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Abstract
We present MFRNet, a novel network for multi-
modal object re-identification that integrates
multi-modal data features to effectively retrieve
specific objects across different modalities. Cur-
rent methods suffer from two principal limita-
tions: (1) insufficient interaction between pixel-
level semantic features across modalities, and
(2) difficulty in balancing modality-shared and
modality-specific features within a unified archi-
tecture. To address these challenges, our net-
work introduces two core components. First,
the Feature Fusion Module (FFM) enables fine-
grained pixel-level feature generation and flex-
ible cross-modal interaction. Second, the Fea-
ture Representation Module (FRM) efficiently
extracts and combines modality-specific and
modality-shared features, achieving strong dis-
criminative ability with minimal parameter over-
head. Extensive experiments on three challeng-
ing public datasets (RGBNT201, RGBNT100,
and MSVR310) demonstrate the superiority of
our approach in terms of both accuracy and effi-
ciency, with 8.4% mAP and 6.9% accuracy im-
proved in RGBNT201 with negligible additional
parameters. The code is available at https:
//github.com/stone96123/MFRNet.

1. Introduction
Object Re-Identification (ReID) focuses on retrieving spe-
cific object across non-overlapping camera views using
known information. Traditionally, single-modal ReID relies
heavily on RGB images, which face significant challenges
under adverse conditions such as poor lighting, shadows,
and low image resolutions (Li et al., 2020; Zhang et al.,
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(a) Current one-stream network (b) Current dual-stream network

(c) Our proposed MFRNet
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Figure 1. Comparison between our proposed MFRNet and cur-
rent mainstream structure. (a) and (b) show the current main-
stream one-stream and two-stream networks, respectively. Besides
the limitation of neglecting the pixel-level alignment characteris-
tics of multi-modal images, current methods also face the challenge
of balancing the modality-specific and modality-shared represen-
tation in a unified network. (c) shows our proposed MFRNet and
’RE’ refers to the representation expert. MFRNet inherits the idea
of MoE and extends it with multi-modal fusion (FFM) and repre-
sentation (FRM), allowing it to achieve fine-grained interaction
and efficient representation for multi-modal data.

2021; Liu et al., 2024; Tan et al., 2024b). These limitations
frequently result in the extraction of misleading features
and a subsequent loss of discriminative information (Zheng
et al., 2021; Wang et al., 2022). To address these challenges,
multi-modal ReID (Shi et al., 2023; Lu et al., 2023; Shi
et al., 2024; Yang et al., 2024) has emerged as a promis-
ing solution, leveraging complementary information from
various modalities to enhance feature representation and
achieve more acceptable identification ability in complex
scenarios.

With the widespread application of Vision Transformer
(ViT)(Alexey, 2020; Ji et al., 2025), numerous ViT-based
ReID methods have emerged from general-purpose (He
et al., 2021; Tan et al., 2022; 2024a) to multi-modal sce-
narios (Zhang et al., 2024a; Wang et al., 2024c). However,
as illustrated in Figure 1, current mainstream methods face
two fundamental limitations: insufficient interaction and
feature imbalance. The insufficient interaction manifests
in existing approaches that mainly emphasize interaction
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at high-level semantic feature spaces (Wang et al., 2024a;
Zhang et al., 2024a). These methods overlook the inher-
ent pixel-to-pixel alignment characteristics in multi-modal
images, resulting in inadequate fine-grained interaction be-
tween multi-modal information. The feature imbalance
stems from the difficulty of balancing modality-shared and
modality-specific features (Wang et al., 2022; Zhang et al.,
2024a). A single parameter-sharing ViT backbone, though
parameter-efficient, struggles to preserve modality-specific
discriminative features. Alternatively, employing separate
ViT backbones for different modalities can better preserve
modal characteristics but introduce significant parameter
redundancy and computational overhead.

To address the insufficient interaction and feature imbalance
challenges, we propose a Modality Fusion and Representa-
tion Network (MFRNet). Our design incorporates mixture-
of-experts (Jacobs et al., 1991) paradigm into both gen-
erators and feature extractors, achieving pixel-level cross-
modal interaction and balanced feature learning. MFRNet
consists of two key components: Feature Fusion Module
(FFM) with mixture-of-generators for fine-grained inter-
action, and Feature Representation Module (FRM) with
mixture of representation experts for balanced feature ex-
traction. The FFM tackles insufficient interaction through its
mixture-of-generators design. Inspired by RLE (Tan et al.,
2024c) that cross-spectral transformation exhibits locally lin-
ear characteristics with surface-dependent variations, FFM
employs multiple simple generators rather than complex
unified structures. Through the mixture-of-generators mech-
anism, diverse tokens spontaneously select the most suitable
generator for different modalities, locations, and attribute to-
kens. Additionally, FFM achieves fine-grained information
exchange through weighted feature fusion, where fusion
weights are learned via a generative network. The FRM
addresses feature imbalance through a mixture of represen-
tation experts structure. It dynamically routes tokens from
different modalities to various experts, enabling efficient
parameter utilization while preserving both modality-shared
and modality-specific features. Through dynamic expert
activation, different experts in FRM adaptively focus on
various shared visual attributes while maintaining necessary
modality-specific representations. Notably, this design en-
ables our framework to handle missing modalities without
specific architectural modifications or training procedures.

