lower variance compared
with original variable f(z) and is in general a smoother function than f(z). The smoothing properties
of the operator Uρ can be understood by examining the Hermite expansion of Uρf . First we note
that we can express the expectation and variance of a function f in terms of its Hermite coefficients,
specifically E[f ] = f̂(0) and Var(f) = E[(f −E[f ])2] = E[(f − f̂(0))2] =∑α:|α|>0 f̂(α)

2, which
follows from Plancherel’s theorem (equation 2).

Replacing f with Uρf and using the Hermite expansion of Uρf from equation 3, the mean remains
the same, E[Uρf ] = ρ0f̂(0) = f̂(0), and variance reduces like

Var[Uρf ] = E[(Uρf − E[f ])2] = E[(f − f̂(0))2] =
∑

α:|α|>0

ρ2|α|f̂(α)2. (5)

The last equation indicates that the contribution to the variance by f̂(α) decays by an amount ρ2|α|
when ρ ∈ (0, 1). This, in turn, leads to a decrease in variance.
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Algorithm. In essence, Hermite variational autoencoders are similar to variational autoencoders,
save for applying the OU semigroup to the latent distributions p(zi|zi+1) that comprise the generator
to compute gradients during training only. Specifically, we apply these operators to the functions
parameterizing the mean and variance of the latent Gaussian distributions. For each distribution
p(zi|zi+1) we substitute N (zi|µi(zi+1), σi(zi+1)) with N (zi|Uρµi(zi+1), Uρσi(zi+1)). The new
functions result in latent distributions with parameters that have lower variance but the same expected
value relative to the conditional input latent distribution.

In an alternative parameterization we apply the OU semigroup to the ratio of the mean and variance
functions: Uρ µi

σi
(zi+1) (see next section for a justification of this). The OU semigroup operators

can also be applied on approximate posterior functions, but we observe little benefit. In practice,
we compute Uρµi(zi+1) and Uρσi(zi+1) by Monte Carlo averaging. As for a function f , Uρf =
Ez′|z[f(z′)], where z′ are the correlated samples, we estimate the expectation by Monte Carlo
averaging over z′. Experiments show that 5 to 10 samples suffice.

It is important to emphasize that the substitution of the lower variance functions for parameterizing
the distributions is only done when computing gradients during training. All evaluations, training or
test, are still done on the original hierarchical variational autoencoder model. Thus, the new training
procedure has an additional computational cost only for the intermediate distributions in the generator,
proportional to the number of correlated samples during training.

Complexity. In Hermite VAE the OU sampling operation is only applied in the intermediate
stochastic layers in the generator network. In particular, it is not applied in the inference network
or in the last layer of the decoder. The fact that OU sampling is not applied in the final stochastic
layer computing p(x|z1) is especially important for deep VAEs for images since feature maps are
upsampled to match image dimensions in this layer. Thus, for 5 OU samples, the added computational
and activation memory complexity is significantly less than 5 times the total cost of the base VAE
model, and is 5 times the cost in the higher decoder layers only in the base model. An empirical
comparison of maximum memory usage of various models can be found in table 6.

3 KL DIVERGENCE ANALYSIS

In this section we justify our approach as affecting a bias-variance trade-off in the KL divergence
terms of the hierarchical VAE objective. The bias-variance trade-off arises from the fact that the
KL divergence term can be written so that it contains the variance of the functions µ(z), σ(z)
parameterizing the intermediate distributions. This variance is related to spectral complexity and
reducing spectral complexity leads to a reduction in variance.

Consider the following expression from the ELBO as part of the KL divergence term.
Eq(z1,z2|x)[log p(z1|z2)] = Eq(z1|x)Eq(z2|z1)[log p(z1|z2)] (6)

where p(z1|z2) = N (z1|µp(z2), σp) and q(z1|x) = N (z1|µq(x), σq(x)). For the purpose of analysis
we assume that the standard deviation for p is fixed and independent of z2, σ(z2) = σp. Furthermore
for ease of analysis and without loss of generality we think of z1 as a scalar. The general result for
multivariate z1 follows from summing for all dimensions.

