
Published as a conference paper at ICLR 2024

BEYOND SPATIO-TEMPORAL REPRESENTATIONS:
EVOLVING FOURIER TRANSFORM FOR TEMPORAL
GRAPHS

Anson Bastos1,2, Kuldeep Singh4, Abhishek Nadgeri3, Manish Singh2, Toyotaro Suzumura5
1HERE Technologies, India 2Indian Institute of Technology Hyderabad, India
3RWTH Aachen, Germany 4Cerence Gmbh, Germany 5The University of Tokyo, Japan
ansonbastos@gmail.com, kuldeep.singh1@cerence.com, abhishek.nadgeri@rwth-aachen.de
msingh@cse.iith.ac.in, suzumura@acm.org

ABSTRACT

We present the Evolving Graph Fourier Transform (EFT), the first invertible
spectral transform that captures evolving representations on temporal graphs. We
motivate our work by the inadequacy of existing methods for capturing the evolving
graph spectra, which are also computationally expensive due to the temporal aspect
along with the graph vertex domain. We view the problem as an optimization over
the Laplacian of the continuous time dynamic graph. Additionally, we propose
pseudo-spectrum relaxations that decompose the transformation process, making it
highly computationally efficient. The EFT method adeptly captures the evolving
graph’s structural and positional properties, making it effective for downstream
tasks on evolving graphs. Hence, as a reference implementation, we develop
a simple neural model induced with EFT for capturing evolving graph spectra.
We empirically validate our theoretical findings on a number of large-scale and
standard temporal graph benchmarks and demonstrate that our model achieves
state-of-the-art performance.

1 INTRODUCTION

In numerous practical situations, graphs exhibit temporal characteristics, as seen in applications like
social networks, citation graphs, and bank transactions, among others (Kazemi et al., 2020). These
temporal graphs can be divided into two types: 1) temporal graphs with constant graph structure
(Grassi et al., 2017; Cao et al., 2020), and 2) temporal graphs with dynamic structures (Zhou et al.,
2022; Bastos et al., 2023; da Xu et al., 2020). Our focus in this work is the latter case.

The evolving graphs have been comprehensively studied from the spatio-temporal graph-neural
network (GNN) perspective, focusing on propagating local information (Pareja et al., 2020; Shi et al.,
2021; Xiang et al., 2022; da Xu et al., 2020). Albeit the success of spectral GNNs for static graphs
for capturing non-local dependencies in graph signals (Wang & Zhang, 2022), they have not been
applied to temporal graphs with evolving structure. To make spectral GNN work for temporal graphs
effectively and efficiently, there is a necessity for an invertible transform that collectively captures
evolving spectra along the graph vertex and time domain. To the best of our knowledge, there exists
no such transform in the spectral domain for temporal graphs with evolving structures.

In the present literature, Graph Fourier Transform (GFT), which is a generalization of Fourier
Transform, exists for static graphs but can not capture spectra of evolving graph structure (Shuman
et al., 2013). Hence, it cannot be applied to temporal graphs due to the additional temporal aspect.
One naive extension would be to treat the time direction as a temporal edge, construct a directed
graph with newly added nodes at each timestep, and find the Eigenvalue Decomposition (EVD) of
the joint graph. However, this would lose the distinction between variation along temporal and vertex
domains. Moreover, such an approach would incur an added computational cost by a multiplicative
factor of O(T 3), which would be prohibitively high for the temporal setting with a large number of
timesteps. Thus, in this paper, we attempt to find an approximation to the dynamic graph transform
that would capture its evolving spectra and be efficient to compute.

1

Published as a conference paper at ICLR 2024

We aim to propose a novel transform for a temporal graph to its frequency domain. For this we
consider the Laplacian of the dynamic graph and find the orthogonal basis of maximum variation
to obtain the spectral transform (Hammond et al., 2011). We view this as an optimization of the
variational form of the Laplacian such that the optimal value is within the ϵ− pseudospectrum (Tao,
2008). We then show that such optimization gives us a simple and efficient to compute solution while
also being close to the exact solution of the variational form under certain conditions of Lipschitz
continuous dynamic graphs. Effectively, we propose a method to simultaneously perform spectral
transform along both the time and vertex dimensions of a dynamic graph. This solves the following
challenges over the natural extension of EVD over dynamic graphs: 1) The proposed transformation
is computationally efficient compared to the direct eigendecomposition of the joint Laplacian. 2)
Distinction between time and vertex domain frequency components with the proposed transform
provides interpretability to the transformed spectral domain. We term the proposed concept as
"Evolving Graph Fourier Transform" (EFT).

