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Abstract

Variational inequalities represent a broad class of problems, including minimiza-
tion and min-max problems, commonly found in machine learning. Existing
second-order and high-order methods for variational inequalities require precise
computation of derivatives, often resulting in prohibitively high iteration costs. In
this work, we study the impact of Jacobian inaccuracy on second-order methods.
For the smooth and monotone case, we establish a lower bound with explicit de-
pendence on the level of Jacobian inaccuracy and propose an optimal algorithm for
this key setting. When derivatives are exact, our method converges at the same rate
as exact optimal second-order methods. To reduce the cost of solving the auxiliary
problem, which arises in all high-order methods with global convergence, we
introduce several Quasi-Newton approximations. Our method with Quasi-Newton
updates achieves a global sublinear convergence rate. We extend our approach with
a tensor generalization for inexact high-order derivatives and support the theory
with experiments.

1 Introduction
In this paper, we primarily address the problem of solving the Minty Variational Inequality (MVI) [77,
17]. Given a continuous operator F : X → Rd, where X ⊆ Rd is a closed bounded convex subset
with a diameter D = maxx,y∈X ∥x− y∥, the objective is to find a point x∗ ∈ X such that

⟨F (x), x− x∗⟩ ≥ 0, for all x ∈ X . (1)
The solution to (1) is referred to as a weak solution of the Variational Inequality (VI) [37]. In contrast,
the Stampacchia variational inequality problem [48] consists in finding a point x∗ ∈ X such that

⟨F (x∗), x− x∗⟩ ≥ 0, for all x ∈ X . (2)
This solution is often called a strong solution to the variational inequality. When the operator F is
both continuous and monotone, the weak and strong solutions are equivalent [37].
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Assumption 1.1 The operator F (x) is called monotone, if
⟨F (x)− F (y), x− y⟩ ≥ 0, for all x, y ∈ X . (3)

Another useful assumption is L1-smoothness.

Assumption 1.2 The operator F (x) is L1-smooth, if it has Lipschitz-continuous first-order derivative
∥∇F (x)−∇F (y)∥op ≤ L1∥x− y∥, for all x, y ∈ X .

First-order methods. Variational inequalities encompass a wide range of problems, including
minimization [19, 90, 93, 15], min-max problems, Nash equilibrium, differential equations, and
others [37, 16]. The extensive research on VI methods dates back several decades, with a notable
breakthrough in the 1970s—the development of the Extragradient method [62, 6]. Subsequently,
it was demonstrated that this method achieves global convergence of O

(
ε−1
)

[80, 43], matching
the convergence rates of other first-order2 methods such as optimistic gradient [92, 78, 63, 44],
forward-backward splitting [95], and dual extrapolation [81]. These first-order methods collectively
exhibit optimal convergence [89].

Second-order and high-order methods. To achieve further notable acceleration of methods for VIs,
one can leverage information about higher-order derivatives. For instance, simply incorporating first-
order derivatives (Jacobian) can significantly enhance the convergence speed of the method. Following
recent advancements in second-order and high-order methods with global rates for minimization [85,
82, 10, 79, 83, 46, 58, 14, 51, 64, 22], several high-order methods for VIs have been proposed [21,
68, 52, 88, 70, 84, 72, 5]. However, all these methods involve a line-search procedure, resulting in
Õ
(
ε−2/3

)
convergence for the case of first-order information (Jacobians). Recent works [69, 2]

propose methods with improved rates O
(
ε−2/3

)
and establish the lower bound Ω

(
ε−2/3

)
, rendering

these algorithms optimal.

Jacobian’s approximation. In the last decade, VIs found new applications in machine learning.
There are many problems that could not be reduced to minimization, including reinforcement
learning [87, 55], adversarial training [75], GANs [42, 31, 41, 76, 28, 67, 91], classical learning
tasks in supervised learning [56, 9], unsupervised learning [98, 8], image denoising [35, 27], robust
optimization [13]. Applying second-order methods, without even mentioning high-order ones,
described in a previous paragraph to machine learning problems could be a challenging task. Although
these methods may theoretically converge faster, computing exact Jacobians and the per-iteration
costs can be expensive. Therefore, it seems natural to introduce inexact approximations of the
first-order derivatives. In the context of minimization, several works with inexact Hessians were
introduced for both convex [40, 3, 7, 4] and nonconvex [24, 25, 23, 61, 99, 94, 74, 11, 12, 34]
problems. Regarding VIs, Quasi-Newton (QN) methods [73, 14, 57] can be highlighted, though they,
unfortunately, achieve only local convergence in the strongly monotone case [18, 38]. These methods
are relatively less advanced for VIs compared to their counterparts in the field of minimization,
where they are considered classics in optimization due to their effectiveness and practicality [86].
Modern research on QN approximations for minimization includes methods that exhibit global
convergence [57, 54, 53]. A recent work [71] introduces the Newton-MinMax method for convex-
concave unconstrained min-max optimization problems, demonstrating an optimal rate under special
assumptions on the accuracy of the Jacobian approximation. However, the field of VIs lacks globally
convergent inexact second-order methods with an explicit dependence on the accuracy of the Jacobian.
This raises several natural questions:

What are the lower bounds for methods with inexact Jacobians?
Can we construct an optimal method with inexact first-order information?

What is the proper way to approximate the Jacobian to ensure global convergence and reduce the
iteration complexity?

In our work, we attempt to answer these questions in a systematic manner.
2For clarity, let us note that VI methods that use only the information about the operator itself are commonly

referred to as first-order methods. Methods that also use information about the Jacobian of the operator (the
first-order derivative) are known as second-order methods. This somewhat contradictory notation stems from
applications to minimization problems, where the operator is the gradient (i.e., the first-order derivative), and the
Jacobian is the Hessian (i.e., the second-order derivative).
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Optimality measure. Most of our results are stated for the monotone setting (Assumption 1.1). In
this context, the optimality of a point x̂ ∈ X is typically measured by a gap function GAP(·) : X →
R+ [95, 80, 81, 78, 69], defined by

GAP(x̂) = sup
x∈X

⟨F (x), x̂− x⟩ ≤ ε, (4)

where ε ≥ 0 is the accuracy of solution. The boundedness of X and the existence of a strong solution
ensure that the gap function is well-defined. If ε = 0, we get by (1) that x̂ is a weak solution of VI.
We explore the performance of the proposed algorithm in scenarios involving nonmonotone operators
F . In such cases, it is essential to assume that the operator satisfies the Minty condition to ensure that
the problem is computationally manageable [32].

Assumption 1.3 The operator F (x) satisfies Minty condition, if there exists a point x∗ such that

⟨F (x), x− x∗⟩ ≥ 0, for all x ∈ X . (5)

The range of applications of nonmonotone VIs satisfying Minty conditions is quite extensive [20, 29,
39, 36, 66, 60]. We note, that this condition is weaker than monotonicity [30, 50, 59] and guarantees
the existence of at least one strong solution since F is continuous and X is closed and bounded [47].
To measure the optimality of point x̂ we define the residue function RES(·) : X → R+ [30, 50, 59]

RES(x̂) = sup
x∈X

⟨F (x̂), x̂− x⟩ ≤ ε, (6)

The boundedness of X and the existence of a strong solution ensure that the residual function is
well-defined. If ε = 0, by (2), we get that x̂ is a strong solution of VI.

Contributions. The main contribution of this paper lies in the development of a new second-order
method robust to inexactness in the Jacobian, a common occurrence in machine learning. We
demonstrate the algorithm’s optimality in the monotone case by establishing a lower bound for this
key setting. Expanding further:

1. We introduce a novel second-order algorithm, VIJI (Second-order Method for Variational
Inequalitues under Jacoibian Inexactness), designed to handle δ-inexact3 Jacobian information.
Specifically, in the context of smooth and monotone VIs, VIJI achieves a convergence rate of
O
(

δD2

T + L1D
3

T 3/2

)
to find weak solution. For smooth nonmonotone VIs satisfying the Minty

condition, we demonstrate a convergence rate of O
(

δD2
√
T

+ L1D
3

T

)
to identify strong solution.

Notably, when δ ≤ L1D√
T

, our method matches the convergence rates of optimal exact second-order
methods [2, 69].

2. We establish the optimal performance of our algorithm on monotone smooth operators by deriving
a theoretical complexity lower bound of Ω

(
δD2

T + L1D
3

T 3/2

)
to find weak solution for the case of

δ-inexact Jacobians.
3. Our algorithm involves solving a variational inequality subproblem. To tackle this challenge, we

introduce an approximation condition, which makes the solution computationally feasible.
4. We introduce a new Quasi-Newton update for approximating the Jacobian, which significantly

decreases the per-iteration cost of the algorithm while maintaining a global sublinear convergence
rate. Numerical experiments demonstrate the practical benefits of our method.

5. We extend our algorithm for higher-order VIs with inexact high-order derivatives, resulting in
O
(∑p−1

i=1
δiD

i+1

T (i+1)/2 +
Lp−1D

p+1

T (p+1)/2

)
rate for monotone and smooth VIs with δi-inexact i-th derivative

to find weak solution. Moreover, we extend our proposed high-order method to nonmonotone VIs.
6. We propose a restarted version of VIJI for strongly monotone VIs, which exhibits a linear rate.

Comparison with Lin, Mertikopoulos, and Jordan [71]. To the best of our knowledge, the
work [71] is the most closely related to our research.The objective of [71] was to develop a method
for convex-concave unconstrained min-max optimization under inexact Jacobian information with
an optimal convergence rate O(ε−2/3) matching the lower bound Ω(ε−2/3) [69]. The authors
successfully achieve this goal by proposing a second-order algorithm Inexact-Newton-MinMax

3A formal definition is provided in the following section.
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method based on the Perseus [69]. To attain optimal convergence, they constrained the Jacobian
inexactness with a function that decreases as the method converges and bounded the norm of Jacobian
from above. While these assumptions might be suitable for randomized sampling in finite-sum and
stochastic problems, they may not hold for many approximation strategies, such as Quasi-Newton
algorithms. The aim of our work, however, is to study the impact of Jacobian inaccuracy on the
convergence of second-order methods for VIs (a special case of which are min-max problems) and
to identify the explicit dependence of the convergence rate on the inexactness. Compared to the
work [71], the Jacobian inaccuracy directly affects the step sizes in our algorithm, allowing us to
achieve a convergence rate of O(ε−2/3+δε−1) for any given δ. VIJI can be viewed as a generalization
of Inexact-Newton-MinMax. With the same assumption on δ as in [71], our methods for min-max
optimization are equivalent. The inexactness of the subproblem and the solution approach proposed
in [71] remain valid for our method even with arbitrary large δ. Further details about application of
our method to min-max problems can be found in Appendix J.

2 Preliminaries

Notation. Let Rd be a finite-dimensional vector space with scalar product ⟨·, ·⟩. For vector x ∈ Rd

we denote Euclidean norm as ∥x∥. For X ∈ Rd1×...×dp , we define

X[z1, · · · , zp] =
∑

1≤ij≤dj ,1≤j≤p(Xi1,··· ,ip)z
1
i1
· · · zpip ,

and ∥X∥op = max∥zi∥=1,1≤j≤p X[z1, · · · , zp]. Fixing p ≥ 1 and letting F : Rd → Rd be a
continuous and high-order differentiable operator, we define ∇(p)F (x) as the pth-order derivative at
a point x ∈ Rd. To be more precise, letting z1, . . . , zk ∈ Rd, we have

∇(k)F (x)[z1, · · · , zk] =
∑

1≤i1,...,ik≤d

(
∂Fi1

∂xi2 ···∂xik
(x)
)
z1i1 · · · z

k
ik
.

Taylor approximation and oracle feedback. The starting point for our method is the first-order
Taylor polynomial of the operator F at point v : Φv(x) = F (v) + ∇F (v)[x − v]. Since the
computation of Jacobian ∇F (v) could be a quite tiresome task, it seems natural to introduce an
inexact approximation J(v). Based on it we introduce inexact Taylor approximation – one of the
main building blocks of our algorithm

Ψv(x) = F (v) + J(v)[x− v], v ∈ Rd, (7)

where J(x) satisfies the following assumption.

Assumption 2.1 For given v ∈ X δ-inexact Jacobian satisfies:

∥∇F (v)− J(v)∥ ≤ δ. (8)

As it was shown, e.g. in [52], Assumption 1.2 allows to control the quality of approximation of
operator F by its Taylor polynomial

∥F (x)− Φv(x)∥ ≤ L1

2 ∥x− v∥2, x, v ∈ X . (9)

The next lemma is counterpart of (9) for the case of inexact Jacobian.

Lemma 2.2 Let Assumptions 1.2 and 2.1 hold. Then, for any x, v ∈ X

∥F (x)−Ψv(x)∥ ≤ L1

2 ∥x− v∥2 + δ∥x− v∥.