For Gaussian p we write equation 6 as Eq(z1,z2|x)[− log
√
2πσ2

p − 1
2σ2

p
(z1 − µp(z2))2]. From the

inner term Eq(z1,z2|x)[(z1 − µp(z2))2] we focus on the quadratic µp(z2)2 which is expanded as
1

2σ2
p

Eq(z1,z2|x)[µp(z2)
2] =

1

2σ2
p

Eq(z1|x)[E[µp(z2)]
2 +Var(µp)] (7)

By Plancherel’s theorem (equation 2) we have

1

2σ2
p

Eq(z1,z2|x)[µp(z2)
2] =

1

2σ2
p

Eq(z1|x)

µ̂p(0)2 + ∑
α:|α|>0

µ̂p(α)
2

 . (8)

This shows that for σp independent of z2 the KL divergence term in the ELBO contains the variance
of the parameterizing function µp(z2).
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In our proposal we replace µp(z2) by Uρ[µp(z2)] and the right side of equation 8 becomes

1

2σ2
p

Eq(z1|x)[E[Uρµp]
2 +Var(Uρµp)] =

1

2σ2
p

Eq(z1|x)

µ̂p(0)2 + ∑
α:|α|>0

ρ2|α|µ̂p(α)
2

 (9)

since E[Uρf ] = E[f ]. The new variance is of orderO(ρ2). Comparing this objective with the original
VAE objective, for the second term we get a bias proportional to the difference of the variance

bias =
1

2σ2
p

(Var(µp)−Var(Uρµp)).

Comparing equations 8 and 9 we see the bias to be O(1− ρ2).
The analysis above assumed σp independent of z2. For σp dependent on z2 we can make a similar
argument for the variance of (z1 − µ(z2))/σ(z2) or for the ratio µ(z2)/σ(z2) by expanding the
square and considering the terms separately.

4 RELATED WORK

To increase the stochastic depth of VAEs [10, 19], [21] proposes the Ladder VAEs. With an architec-
ture that shares a top-down dependency between the encoder and the decoder, Ladder VAEs allow
for interactions between the bottom-up and top-down signals and enable training with several layers
deep VAEs. Extending Ladder VAEs, [13] proposed the bidirectional-inference VAEs, adding skip
connections in the generative model and a bidirectional stochastic path in the inference model.

[1] observed that the latent distribution collapses to the prior in deep stochastic hierarchies – a
phenomenon now called posterior collapse. Posterior collapse appears in different contexts including
images or text, and is strongly associated with the presence of powerful decoders, be it LSTMs [1] for
text or strong autoregressive models for images [16], where although the model may produce good
reconstructions, it does not learn a meaningful generative distribution. A prevalent hypothesis behind
posterior collapse is that when the decoder is strong enough to generate very low cross entropy losses,
the optimization may find it easier to simply set the KL divergence term to 0 to minimize the ELBO
[1]. Making an association with probabilistic PCA, [12] hypothesize that posterior collapse is caused
by local optima in the optimization landscape due to high variance, even without powerful decoders.
High variance was identified as a potential culprit also by [21] for posterior collapse.

Given the breadth of the problem, many tried to address posterior collapse. [1, 8, 21, 14] anneal
the KL divergence between the approximate posterior to the prior from 0 to 1. Unfortunately, this
solution does not optimize the original ELBO formulation and is shown [27, 3] to cause instabilities,
especially with large datasets and complex decoders. [11] introduce the concept of free bits ignoring
the gradient if not significant enough. [17] proposed δ-VAEs, which constrain the latent distribution
to have a minimum distance to the prior. [7] monitor the mutual information between the latent and
the observed variable to aggressively optimize the inference model before every model update. [2]
suggest that using a tighter multi-sample ELBO can help alleviate collapse to some extent.

While many [1, 21] suggested a connection between posterior collapse and variance reduction, no
real solutions using variance reduction has been proposed. One reason may be the low variance the
reparameterization trick [10, 19] already offers. Empirically, while the reparametrization is successful
with producing low variance forward and backward propagations in shallow models, it has not been
enough for deeper and wider ones. Another reason suggested by the approach of this paper is that
variance appears as a side effect of spectral complexity.

To reduce the variance in reparameterization gradients, [20] suggest removing a mean zero score
function term from the total derivative while [15] build a control variate using a linear approximation
for variance reduction. [2] propose importance weighted gradients and [24] extend [15] to multiple
samples to obtain an estimator with improved signal-to-noise ratio. Other approaches to increase
the power of VAE models include normalizing flows [18], better posterior or prior distributions [22],
adding autoregressive components [6] or a combination of both [11].