The contributions of this paper are summarized as follows:

• We propose a Modality Fusion and Representa-
tion Network (MFRNet) for multi-modal object re-
identification, which inherits the idea of a sparse mix-
ture of experts and extends it with multi-modal fusion
and representation.

• We introduce a Feature Fusion Module (FFM) and a
Feature Representation Module (FRM). The former

aims to achieve fine-grained interaction between multi-
modal inputs, while the latter aims to achieve effi-
cient and balanced feature extraction between modality-
shared and modality-specific representations.

• Extensive experiments on three public multi-modal ob-
ject ReID datasets including RGBNT201, RGBNT100,
and MSVR310, verifying the superior performance of
MFRNet.

2. Related Work
2.1. Multi-modal Person ReID

Human-centric computer vision tasks (Shen & Tang, 2024;
Shen et al., 2025) have long been a central focus within
the research community. Unlike single-modal object re-
identification (ReID), multi-modal person ReID includes
more information and is suitable for a wider range of appli-
cations. Existing methods (Park et al., 2021; Zheng et al.,
2023; 2022; He et al., 2023; Tan et al., 2023; Zhang & Wang,
2023) for multi-modal object ReID mainly focus on how
to effectively integrate information from multiple modali-
ties and alleviate the cross-modal heterogeneous issue. For
example, Zheng et al. (Zheng et al., 2021) utilize the com-
plementary advantages of multiple modalities to propose
PFNet for learning effective multi-modal features. To boost
modality-specific representations, Wang et al. (Wang et al.,
2022) proposed the IEEE method, which includes important
information exchange, feature enrichment, and intra-class
discrepancy maximization mechanisms. To effectively uti-
lize the relationship of modalities to reduce the gap between
different modalities, Guo et al. (Guo et al., 2022) proposed
the GAFNet model to fuse multiple data sources. Addition-
ally, the vision transformers (ViT) (Alexey, 2020; Radford
et al., 2021; Pan et al., 2022; 2023; Crawford et al., 2023;
Wang et al., 2024a) model has achieved good results in
many fields, promoting the development of ViT-based multi-
modal person ReID algorithms. Wang et al. (Wang et al.,
2024b) explored the influence of global and local features of
ViT and proposed the GLTrans model. Wang et al. (Wang
et al., 2024c) explored the domain traits of unlabeled test
data and proposed a heterogeneous test-time training frame-
work based on ViT to improve generalization performance.
Yu et al. (Yu et al., 2024) proposed the RSCNet model based
on the idea of token sparsification in ViT to alleviate the
multi-modal heterogeneity problem. Zhang et al. (Zhang
et al., 2024a) proposed the EDITOR model, which selects
diverse tokens from ViT to mitigate the effect of irrelevant
backgrounds and reduce the gap between modalities.

Despite the good performance of these methods, they tend
to employ high-level semantic multi-modal feature fusion,
which overlooks the fine-grained spatial alignment charac-
teristics of multi-modal data. Additionally, they struggle
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to efficiently extract modality-shared and modality-specific
multi-modal representation within a unified network. There-
fore, we propose MFRNet, which adopts a mixture of gen-
erator experts to leverage the pixel-to-pixel alignment of
multi-modal data and introduces a mixture of representation
experts to adaptively extract modality-shared features while
retaining modality-specific features.

2.2. Mixtures of Experts

The Mixture of Experts (MoE) (Jacobs et al., 1991) orig-
inates from Ensemble Learning (Ganaie et al., 2022) and
can effectively enhance model performance. Notably, af-
ter Lepikhin et al. (Lepikhin et al., 2020) combined MoE
with the transformer framework and proposed the Gshard
model, it garnered significant attention across various fields,
leading to the development of more models incorporating
MoE technology (Chen & Wang, 2025; Dai et al., 2024;
Gui et al., 2024; Lin et al., 2024; Liu et al., 2025; Mustafa
et al., 2022; Li et al., 2025). Subsequently, to facilitate
the implementation and flexible design of MoE, Hwang et
al. (Hwang et al., 2023) open-sourced the Tutel codebase.
Additionally, to reduce training and inference costs, Chowd-
hury et al. (Chowdhury et al., 2023) proposed pMoE, which
can filter label-irrelevant patches and route similar class-
discriminative patches to the same expert. Recently, many
works have attempted to introduce MoE into ReID. Among
them, Li et al. (Li et al., 2023) proposed the MPC model,
which leverages MoE to learn multiple pseudo-label spaces,
thereby flexibly handling different variations. Xu et al. (Xu
et al., 2022) proposed the META model based on MoE to
better exploit the domain-invariant characteristics of multi-
modal data. Kuang et al. (Kuang et al., 2024) proposed the
MiKeCoCo model, which incorporates multiple experts with
unique perspectives into CLIP and fully leverages high-level
semantic knowledge for comprehensive feature representa-
tion. Additionally, Li et al. (Li et al., 2022) explored an
orthogonal direction for domain generalization research and
proposed the GMoE model by combining ViT and MoE
technologies. Based on the results of the aforementioned
studies, we leveraged the advantages of MoE technology
and utilized the Tutel framework to design and implement
MoE techniques to enhance model performance.