3 VIJI algorithm

In this section, extending on recent optimal high-order method for MVIs Perseus [69], we present our
proposed method, dubbed as VIJI and detailed in Algorithm 1.
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Algorithm 1 VIJI
Input: initial point x0 ∈ X , parameters L1, η, sequence {βk}, and opt ∈ {0, 1, 2}.
Initialization: set s0 = 0 ∈ Rd.
for k = 0, 1, 2, . . . , T do

Compute vk+1 = argmaxv∈X {⟨sk, v − x0⟩ − 1
2∥v − x0∥2}.

Compute xk+1 ∈ X such that condition (12) holds true.
Compute λk+1 such that 1

32 ≤ λk+1

(
L1

2 ∥xk+1 − vk+1∥+ βk+1

)
≤ 1

22 .
Compute sk+1 = sk − λk+1F (xk+1).

Output: x̂ =

 x̃T = 1∑T
k=1 λk

∑T
k=1 λkxk, if opt = 0,

xT , else if opt = 1,
xkT

for kT = argmin1≤k≤T ∥xk − vk∥, else if opt = 2.

The model of objective and subproblem’s solution. We begin the description of the algorithm by
introducing the inexact model of objective Ωη

v(x)

Ωη
v(x) = Ψv(x) + ηδ(x− v) + 5L1∥x− v∥(x− v), (10)

where η > 0 is given constant. Here, we introduced the additional regularization term ηδ(x− v). As
we will demonstrate, this term is crucial for ensuring that the method’s subproblem has a solution.
For brevity, we use a regularization constant of 5L. Using larger coefficients would yield the same
convergence rate. As other dual extrapolation-type methods, VIJI includes the following subproblem

find xk+1 ∈ X such that ⟨Ωη
vk+1

(xk+1), x− xk+1⟩ ≥ 0 for all x ∈ X . (11)

First of all, the strong solution of this VI exists because Ωη
vk+1

(x) is continuous, and X is a closed,
bounded, and convex set. Next, we demonstrate that in a monotone setting VI (11) is also monotone.

Lemma 3.1 Let Assumptions (1.1), (1.2), (2.1) hold. Then for any x, vk+1 ∈ X VI (11) is monotone

1
2

(
∇Ωv(x) +∇Ωv(x)

T
)
⪰ 4L1∥x− v∥Id×d + 5L1

(x−v)(x−v)T

∥x−v∥ + (η − 1)δId×d.

Following the work [69], one can find a strong solution to such VI using mirror-prox methods
from [1], achieving the following approximate condition

sup
x∈X

⟨Ωvk+1
(xk+1), xk+1 − x⟩ ≤ L1

2 ∥xk+1 − vk+1∥3 + δ∥xk+1 − vk+1∥2. (12)

This ensures that the subproblem is computationally solvable in the monotone setting. In specific
cases, such as minimax optimization, other efficient subsolvers can be employed [49, 2, 71].

Adaptive dual stepsizes. Adaptive stepsizes in dual space λk are another core aspect of the
algorithm. Due to inaccuracies in the Jacobian, applying the standard adaptive strategy, such as in
the Perseus algorithm [69], can lead to excessively large steps, potentially slowing down the method.
To address this issue, an additional term βk is incorporated into the adaptive strategy for selecting
λk. Thus, when ∥xk − vk∥ is small (indicating proximity to the optimum), βk has a greater influence
on the choice of λk, preventing the method from taking overly aggressive steps. Similar behavior
can be observed in accelerated second-order methods for minimization with inexact Hessians from
theoretical [3, Lemma 5], [4, Appendix B, Lemma E.3] and practical [4, Section 7] perspectives.

Convergence in monotone setting. Now, we are prepared to present the convergence theorem of
Algorithm 1 in the monotone case.

Theorem 3.2 Let Assumptions 1.1, 1.2, 2.1 hold. Then, after T ≥ 1 iterations of Algorithm 1 with
parameters βk = δ, η = 10, opt = 0, we get the following bound

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ = O
(

L1D
3

T 3/2 + δD2

T

)
. (13)

The upper bound (13) consists of two terms. The first one corresponds to exact convergence and
matches the lower bound for second-order VI methods [69]. The second term illustrates the impact
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of the Jacobian’s inexactness on the convergence rate, aligning with the lower bound for first-order
methods [89]. We also notice that one can make the bound from (13) tighter for the so-called restricted
gap-function [81] defined as RGAP(y) = supx∈C ⟨F (x), y − x⟩, where C ⊆ X and the solution set
X ∗ of (2) satisfies X ∗ ⊆ C. In particular, following similar steps as in the proof of Theorem 3.2, one
can derive O

(
L1D̂

3

T 3/2 + δD̂2

T

)
bound for RGAP(x̃T ), where D̂ = supx∈C ∥x− x0∥.

In the next theorem, we show that the method can achieve the optimal convergence rate of second-
order methods under additional assumption on δ.

Theorem 3.3 Let Assumptions 1.1, 1.2, 2.1 hold. Let {xk, vk} be iterates generated by Algorithm 1
and

∥(∇F (vk)− J(vk))[xk − vk]∥ ≤ δk∥xk − vk∥, δk ≤ L1

2 ∥xk − vk∥. (14)

Then, after T ≥ 1 iterations of Algorithm 1 with parameters βk = L1

2 ∥xk − vk∥, η = 10, opt = 0,
we get the following bound

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ ≤ O
(

L1D
3

T 3/2

)
.

Note, that condition (14) is verifiable, indicating that the method can adjust to δk in cases of
controllable inexactness. Specifically, at each iteration, we can solve subproblem (12). If the
assumption regarding δk is not met, we can improve Jacobian approximation and repeat procedure.
Moreover, similarly to the previous theorem, one can tighten the above bound for RGAP(x̃T ) and get
the dependence on D̂ = supx∈C ∥x− x0∥ instead of D.

Convergence in nonmonotone setting. To begin with, in the nonmonotone case, the subprob-
lem (11) may not exhibit monotonicity, and solving (12) becomes challenging [32]. Yet, in certain
specific scenarios, such as unconstrained minimization tasks, it remains feasible to find a solution
by leveraging the cubic structure of the subproblem [26]. The following theorem establishes the
convergence of VIJI in the nonmonotone setting.

Theorem 3.4 Let Assumptions 1.2, 1.3, 2.1 hold. Then after T ≥ 1 iterations of Algorithm 1 with
parameters βk = δ, η = 10,opt = 2 we get the following bound

RES(x̂) = sup
x∈X

⟨F (x̂T ), x̂T − x⟩ = O
(

L1D
3

T + δD2
√
T

)
.

The convergence rate could be improved by additional assumption on inexact Jacobian.

Theorem 3.5 Let Assumptions 1.2, 1.3, 2.1 hold. Let {xk, vk} be iterates generated by Algorithm 1
that satisfy (14). Then after T ≥ 1 iterations of Algorithm 1 with parameters βk = L

2 ∥xk−vk∥, η =
10,opt = 2 we get the following bound

RES(x̂) = sup
x∈X

⟨F (x̂T ), x̂T − x⟩ = O
(

L1D
3

T

)
.

4 The lower bound

In this section, we establish a theoretical lower bound for the complexity of first-order algorithms using
inexact Jacobians for monotone MVIs. The proof technique draws inspiration from works [33, 4] and
based on lower bounds from [69, 89].

We start by describing the available information and the method’s structure. The considered class of
algorithms relies on data provided by a first-order δ-inexact oracle, denoted as O : X → Rd × Rd×d.
Given a point x̄ ∈ X , the oracle returns

O(x̄) = (F (x̄), J(x̄)) , such that Assumption 2.1 holds. (15)
The method is able to generate points {xk}k≥0 that satisfy the following condition

s ∈ Lin(F (x0), . . . , F (xk)), x̄ = argmaxx∈X {⟨s, x− x0⟩ − 1
2∥x− x0∥2},

xk+1 ∈ X satisfies that ⟨Ωx̄(xk+1 − xk), x− xk+1⟩ ≥ 0 for all x ∈ X ,

where Ωx̄(h) = a1F (x̄) + a2J(x̄)[h] + b1h+ b2∥h∥h.

Next, we state the primary assumption concerning the method’s ability to generate new points.
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Assumption 4.1 The method generates a recursive sequence of iterates {xk}k≥0 that satisfies the
following condition: for all k ≥ 0, we have that xk+1 ∈ X satisfies that ⟨Ωx̄(xk+1−xk), x−xk+1⟩ ≥
0 for all x ∈ X , where

x̄ = argmax
x∈X

{⟨s, x− x0⟩ − 1
2∥x− x0∥2} and s ∈ Lin(F (x0), . . . , F (xk)).

As highlighted in [69], Assumption 4.1 is suitably satisfied by various dual extrapolation methods.
However, it might not be applicable to alternative methods for variational inequalities, such as
extragradient methods and their variants. We leave the generalization of inexact lower bounds for
these algorithms to future research, as even lower bounds for exact algorithms [2, 69] do not address
this case. Now, let us introduce the generalization of smoothness

Assumption 4.2 The operator F (x) is i-th-order Li-smooth (i ≥ 0), if it has Lipschitz-continious
i-th-order derivative

∥∇iF (x)−∇iF (y)∥op ≤ Li∥x− y∥, for all x, y ∈ X . (16)

Finally, we present the lower bound theorem for first-order methods with inexact Jacobians.

Theorem 4.3 Let some first-order method M satisfy Assumption 4.1 and have access only δ-inexact
first-order oracle 15. Assume the method M ensures for any L0-zero-order smooth and L1-first-order
smooth monotone operator F the following convergence rate

GAP(x̂) ≤ O(1)max
{

δD2

Ξ1(T ) ;
L1D

3

Ξ2(T )

}
. (17)

Then for all T ≥ 1 we have
Ξ1(T ) ≤ T, Ξ2(T ) ≤ T 3/2. (18)

5 Quasi-Newton Approximation

In this section, inspired by Quasi-Newton (QN) methods for Hessian approximation, we propose QN
approximations for Jacobians. Our goal is to create a simple scheme to approximate the first-order
derivative and thereby reduce the complexity of the subproblem. We compute Jx using a QN update
and use it as an inexact Jacobian in the model Ωη

v(x) (10).

Jx = Jr = J0 +
∑r−1

i=0 ciuiv
⊤
i = J0 + U⊤CV, (19)

where r is a rank of approximation, J0 ∈ Rd×d ⪰ 0, ui ∈ Rd, vi ∈ Rd are known. U ∈ Rr×d

and V ∈ Rr×d are matrices of stacked vectors U = [u0, . . . , ur−1] and V = [v0, . . . , vr−1] and
C ∈ Rr×r is a diagonal matrix C = diag([c0, . . . , cr−1]). If ui = vi the update becomes symmetric.

L-Broyden is a non-symmetric variant of QN approximation [45, 38] of the following form

J i+1 = J i +
(yi−Jisi)s

⊤
i

s⊤i si
, ∀i = 0, . . . ,m− 1. (20)

In a view of (19), this update is obtained by setting ui = yi − J isi, vi = si, ci = 1/(s⊤i si), and the
rank r = m is equal to memory size m.

Damped L-Broyden is another option for QN approximation with non-symmetric damped update

J i+1 = J i + 1
m+1

(yi−Jisi)s
⊤
i

s⊤i si
, ∀i = 0, . . . ,m− 1. (21)

By choosing ui = yi−J isi, vi = si, ci = 1/((m+1)s⊤i si), r = m, we derive this update from (19).
We define the matrix Jr(J0, U, V, C) = Jr(J0, Y, S, C), where Y and S are formed by stacking the
vectors [y0, . . . , ym−1] and [s0, . . . , sm−1]. The matrix Jm(J0, Y, S) can be computed for any given
pair (Y , S). Next, we describe two strategies for the choice of (s, y) pairs used in (20), (21).

QN with operator history is the well-known classic variant where operator differences are stored:

si = zi+1 − zi, yi = F (zi+1)− F (zi).

This approach is computationally efficient as it does not require additional operator calculations.
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QN with JVP sampling is based on fast computation of Jacobian-Vector Products (JVP):

yi = ∇F (x)si,

where si are random vectors uniformly distributed on the unit sphere such that ∥si∥ = 1 and
s0, . . . , sm−1 are linearly independent. Note, for m ≪ d, each si is linearly independent with high
probability. This approach requires only m operator/JVP computations per step, which is considerably
fewer than the d JVPs needed for a full Jacobian. Utilizing the current Jacobian information allows to
improve the accuracy of the approximation.

In the following theorem, we demonstrate that these approximations satisfy Assumption 2.1 and
condition (8) for both the QN with operator history and JVP sampling methods.

Theorem 5.1 Let F (x) be L0-zero-order smooth operator. For m-memory L-Broyden approximation
of the Jacobian Jx = Jm defined iteratively by (20) with 0 ⪯ J0 ⪯ L0I , we have δ ≤ (m+ 2)L0.
For m-memory Damped L-Broyden approximation Jx = Jm of the Jacobian defined iteratively by
(21) with 0 ⪯ J0 ⪯ L0

m+1I , the condition δ ≤ 2L0 holds true.