In summary, we make the following key contributions:

• We propose EFT (grounded on theoretical foundations), that transforms a temporal graph to its
frequency domain for capturing evolving spectra.

• We provide the theoretical bounds of the difference between EFT and the exact solution to the
variational form and analyze its properties.

• As a reference implementation, we develop a simple neural model induced with the proposed
transform to process and filter the signals on the dynamic graphs for downstream tasks. We perform
extensive experimentation on large-scale and standard datasets for dynamic graphs to show that our
method can effectively filter out the noise signals and enhance task performance against baselines.

2 RELATED WORK

Spectral Graph Transforms: Work by (Hammond et al., 2011) was among the first to propose a
computationally efficient algorithm to compute the Fourier Transform for static graphs. Loukas et al.
(Loukas & Foucard, 2016) conceptualized Joint Fourier Transform (JFT) over graphs on which the
signals change with time. JFT has been generalized in (Kartal et al., 2022) by proposing the Joint
Fractional Fourier Transform (JFRT). However, JFT and JFRT does not consider graph structures
evolving with time. (Cao et al., 2021) apply JFT and propose a model for time series forecasting.
(Villafañe-Delgado & Aviyente, 2017) summarized graphs over time by using Tucker decomposition
to the dynamic graph Laplacian in order to obtain an orthogonal matrix and further applies it to
a cognitive control experiment. However, this method does not fully capture the varying graph
information in a lossless sense. Researchers have also proposed spectral methods for spatio-temporal
applications such as action recognition (Yan et al., 2018; Pan et al., 2020), traffic forecasting (Yu
et al., 2017) etc. Other works such as (Mahyari & Aviyente, 2014; Chen et al., 2022; Sarkar et al.,
2012; Kurokawa et al., 2017; Jiang et al., 2021; Cheng et al., 2023) also consider temporal graphs,
but ignore the evolving structure. We position our work as the novel spectral graph transform for
temporal graphs which is currently a gap in existing literature.

Temporal Graph Representation Learning: Since static graph methods do not work well with
dynamic graphs (Pareja et al., 2020), researchers have proposed a slew of methods (Pareja et al.,
2020; Goyal et al., 2020; Xiang et al., 2022), for learning on dynamic graphs for problems such as
link prediction and node classification. One elementary way to adapt methods developed for static
graphs on dynamic graphs is to use RNN modules in conjunction with GNN modules to capture
the evolving graph dynamics. Researchers (Seo et al., 2016; Narayan & Roe, 2018; Manessi et al.,
2020) have explored this idea extensively. Some other recent approaches model several real world
phenomena, however, these methods rely on an RNN for encoding temporal information such as
Bastas et al. (2019), da Xu et al. (2020), Ma et al. (2020), etc. Most generic among these works
is TGN (Temporal Graph Networks) (Rossi et al., 2020) that remembers nodes and connections it
has seen in the past, and then uses that memory to update new nodes and connections that it hasn’t
seen before. However, the memory updater uses GRU which may have issues such as vanishing
gradient limiting the ability to capture long term information. Also, these models have been studied
for small-graphs spread over limited time duration (e.g., one month).
Considering large scale temporal graphs with evolving structures, one such application is that of
sequential recommendation (SR) with decades of temporal information (1996-2018) (Zhang et al.,

2

Published as a conference paper at ICLR 2024

Figure 1: Left circular figure shows equivalence between EFT and existing transformations (DFT
(Sundararajan, 2023), JFT (Loukas & Foucard, 2016), GFT (Ortega et al., 2018)). Each directed
arrow (e.g, A to B), interprets as a transform simulation (transform A can be simulated by B using
edge annotations). Right part shows timestamp-wise product between signals and graph structure.
Here, nodes of next timestep are connected by dotted arrows to obtain the graph JD which can be
used by GFT to simulate EFT (if graph is static).