3. Methodology
As shown in Figure 2, the proposed MFRNet employs a
CLIP pre-trained vanilla ViT-base as its basic backbone
network. On this basis, our network comprises two princi-
pal components, i.e., the feature fusion module (FFM) and
the feature representation module (FRM). The FFM intro-
duces the pixel-level feature generation for flexible cross-
modal interaction, which is also suitable for modal-missing
scenarios, while the FRM inherits the idea of the sparse

Mixture-of-Experts (MoE) to adapt to diverse modal input
at an extremely low cost and performs joint optimization of
modality-specific and modality-shared features.

3.1. Feature Fusion Module

In general, a given image can be divided into patches of the
same size and mapped to a fixed feature dimension through
patchify operations. Then, we have the image feature as:

IM = {[IclsM ], I1M , I2M , · · · , InM} where M ∈ R,N, T ,
(1)

where R, N, T denote RGB, NIR, and TIR modalities respec-
tively. Given that multi-modal images maintain pixel-level
alignment, our feature fusion module (FFM) is designed
to enable effective interaction and mutual enhancement be-
tween different modality features. As illustrated by the
RLE (Tan et al., 2024c) and AMML (Zhang et al., 2024b),
the cross-spectral transformation can be considered as a
local linear transformation, while the linear factor will be
varied across different surfaces. It shows that the transfor-
mation between different spectra is quite simple but variant.
Therefore, inspired by the idea of the Mixture-of-experts
strategy and the above observation, FFM attempts to com-
bine multiple simple generators to adapt to diverse input
tokens. In addition, it is interesting to find that this kind
of fusion strategy of FFM also works well for modality-
missing scenarios in a modality-complementing way.

Specifically, as shown in Figure 2, taking the RGB feature
IR for example, it can be re-generated with NIR and TIR
features as:

IgR = λ× IR + wN
R (IN )× gNR (IN ) + wT

R(IT )× gTR(IT ),

(2)

where λ is hyper-parameters to determine the proportion
of information retained by the modality itself, wN

R (·) and
wT

R(·) generate the weighting coefficients for the features
generated from NIR and TIR, respectively. And gNR (·) and
gTR(·) represent the reconstructed RGB features from the
NIR and TIR modality, respectively. The re-generated fea-
tures of NIR and TIR are similar.

For the weight coefficient function w(·)1, we define it as
follows:

w(I) = fc
(
AvgPool(I)

)
, Rn×d ⇒ R1×d ⇒ R1×1, (3)

where I ∈ Rn×d represents image feature from spe-
cific modality, AvgPool represents global average pool-
ing, and fc represents a linear layer. To normalize the
weight coefficients, we apply the Softmax operation on
the weights of each reconstructed modality feature like

1We omit the subscript for modality for simplification.
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Figure 2. Overall architecture of MFRNet. MFRNet is built from the basic Transformer blocks inherited from vanilla ViT, with two
new modules (feature fusion module and feature representation Module) added to adapt to multi-modal object re-identification tasks.
In the blue box, the Feature Fusion Module (FFM) employs multiple simple generators to adaptively provide fine-grained interaction
information, while in the green box, the Feature Representation Module (FRM) employs diverse representation experts to extract and
combine modality-specific and modality-shared features. Here, GE refers to the generation experts in FFM, while RE represents the
representation experts in FRM. Notably, the figure illustrates the NIR+RGB → TIR interaction, with the same interaction applying to NIR
and RGB.

Softmax
(
wN

R (IN ), wT
R(IT )

)
. The weight generation func-

tion is modality-specific, and there are total 6 functions for
3 modalities.