With the primary toolkit for QN approximation in VIs established, we can now discuss efficient way
of solving the subproblem (11), which takes the following form

find y ∈ X such that ⟨F (x) + (Jx + ηδI + 5L1∥y − x∥I)(y − x), z − y⟩ ≥ 0 for all z ∈ X . (22)

Let us introduce a parameter τ = ∥y − x∥ for a segment search in τ ∈ [0;D]. To solve (22), we
consider another problem

find yτ ∈ X such that ⟨A−1
τ F (x) + yτ − x, z − yτ ⟩ ≥ 0 for all z ∈ X , (23)

where Aτ = Jx + (ηδ + 5L1τ)I . Problems (22) and (23) are equivalent when τ = ∥yτ − x∥. The
subproblem (23) can be reformulated as minimization problem

yτ = argmin
y∈X

{〈
A−1

τ F (x), y − x
〉
+ 1

2∥y − x∥2
}
, (24)

where (23) is an optimality condition for (24). The goal is to find yτ such that υ(τ) =
|τ − ∥yτ − x∥| ≤ ε. As υ(τ) is a continuous function of τ , we can find this solution via bisec-
tion segment-search with log2

D
ε iterations. This ray-search procedure is similar to the subproblem

solution for the Cubic Regularized Newton subproblem.

For r-rank QN approximation Jr from (19), we can effectively compute A−1
τ F (x), where Aτ =

Jr + (ηδ+ 5L1τ)I = U⊤CV + J0 + (ηδ+ 5L1τ)I = U⊤CV +B and B = J0 + (ηδ+ 5L1τ)I
by using the Woodbury matrix identity[96, 97].

A−1
τ F (x) =

(
B + U⊤CV

)−1
F (x) = B−1F (x)−B−1U⊤(C−1 + V B−1U⊤)−1V B−1F (x).

For computational efficiency, it is better to choose J0 as a diagonal matrix, then inversion B−1 is
computed by O(d) arithmetical operations, C−1 by O(r) operations. V B−1U⊤ requires O(r2d) for
classical multiplication and can be improved by fast matrix multiplication. (C−1 + V B−1U⊤)−1

can be computed by O(r3), as an inverse of r-rank matrix. The rest of the operations are cheaper.
Thus, the total number of arithmetic operations is O(r2d) instead of O(d3) for Jacobian inversion.
We need to perform this inversion logarithmic number of times. Therefore, the total computational
cost with the segment-search procedure is Õ

(
r2d+ r3 log2(

D
ε )
)
.

6 Strongly monotone setting

Assumption 6.1 The operator F : Rd → Rd is called strongly monotone if there exists a constant
µ > 0 such that

⟨F (x)− F (y), x− y⟩ ≥ µ∥x− y∥2, for all x, y ∈ X . (25)

To leverage the strong monotonicity of the objective function and achieve a linear convergence rate,
we introduce the restarted version of Algorithm 1 dubbed as VIJI-Restarted. Restart techniques are
widely utilized in optimization and typically preserve optimality. In other words, restarting an optimal
method for convex functions or monotone problems effectively transforms it into an optimal method
for strongly convex or strongly monotone problems. Within iteration of VIJI-Restarted listed as
Algorithm 2, we execute VIJI for a predefined number of iterations (26). Next, the output of this run
is used as initial point for next run of VIJI with parameters reset, and this iterative process continues.
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Algorithm 2 VIJI-Restarted
Input: initial point z0 ∈ X , D = maxx,y∈X , parameters L, δ.
Initialization: n =

⌈
log D

ε

⌉
, R = D.

for i=1, ..., n do
Set x0 = zi−1, Ri−1 = R

2i−1 .
Run Algorithm 1 with βk = δ, η = 10, opt = 0 for Ti iterations, where

Ti = O(1)

⌈
max

{
L

2/3
1 R

2/3
i−1

µ2/3 , δ
µ

}⌉
. (26)

Set zi = xTi
.

Theorem 6.2 Let Assumptions 1.2, 2.1, 6.1 hold. Then the total number of iterations of Algorithm 2
to reach desired accuracy ∥zs − x∗∥ ≤ ε, where x∗ is the solution of (2) is

O

((
L1D
µ

) 2
3

+
(

δ
µ + 1

) ⌈
log D

ε

⌉)
.

7 Tensor generalization

In this section, we generalize the results presented in Section 3 to the p-th order case. We consider a
higher-order method with inexact high-order derivatives, satisfying the following assumption.

Assumption 7.1 For all x, v ∈ X , i ≥ 1, i-th inexact derivative of F , which we denote as Gi,
satisfies ∥∥(∇iF (v)−Gi(v)

)
[x− v]i−1

∥∥ ≤ δi∥x− v∥i−1. (27)

Based on inexact (p−1)-th-order Taylor approximation Ψp,v(x) = F (v)+
∑p−1

i=1
1
i!∇

iGi(v)[x−v]i,
we introduce the inexact tensor model Ωp,v(x) of the objective

Ωp,v(x) = Ψp,v(x) +
∑p−1

i=1
ηiδi
i! ∥x− v∥i−1(x− v) +

5Lp−1

(p−1)!∥x− v∥p−1(x− v). (28)

The tensor generalization of Algorithm 1, referred to as VIHI (High-order Method for Variational
Inequalitues under High-order derivatives Inexactness ) and detailed in Appendix G, involves the
inexact solution of the subproblem, which satisfies the following condition:

sup
x∈X

⟨Ωvk+1
(xk+1), xk+1 − x⟩ ≤ Lp−1

p! ∥xk+1 − vk+1∥p+1 +
∑p−1

i=1
δi
i! ∥xk+1 − vk+1∥i+1.

Another difference in VIHI compared to VIJI (Algorithm 1) is the adaptive strategy for λk+1:

1
4(5p−2) ≤ λk

(
Lp−1

p! ∥xk+1 − vk+1∥p+1 +
∑p−1

i=1
δi
i! ∥xk+1 − vk+1∥i+1

)
≤ 1

2(5p+1) .

The other steps of Algorithm 1 remain unchanged for the higher-order method. Now, we are ready to
present the convergence properties of VIHI.

Theorem 7.2 Let Assumptions 1.1, 4.2 with i = p− 1, and 7.1 hold. Then, after T ≥ 1 iterations of
VIHI with parameters ηi = 5p, opt = 0, we get the following bound

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ ≤ O
(

Lp−1D
p+1

T
p+1
2

+
∑p−1

i=1
δiD

i+1

T
i+1
2

)
.

Finally, we extend our tensor generalization to nonmonotone case and obtain the following result.

Theorem 7.3 Let Assumptions 1.3, 4.2 with i = p− 1, and 7.1 hold. Then after T ≥ 1 iterations of
VIHI with parameters η = 5p, opt = 2 we get the following bound

RES(x̂) := sup
x∈X

⟨F (x̂t), x̂t − x⟩ = O
(

Lp−1D
p+1

T
p
2

+
∑p−1

i=1
δiD

i+1

T
i
2

)
.
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8 Experiments

In this section, we present numerical experiments to demonstrate the efficiency of our proposed
methods. We consider the cubic regularized bilinear min-max problem of the form:

min
x∈Rd

max
y∈Rd

f(x, y) = y⊤(Ax− b) + ρ
6∥x∥

3,

where ρ > 0, b = [1, 0, . . . , 0] ∈ Rd, and A ∈ Rd×d, with all 1 on the main diagonal and all −1 on
the upper diagonal, the rest elements are 0. To reformulate it as variational inequality, we define
F (x) = [∇xf(x, y),−∇yf(x, y)]. This problem is inspired by the first-order lower bound function
for variational inequalities and min-max problems and is commonly used to verify the convergence
of high-order methods for VI [71, 52].

We implement our second-order method for Variational Inequalities with Quasi-Newton
Approximation (VIQA) as a PyTorch optimizer. The code is available in the OPTAMI package4 [58].
VIQA Broyden refers to L-Broyden approximation (20) and VIQA Damped Broyden to (21), which
are used as inexact Jacobians in VIJI (Algorithm 1). We compare them with the Extragradient method
(EG) [62], first-order Perseus (Perseus1), and second-order Perseus with Jacobian (Perseus2).
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Figure 1: Comparison of different methods for d = 50, ρ = 1e− 3.

In Figure 1, one can see that second-order information in Perseus2 significantly accelerates the
convergence compared to Perseus1. However, it is expensive to compute Jacobian and solve second-
order subproblems every iteration. VIQA with the proposed Damped Broyden approximation (21) is
significantly faster than EG, Perseus1, and VIQA Broyden (20). It shows that this approximation
improves the convergence of first-order Perseus1 and confirms the theoretical result that Damped
Broyden is a more accurate approximation than classical Broyden from Theorem 5.1. The detailed
parameters and setup are presented in Appendix I.

9 Conclusion

In this work, we introduced a second-order method specifically designed to handle Jacobian inex-
actness. We demonstrated its optimality in the monotone case by introducing a new lower bound
and extended its applicability to tensor methods. However, similar to other high-order methods with
global convergence properties, our algorithm involves a subproblem that necessitates an additional
subroutine for its solution. To address this challenge, we proposed a computationally feasible criterion
for solving the subproblem and implemented Quasi-Newton approximations for Jacobians, resulting
in a significant reduction in per-iteration cost. Future investigations could explore incorporating
inexactness within the operator itself and developing adaptive schemes to dynamically adjust for
the level of inexactness encountered during the optimization process. Another open problem is
a design of more accurate Quasi-Newton approximations specifically for Jacobians, focusing on
non-symmetrical structure of Jacobian and specific inexactness criteria such as Assumption 2.1.

4https://github.com/OPTAMI/OPTAMI
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A Proofs of Lemmas 2.2, 3.1

In this section, we let L := L1.

Lemma 2.2 Let Assumptions 1.2 and 2.1 hold. Then, for any x, v ∈ X

∥F (x)−Ψv(x)∥ ≤ L
2 ∥x− v∥2 + δ∥x− v∥. (29)

Proof. For any x, y ∈ X

∥F (x)−Ψv(x)∥ ≤ ∥F (x)− Φv(x)∥+ ∥Φv(x)−Ψv(x)∥
(9)
≤ L

2
∥x− v∥2 + ∥(∇F (v)− J(v))[x− v]∥ ≤ L

2
∥x− v∥2 + δ∥x− v∥.

□
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Lemma 3.1 Let Assumptions (1.1), (1.2), (2.1) hold. Then for any x, v ∈ X VI (11) is monotone

1
2

(
∇Ωv(x) +∇Ωv(x)

T
)
⪰ 4L1∥x− v∥Id×d + 5L1

(x−v)(x−v)T

∥x−v∥ + (η − 1)δId×d.

Proof. For all x, v ∈ X
1
2

(
∇Ωv(x) +∇Ωv(x)

T
)

(10)
= 1

2

(
J(v) + J(v)T

)
+ ηδId×d + 5L∥x− v∥Id×d + 5L

(x− v)(x− v)T

∥x− v∥
(29)
⪰ 1

2

(
∇F (x) +∇F (x)T

)
+ 4L∥x− v∥Id×d + 5L (x−v)(x−v)T

∥x−v∥ + (η − 1)δId×d

(3)
⪰ 4L∥x− v∥Id×d + 5L (x−v)(x−v)T

∥x−v∥ + (η − 1)δId×d.

□

B Proofs of Theorems 3.2, 3.3

B.1 Proof of Theorem 3.2

In this section, we let L := L1. To show the convergence of Algorithm 1, we define the following
Lyapunov function

Ek = max
v∈X

⟨sk, v − x0⟩ − 1
2∥v − x0∥2. (30)

Lemma B.1 Let Assumption 1.2, 2.1 hold. Then, for every integer T ≥ 1, we have
T∑

k=1

λk⟨F (xk), xk − x⟩ ≤ E0 − ET + ⟨sT , x− x0⟩ − 1
8

(
T∑

k=1

∥xk − vk∥2
)
, for all x ∈ X .

Proof. By the definition of Lyapunov function (30) and Step 2 of Algorithm 1, we have

Ek = ⟨sk, vk+1 − x0⟩ − 1
2∥vk+1 − x0∥2.

Then, we have

Ek+1 − Ek = ⟨sk+1, vk+2 − x0⟩ − ⟨sk, vk+1 − x0⟩ − 1
2

(
∥vk+2 − x0∥2 − ∥vk+1 − x0∥2

)
= ⟨sk+1 − sk, vk+1 − x0⟩+ ⟨sk+1, vk+2 − vk+1⟩ − 1

2

(
∥vk+2 − x0∥2 − ∥vk+1 − x0∥2

)
.

(31)

By the update formula for vk+1, we get

⟨x− vk+1, sk − vk+1 + x0⟩ ≤ 0, for all x ∈ X .

Letting x = vk+2 in this inequality and using ⟨a, b⟩ = 1
2 (∥a+ b∥2 − ∥a∥2 − ∥b∥2), we have

⟨sk, vk+2−vk+1⟩ ≤ ⟨vk+1−x0, vk+2−vk+1⟩ = 1
2

(
∥vk+2 − x0∥2 − ∥vk+1 − x0∥2 − ∥vk+2 − vk+1∥2

)
.