2022; Huang et al., 2023). Researchers (Li et al., 2020b; Zhang et al., 2022; Jing et al., 2022)
have attempted to model the sequential recommendation task as a link prediction over dynamic
graphs. DGSR (Zhang et al., 2022) is a work that considers generic dynamic graphs over user-item
interactions. However, the GNN-based methods described in this section including DGSR majorly
employ low pass GNNs that limit the ability to model complex relations and are fundamentally
restricted to focus on local neighborhood interactions (Balcilar et al., 2020).

3 PRELIMINARIES

Discrete Fourier Transform (DFT) (Sundararajan, 2023) is employed to obtain the frequency
representation of a sequence of signal values sampled at equal intervals of time. Consider a signal x
sampled at N intervals of time t ∈ [0, N − 1] to obtain the sequence {xt}. The DFT of xt is then
given by Xk =

∑N−1
t=0 xte

−iωtk with ωt =
2πt
N . The transformed sequence Xk gives the values

of the signal in the frequency domain. If we represent X as the vector form of the signal, we can
define the DFT matrix ΨT such that Xk = ΨTX .

Graph Fourier Transform (GFT) (Ortega et al., 2018) is a generalization of the Discrete Fourier
Transform (DFT) to graphs. We represent a graph as (V, E) where V is the set of N nodes and E
represents the edges between them. Denote the adjacency matrix by A. D is the degree matrix,
defined as (D)ii =

∑
j(A)ij , which is diagonal. The graph Laplacian graph is given by L̂ = D −A

and the normalized Laplacian L is defined as L = I − D− 1
2AD− 1

2 . The Laplacian(L) has the
eigendecomposition as: L = Ψ∗

GΛΨG. Let X ∈ RN×d be the signal on the nodes of the graph. The
Graph Fourier Transform X̂ of X is then given as: X̂ = ΨGX .

Pseudospectrum: The spectrum of a graph (of N nodes) is a finite set consisting of N points λ that
form the eigenvalues of the graph’s matrix representation M i.e. {λ ∈ C |

∥∥(M − λI)−1
∥∥ = ∞}.

Similarly we can think of the (ϵ-)pseudospectrum of a graph to be the larger set (containing these N
points) such that A− λI has the least singular value at most ϵ. Formally the pseudospectrum can be
defined by the set {λ ∈ C |

∥∥(M − λI)−1
∥∥ ≥ 1

ϵ }.

Common Notations: We denote by ⊕, ⊗ the Kronecker sum, product respectively. (M)ji refers to
the i-th row and j-th column of matrix M . {.} refers to a sequence, of elements, in time. ⊠,⊞ refer
to the Kronecker product and sum respectively, applied timestep wise.

4 THEORETICAL FRAMEWORK: AN OPTIMIZATION PERSPECTIVE

We begin by striving for a physical interpretation of frequency for dynamic graph systems. For
this, we draw inspiration from energy diffusion processes and establish similarities with the vari-
ation of signals on static graphs. Consider graph Gt at time t with node ni ∈ Vt and nj

Gt∼ ni

denoting the neighbors of ni at time t. We define a directed graph JD with the graphs at all
timesteps taken as is and a directed edge added from a node at time t − 1 (modulo T) to its

3

Published as a conference paper at ICLR 2024

corresponding node at time t. For continuous time dynamic graph the previous time would be
represented by t− dt (modulo T). Let Xni,t represent the energy of the signal on node ni at time
t. The flow of energy to the node ni at time t can be represented by the divergence of the gradient
(∆ni,tX) of the energy. We define the variation of the signals at time t and node ni as follows:

∥∆ni,tX∥2 =

[∑
nj

JD∼ ni

(
∂X

∂eninj

)2] 1
2

=

[∑
nj

Gt∼ni

(
Xnj ,t −Xni,t

)2
+
(

∂Xni,t

∂t dt
)2] 1

2

, where

∂X
∂eninj

is the discrete edge derivative on the collective dynamic graph JD. Considering ∆ to be the

finite difference between neighboring nodes in the joint graph, the global notion of variation (Sp(X))
can be given by the p-Dirichlet form as follows

Sp(X) =
1

p

N∑
n=1

∫ T

t=0

∥∆ni,tX∥p2 dt =
1

p

∫ T

t=0

N∑
n=1

 ∑
nj

Gt∼ni

(
Xnj ,t −Xni,t

)2
+ (δXni,t)