For the feature generation function g(·), as mentioned be-
fore, the transformation between different modality images
is simple but variant. Compared to complex structures, sim-
ple generators work well (Zhang et al., 2024b). Therefore,
we apply the mixture-of-experts (MoE) architecture (Li
et al., 2022) to combine multiple simple generators. We
define the simplest generation expert gf (·) as:

gf (I) = conv2 (drop (conv1(I))) . (4)

Then we enhance it using sparse MoE technology. Specifi-
cally, we categorize feature generation into two types based
on the different modalities: {IN→R, IT→R, IR→N} and
{IT→N , IR→T , IN→T }. Since each of the three modalities
can generate features for the other two modalities, we define
two moe layers. Finally, the feature generation function is
as follows:

Iexperts = {gf (fci (I)) | for i ∈ [1,K]}

Srouter = Softmax(
WF

1 IWF
e

τ
∥∥WF

1 I
∥∥ ∥WF

e ∥
)

Gate(X) = Topk(Srouter)

g(I) = Gate(I) · Iexperts,

(5)

where fci refers to the linear layer for uth expert, Srouter

represents cosine router which indicates routing scores for
selecting experts. ∥·∥ indicate the L2 normalization, and τ
indicates the learnable temperature scaler. WF

1 is the weight
of linear projection which aims to project the input token
to a low-rank subspace, while WF

e is the expert embedding
that transforms the feature to final scoring distribution. Note
that k = 1 represents only the highest-scoring expert is
selected for feature generation each time.

As stated before, although do not have any specific training,
we find that FFM can also work well for modality-missing

scenarios in a modality-complementing way. Specifically,
for the modality missing scenarios during testing, we de-
velop conditional reconstructed rules for modality M as:

IgM =

{
λIM +

∑
S∈A wS

M (IS)× g(IS) if M present∑
S∈A wS

M (Is)× g(IS) if M missing,
(6)

where A denotes available modalities. For example, if RGB
is missing, its features are generated based on NIR and TIR
as follows: IR = wN

R (IN ) × g(IN ) + wT
R(IT ) × g(IT ).

Here, g(IN ) denotes the features for RGB generated from
NIR, g(IT ) represents the features for RGB generated from
TIR, wN

R (IN ) and wT
R(IT ) are the respective weights.

3.2. Feature Representation Module

Existing approaches face fundamental challenges in bal-
ancing modality-shared and modality-specific information.
While employing separate networks for each modality pre-
serves modality-specific characteristics, this introduces sig-
nificant structural and computational redundancy. Con-
versely, using a fully shared single network for all modalities
exclusively captures shared representations across modali-
ties. Hence, we propose the Feature Representation Mod-
ule (FRM), which integrates a Mixture-of-Experts architec-
ture to preserve valuable modality-specific information with
parameter-efficient implementation.

With the reconstructed multi-modal image features Ig =
(IgR, I

g
N , IgT ), we use a vision transformer (ViT) to extract

fundamental features. Within this module, we aim to capture
modality-specific feature representations within a unified
architectural framework.

Specifically, we modify the residual attention layer based
on RepAdapter as follows: To extract unique features for
different modality data, we employ RepAdapter (Luo et al.,
2023), which is designed to rapidly adapts to vision tasks
by inserting adapter layers between key layers. Specifically,
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the residual attention layer can be represented as:

Y = X + MH-Attn (LayerNorm(X)),

Z = Y +RAda (LayerNorm(Y )),
(7)

where X and Z are the input and the output of the current
layer, MH-Attn(·) represents the multi-head attention layer,
RAda(·) represents the RepAdapter layer. The formula of
the RepAdapter layer is as:

RAda(Ylnorm) = Ylnorm + convB(drop (convA (Ylnorm))),
(8)

where Ylnorm refers to the Y after the LayerNorm layer,
convA and convB represent 1D convolutions with kernel
size of 1×1 and groups set to 1. Similarly, to better adapt to
multi-modal data, we use RAda as the expert and enhance it
by the MoE (Li et al., 2022) layer.

SAda
router = Softmax(

WR
1 YlnormWR

e

τ
∥∥WR

1 Ylnorm

∥∥ ∥WR
e ∥

),

GateAda(Ylnorm) = Topk(S
Ada
router),

(9)

where τ = 0.01 and k = 1. It is important to note that
since the number of modalities is 3, the number of experts
should be greater than 3. WR

1 is the weight of the linear
projection, which aims to project the input token to a low-
rank subspace, while WR

e is the expert embedding that
transforms the feature to the final scoring distribution.

Based on the above derivation, using lmoe
Ada to represent the

MoE-enhanced RepAdapter, the modality-specific features
are as follows:

Z = Y + lmoe
Ada(Ylnorm). (10)

Here, the auxiliary loss for MoE is denoted as LAda
aux .