(32)
Plugging Eq. (32) into Eq. (31) and using Step 5 of Algorithm 1, we obtain:

Ek+1 − Ek
(32)
≤ ⟨sk+1 − sk, vk+1 − x0⟩+ ⟨sk+1 − sk, vk+2 − vk+1⟩ − 1

2∥vk+2 − vk+1∥2

= ⟨sk+1 − sk, vk+2 − x0⟩ − 1
2∥vk+2 − vk+1∥2 ≤ λk+1⟨F (xk+1), x0 − vk+2⟩ − 1

2∥vk+2 − vk+1∥2

= λk+1⟨F (xk+1), x0 − x⟩+ λk+1⟨F (xk+1), x− xk+1⟩+ λk+1⟨F (xk+1), xk+1 − vk+2⟩ − 1
2∥vk+2 − vk+1∥2,

for any x ∈ X . Summing up this inequality over k = 0, 1, . . . , T − 1 and changing the counter k+ 1
to k yields that
T∑

k=1

λk⟨F (xk), xk−x⟩ ≤ E0−ET+
T∑

k=1

λk⟨F (xk), x0 − x⟩︸ ︷︷ ︸
I

+

T∑
k=1

λk⟨F (xk), xk − vk+1⟩ − 1
2∥vk − vk+1∥2︸ ︷︷ ︸

II

.

(33)
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Using the update formula for sk+1 and letting s0 = 0d ∈ Rd, we have

I =
T∑

k=1

⟨λkF (xk), x0 − x⟩ =
T∑

k=1

⟨sk−1 − sk, x0 − x⟩ = ⟨s0 − sT , x0 − x⟩ = ⟨sT , x− x0⟩. (34)

Since xk+1 ∈ X satisfies (12), we have

⟨Ωη
vk
(xk), x− xk⟩ ≥ −L

2 ∥xk − vk∥3 − δ∥xk − vk∥2, for all x ∈ X , (35)

where Ωη
v(x) : Rd → Rd is defined in (10). Letting x = vk+1 in (35), we have

⟨Ωη
vk
(xk), xk − vk+1⟩ ≤ L

2 ∥xk − vk∥3 + δ∥xk − vk∥2. (36)

Then,

⟨F (xk), xk − vk+1⟩
= ⟨F (xk)− Ωη

vk
(xk) + ηδ(xk − vk) + 5L∥xk − vk∥(xk − vk), xk − vk+1⟩

+⟨Ωη
vk
(xk), xk − vk+1⟩ − 5L∥xk − vk∥⟨xk − vk, xk − vk+1⟩ − ηδ⟨xk − vk, xk − vk+1⟩

Lem. (2.2), (36)
≤ L

2 ∥xk − vk∥2∥xk − vk+1∥+ δ∥xk − vk∥∥xk − vk+1∥+ L
2 ∥xk − vk∥3 + δ∥xk − vk∥2

−5L∥xk − vk∥⟨xk − vk, xk − vk+1⟩ − ηδ⟨xk − vk, xk − vk+1⟩

Next, using ⟨xk − vk, xk − vk+1⟩ ≥ ∥xk − vk∥2 − ∥xk − vk∥∥vk − vk+1∥ and ∥xk − vk+1∥ ≤
∥xk − vk∥+ ∥vk − vk+1∥, we get

⟨F (xk), xk − vk+1⟩
≤ L

2 ∥xk − vk∥3 + L
2 ∥xk − vk∥2∥vk − vk+1∥+ δ∥xk − vk∥2 + δ∥xk − vk∥∥vk − vk+1∥

+L
2 ∥xk − vk∥3 + δ∥xk − vk∥2 − 5L∥xk − vk∥3 + 5L∥xk − vk∥2∥vk − vk+1∥ − ηδ∥xk − vk∥2

+ηδ∥xk − vk∥∥vk − vk+1∥
= 11L

2 ∥xk − vk∥2∥vk − vk+1∥ − 4L∥xk − vk∥3 + (η + 1)δ∥xk − vk∥∥vk − vk+1∥ − (η − 2)δ∥xk − vk∥2

Next,

II ≤
T∑

k=1

(
11λkL

2 ∥xk − vk∥2∥vk − vk+1∥ − 4λkL∥xk − vk∥3

+(η + 1)δλk∥xk − vk∥∥vk − vk+1∥ − (η − 2)δλk∥xk − vk∥2 − 1
2∥vk − vk+1∥2

)
≤

T∑
k=1

(
1
2∥xk − vk∥∥vk − vk+1∥ − 1

4∥xk − vk∥2 − 1
2∥vk − vk+1∥2

)
,

where the last inequality is due to the following choice of η = 10 and λ : 1
32 ≤

λk

(
L
2 ∥xk − vk∥+ δ

)
≤ 1

22 . Then,

II ≤
T∑

k=1

(
1
2∥xk − vk∥∥vk − vk+1∥ − 1

4∥xk − vk∥2 − 1
2∥vk − vk+1∥2

)
≤ − 1

8

(∑T
k=1∥xk − vk∥2

)
.

(37)

Plugging (34) and (37) into (33) yields that

T∑
k=1

λk⟨F (xk), xk − x⟩ ≤ E0 − ET + ⟨sT , x− x0⟩ − 1
8

(
T∑

k=1

∥xk − vk∥2
)
.

□
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Lemma B.2 Let Assumptions 1.2, 1.3, 2.1 hold and let x ∈ X . For every integer T ≥ 1, we have
T∑

k=1

λk⟨F (xk), xk − x⟩ ≤ 1
2∥x− x0∥2,

T∑
k=1

∥xk − vk∥2 ≤ 4∥x∗ − x0∥2, (38)

where x∗ ∈ X denotes the weak solution to the VI.

Proof. For any x ∈ X , we have

E0 − ET + ⟨sT , x− x0⟩ = E0 −
(
max
v∈X

⟨sT , v − x0⟩ − 1
2∥v − x0∥2

)
+ ⟨sT , x− x0⟩.

Since s0 = 0d, we have E0 = 0 and

E0 − ET + ⟨sT , x− x0⟩ ≤ −
(
⟨sT , x− x0⟩ − 1

2∥x− x0∥2
)
+ ⟨sT , x− x0⟩ = 1

2∥x− x0∥2.
This together with Lemma B.1 yields that

T∑
k=1

λk⟨F (xk), xk − x⟩+ 1
8

(
T∑

k=1

∥xk − vk∥2
)

≤ 1
2∥x− x0∥2, for all x ∈ X ,

which implies the first inequality. Since the VI satisfies the Minty condition, there exists x∗ ∈ X
such that ⟨F (xk), xk − x∗⟩ ≥ 0 for all k ≥ 1. Letting x = x∗ in the above inequality yields the
second inequality. □

Lemma B.3 Let Assumptions 1.2, 1.3, 2.1 hold. For every integer T ≥ 1, we have

1(∑T
k=1 λk

)2 ≤ 2048L2∥x∗ − x0∥2

T 3
+

2048δ2

T 2
(39)

where x∗ ∈ X denotes the weak solution to the VI.

Proof. Without loss of generality, we assume that x0 ̸= x∗. We have
T∑

k=1

(λk)
−2( 1

32 )
2 ≤

T∑
k=1

(λk)
−2
(
λk

(
L
2 ∥xk − vk∥+ δ

))2
=

T∑
k=1

(
L
2 ∥xk − vk∥+ δ

)2
≤

T∑
k=1

L2

2 ∥xk − vk∥2 + 2Tδ2
Lemma B.2

≤ 2L2∥x∗ − x0∥2 + 2Tδ2.

By the Hölder inequality, we have

T∑
k=1

1 =

T∑
k=1

(
(λk)

−2
)1/3

(λk)
2/3 ≤

(
T∑

k=1

(λk)
−2

)1/3( T∑
k=1

λk

)2/3

.

Putting these pieces together yields that

T ≤ 322/3(2L2∥x∗ − x0∥2 + 2δ2T )
1
3

(
T∑

k=1

λk

)2/3

,

Plugging this into the above inequality yields that

1(∑T
k=1 λk

)2 ≤ 2048L2∥x∗ − x0∥2

T 3
+

2048δ2

T 2

□

Theorem 3.2 Let Assumptions 1.2, 1.1, 2.1. Then, after T ≥ 1 iterations of VIJI with parameters
β = δ, η = 10, opt = 0, we get the following bound

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ ≤ 16
√
2LD3

T 3/2 + 16
√
2δD2

T .

20



Proof. Letting x ∈ X , we derive from the monotonicity of F and the definition of x̃T (i.e., opt = 0)
that

⟨F (x), x̃T − x⟩ = 1∑T
k=1 λk

(
T∑

k=1

λk⟨F (x), xk − x⟩

)
.

Combining this inequality with the first inequality in Lemma B.2 yields that

⟨F (x), x̃T − x⟩ ≤ ∥x−x0∥2

2(
∑T

k=1 λk)
, for all x ∈ X .

Since x0 ∈ X , we have ∥x− x0∥ ≤ D and hence

⟨F (x), x̃T − x⟩ ≤ D2

2(
∑T

k=1 λk)
, for all x ∈ X .

Then, we combine Lemma B.3 and the fact that ∥x∗ − x0∥ ≤ D to obtain that

⟨F (x), x̃T − x⟩ ≤ D2

2

√
2048L2D2

T 3
+

2048δ2

T 2
≤ 16

√
2LD3

T 3/2
+

16
√
2δD2

T
, for all x ∈ X .

By the definition of a gap function. (4), we have

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ ≤ 16
√
2LD3

T 3/2 + 16
√
2δD2

T . (40)

□

B.2 Proof of Theorem 3.3

We directly follow the steps of the proof of Theorem 3.2. Lemmas B.1, B.2 remain the same.
Because of the choice of βk+1 = L1

2 ∥xk+1 − vk+1∥ adaptive strategy for λk+1 looks as follows:
1
32 ≤ L∥xk+1 − vk+1∥ ≤ 1

22 . Next Lemma is a counterpart of Lemma B.3.

Lemma B.4 Let Assumptions 1.2, 1.3, 2.1 hold. For every integer T ≥ 1, we have
1∑T

k=1 λk

≤ 64L∥x∗ − x0∥
T 3/2

(41)

where x∗ ∈ X denotes the weak solution to the VI.

Proof. Without loss of generality, we assume that x0 ̸= x∗. We have
T∑

k=1

(λk)
−2( 1

32 )
2 ≤

T∑
k=1

(λk)
−2 (λk (L∥xk − vk∥))2 ≤

T∑
k=1

L2∥xk − vk∥2
Lemma B.2

≤ 4L2∥x∗ − x0∥2.

By the Hölder inequality, we have
T∑

k=1

1 =

T∑
k=1

(
(λk)

−2
)1/3

(λk)
2/3 ≤

(
T∑

k=1

(λk)
−2

)1/3( T∑
k=1

λk

)2/3

.

Putting these pieces together yields that

T ≤ 322/3(4L2∥x∗ − x0∥2)
1
3

(
T∑

k=1

λk

)2/3

.

Plugging this into the above inequality yields that
1∑T

k=1 λk

≤ 64L∥x∗ − x0∥
T 3/2

.

□

Then, by following the rest of the proof of Theorem 3.2, we get

Theorem 3.3 Let Assumptions 1.2, 1.1 hold. Let {xk, vk} be iterates generated by Algorithm 1 and
∥(∇F (vk)− J(vk))[zk − vk]∥ ≤ δk∥zk − vk∥, δk ≤ L1

2 ∥xk − vk∥.
Then, after T ≥ 1 iterations of Algorithm 1 with parameters βk = L1

2 ∥xk − vk∥, η = 10, opt = 0,
we get the following bound

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ ≤ 32LD3

T 3/2 .
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C Proofs of Theorems 3.4, 3.5

In this section, we let L := L1.

Theorem 3.4 Let Assumptions 1.2, 1.3, 2.1 hold. Then after T ≥ 1 iterations of Algorithm 1 with
parameters βk = δ, η = 10,opt = 2 we get the following bound

RES(x̂) := sup
x∈X

⟨F (x̂T ), x̂T − x⟩ = O

(
LD3

T
+

δD2

√
T

)
. (42)

Proof. Since we consider opt = 2, then
RES(x̂) = RES(xkT

) = sup
x∈X

⟨F (xkT
), xkT

− x⟩ .

From (36) we get
⟨F (xk), xk − x⟩ =

〈
F (xk)− Ωη

vk
(xk), xk − x

〉
+
〈
Ωη

vk
(xk), xk − x

〉
(36)
≤ ∥F (xk)− Ωη

vk
(xk)∥∥xk − x∥+ L

2
∥xk − vk∥3 + δ∥xk − vk∥2.

(43)

Next, from triangle inequality we have

∥F (xk)−Ψvk(xk)∥ =

∥∥∥∥F (xk)− Ωη
vk
(xk) + ηδ(xk − vk) +

5L

2
∥xk − vk∥(xk − vk)

∥∥∥∥
≥ ∥F (xk)− Ωη

vk
(xk)∥ − ηδ∥xk − vk∥ −

5L

2
∥xk − vk∥2.