2


p
2

dt

Define LT to be the Laplacian of the continuous ring graph representing the nodes at each timestep
t ∈ [0, T] and connecting consequent nodes. Let LGt be the Laplacian of the sampled graph at time t.
In the discrete case the Laplacian LJD of JD can be shown to be

(LJD)
j
i = (LT ⊗ IN)ji + (IT ⊗ {LGt

})j⌊
j
N ⌋

i = (LT ⊕ LGt
)
j⌊ j

N ⌋
i (1)

For the case of continuous time, this can be generalized to
(LJD) = LT ⊗ IN + [IT ⊠ {LGt}] = [LT ⊞ LGt] (2)

where ⊠,⊞ refers to the timestep wise Kronecker product and sum respectively and [.] refers to the
matricization operation. In the discrete case this operation would convert RNT×T×N −→ RNT×NT ,
ordering from the last dimension first. We can now characterize the variation of signals on JD similar
to static graphs by the following result:
Lemma 1. (Variational Characterization of JD) The 2-Dirichlet S2(X) of the signals X on JD is
the quadratic form of the Laplacian LJD of JD i.e.

S2(X) =

∫ NT

i=0

vec(X)(i)

∫ NT

j=0

LJD (i, j)vec(X)(j)didj = vec(X)TLJDvec(X) (3)

This implies that LJD ⪰ 0 since S2(X) ≥ 0, which assures us of the existence of the eigenvalue
decomposition. Additionally, the value of S2(X) is lower when the signal changes slower along the
dynamic graph and higher when the signal changes faster. Hence, we can define a notion of signal
variation on the dynamic graph that is similar to the variation of signals on static graphs. Consequently,
the eigendecomposition of LJDcharacterizes signals on the dynamic graph by projecting them onto
the optimizers of S2(X). This means that high-frequency components of the evolving dynamic graph
represent sharply varying signals, whereas smoother signals will have a higher magnitude in the
low-frequency components. From an optimization perspective, we can view the maximum frequency
as the optimal value for the below equation, i.e.,

fmax = max
x,∥x∥≤1

∫ NT

i=0

x(i)

∫ NT

j=0

LJD (i, j)x(j)didj = max
x,∥x∥≤1

xTLJD (i, j)x (4)

The optimal solution x provides the basis for transforming a dynamic graph signal to obtain its
maximum frequency component, denoted by fmax. We can obtain the next frequency values by
optimizing equation 4 in orthogonal directions. However, this approach has an issue - the eigenvalue
decomposition would have to be performed over a large number of nodes. In a real world setting of
temporal graphs with T timesteps, this method would have a complexity of O((NT)3), which would
be prohibitive considering large number of timesteps. To address this issue, we relax the objective in
equation 4 to include solutions in the pseudospectrum. The solution is presented in the following
result, upon which we can formulate a transformation method for temporal graphs.

Lemma 2. Consider the variational form xTLJDx =
∫ NT

i=0
x(i)

∫ NT

j=0
LJD (i, j)x(j)didj. The

optimization problem f = min
x,∥x∥≤1

[|xTLJDx−λs| − ϵ]+ has the optimal solution as yω ⊗ zωl , where

λs is the optimal value of equation 4, yω is the ω-th optimal solution of the variational form of the ring
graph, ztl is the l-th optimal solution to the variational form of the graph at time t, [s]+ = max(s, 0)
and ϵ = O(δ).

4

Published as a conference paper at ICLR 2024

5 CONSTRUCTING AN EVOLVING GRAPH FOURIER TRANSFORM

In the previous section, we have outlined the theoretical framework for the evolving graph Fourier
transform. We also obtained a sketch of the transform as a solution to the optimization problem of
the variational characterization with pseudospectrum relaxations. This enables us to obtain a simple
and efficient form to compute. In this section, building upon the theoretical framework, we propose
our formulation of the Evolving Graph Fourier Transform (EFT). From lemma 2, we obtain the
orthogonal basis vectors of the desired transform matrix in terms of the kronecker product of the
basis vectors of the Fourier Transform (ΨT) and Graph Fourier Transform (ΨG). Thus, lemma 2
helps us to define the EFT in terms of the graph and time Fourier transforms:

EFT (fg, ω) =
∑
n

ΨG(fg, n)

∫ T

t=0

fs(n, t)e
−jωtdt (5)

where fg, ω are the graph and temporal frequency components respectively, fs(n, t) is the signal
at node n and time t. In terms of the matrix representation, the EFT could be expressed, using
the Einstein notation (Albert et al., 1916), as a Kronecker product of DFT and GFT as (ΨD)ji =

(ΨT ⊗{ΨGt})
j⌊ j

N ⌋
i , which when applied to the columnwise vectorized signal fs gives the transform

in the spectral space.