3.3. Objective Function

As shown in Figure 2, our model consists of three main
loss functions: losses for the ViT backbone, auxiliary losses
for the multi-modal feature completion module, and auxil-
iary losses for the modality-specific feature representation
module. For the losses for the ViT backbone, we follow
previous research by using label smoothing cross-entropy
loss (Szegedy et al., 2016) and triplet loss (Hermans et al.,
2017) for optimizing the representation. Besides the basic
losses, following the (Riquelme et al., 2021; Li et al., 2022),
we define two auxiliary losses: important loss Limp and
load loss Lload to balance the frequency being activated for
the expert. The important loss Limp to encourage a balanced
usage of different experts across tokens and load loss Lload

to encourage balanced assignment across experts. Specifi-
cally, the importance of expert e in a batch of images Ib is

defined as the normalized routing weight corresponding to
expert i summed over images as:

Impe(Ib) =
∑
I∈Ib

Se
router. (11)

The important loss Limp is given by the squared coefficient
of variation of the importance distribution over experts as:

Limp(Ib) = (
STD(Imp(Ib))

MEAN(Imp(Ib))
)2. (12)

Meanwhile, the load loss Lload can be given as:

Lload(Ib) =
STD(load(I))

MEAN(load(I))
,

with loade(Ib) =
∑

I∈Ib
pe(I),

and pe(I) = 1− Φ(
ηk − (W1IWe)e

σ
).

(13)

Herein, the ηk refers to the Kth largest entry after softmax
while Φ indicates the cumulative distribution function of a
Gaussian distribution. Therefore, the whole auxiliary losses
Laux is formulated as:

Laux =
Limp + Lload

2
. (14)

Finally, the total loss function of MFRNet is given as fol-
lows:

L = LV iT
ce + LV iT

tri + (Lmoe1
aux + Lmoe2

aux ) + LAda
aux . (15)

4. Experiments
4.1. Implementation

Datasets. We evaluate our model performance on three
public multi-modal object ReID datasets. Specifically,
RGBNT201 (Zheng et al., 2021) is a multi-modal person
ReID dataset, which includes 4,787 aligned RGB, NIR, and
TIR images from 201 identities. RGBNT100 (Li et al., 2020)
is a large-scale multi-modal vehicle ReID dataset compris-
ing 17,250 image triples. It covers a wide range of challeng-
ing visual conditions, making it suitable for assessing the ro-
bustness of vehicle ReID methods. MSVR310 (Zheng et al.,
2022) is a small-scale multi-modal vehicle ReID dataset that
includes 2,087 high-quality image triples captured across
diverse environments and time spans, providing complex
visual challenges for vehicle ReID evaluation.

Evaluation protocols. To assess the performance of our
method, we utilize the mean Average Precision (mAP) and
Cumulative Matching Characteristics (CMC) at Rank-K
(K = 1, 5, 10). These metrics are standard in this field and
provide a comprehensive evaluation of our model’s effec-
tiveness. Additionally, we present the number of parameters
and FLOPs to analyze the complexity of our model.
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Table 1. Performance comparison on RGBNT201. The best and
second results are in bold and underlined, respectively.

Methods mAP R-1 R-5 R-10

Si
ng

le

MUDeep (Qian et al., 2017) 23.8 19.7 33.1 44.3
HACNN (Li et al., 2018) 21.3 19.0 34.1 42.8

MLFN (Chang et al., 2018) 26.1 24.2 35.9 44.1
PCB (Sun et al., 2018) 32.8 28.1 37.4 46.9

OSNet (Zhou et al., 2019) 25.4 22.3 35.1 44.7
CAL (Rao et al., 2021) 27.6 24.3 36.5 45.7

M
ul

ti

HAMNet (Li et al., 2020) 27.7 26.3 41.5 51.7
PFNet (Zheng et al., 2021) 38.5 38.9 52.0 58.4
IEEE (Wang et al., 2022) 47.5 44.4 57.1 63.6

DENet (Zheng et al., 2023) 42.4 42.2 55.3 64.5
UniCat (Crawford et al., 2023) 57.0 55.7 - -

HTT (Wang et al., 2024c) 71.1 73.4 83.1 87.3
EDITOR (Zhang et al., 2024a) 66.5 68.3 81.1 88.2

RSCNet (Yu et al., 2024) 68.2 72.5 - -
TOP-ReID (Wang et al., 2024a) 72.3 76.6 84.7 89.4

Ours 80.7 83.6 91.9 94.1

Implementation details. Our model is implemented using
the PyTorch toolbox, and experiments are conducted on
an NVIDIA V100 GPU. We utilize pre-trained CLIP (Rad-
ford et al., 2021) as the visual encoder. Images are re-
sized to 256 × 128 for RGBNT201 and 128 × 256 for
RGBNT100 and MSVR310. For data augmentation, we
apply random horizontal flipping, cropping, and erasing fol-
lowing (Zhong et al., 2020). The mini-batch size is set to
128 for RGBNT100, and 64 for RGBNT201 and MSVR310,
with corresponding sampling strategies for each dataset. We
employ the Adam optimizer with an initial learning rate
of 3.5e − 4 and the learning rate of the visual encoder is
5e− 6. The total number of training epochs is set to 45 for
RGBNT201 and RGBNT100, and 50 for MSVR310.