From this and (29) we get

∥F (xk)− Ωη
vk
(xk)∥ ≤ L

2
∥xk − vk∥2 + δ∥xk − vk∥+ ηδ∥xk − vk∥+

5L

2
∥xk − vk∥2

= 3L∥xk − vk∥2 + δ(η + 1)∥xk − vk∥.

Now, we can return to (43):
⟨F (xk), xk − x⟩

(43),(44)
≤ 3L∥xk − vk∥2∥xk − x∥+ δ(η + 1)∥xk − vk∥∥xk − x∥+ L

2
∥xk − vk∥3 + δ∥xk − vk∥2

= L∥xk − vk∥2
(
3∥xk − x∥+ 1

2
∥xk − vk∥

)
+ δ∥xk − vk∥ ((η + 1)∥xk − x∥+ ∥xk − vk∥) .

Since D := maxx,y∈X ∥x− y∥,

⟨F (xk), xk − x⟩ ≤ 7

2
LD∥xk − vk∥2 + δ(η + 2)∥xk − vk∥. (44)

Next, from second inequality from (38) and from definition of xkT
in Algorithm 1 we obtain

∥xkT
− vkT

∥2 ≡ min
1≤k≤T

∥xk − vk∥2
(38)
≤ 1

T

T∑
k=1

∥xk − vk∥2 ≤ 4∥x∗ − x0∥2

T
. (45)

Since (44) holds for any x ∈ X , we get final result

RES(xkT
) := sup

x∈X
⟨F (xkt

), xkT
− x⟩

(44),(45)
≤ 14LD∥x∗ − x0∥2

T
+

2δ(η + 2)D∥x∗ − x0∥√
T

≤ 14LD3

T
+

2δ(η + 2)D2

√
T

=
14LD3

T
+

24D2

√
T

.

□

Theorem 3.5 Let Assumptions 1.2, 1.3 hold. Let {xk, vk} be iterates generated by Algorithm 1 that
satisfy (14). Then after T ≥ 1 iterations of Algorithm 1 with parameters βk = L

2 ∥xk − vk∥, η =
10,opt = 2 we get the following bound

RES(x̂) := sup
x∈X

⟨F (x̂T ), x̂T − x⟩ = 38L1D
3

T . (46)

The proof of this theorem repeats the proof of Theorem 3.4 with δ ≤ L
2 ∥xk − vk∥.
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D Proof of Theorem 4.3

Theorem 4.3 Let some first-order method M satisfy Assumption 4.1 and have access only δ-inexact
first-order oracle 15. Assume the method M ensures for any L0-zero-order smooth and L1-first-order
smooth monotone operator F the following convergence rate

GAP(x̂) ≤ O(1)max
{

δD2

Ξ1(T ) ;
L1D

3

Ξ2(T )

}
.

Then for all T ≥ 1 we have

Ξ1(T ) ≤ T, Ξ2(T ) ≤ T 3/2.

Proof. We prove this Theorem by contradiction. Assume the existence of a method M that satisfies
the conditions of Theorem 4.3 and achieves faster rate in one of the terms (18).
First, suppose Ξ1(T ) > T . Consider the first-order lower bound from [89], which is established
using a quadratic min-max problem as the worst-case function. In this scenario, the operator has a
0-Lipschitz continuous Jacobian. Applying first-order method M to this lower bound and using an
inexact Jacobian J(x) = L0Id×d, yields the rate O

(
L0D

2

Ξ1(T )

)
, Ξ1(T ) > T , which is faster than the

lower bound Ω
(

L0D
2

T

)
, contradicting our assumption.

Secondly, let us assume Ξ2(T ) > T 3/2. The lower bound for exact second-order methods is
Ω
(

L1D
3

T 3/2

)
[69]. By taking exact Jacobian in the method M (δ = 0), we place M in the class of

exact second-order methods. Consequently, we obtain a contradiction with the lower bound. □

E Proof of Theorem 5.1

Proof. The proof is common for both formulas (20) and (21), where α = 1 for classical L-Broyden
approximation and α = m + 1 for Damped L-Broyden approximation. First, from L0-zero-order
smoothness, get

∥∇F (x)− Jx∥op ≤ ∥∇F (x)∥op + ∥Jx∥op ≤ L0 + ∥Jx∥op

Now, we upper-bound ∥Jx∥op = ∥Jm∥op by induction:

∥∥J i+1
∥∥
op

≤
∥∥∥J i +

(yi−Jisi)s
⊤
i

αs⊤i si

∥∥∥
op

≤
∥∥∥J i

(
I − sis

⊤
i

αs⊤i si

)
+

yis
⊤
i

αs⊤i si

∥∥∥
op

≤
∥∥∥J i

(
I − sis

⊤
i

αs⊤i si

)∥∥∥
op

+
∥∥∥ yis

⊤
i

αs⊤i si

∥∥∥
op

≤ ∥J i∥op
∥∥∥I − sis

⊤
i

αs⊤i si

∥∥∥
op

+ ∥yi∥∥si∥
αs⊤i si

≤ ∥J i∥op + L0

α ,

where the last inequality is coming from L0-zero-order smoothness for operator difference or JVP.
By summing up the previous inequality for i in 0, . . . ,m − 1, we get ∥Jm∥op ≤ ∥J0∥op + mL0

α .
Finally, we prove the result of Theorem 5.1. □

F Proof of Theorem 6.2

In this section, we let L := L1.

Theorem 6.2 Let Assumptions 1.2, 2.1, 6.1 hold. Then the total number of iterations of Algorithm 2
to reach desired accuracy ∥zs − x∗∥ ≤ ε is

O

((
LD
µ

) 2
3

+
(

δ
µ + 1

) ⌈
log D

ε

⌉)
.

23



Proof. From the definition of x̃T , Jensen inequality, strong monotonicity (25), definition of strong
minty problem (2) and Lemmas B.2, B.3 we get

µ∥x̃T − x∗∥2 = µ

∥∥∥∥∥ 1∑T
k=1 λt

T∑
k=1

(λkxk − λkx
∗)

∥∥∥∥∥
2

≤ µ∑T
k=1 λt

T∑
k=1

λk∥xk − x∗∥2

(25)
≤ 1∑T

k=1 λt

T∑
k=1

λk ⟨F (xk)− F (x∗), xk − x∗⟩

(2)
≤ 1∑T

k=1 λt

T∑
k=1

λk ⟨F (xk), xk − x∗⟩

(38),(39)
≤

(
2048L2∥x0 − x∗∥2

T 3
+

2048δ2

T 2

) 1
2

· 1
2
∥x0 − x∗∥2

≤
(
2max

{
2048L2∥x0 − x∗∥2

T 3
i

,
2048δ2

T 2
i

}) 1
2

· 1
2
∥x0 − x∗∥2.

Denote R := D, Ri =
R
2i , i ≥ 1. Now we run Algorithm 1 in cycle for i = 1, ..., n and restart it

every time its distance to the solution becomes at least twice less than Ri−1. Thus, let Ti be number
of iterations we run Algorithm 1 inside cycle of Algorithm 2. In other words, let Ti be such that∥∥x̃Ti−1

− x∗
∥∥ ≤ Ri−1

2 where x̃Ti+1
is the point, where we restart Algorithm 1. Then the number of

iterations before the i-th restart is

µ∥x̃Ti − x∗∥2 ≤
(
2max

{
2048L2R2

i−1

T 3
i

,
2048δ2

T 2
i

}) 1
2

· 1
2
R2

i−1

≤
µR2

i−1

4
⇔

(47)

⇔
(
max

{
2048L2R2

i−1

T 3
i

,
2048δ2

T 2
i

}) 1
2

≤ µ

2
√
2
.

Deriving Ti for each case under max, we getTi ≥
2

14
3 L

2
3 R

2
3
i−1

µ
2
3

Ti ≥ 27δ
µ .

Thus,

Ti =

max

2
14
3 L

2
3R

2
3
i−1

µ
2
3

,
27δ

µ


 (48)

Now we calculate the total number of restarts to reach ∥x̃Tn
− x∗∥ ≤ ε. From (47) we can get that

∥x̃Tn
− x∗∥ ≤

√√√√ 1

µ

(
2max

{
2048L2R2

n−1

T 3
n

,
2048δ2

T 2
n

}) 1
2

· 1
2
R2

n−1

(48)
≤ Rn−1√

2µ

(
2max

{
µ2

8
,
µ2

8

}) 1
4

=
Rn−1

2

= R · 2−(n−1)−1 ≤ ε.
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Deriving n from last inequality, we get

n =

⌈
log

R

ε

⌉
. (49)

Now we provide auxiliary estimation, that we will need next:
n∑

i=1

R
2
3
i =

n∑
i=1

∥x0 − x∗∥ 2
3

2
2(i−1)

3

= ∥x0 − x∗∥ 2
3
1− 2

−2(n−1)
3

2
1
3

≤ ∥x0 − x∗∥ 2
3 2−

1
3

≤ 2−
1
3D

2
3 .

(50)

Finally, we can get the total number of iterations of Algorithm 1 inside Algorithm 2:

n∑
i=1

Ti
(48)
=

n∑
i=1

max

2
14
3 L

2
3R

2
3
i−1

µ
2
3

,
27δ

µ




≤
n∑

i=1

2
14
3 L

2
3R

2
3
i−1

µ
2
3

+
27δ

µ
n+ n

=
2

14
3 L

2
3

µ
2
3

n∑
i=1

R
2
3
i−1 +

27δ

µ
n+ n

(50),(49)
≤ 2

13
3 L

2
3D

2
3

µ
2
3

+

(
27δ

µ
+ 1

)⌈
log D

ε

⌉
Thus,

n∑
i=1

Ti = O

((
LD

µ

) 2
3

+

(
δ

µ
+ 1

)⌈
log D

ε

⌉)
.

This completes the proof. □

G Tensor generalization with more details

G.1 Preliminaries

Algorithm 3 VIHI

Input: initial point x0 ∈ X , parameters L1, η, sequence {δi}p−1
i=1 , and opt ∈ {0, 1, 2}.

Initialization: set s0 = 0 ∈ Rd.
for k = 0, 1, 2, . . . , T do

Compute vk+1 = argmaxv∈X {⟨sk, v − x0⟩ − 1
2∥v − x0∥2}.

Compute xk+1 ∈ X such that condition (53) holds true.
Compute λk+1 such that

1
4(5p−2) ≤ λk

(
Lp−1

p! ∥xk − vk∥p−1 +

p−1∑
i=1

δi
i! ∥xk − vk∥i−1

)
≤ 1

2(5p+1) .

Compute sk+1 = sk − λk+1F (xk+1).

Output: x̂ =

 x̃T = 1∑T
k=1 λk

∑T
k=1 λkxk, if opt = 0,

xT , else if opt = 1,
xkT

for kT = argmin1≤k≤T ∥xk − vk∥, else if opt = 2.
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In this section, we provide more details on the generalization of Algorithm 1 with high-order
derivatives. We provide the pseudocode of the resulting method in Algorithm 3. To show the
convergence of Algorithm 3, we use the Lyapunov function (30).

Define the (p− 1)-th order approximations of the F

Φp,v(x) = F (v) +

p−1∑
i=1

1

i!
∇iF (v)[x− v]i (51)

Ψp,v(x) = F (v) +

p−1∑
i=1

1

i!
Gi(v)[x− v]i. (52)

On each step, our method solves the following subproblem:

sup
x∈X

⟨Ωp,vk(xk), xk − x⟩ ≤ Lp−1

p! ∥xk − vk∥p+1 +

p−1∑
i=1

δi
i! ∥xk − vk∥i+1. (53)

Additionally, we will need an auxiliary result from [52], based on Assumption 4.2. The authors show,
that this Assumption allows to control the quality of approximation of operator F by its high-order
Taylor polynomial:

∥F (v)− Φp,v(x)∥ ≤ Lp−1

p! ∥x− v∥p. (54)

G.2 Auxiliary lemmas

First of all, we provide high-order generalizations of auxiliary lemmas for second-order case from
Section A.

Lemma G.1 Let Assumptions 7.1 and 4.2 with i = p− 1 hold. Then, for any x, v ∈ X

∥F (v)−Ψp,v(x)∥ ≤ Lp−1

p! ∥x− v∥p +
p−1∑
i=1

1
i!δi∥x− v∥i. (55)

Proof.

∥F (v)−Ψp,v(x)∥ ≤ ∥F (v)− Φp,v(x)∥+ ∥Φp,v(x)−Ψp,v(x)∥
(54)
≤ Lp−1

p! ∥x− v∥p +
p−1∑
i−1

1
i!∥(∇

iF (v)−Gi(v))[x− v]i−1∥∥x− v∥

(27)
≤ Lp−1

p! ∥x− v∥p +
p−1∑
i=1

δi
i! ∥x− v∥i.

□

Lemma G.2 Let Assumptions 1.1, 7.1 and 4.2 with i = p − 1 hold. Then for any x, vk+1 ∈ X
VI (11) is relatively strongly monotone if ηi ≥ p

1
2

(
∇Ωp,v(x) +∇Ωp,v(x)

T
)

4Lp−1

(p−1)!