Here, we theoretically argue and empirically validate that damping higher frequency components, thus
lowering variance, allows for training deeper latent hierarchies while addressing posterior collapse.
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Figure 1: VAE KL divergence undergoes as a phase transition as the model as we decrease the amount
of smoothing to recover the original model at ρ = 1. The figure shows top layer KL divergence vs. ρ,
where each point is a different model after 100000 steps of training with a fixed ρ. The plots show
the KL divergence values for the original unsmoothed model after training on the smoothed version.
The left figure shows this for same 4 stochastic (40 units per layer) layer MLP model on MNIST and
OMNIGLOT. It can be seen that the critical value where the KL divergence drops toward 0 is the
same for both datasets on this model. The next two figures show phase transition for a 3 stochastic
layer (200 units per layer) MLP model on OMNIGLOT (middle) and a convolutional model (8x7x7
latent dimension) on MNIST (right) showing that the phase transition becomes especially pronounced
with the width of the latent layer.

We rely on tools from the field of analysis on Gaussian spaces, amenable to the analysis of stochastic
processes [9].

5 EXPERIMENTS

In the following experiments we first test our method’s ability to prevent posterior collapse and
compare with other methods designed for the same end. We then present our observation that the top
layer KL divergence undergoes a phase transition as we decrease the amount of smoothing. Finally,
we compare performance on commonly used benchmarks against other methods from the literature.

We validate Hermite variational autoencoders on binary MNIST, OMNIGLOT and CIFAR-10 with
various ResNet and MLP architectures. Validation ELBOs are evaluated using importance-weighted
samples [2] with L100 and L5000 denoting evaluation with 100 and 5000 samples.

5.1 INVESTIGATING POSTERIOR COLLAPSE
Table 1: Test ELBO on statically binarized
MNIST with MLP

Model ELBO

VAE (L=2) -86.05
VAE (L=1)+NF [18] -85.10
IWAE (L=2) [2] -85.32
VampPrior (L=2) [23] -83.19

HVAE (L=4), L5000 -83.42

Table 2: Test ELBO on dynamically bina-
rized MNIST with MLP

Model ELBO

Ladder VAE (L=5) -81.7
VampPrior (L=2) [23] -81.24

HVAE (L=4), L5000 -81.2
HVAE (L=5), L5000 -81.1

We test Hermite VAEs for their ability to prevent poste-
rior collapse on basic MLP network architectures. We
compare on static and dynamically binarized MNIST
against various standard methods for mitigating pos-
terior collapse. For dynamic MNIST we choose two
models: the first is a 4 stochastic layer model with
64,32,16,8 latent variables. The deterministic layers
have two layers of 512,256,128,64 units respectively,
going from bottom to top. The second model has 4
stochastic layers VAE with 40 units per stochastic layer
and 2 layers of 200 units per stochastic layer . For static
MNIST we only use the second model described above.
All models have a simple stacked architecture with no
skip connections.

First we compare with a standard VAE on static MNIST.
We trained the VAE with the standard training method
and our method with ρ ∈ {0.9, 0.8}. We show the
validation curves and the KL divergence of the top
stochastic layer KL(q(z4|z3)||N (0, 1) in figure 2. The standard training collapses the posterior
immediately while our method avoids posterior collapse and yields better validation ELBO.
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Table 3: Posterior collapse on dynamic MNIST. The table shows top layer KL divergence and
active units (top-to-bottom) for various method on the 4 stochastic layer models. The 64-32-16-
8 latent dimension models have two layers of 512, 256, 128, 64 hidden units in each stochastic
layer respectively. The 40-40-40-40 latent dimension models have two layers of 200 units per
stochastic layer. ‘+KL’ indicates KL annealing. All models were trained for 1M steps with the same
hyperparameters.

Model V. ELBO (L100) Reconstruction KLD Top KLD Active Units

IWAE (64-32-16-8) -84.46 -65.3 23.98 4.88 3,15,30,64
IWAE (40-40-40-40) -84.63 -65.5 23.98 1.18 0,4,37,40
VAE+KL (64-32-16-8) -84.6 -60.3 28.8 6.2 6,11,25,49
VAE+KL (40-40-40-40) -84.7 -60.8 28.07 1.13 1,6,15,40
VAE+Freebits (64-32-16-8) -85.5 -64.2 25.1 3.8 2,4,9,21
VAE+Freebits (40-40-40-40) -86.0 -65.8 23.6 2.46 1,2,8,18

HVAE (ρ = 0.95) (64-32-16-8) -81.6 -59.78 26.1 8.99 8,16,32,54
HVAE (ρ = 0.9) (64-32-16-8) -81.7 -60.0 25.6 9.56 8,16,32,43
HVAE (ρ = 0.95) (40-40-40-40) -84.4 -65.7 23.7 9.34 40,40,40,40

Table 4: Posterior collapse on static MNIST. The table shows top layer KL divergence and active
units (top-to-bottom) for various method on the same 4 stochastic layer model with 40 units each,
‘+KL’ indicates KL annealing. All models were trained for 1M steps with the same hyperparameters.