4.2. Comparison with State-of-the-Art Methods

multi-modal Person ReID. We compare the proposed
MFRNet with several single-spectral and multi-modal meth-
ods on the RGBNT201 dataset, as shown in Table 1. It
is evident that multi-modal methods generally outperform
single-spectral methods by leveraging complementary multi-
modal information. Among current multi-modal methods,
TOP-ReID achieves the best performance, with 72.3% mAP,
76.6% R-1, 84.7% R-5, and 89.4% R-10. Our proposed
method improves these metrics by 8.4%, 6.9%, 7.2%, and
4.7%, which demonstrates the superior performance of
MFRNet for multi-modal person ReID. Notably, we use
the CLIP-based ViT to reproduce TOP-ReID, and the re-
sults show that our method surpasses TOP-ReID by approx-
imately 9.7% mAP and 9.6% R-1.

multi-modal Vehicle ReID. Table 2 shows the comparison

Table 2. Performance comparison on RGBNT100 and
MSVR310. The best and second results are in bold and
underlined, respectively.

Methods
RGBNT100 MSVR310

mAP R-1 mAP R-1

Si
ng

le

PCB (Sun et al., 2018) 57.2 83.5 23.2 42.9
MGN (Wang et al., 2018) 58.1 83.1 26.2 44.3

DMML (Chen et al., 2019) 58.5 82.0 19.1 31.1
BoT (Luo et al., 2019) 78.0 95.1 23.5 38.4

OSNet (Zhou et al., 2019) 75.0 95.6 28.7 44.8
Circle Loss (Sun et al., 2020) 59.4 81.7 22.7 34.2

HRCN (Zhao et al., 2021) 67.1 91.8 23.4 44.2
TransReID (He et al., 2021) 75.6 92.9 18.4 29.6

AGW (Ye et al., 2022) 73.1 92.7 28.9 46.9

M
ul

ti

HAMNet (Li et al., 2020) 74.5 93.3 27.1 42.3
PFNet (Zheng et al., 2021) 68.1 94.1 23.5 37.4
GAFNet (Guo et al., 2022) 74.4 93.4 - -

GraFT (Yin et al., 2023) 76.6 94.3 - -
GPFNet (He et al., 2023) 75.0 94.5 - -

PHT (Pan et al., 2023) 79.9 92.7 - -
UniCat (Crawford et al., 2023) 79.4 96.2 - -

CCNet (Zheng et al., 2022) 77.2 96.3 36.4 55.2
HTT (Wang et al., 2024c) 75.7 92.6 - -

TOP-ReID (Wang et al., 2024a) 81.2 96.4 35.9 44.6
EDITOR (Zhang et al., 2024a) 82.1 96.4 39.0 49.3

RSCNet (Yu et al., 2024) 82.3 96.6 39.5 49.6
Ours 88.2 97.4 50.6 64.8

results of our proposed MFRNet with other methods on the
RGBNT100 and MSVR310 datasets. For the RGBNT100
dataset, TransReID achieves the best performance among
single-spectral methods, while RSCNet significantly out-
performs it among multi-modal methods. However, for the
MSVR310 dataset, AGW achieves the best performance
among single-spectral methods, while RSCNet has the high-
est mAP and CCNet has the highest R-1 among multi-modal
methods. Notably, our proposed method achieves significant
improvements on both datasets, increasing mAP by 5.9%
and R-1 by 0.8% on RGBNT100, and increasing mAP by
11.1% and R-1 by 9.6% on MSVR310. This demonstrates
the superior performance of MFRNet for multi-modal vehi-
cle re-identification.

Evaluation on Missing-spectral Scenarios. In real-world
application scenarios, persistent modality availability can-
not be guaranteed. Therefore, exploring the performance of
models under the condition of missing modalities helps to
explore the application boundaries of the model. Therefore,
we also evaluate the performance of MFRNet under differ-
ent modality-missing scenarios on the RGBNT201 dataset.
As shown in Table 3, PCB achieves the highest average
mAP and R-1 among single-spectral methods. TOP-ReID
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Table 3. Performance of missing-modality settings on RGBNT201. “M (X)” means missing the X image modality. The best and second
results are in bold and underlined, respectively.