(
∥x− v∥p−1In×n + ∥x− v∥p−3(x− v)(x− v)T

)
+

p−1∑
i=1

δi
i! ∥x− v∥i−3

(
(ηi − i)∥x− v∥2In×n + ηi(i− 1)(x− v)(x− v)T

)
.
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Proof.

1
2

(
∇Ωp,v(x) +∇Ωp,v(x)

T
)

(28)
= 1

2

(
p−1∑
i=1

1
(i−1)!

(
Gi(v)[x− v]i−1 +

(
Gi(v)[x− v]i−1

)T))

+

p−1∑
i=1

ηiδi
i!

(
∥x− v∥i−1In×n + (i− 1)∥x− v∥i−3(x− v)(x− v)T

)
+

5Lp−1

(p−1)!

(
∥x− v∥p−1In×n

)
(55)
⪰ 1

2

(
∇F (x) +∇F (x)T

)
− Lp−1

(p−1)!∥x− v∥p−1In×n −
p−1∑
i=1

1
(i−1)!δi∥x− v∥i−1In×n

+

p−1∑
i−1

ηiδi
i!

(
∥x− v∥i−1In×n + (i− 1)∥x− v∥i−3(x− v)(x− v)T

)
+

5Lp−1

(p−1)!

(
∥x− v∥p−1In×n + (p− 1)∥x− v∥p−3(x− v)(x− v)T

)
= 1

2

(
∇F (x) +∇F (x)T

)
+

4Lp−1

(p−1)!∥x− v∥p−1In×n +
5Lp−1

(p−2)!∥x− v∥p−3(x− v)(x− v)T

+

p−1∑
i=1

δi
i! (ηi − i)∥x− v∥i−1In×n +

p−1∑
i=1

ηiδi(i−1)
i! ∥x− v∥i−3(x− v)(x− v)T .

From monotonicity of F we know that 1
2 (F (x)− F (x)T ) ⪰ 0. Thus,

1
2

(
∇Ωp,v(x) +∇Ωp,v(x)

T
)

⪰ 4Lp−1

(p−1)!∥x− v∥p−1In×n +
5Lp−1

(p−2)!∥x− v∥p−3(x− v)(x− v)T

+

p−1∑
i=1

δi
i! (ηi − i)∥x− v∥i−1In×n +

p−1∑
i=1

ηiδi(i−1)
i! ∥x− v∥i−3(x− v)(x− v)T .

By rearranging the terms we get

1
2

(
∇Ωp,v(x) +∇Ωp,v(x)

T
)

4Lp−1

(p−1)!

(
∥x− v∥p−1In×n + ∥x− v∥p−3(x− v)(x− v)T

)
+

p−1∑
i=1

δi
i! ∥x− v∥i−3

(
(ηi − i)∥x− v∥2In×n + ηi(i− 1)(x− v)(x− v)T

)
.

Thus, if ηi ≥ p, we get that 1
2

(
∇Ωp,vk+1

(x) +∇Ωp,vk+1
(x)T

)
is relatively strongly monotone. □

G.3 Convergence in monotone case

In this subsection we provide theoretical results directly connected to convergence rate of Algorithm
3. Firstly, we need to introduce additional technical lemmas, that generalize corresponding lemmas
in Section B.

Lemma G.3 Let Assumption 1.1 hold and ηi = 5p. Then, for every T ≥ 1, we have

T∑
k=1

⟨λkF (xk), x0 − x⟩ ≤ E0 − ET + ⟨st, x− x0⟩ − 1
8

T∑
k=1

∥xk − vk∥2. (56)
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Proof. Since the first steps in the proof of this Lemma are the same as in Lemma B.1, we start our
reasoning from (33):
T∑

k=1

λk⟨F (xk), xk−x⟩ ≤ E0−ET+
T∑

k=1

λk⟨F (xk), x0 − x⟩︸ ︷︷ ︸
I

+

T∑
k=1

λk⟨F (xk), xk − vk+1⟩ − 1
2∥vk − vk+1∥2︸ ︷︷ ︸

II

.

(57)
Using the update formula for sk+1 and letting s0 = 0d ∈ Rd, we have

I =
T∑

k=1

⟨λkF (xk), x0 − x⟩ =
T∑

k=1

⟨sk−1 − sk, x0 − x⟩ = ⟨sT , x− x0⟩ . (58)

Now consider II. Using (28) we get

⟨F (xk), xk − vk+1⟩
(28)
= ⟨F (xk)−Ψp,vk(xk), xk − vk+1⟩+ ⟨Ωp,vk(xk), xk − vk+1⟩

−
p−1∑
i=1

ηiδi
i! ∥xk − vk∥i−1 ⟨xk − vk, xk − vk+1⟩

− 5Lp−1

(p−1)!∥xk − vk∥p−1 ⟨xk − vk, xk − vk+1⟩

(55)
≤ Lp−1

p! ∥xk − vk∥p∥xk − vk+1∥+
p−1∑
i=1

1
i!δi∥xk − vk∥i∥xk − vk+1∥+ ⟨Ωp,vk(xk), xk − vk+1⟩

−
p−1∑
i=1

ηiδi
i! ∥xk − vk∥i−1 ⟨xk − vk, xk − vk+1⟩

− 5Lp−1

(p−1)!∥xk − vk∥p−1 ⟨xk − vk, xk − vk+1⟩ .

Next, using ⟨xk − vk, xk − vk+1⟩ ≥ ∥xk − vk∥2 − ∥xk − vk∥∥vk − vk+1∥ and ∥xk − vk+1∥ ≤
∥xk − vk∥+ ∥vk − vk+1∥, we get

⟨F (xk), xk − vk+1⟩

≤ Lp−1

p!

(
∥xk − vk∥p+1 + ∥xk − vk∥p∥vk − vk+1∥

)
+

p−1∑
i=1

1
i!δi
(
∥xk − vk∥i+1∥xk − vk∥i∥vk − vk+1∥

)
−

p−1∑
i=1

ηiδi
i!

(
∥xk − vk∥i+1 − ∥xk − vk∥i∥vk − vk+1∥

)
− 5Lp−1

(p−1)!

(
∥xk − vk∥p+1 − ∥xk − vk∥p∥vk − vk+1∥

)
+ ⟨Ωp,vk(xk), xk − vk+1⟩ .

From definition of the subproblem (53) we have that

⟨Ωp,vk
(xk), xk − vk+1⟩ ≤ sup

x∈X
⟨Ωp,vk(xk), xk − x⟩ ≤ Lp−1

p! ∥xk − vk∥p+1 +

p−1∑
i=1

δi
i! ∥xk − vk∥i+1.

Thus,

⟨F (xk), xk − vk+1⟩

≤ Lp−1(1+5p)
p! ∥xk − vk∥p∥vk − vk+1∥ − Lp−1(5p−2)

p! ∥xk − vk∥p+1

+

p−1∑
i=1

δi(1+ηi)
i! ∥xk − vk∥i∥vk − vk+1∥ −

p−1∑
i=1

δi(ηi−2)
i! ∥xk − vk∥i+1
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From this we get

II =
T∑

k=1

λk ⟨F (xk), xk − vk+1⟩ − 1
2∥vk − vk+1∥2

≤
T∑

k−1

[
λk

Lp−1(1+5p)
p! ∥xk − vk∥p∥vk − vk+1∥ − λkLp−1(5p−2)

p! ∥xk − vk∥p+1

+λk

p−1∑
i=1

δi(1+ηi)
i! ∥xk − vk∥i∥vk − vk+1∥ − λk

p−1∑
i=1

δi(ηi−2)
i! ∥xk − vk∥i+1 − 1

2∥vk − vk+1∥2
]

ηi=5p
=

T∑
k=1

[
λk

(
Lp−1

p! ∥xk − vk∥p−1 +

p−1∑
i=1

δi
i! ∥xk − vk∥i−1

)
(5p+ 1)∥xk − vk∥∥vk − vk+1∥

−λk

(
Lp−1

p! ∥xk − vk∥p−1 +

p−1∑
i=1

δi
i! ∥xk − vk∥i−1

)
(5p− 2)∥xk − vk∥2 − 1

2∥vk − vk+1∥2
]
.

Now, if we choose λk in a such way that

1
4(5p−2) ≤ λk

(
Lp−1

p! ∥xk − vk∥p−1 +

p−1∑
i=1

δi
i! ∥xk − vk∥i−1

)
≤ 1

2(5p+1) , (59)

we get the following

II
(59)
≤

T∑
k=1

[
1
2∥xk − vk∥∥vk − vk+1∥ − 1

4∥xk − vk∥2 − 1
2∥vk − vk+1∥2

]
≤

T∑
k=1

[
max
γ

{
1
2γ∥xk − vk∥ − 1

2γ
2
}
− 1

4∥xk − vk∥2
]

≤
T∑

k=1

[
1
4∥xk − vk∥2 − 1

8∥xk − vk∥2 − 1
4∥xk − vk∥2

]
= − 1

8

T∑
k=1

∥xk − vk∥2.

Finally, combining estimations of I and II with (57), we get

T∑
t=1

λk ⟨F (xk), xk − x⟩ ≤ E0 − ET + ⟨sT , x− x0⟩ − 1
8

T∑
k=1

∥xk − vk∥2.

□

Lemma G.4 Let Assumptions 4.2, 1.3 hold. For every T ≥ 1 we have

1∑T
k=1 λk

≤
2pp

p−1
2 (20p− 8)

Lp−1

p! ∥x∗ − x0∥p−1

T
p+1
2

+2
3p
2 p

p−1
2 (20p−8)

p−1∑
i=1

δi∥x∗ − x0∥i−1

i!T
i+1
2

. (60)

Proof. From Hölder inequality

T∑
k=1

λk ≥ T
p+1
2(∑T

k=1 λ
− 2

p−1

k

) p−1
2
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Consider denominator:

T∑
k=1

λ
− 2

p−1

k

(59)
≤

T∑
k=1

λ
− 2

p−1

k (4(5p− 2))
2

p−1 λ
2

p−1

k

(
Lp−1

p!
∥xk − vk∥p−1 +

p−1∑
i=1

δi
i!
∥xk − vK∥i−1

) 2
p−1

=

T∑
k=1

(20p− 8)
2

p−1

(
Lp−1

p!
∥xk − vk∥p−1 +

p−1∑
i=1

δi
i!
∥xk − vk∥i−1

) 2
p−1

.

For p ≥ 2 we have {
2

p−1 = 2, p = 2,
2

p−1 ≤ 1, p ≥ 3.

Consider some nonnegative sequence {ai|ai ≥ 0, ∀i ∈ 1, n}. For p = 2 from Jensen inequality
we know that (

∑n
i=1 ai)

2 ≤
∑n

i=1 na
2
i . From Lemma 7 of [65] we know that ∀q ∈ [0, 1], x, y >

0 → (x+ y)q ≤ xq + yq. Thus, for p ≥ 3 we can come to the same conclusion: (
∑n

i=1 ai)
2

p−1 ≤∑n
i=1 a

2
p−1

i ≤
∑n

i=1 na
2

p−1

i . In other words,(
n∑

i=1

ai

) 2
p−1

≤
n∑

i=1

a
2

p−1

i ≤
n∑

i=1

na
2

p−1

i , ∀p ≥ 2, ai ≥ 0. (61)

Using this inequality, we get

T∑
k=1

λ
− 2

p−1

k

(61)
≤ p(20p− 8)

2
p−1

T∑
k=1

(
Lp−1

p!

) 2
p−1

∥xk − vk∥2 + p(20p− 8)
2

p−1

T∑
k=1

p−1∑
i=1

(
δi
i!

) 2
p−1

∥xk − vk∥
2(i−1)
p−1

(38)
≤ 4p(20p− 8)

2
p−1

(
Lp−1

p!

) 2
p−1

∥x∗ − x0∥2 + p(20p− 8)
2

p−1

T∑
k=1

p−1∑
i=1

(
δi
i!

) 2
p−1

∥xk − vk∥
2(i−1)
p−1

Consider the second factor in this inequality. If we denote ak = ∥xk − vk∥
2(i−1)
p−1 , bk = 1, c =

p−1
i−1 , d = p−1

p−i , then we can use Hölder inequality:

n∑
k=1

|akbk| ≤

(
n∑

k=1

|ak|c
) 1

c
(

n∑
i=1

|bk|d
) 1

d

,
1

c
+

1

d
= 1.

From this we get

T∑
k=1

∥xk − vk∥
2(i−1)
p−1 ≤

(
T∑

k=1

∥xk − vk∥2
) i−1

p−1
(

T∑
k=1

1

) p−i
p−1

(38)
≤ 4∥x∗ − x0∥

2(i−1)
p−1 T

p−i
p−1 .

Thus,
T∑

k=1

λ
− 2

p−1

k ≤ 4p(20p− 8)
2

p−1

(
Lp−1

p!

) 2
p−1

∥x∗ − x0∥2 + 4p(20p− 8)
2

p−1

p−1∑
i=1

(
δi
i!