Model V. ELBO (L100) Top KLD Active Units

VAE -86.4 0.82 1,3,9,17
IWAE (5 samples) -84.9 1.005 1,3,9,24
VAE+KL -84.5 1.2 2,3,11,37
VAE+Freebits -87 1.3 1,1,8,17

HVAE (ρ = 0.85) -85.2 20.6 40,40,40,24
HVAE (ρ = 0.9) -85.5 19.5 40,40,40,40
HVAE+KL (ρ = 0.95) -84.2 23.5 38,34,17,40

Next we compare against other methods designed to mitigate posterior collapse including KL
annealing, free bits [11] and importance weighted objectives [2]. For KL annealing the annealing
coefficient is set to 0 for the first 10,000 steps and is linearly annealed to 1 over the next 500,000
steps. For free bits, we apply the same free bits value to each stochastic layer. The free bits values are
chosen from {0.5, 1.0, 2.0, 3.0}. We find that training slows down considerably when using free bits.
Values of free bits of 4.0 or more caused training to become unstable.

For this comparison we use the 40-40-40-40 4-layer architecture used for all methods for static
MNIST and both the 40-40-40-40 and 64-32-16-8 architectures for dynamic MNIST. We show the
results in tables 4 and 3, where we include the total KL divergence, top layer KL divergence as well
as the number of active units in each of the 4 layers. Compared to the baseline methods, our method is
able to maintain significant activity across the layers and a considerably higher KL divergence in the
top layer. For dynamic MNIST the 64,32,16,8 model has successively smaller networks higher in the
hierarchy and the other methods show better activity in the latent units than the 40-40-40-40 model.
This suggests that training dynamics and the architecture affect the extent of posterior collapse with
standard methods and have less of an effect with our proposal.

Here we also find that employing other posterior collapse mitigation techniques can sometimes help
with HVAE as well. As shown in table 4, KL annealing with the 4 layer HVAE allows it to reach
higher validation ELBO. However, we did not find KL annealing to be advantageous when used with
HVAE on more complex architectures and in particular we do not see improvement in CIFAR-10
performance.

5.1.1 PHASE TRANSITIONS

We have given some evidence to show that attenuating the higher frequency components of parameter-
izing functions by smoothing, thus also reducing variance, is a justifiable mitigation against posterior
collapse.
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Figure 2: Training 4 layer VAE models on static MNIST with validation ELBO on the left and
KL(q(z4|z3)||N (0, 1)) on the right. The VAE shows posterior collapse, while HVAE avoids it
alongside improved validation ELBO.

Here we show that as the amount of smoothing is reduced (as ρ approaches 1) to recover the
original VAE gradients, the top level KL divergence shows a sudden decline at a critical value of the
smoothing parameter. The sharpness of this decline depends on the model configuration (stochastic
layers, latent dimension). On the other hand, our experiments suggest that the sharpness of the decline
is independent of dataset.

Table 5: Comparing bits per dimension, parameter effi-
ciency and model depths between hierarchical methods
and other well performing methods on CIFAR-10. ‘+’
indicates stochastic skip connections.

Model BPD Layers Parameters

LVAE [13] 3.60 15 72.36M
LVAE+ [13] 3.41 15 73.35M
LVAE+ [13] 3.45 29 119.71M
BIVA [13] 3.12 15 102.95M
Discrete VAE++ [26] 3.38 – –
NICE [4] 4.48 – –
RealNVP [5] 3.49 – –
NVAE [25] 2.91 – –
VAE+IAF [11] 3.11 – –

HVAE, L1 3.5 3 9.95M
HVAE, L1 3.46 4 12.4M
HVAE, L1 3.43 6 16.8M
HVAE+, L1 3.42 3 9.95M
HVAE+, L100 3.39 3 9.95M

An example of this phenomenon can be
seen in figure 1 and the appendix. Here
we show the top layer KL divergence af-
ter training for 100k steps with varying ρ
for 3 different architectures. We see that
the phase transition becomes more pro-
nounced with greater stochastic dimen-
sion. Figure 3 further shows how HVAE
can prevent collapse across a spectrum
of varying stochastic depth and width
while maintaining good validation per-
formance.