Methods M (RGB) M (NIR) M (TIR) M (RGB+NIR) M (RGB+TIR) M (NIR+TIR) Average

mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

Si
ng

le

MUDeep (Qian et al., 2017) 19.2 16.4 20.0 17.2 18.4 14.2 13.7 11.8 11.5 6.5 12.7 8.5 15.9 12.9
HACNN (Li et al., 2018) 12.5 11.1 20.5 19.4 16.7 13.3 9.2 6.2 6.3 2.2 14.8 12.0 13.3 10.7

MLFN (Chang et al., 2018) 20.2 18.9 21.1 19.7 17.6 11.1 13.2 12.1 8.3 3.5 13.1 9.1 15.6 12.4
PCB (Sun et al., 2018) 23.6 24.2 24.4 25.1 19.9 14.7 20.6 23.6 11.0 6.8 18.6 14.4 19.7 18.1

OSNet (Zhou et al., 2019) 19.8 17.3 21.0 19.0 18.7 14.6 12.3 10.9 9.4 5.4 13.0 10.2 15.7 12.9

M
ul

ti

PFNet (Zheng et al., 2021) - - 31.9 29.8 25.5 25.8 - - - - 26.4 23.4 - -
DENet (Zheng et al., 2023) - - 35.4 36.8 33.0 35.4 - - - - 32.4 29.2 - -

TOP-ReID (Wang et al., 2024a) 54.4 57.5 64.3 67.6 51.9 54.5 35.3 35.4 26.2 26.0 34.1 31.7 44.4 45.4
Ours 64.7 65.2 72.3 76.1 51.6 49.5 41.4 43.4 27.3 27.9 37.2 35.6 49.1 49.6

Table 4. Comparison of computational cost with recent meth-
ods. We show the best result in bold.

Methods Params(M) Flops(G)
HTT (Wang et al., 2024c) 85.6 33.1

EDITOR (Zhang et al., 2024a) 117.5 38.6
TOP-ReID (Wang et al., 2024a) 278.2 34.5

Ours 57.1 22.1

Table 5. Comparison with different modules. We show the best
score in bold.

Index Modules Metrics Params FLOPs

FFM FRM mAP R-1 R-5 R-10 M G
1 ✕ ✕ 69.2 76.3 84.8 89.5 57.2 22.1
2 ✓ ✕ 75.1 78.1 87.4 92.0 60.8 23.5
3 ✕ ✓ 77.8 80.9 88.6 92.2 53.5 20.7
4 ✓ ✓ 80.7 83.5 91.9 94.1 57.1 22.1

outperforms it with an average performance of 44.4% mAP
and 45.4% R-1 among multi-modal methods. Our proposed
method improves these metrics by 4.7% mAP and 4.2% R-1
over TOP-ReID, validating the adaptability of our model
to modality missing scenarios. It is worth noting that com-
pared to the TOP-ReID which has a specific training phase
for the modality missing condition, our MFRNet framework
notably trains without explicit task-specific architectural
modifications or dedicated training strategies, yet shows its
intrinsic capability to compensate for the missing modality.

4.3. Ablation Study

To explore the effectiveness of different components in our
model, we conduct comprehensive ablation studies on the
RGBNT201 dataset, as shown in Table 5.

Feature Fusion Module. We use a shared vision trans-
former combined with label smoothing cross-entropy and
triplet loss as our base framework. Building on this, we
integrate the Feature Fusion Module (FFM), which boosts
the performance on the mAP, R-1, R-5, and R-10 metrics
by 5.9%, 1.8%, 2.6%, and 2.5% respectively. This shows
that FFM effectively enhances overall model performance
by generating and interacting multi-modal features using
the fine-grained alignment of multi-modal data. However,

Table 6. Performance analysis under different numbers of ex-
perts for FRM. We show the best score in bold.

Number mAP R-1 R-5 R-10 Average
3 77.6 78.6 87.9 92.3 84.1
6 77.8 80.9 88.6 92.2 84.9
9 75.1 76.7 87.8 92.3 83.0

Table 7. Performance analysis of FRM at different locations
within ViT. We show the best score in bold.

Layer mAP R-1 R-5 R-10 Average
10,11,12 71.6 75.5 87.1 90.8 81.2

10,12 75.7 77.6 87.6 91.7 83.1
12 77.8 80.9 88.6 92.2 84.9

integrating the FFM module increases the model’s parame-
ters and FLOPs by 3.6M and 1.4G, respectively, therefore
further efforts are needed to reduce them.

Feature Representation Module. Building on the afore-
mentioned base framework, we introduce the Feature Rep-
resentation Module (FRM). Experimental results show that
integrating the FRM module into the baseline model im-
proves mAP, R-1, R-5, and R-10 by 8.6%, 4.6%, 3.8%, and
2.7%, respectively. Notably, the model’s parameters and
FLOPs decrease by 3.7M and 1.4G as the FRM module
uses RepAdapter to build MoE representations, reducing
computational cost with two convolutional layers. This
demonstrates that the FRM module enhances model accu-
racy by effectively representing shared and specific features
of multi-modal data while using fewer parameters.

MFRNet. MFRNet, which integrates the FFM and FRM
modules, achieves 80.7% mAP, 83.5% R-1, 91.9% R-5, and
94.1% R-10. In addition, MFRNet reduces the parameters
by 0.1M compared to the baseline framework, while being
on par with the baseline model on FLOPS. Consequently,
the design of effective multi-modal feature fusion and rep-
resentation mechanisms enables more precise multi-modal
object re-identification.
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Table 8. Performance analysis under different experts number
for FFM. We show the best score in bold.