) 2
p−1

∥x∗ − x0∥
2(i−1)
p−1 T

p−i
p−1

Consider (a + b)
p−1
2 , p ≥ 2. For p = 2 from Lemma 7 in [65] we get (a + b)

1
2 ≤ a

1
2 + b

1
2 <

2(a
1
2 + b

1
2 ). For p ≥ 3 we have from Jensen inequality (a + b)

p−1
2 ≤ 2

p−1
2 −1

(
a

p−1
2 + b

p−1
2

)
<

2
p
2

(
a

p−1
2 + b

p−1
2

)
. In other words,

(a+ b)
p−1
2 ≤ 2

p
2

(
a

p−1
2 + b

p−1
2

)
, ∀p ≥ 2. (62)
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Thus, (
T∑

k=1

λ
− 2

p−1

k

) p−1
2

(62)
≤ 2

p
2

(4p) p−1
2 (20p− 8)

Lp−1

p!
∥x∗ − x0∥p−1 + (4p)

p−1
2 (20p− 8)

(
p−1∑
i=1

(
δi
i!

) 2
p−1

∥x∗ − x0∥
2(i−1)
p−1 T

p−i
p−1

) p−1
2


≤ 2pp

p−1
2 (20p− 8)

[
Lp−1

p!
∥x∗ − x0∥p−1 + 2

p
2

p−1∑
i=1

δi
i!
∥x∗ − x0∥i−1T

p−i
2

]

= 2pp
p−1
2 (20p− 8)

Lp−1

p!
∥x∗ − x0∥p−1 + 2

3p
2 p

p−1
2 (20p− 8)

p−1∑
i=1

δi
i!
∥x∗ − x0∥i−1T

p−i
2 .

Now, we can get the final result

1∑T
k=1 λk

≤

(∑T
k=1 λ

− 2
p−1

k

) p−1
2

T
p+1
2

≤
2pp

p−1
2 (20p− 8)

Lp−1

p! ∥x∗ − x0∥p−1

T
p+1
2

+ 2
3p
2 p

p−1
2 (20p− 8)

p−1∑
i=1

δi∥x∗ − x0∥i−1

i!T
i+1
2

□

Finally, we provide the convergence rate of Algorithm 3 in monotone case.

Theorem 7.2 Let Assumptions 1.1, 4.2 with i = p− 1, and 7.1 hold. Then, after T ≥ 1 iterations of
VIHI with parameters ηi = 5p, opt = 0, we get the following bound

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ ≤ O
(

Lp−1D
p+1

T
p+1
2

+
∑p−1

i=1
δiD

i+1

T
i+1
2

)
.

Proof. Consider ∀x ∈ X , opt = 0.

⟨F (x), x̃T − x⟩

=
1∑T

k=1 λk

T∑
k−1

λk ⟨F (xk), xk − x⟩
(56)
≤ 1∑T

k=1 λk

1

2
∥x− x0∥2 ≤ D2

2
∑T

i=1 λk

(60)
≤ 2p−1p

p−1
2 (20p− 8)

Lp−1D
p+1

p!T
p+1
2

+ 2
3p
2 −1p

p−1
2 (20p− 8)

p−1∑
i=1

δiD
i+1

i!T
i+1
2

.

Thus,

GAP(x̃T ) = sup
x∈X

⟨F (x), x̃T − x⟩ = O

(
Lp−1D

p+1

T
p+1
2

+

p−1∑
i=1

δiD
i+1

T
i+1
2

)
.

□

G.4 Convergence in nonmonotone case

To make our paper more self-contained, we provide convergence rate of Algorithm 3 in nonmonotone
case.

Theorem 7.3 Let Assumptions 4.2, 1.3 and 7.1 with i = p− 1 hold. Then after T ≥ 1 iterations of
Algorithm 3 with parameters η = 5p, opt = 2 we get the following bound

RES(x̂) := sup
x∈X

⟨F (x̂t), x̂t − x⟩ = O
(

Lp−1D
p+1

T
p
2

+
∑p−1

i=1
δiD

i+1

T
i
2

)
.
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Proof. Consider ⟨F (xk), xk − x⟩.
⟨F (xk), xk − x⟩ = ⟨F (xk)− Ωp,vk(xk), xk − x⟩+ ⟨Ωp,vk(xk), xk − x⟩

(53)
≤ ∥F (xk)− Ωp,vk(xk)∥∥xk − x∥+ Lp−1

p!
∥xk − vk∥p+1 +

p−1∑
i=1

δi
i!
∥xk − vk∥i+1.

From definition of Ψp,vk(xk) and triangle inequality we get

∥F (xk)−Ψp,vk(xk)∥ = ∥F (xk)− Ωp,vk(xk)∥ −
5Lp−1

(p− 1)!
∥xk − vk∥p −

p−1∑
i=1

ηiδi
i!

∥xk − vk∥i.

From this and (55) we get

∥F (xk)− Ωp,vk(xk)∥
(55)
≤ Lp−1

p!
∥xk − vk∥p +

p−1∑
i=1

1

i!
δi∥xk − vk∥i +

5Lp−1

(p− 1)!
∥xk − vk∥p +

p−1∑
i=1

ηiδi
i!

∥xk − vk∥i

=
Lp−1

p!
(5p+ 1)∥xk − vk∥p +

p−1∑
i=1

δi
i!
(ηi + 1)∥xk − vk∥i.

Thus,

⟨F (xk), xk − x⟩

≤ Lp−1

p!
(5p+ 1)∥xk − vk∥p∥xk − x∥+

p−1∑
i=1

δi
i!
(ηi + 1)∥xk − vk∥i∥xk − x∥

+
Lp−1

p!
∥xk − vk∥p+1 +

p−1∑
i=1

δi
i!
∥xk − vk∥i+1

≤ Lp−1

p!
∥xk − vk∥p(5p+ 2)D +

p−1∑
i=1

δi
i!
∥xk − vk∥i(ηi + 2)D.

From second inequality of (38) and definition of xkT
we get

∥xkT
− vkt∥2 ≡ min

1≤k≤T
∥xk − vk∥2 ≤ 1

T

T∑
k=1

∥xk − vk∥2 ≤ 4

T
∥x∗ − x0∥2 ≤ 4D2

T

⇔ ∥xkT
− vkT

∥ ≤ 4
i
2Di

T
i
2

.

Combining all these results, we get

RES(x̂) = sup
x∈X

⟨F (xk), xk − x⟩ ≤ Lp−1

p!
∥xk − vk∥p(5p+ 2)D +

p−1∑
i=1

δi
i!
∥xk − vk∥i(5p+ 2)D

≤ 2p(5p+ 2)

p!

Lp−1D
p+1

T
p
2

+

p−1∑
i=1

2iδi
i!

(ηi + 2)
Di+1

T
i
2

= O

(
Lp−1D

p+1

T
p
2

+

p−1∑
i=1

δiD
i+1

T
i
2

)
□

H Subproblem solution

For r-rank QN approximation Jr from (19), we can effectively compute A−1
τ F (x), where Aτ =

Jr + (ηδ + 5L
2 τ)I = U⊤CV + J0 + (ηδ + 5L

2 τ)I = U⊤CV +B and B = J0 + (ηδ + 5L
2 τ)I by

using the Woodbury matrix identity[96, 97].

A−1
τ F (x) =

(
B + U⊤CV

)−1
F (x) = B−1F (x)−B−1U⊤(C−1 + V B−1U⊤)−1V B−1F (x).
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For J0 = ιI , the identity could be simplified even more. Hence, B = ιI+(ηδ+ 5L
2 τ)I = χI , where

χ = ι+ ηδ + 5L
2 τ . Then,

A−1
τ F (x) =

(
χI + U⊤CV

)−1
F (x) = 1

χF (x)− 1
χU

⊤(χC−1 + V U⊤)−1V F (x).

I Experiment details

We consider the cubic regularized bilinear min-max problem of the form:

min
x∈Rd

max
y∈Rd

f(x, y) = y⊤(Ax− b) + ρ
6∥x∥

3, (63)

where ρ > 0, b = [1, 0, . . . , 0] ∈ Rd, and A ∈ Rd×d such that

A =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1
0 · · · 0 0 1
.


To reformulate it as variational inequality, we define F (x) = [∇xf(x, y),−∇yf(x, y)]. Following
[71], we plot the restricted primal-dual gap (65), written in a closed form:

gap(z, β) =
ρ

6
∥x∥3 + β∥Ax− b∥+ 2

3

√
2

ρ
∥A⊤y∥ 3

2 + b⊤y,

where z = (x, y).

Setup. All methods and experiments were performed using Python 3.11.5, PyTorch 2.1.2, numpy
1.24.3 on a 16-inch MacBook Pro 2023 with an Apple M2 Pro and 32GB memory.

Parameters. For Figure 1, the dimension of the problem d = 50. The regularizer ρ is set to
ρ = 1e − 3. The starting point (x0, y0) = (0, 0) is all zeroes. We present results of last iteration
of each method or opt=1 from Algorighm 1. The diameter β for the gap is set as β = 1. For QN
methods, we set memory size m = r = 20. We perform a total of 100000 iterations for all methods
except Perseus2 with 1000 iterations. We plot each 500 iterations for a better visualisation. In Figure
1, the left plot refers to the gap decrease per iteration and the right plot refers to the gap decrease per
JVP/operator computations. EG, Perseus1, VIQA computes 2 operators per iteration and Perseus2
computes d+ 1 JVP/operators.

We finetuned learning rate and presented the run with the best results. For EG1: lr = 0.5. For
Perseus1: L0 = 0.2334. For Perseus2: L1 = 0.0001. For VIQA Broyden: L1 = 0.001, δ = J0 =
0.4. For VIQA Damped Broyden: L1 = 0.001, δ = J0 = 0.22. Note, that tuned L1 = 0.001 is
actually a theoretical smoothness constant for the problem (63) and can be chosen with such value
without finetuning. Also, Perseus2 is working with a smaller constant than theoretical.

J Application to minmax problems

J.1 Preliminaries

In this section, we consider the problem of finding a global saddle point of the following min-max
optimization problem:

min
x∈Rm

max
y∈Rn

f(x, y), (64)

i.e., a tuple (x∗, y∗) ∈ Rm × Rn such that

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), for all x ∈ Rm, y ∈ Rn,

where the continuously differentiable objective function f is convex-concave: f(x, y) is convex in x
for all y ∈ Rn and concave in y for all x ∈ Rm.
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Algorithm 4 VIJI-MinMax
Input: initial point z0 ∈ X , parameters L1, δ, η, τ .
Initialization: set s0 = 0 ∈ Rd.
for k = 0, 1, 2, . . . , T do

Set vk+1 = z0 + sk+1.
Compute zk+1 ∈ Rn+m such that condition (68) holds true.
Compute λk+1 such that 1

16 ≤ λk+1

(
L
2 ∥zk+1 − vk+1∥+ δ

)
≤ 1

12 .
Compute sk+1 = sk − λk+1F (zk+1).

Output: z̃T = 1∑T
k=1 λk

∑T
k=1 λkzk.

Assumption J.1 The function f(x, y) ∈ C2 has L-Lipschitz-continious second-order derivative if

∥∇2f(z)−∇2(v)∥ ≤ L∥z − v∥, for all z, v ∈ Rn+m.

Following [71], we define the restricted gap function to measure the optimality of point ẑ = (x̂, ŷ)

gap(ẑ, β) = max
y:∥y−y∗∥≤β

f(x̂, y)− min
x:∥x−x∗∥≤β

f(x, ŷ) (65)

where β is sufficiently large such that ∥ẑ − z∗∥ ≤ β.

Problem (64) is a special case of VI defined by the following operator

F (z) =

[
∇xf(x, y)
−∇yf(x, y)

]
. (66)

The Jacobian of F is defined as follows

∇2F (z) =

[
∇2

xxf(x, y) ∇2
xyf(x, y)

−∇2
xyf(x, y) −∇2

yyf(x, y)

]
. (67)

The following lemma [80, 71] provides properties of operator F .

Lemma J.2 Let Assumption J.1 hold. Then

1. The operator F is monotone, i.e. satisfies Assumption 1.1.
2. The operator F is L-smooth, i.e. satisfies Assumption 1.2.
3. F (z∗) = 0 for any global saddle point z∗ ∈ Rn+m of the function f .

We assume that inexact approximation of Jacobian satisfies Assumption 2.1.

J.2 The method

Since we consider unconstrained minmax optimization, Step 2 of VIJI simplifies to vk+1 = z0 + sk
and the subproblem (11) changes to

find zk+1 ∈ Rn+m such that Ωη
vk+1

(zk+1) = 0.

Usually, to find the solution of this subproblem it is necessary to run some addition subroutine.
Following the work [71], we introduce the following approximate condition:

∥Ωη
vk+1

(zk+1)∥ ≤ τ min
{

L
2 ∥zk+1 − vk+1∥2 + δ∥zk+1 − vk+1∥, ∥F (vk+1)∥

}
, (68)

where τ ∈ (0, 1) is a tolerance parameter.