5.2 BENCHMARK COMPARISONS

5.2.1 MNIST & OMNIGLOT

MLPs. For static MNIST we report
test ELBO for MLPs with 4 stochastic
layers with 40 units each. Before each
stochastic layer we have two deterministic layers of 200 tanh units.

We show the results in table 1 comparing with others that improve VAEs: IWAE [2], VAE with
normalizing flow [18] and VampPrior [23].

The dynamic MNIST results are in table 2. The 5-layer HVAE model in this instance has latent
dimensions 64, 32, 16, 8, 4 with two layers of 512, 256, 128, 64, 32 units in the respective stochastic
layers.

Residual ConvNets. Next, we experiment with a more complex ResNet architecture on MNIST
and OMNIGLOT with up to 4 stochastic layers and up to 5 ResNet blocks between stochastic layers
(14× 14 features maps). The networks have the same hierarchical structure as the MLP VAEs with
convolutional latent layers. We do not employ stochastic skip connections between blocks.

We improve the MLP scores reaching -96.08 validation ELBO on OMNIGLOT, compared to -97.65
and -97.56 for VAE(L=2) and VampPrior (L=2). The detailed results are in the appendix.

In both experiments we obtain competitive scores despite the simple architecture.
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Figure 3: VAEs (above) exhibit suddenly many inactive units when increasing the depth to 2 layers
and the width beyond 20 neurons, while collapsing completely after 3 layers and 60 neurons. The
proposed Hermite VAEs (below) retain for nearly all cases full latent activity, while maintaining
similar ELBOs (not shown). Trained on MNIST for 100K steps for practical reasons (normal
convergence if left training), with 2 deterministic, 200-neuron tanh layers before every stochastic
layer.

5.2.2 CIFAR-10

We experiment with ResNets of up to 6 stochastic layers, interwined with deterministic layers
comprising 6 ResNet blocks. We used 100 feature maps for all deterministic layers. The stochastic
layers have 8 feature maps of width 16 × 16. We also experiment with skip connections between
stochastic layers. We report results in table 5. We obtain an ELBO of 3.5 bpd without skip connections.
After adding skip connections, we improve to 3.42 bpd on the 3-layer architecture. This corresponds
to an ELBO of 3.39 when evaluated with 100 importance samples. This result is on par with the
15-layer Ladder VAE (LVAE) [13], and comparable to the 15-layer LVAE+ [13] architecture that
adds skip connections to LVAE.

Table 6: Comparing maximum memory usage for various
models. We report the memory usage 4 and 6-layer models
on CIFAR-10, using 5 deterministic layers per stochastic
layer with 100 units per layer and 5 OU or IWAE samples.
The memory usage is the maximum amount of used mem-
ory with a batch size of 64. For LVAE and BIVA we use
code from the BIVA [13] PyTorch repository.

Model Layers Memory Parameters (M)

VAE 4 2.12G 12.4
VAE 6 2.45G 16.8
IWAE 4 8.59G 12.4
IWAE 6 10.5G 16.8
LVAE 15 6.4G 59.5
BIVA 15 10.3G 103

HVAE 4 3.74G 12.4
HVAE 6 4.6G 16.8

Note also that the improvement comes at
a signification reduction of parameters.
Compared to Ladder VAE the 3 layer
Hermite VAE uses about 7 times fewer
parameters.

6 CONCLUSION

Training variational autoencoders with
large hierarchies of stochastic layers has
proven to be difficult. An often shared
observation when moving to more com-
plex variational autoencoders is posterior
collapse where a subset of the latent vari-
ables falls back to the prior distribution.

For a solution we turn to the field of anal-
ysis of Gaussian functions and analyze
intermediate VAE functions as Hermite expansions. We argue that the Ornstein-Uhlenbeck semigroup
can be used to reduce variance and empirically show that its parameterizing variable can be used to
precisely control phase transitions. We validate the analysis and solution on three datasets, MNIST,
OMNIGLOT, CIFAR-10, where we are able to avoid posterior collapse and obtain performance that
is competitive with more complex architectural solutions.
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