Number mAP R-1 R-5 R-10 Average
1 78.7 81.0 90.8 93.5 86.0
2 74.9 78.6 86.8 90.8 82.8
3 80.7 83.5 91.9 94.1 87.5
6 76.9 80.4 88.2 90.6 84.0
9 79.2 82.3 90.7 93.5 86.4

10 76.4 80.1 88.0 92.0 84.1
11 74.1 78.9 87.2 92.2 83.1
12 74.1 77.8 86.8 91.1 82.4

4.4. More Analysis

Analysis of model computational complexity. We com-
pared computational costs across three major recent works.
As shown in Table 4, our method achieves the lowest Params
and FLOPs, measuring 57.1M and 22.1G, respectively.

Experts Number in FRM. We explore the model’s perfor-
mance with different numbers of experts in the FRM, where
experts are responsible for extracting modality-specific fea-
tures. As shown in Table 6, the performance is optimal
when the number of experts is 6. Although more experts
may make sense in maintaining modality-specific repre-
sentations, this may also limit the network’s learning of
modality-shared knowledge.

The Location of FRM. We further explore the model’s per-
formance when the FRM module is placed in different layers
of the ViT. As shown in Table 7, using the FRM only in the
final layer is sufficient to capture modality-specific features
for multi-modal data, achieving optimal performance.

Expert visualization of FRM. To visually observe the
allocation of multiple experts in the FRM when extract-
ing multi-modal features, we conduct visualizations on the
RGBNT201 test set. The numbers in Figure 3 represent
the index of the six experts. We also utilize similar colors
to mark patches that are focused on by the same expert.
It can be observed that Expert 0 concentrates on extract-
ing pedestrian features in the NIR modality, while Experts
1, 2, and 3 focus on pedestrian regions in the RGB and
TIR modalities. Additionally, Experts 4 and 5 tend to ex-
tract background features across all modalities. As our
initial hypothesis predicted, semantically similar content
achieves knowledge sharing through selecting analogous
experts, while modality-specific representations that resist
fusion maintain their distinct characteristics via dedicated
expert allocation.

Experts Number in FFM. Similarly, we analyze the
model’s performance with different numbers of experts in
the FFM, where experts are responsible for generating cross-

RGB

NIR

TIR

Figure 3. Visualization of expert in FRM. As expected earlier,
similar content can share their knowledge by selecting similar
experts to reduce redundancy, while for modality-specific repre-
sentations that are difficult to fuse, their knowledge can also be
retained by new experts.

Table 9. Performance analysis under different λ for FFM. We
show the best score in bold.

Scale of λ mAP R-1 R-5 R-10 Average
0.0 4.7 2.4 9.8 18.4 8.8
0.3 79.9 82.1 89.2 92.8 86.0
0.5 80.7 83.5 91.9 94.1 87.5
0.7 74.8 77.8 86.1 90.4 82.3
1.0 77.5 81.5 88.8 92.5 85.1

modal features. As shown in Table 8, the model achieves
the highest average performance when the number is 3.

Parameter λ of FFM. For the parameter λ in the FFM,
we analyze the model’s performance at different values. As
shown in Table 9, the model performs the worst when λ = 0,
while achieving the highest average accuracy at λ = 0.5.

The Location of FFM. We evaluate the approach by insert-
ing FFM into the 3rd, 6th, and 9th layers of the network.
Additionally, we evaluate the post-fusion method by posi-
tioning FFM after the ViT feature encoding. As shown in
Table 10, the pre-fusion method proves to be the most effec-
tive. We deem that high-level semantic representation may
already lose most of the fine-grained perception and align-
ment characteristics, demonstrating the limitation of current
methods that use the high-level semantic fusion strategy.
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Table 10. Performance analysis under different locations for
FFM. We show the best score in bold.

Location mAP R-1 R-5 R-10 Average
0(Before ViT) 80.7 83.5 91.9 94.1 87.5

3 50.6 50.5 62.9 70.7 58.7
6 74.0 78.7 86.8 91.1 82.6
9 75.3 78.3 86.8 90.1 82.6

12(After ViT) 76.7 79.7 86.8 92.0 83.8

5. Conclusion
In this paper, we propose MFRNet, a novel framework
for multi-modal object ReID that enhances feature fusion
and representation through the mixture of experts (MoE).
Specifically, we introduce a multi-modal feature fusion mod-
ule (FFM) to enable fine-grained cross-modal interaction.
Following this, the designed feature representation mod-
ule (FRM) extracts modality-specific and modality-shared
features through a parameter-efficient expert architecture.
Extensive experiments on the RGBNT201, RGBNT100,
and MSVR310 datasets demonstrate the effectiveness and
efficiency of our model.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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