The version of VIJI for unconstrained min-max problems is referred to as VIJI-MinMax and is
detailed in Algorithm 4. This subproblem can solved by strategy proposed in [71], resulting in
O
(
(n+m)ωε−2/3 + (n+m)2ε−2/3 log log(1/ε)

)
complexity, where ω ≈ 2.3728 is the matrix

multiplication constant.

34



J.3 Convergence analysis

The following theorem provides convergence rate for Algorithm 4.

Theorem J.3 Let Assumptions J.1, 2.1 hold. Then, after T ≥ 1 iterations of VIJI-MinMax with
parameters η = 5, we get the following bound

gap(z̃T , β) ≤ 1152
√
2L∥z0−z∗∥3

T 3/2 + 576
√
2δ∥z0−z̃∗∥2

T ,

where β = 5∥z0 − z∗∥, z∗ = (x∗, y∗).

Now, let us introduce additional assumption on δ, to obtain the convergence with optimal rate
O(ε−2/3).

Theorem J.4 Let Assumptions J.1 hold. Let

∥(∇F (vk)− J(vk))[zk − vk]∥ ≤ δk∥zk − vk∥

hold for iterates {zk, vk} generated by Algorithm 4, where

δk ≤ L∥zk − vk∥. (69)

Then, after T ≥ 1 iterations of VIJI-MinMax with parameters η = 5, we get the following bound

gap(z̃T , β) ≤ 1944
√
2L∥z0−z∗∥3

T 3/2 ,

where β = 5∥z0 − z∗∥, z∗ = (x∗, y∗).

Note, that it is also possible to change adaptive strategy for λk in this case to 1
16 ≤ 3

2L∥zk−vk∥ ≤ 1
12

(by introducing parameter β as in Algorithm 1) to eliminate the dependence on δ from the step size
while achieving the same convergence rate.

Finally, let us show, that we mathch the convergence of [71] under the same assumptions on
Jacobian’s inexactness and subproblem’s solution.

Assumption J.5 ([71]) Let

∥(∇F (vk)− J(vk))[zk − vk]∥ ≤ δk∥zk − vk∥, ∥J(vk)∥ ≤ κ

hold for iterates {zk, vk} generated by Algorithm 4, where

δk ≤ min
{
τ0,

L(1−τ)
4κ+6L ∥F (vk)∥

}
, (70)

where τ0 < L
4 .

Next, we show, that (69) follows from (70).

Let us consider two cases. If ∥zk−vk∥ ≤ 1, then from (70), we get δk ≤ τ0∥zk−vk∥ ≤ L
2 ∥zk−vk∥.

Otherwise, if ∥zk − vk∥ ≥ 1, we obtain from (68)

∥F (vk)∥ − ∥J(vk)∥∥zk − vk∥ − δ∥zk − vk∥ − 5L∥zk − vk∥ ≤ ∥∇Ωvk(zk)∥ ≤ τ∥F (vk)∥.

Using our assumptions, we get

(1− τ)∥F (vk)∥ ≤ κ∥zk − vk∥+ δ∥zk − vk∥+ 5L∥zk − vk∥2 ≤ (κ+ δ + 5L)∥zk − vk∥
≤ (κ+ 21

4 L)∥zk − vk∥.

Next,

δ ≤ L(1−τ)
4κ+6L ∥F (vk)∥ ≤ L∥zk − vk∥.

Thus, the assumptions of Theorem J.4 hold, and Algorithm 4 achieves O(ε−2/3) convergence.
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J.4 Proof of Theorem J.3

Again, as in the proof of Theorem 3.2, we introduce the Lyapunov function

Ek = max
v∈Rn+m

⟨sk, v − z0⟩ − 1
2∥v − z0∥2. (71)

Note that the scalar product ⟨sk, v − z0⟩ can be omitted (see the proof of [71, Theorems 3.1, 4.1]),
which would also eliminate the somewhat redundant Step 2 of Algorithm 4. However, we chose to
retain it, as it does not affect the method’s performance. We retain

Lemma J.6 Let Assumptions J.1, 2.1 hold. Then, for every integer T ≥ 1, we have
T∑

k=1

λk⟨F (zk), zk − z⟩ ≤ E0 − ET + ⟨sT , z − z0⟩ − 1
8

(
T∑

k=1

∥zk − vk∥2
)
, for all z ∈ Rn+m.

Proof. Following the proof of Lemma B.1, we arrive at (35), where the proofs begin to slightly
diverge due to the changes in the subproblem. At this juncture, we have:
T∑

k=1

λk⟨F (zk), zk − z⟩ ≤ E0 − ET + ⟨sT , z − z0⟩+
T∑

k=1

λk⟨F (zk), zk − vk+1⟩ − 1
2∥vk − vk+1∥2︸ ︷︷ ︸

II

.

(72)
Then,

⟨F (zk), zk − vk+1⟩
= ⟨F (zk)− Ωη

vk
(zk) + ηδ(zk − vk) + 5L∥zk − vk∥(zk − vk), zk − vk+1⟩

+⟨Ωη
vk
(zk), zk − vk+1⟩ − 5L∥zk − vk∥⟨zk − vk, zk − vk+1⟩ − ηδ⟨zk − vk, zk − vk+1⟩

Lem. (2.2), (68)
≤ L

2
∥zk − vk∥2∥zk − vk+1∥+ δ∥zk − vk∥∥zk − vk+1∥+

τL

2
∥zk − vk∥2∥zk − vk+1∥

+τδ∥zk − vk∥∥zk − vk+1∥ − 5L∥zk − vk∥⟨zk − vk, zk − vk+1⟩ − ηδ⟨zk − vk, zk − vk+1⟩

Next, using ⟨zk − vk, zk − vk+1⟩ ≥ ∥zk − vk∥2 − ∥zk − vk∥∥vk − vk+1∥ and ∥zk − vk+1∥ ≤
∥zk − vk∥+ ∥vk − vk+1∥, we get

⟨F (zk), zk − vk+1⟩

≤ (τ + 1)
L

2
∥zk − vk∥3 + (τ + 1)

L

2
∥zk − vk∥2∥vk − vk+1∥+ (τ + 1)δ∥zk − vk∥2

+(τ + 1)δ∥zk − vk∥∥vk − vk+1∥ − 5L∥zk − vk∥⟨zk − vk, zk − vk+1⟩ − ηδ⟨zk − vk, zk − vk+1⟩
τ<1
≤ 6L∥zk − vk∥2∥vk − vk+1∥ − 4L∥zk − vk∥3

+(η + 1) δ∥zk − vk∥∥vk − vk+1∥ − (η − 1) δ∥zk − vk∥2

Next,

II ≤
T∑

k=1

(
1
2∥zk − vk∥∥vk − vk+1∥ − 1

4∥zk − vk∥2 − 1
2∥vk − vk+1∥2

)
,

where the last inequality is due to the following choice of η = 10 and λ :
1
16 ≤ λk (L∥zk − vk∥+ δ) ≤ 1

12 . Then,

II ≤
T∑

k=1

1
2∥zk − vk∥∥vk − vk+1∥ − 1

4∥zk − vk∥2 − 1
2∥vk − vk+1∥2 ≤ − 1

8

(∑T
k=1∥zk − vk∥2

)
.

(73)

Plugging (73) into (72) yields that
T∑

k=1

λk⟨F (zk), zk − z⟩ ≤ E0 − ET + ⟨sT , z − z0⟩ − 1
8

(
T∑

k=1

∥zk − vk∥2
)
.
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□

Next, Lemma B.2 can be applied. Next Lemma is a counterpart of Lemma B.3 for the current choice
of λ.

Lemma J.7 Let Assumptions J.1, 2.1 hold. For every integer T ≥ 1, we have

1(∑T
k=1 λk

)2 ≤ 2048L2∥z∗ − z0∥2

T 3
+

512δ2

T 2
, (74)

where x∗ ∈ X denotes the weak solution to the VI.

Proof. Without loss of generality, we assume that z0 ̸= z∗. We have
T∑

k=1

(λk)
−216−2 ≤

T∑
k=1

(λk)
−2 (λk (L∥zk − vk∥+ δ))

2
=

T∑
k=1

(L∥zk − vk∥+ δ)
2

≤
T∑

k=1

2L2∥zk − vk∥2 + 2Tδ2
Lemma B.2

≤ 8L2∥z∗ − z0∥2 + 2Tδ2.

By the Hölder inequality, we have

T∑
k=1

1 =

T∑
k=1

(
(λk)

−2
)1/3

(λk)
2/3 ≤

(
T∑

k=1

(λk)
−2

)1/3( T∑
k=1

λk

)2/3

.

Putting these pieces together yields that

T ≤ 162/3(8L2∥z∗ − z0∥2 + 2δ2T )
1
3

(
T∑

k=1

λk

)2/3

,

Plugging this into the above inequality yields that

1(∑T
k=1 λk

)2 ≤ 2048L2∥z∗ − z0∥2

T 3
+

512δ2

T 2

□

Next, by Lemma J.6, we have

0
Lem. J.2
≤

T∑
k=1

λk⟨F (zk), zk − z⟩+− 1
8

(
T∑

k=1

∥zk − vk∥2
)

≤ E0 − ET + ⟨sT , z − z0⟩

(71)
=

1

2
∥v0 − z0∥2 −

1

2
∥vT − z0∥2 + ⟨vT − z0, v

∗ − v0⟩.

By applying Young’s ineqaulity and the fact that z0 = v0, we get

0 ≤ −1

2
∥vk − z0∥2 +

1

4
∥vk − z0∥2 + ∥z∗ − z0∥2 = −1

4
∥vk − z0∥2 + ∥z∗ − z0∥2.

Thus, we have ∥vk−z0∥ ≤ 2∥z∗−z0∥. From Lemma B.2 we also have that ∥zk−vk∥ ≤ 2∥z∗−z0∥.
Thus,

∥vk − z∗∥ ≤ ∥vk − z0∥+ ∥z0 − z∗∥ ≤ 3∥z0 − z∗∥ ≤ β,

∥zk − z∗∥ ≤ ∥zk − vk∥+ ∥zk − z∗∥ ≤ 5∥z0 − z∗∥ = β.

Lemma B.2 also implies
T∑

k=1

λk(zk − z)⊤F (zk) ≤ 1
2∥z0 − z∥2.
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By Proposition [71, Proposition 2.9], we have

f(x̃T , y)− f(x, ỹT ) ≤ 1∑T
k=1 λk

(
T∑

k=1

λk(zk − z)⊤F (zk)

)
.

Putting these pieces together yields
f(x̃T , y)− f(x, ỹT ) ≤ 1

2(
∑T

k=1 λk)
∥z0 − z∥2.

This together with Lemma J.7 yields

f(x̃T , y)− f(x, ỹT ) ≤
8
√
2L∥z0 − z∗∥∥z0 − z∥2

T 3/2
+

4
√
2δ∥z0 − z∥2

T
.

Since ∥zk − z∗∥ ≤ β for all k ≥ 0, we have ∥z̃T − z∗∥ ≤ β. By the definition of the restricted gap
function, we have

gap(z̃T , β) ≤ 32
√
2L∥z0−z∗∥(∥z0−z∗∥+β)2

T 3/2 + 16
√
2δ(∥z0−z∗∥+β)2

T

≤ 1152
√
2L∥z0−z∗∥3

T 3/2 + 576
√
2δ∥z0−z̃∗∥2

T .

Therefore, we conclude from the above inequality that there exists some T > 0 such that the output ẑ
satisfies that gap(ẑ, β) ≤ ϵ.

J.5 Proof of Theorem J.4

Lemma (J.6) hold with slight modification in λk adaptive strategy. Lemma B.2 also holds. Next we
need slight modification of Lemma B.3 for the current choice of λ.

Lemma J.8 Let Assumption J.1. For every integer T ≥ 1, we have
1(∑T

k=1 λk

)2 ≤ 54L2∥z∗ − z0∥2

T 3
,

where x∗ ∈ X denotes the weak solution to the VI.

Proof. Without loss of generality, we assume that z0 ̸= z∗. We have
T∑

k=1

(λk)
−216−2 ≤

T∑
k=1

(λk)
−2 (λk (L∥zk − vk∥+ δ))

2
=

T∑
k=1

(L∥zk − vk∥+ δ)
2

(69)
≤

T∑
k=1

9L2

4 ∥zk − vk∥2
Lemma B.2

≤ 9L2

4 ∥z∗ − z0∥2.

By the Hölder inequality, we have

T∑
k=1

1 =

T∑
k=1

(
(λk)

−2
)1/3

(λk)
2/3 ≤

(
T∑

k=1

(λk)
−2

)1/3( T∑
k=1

λk

)2/3

.

Putting these pieces together yields that

T ≤ 162/3( 94L
2∥z∗ − z0∥2)

1
3

(
T∑

k=1

λk

)2/3

,

Plugging this into the above inequality yields that
1(∑T

k=1 λk

)2 ≤ 54L2∥z∗ − z0∥2

T 3
.

□

Next, directly following the steps of proof of Theorem J.3, we get the following rate

gap(z̃T , β) ≤ 1944
√
2L∥z0−z∗∥3

T 3/2 .
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Question: Do the main claims made in the abstract and introduction accurately reflect the
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: see Section 8.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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