EFT is one of the solutions in the pseudospectrum of LJD as shown in lemma 2. There also exists
other solutions and specifically considering the case where ϵ = 0 we obtain the solution to the exact
EVD of LJD . Let ΨAD be the matrix whose rows form the right eigenvectors of LJD . Since ΨAD

is the absolute decomposition of LJDwe term this as AD for brevity. We now define error bounds
between ΨD and ΨAD.

Theorem 1. Considering bounded changes in a graph G with N nodes over time T , the norm
of the difference between EFT (ΨD) and AD (ΨAD) is bounded as follows: ∥ΨD −ΨAD∥ ≤
O
(
N

3
2Tε(ωmax, (∆λG)min, (∆λJ)min)

)(∥∥∥L̇G

∥∥∥)
max

where (∆λJ)min and (∆λJ)min refer to

the minimum difference between the eigenvalues of matrices LG and LJD respectively, L̇G is the rate

of change of LG and ωmax = 2π and ε(ωmax,∆λG,∆λJ) =
ω

1
2
max

∆λG
+

ω2
max

∆λJ
.

The above theorem states that as the structure on the graph evolves infinitesimally, the difference
between ΨD and ΨAD is bounded from above by the change in the graph matrix representation
(laplacian/adjacency). This property is desirable since it allows us to approximate ΨAD, which is
formed by the eigendecomposition of LJD and has a physical interpretation, using the defined ΨD

that is easy to compute. The above bound is finite if 1) The rate of change of the graph with time is
bounded. 2) The eigenvalues have a multiplicity of 1. In such cases, EFT characterizes signals on
the dynamic graph by their proximity (projection) to the optimizers of S2(X) defined in lemma 1.
The physical implication of this is that applying EFT , the high-frequency components correspond
to sharply varying signals on a dynamic graph, while low-frequency components correspond to
smoother signals. Hence, the norm of the difference between EFT and AD are bounded from above
by the rate of evolution of the graphs.

For computational purpose in real-world applications, the sampled form of EFT can be obtained
by sampling T snapshots of the dynamic graph signal at uniform time intervals. We now get a
dynamic graph {(Vt, Et)}, t ∈ {0, T} the edges (Et) of which by definition evolves with time. We
consider the node set V to be fixed, i.e., no new nodes are added. All the nodes (|V| = N) are known
from the start, and the graph may contain isolated nodes. In case of node editions, we could create
dummy isolated nodes with varying node signals and edge connectivity information. Without loss
of generality, consider a 1-dimensional temporal signal, uniformly sampled at T intervals, residing
on the graph nodes. Let X ∈ RN×T represent the temporal signal on the graph nodes. The Fourier
transform (DFT) (with DFT matrix ΨT) independently for each node is DFT (X) = XΨ⊤

T . Further,
the GFT for the graph Gt ≡ (Vt, Et) at time t is given as GFT (Xt) = ΨGt

Xt, where Xt ∈ RN is
the signal on the graph nodes at time t. In order to compute the dynamic graph transform along the
graph domain as well as the temporal dimension, we can collectively perform both the operations.

5

Published as a conference paper at ICLR 2024

Consider {ΨGt
} ∈ RN×N×T as the tensor containing the graph Fourier basis at each timestep. Then

using Einstein notation (Albert et al., 1916), we write EFT as

(EFT({Gt};X))
j
i = (ΨGt

X)
kk
i

(
Ψ⊤

T

)j
k

(6)

where i, j, k are tensor indices. Next, we aim to define a transformation matrix for EFT as in DFT
and GFT. For this we make use of the Kronecker product (⊗) between tensors. We then get the matrix
form of EFT as the following expression:

(EFT({Gt};X))
j
i =

(
X̂G

)j
i
= (ΨGt

X)
kk
i

(
Ψ⊤

T

)j
k
= (ΨT ⊗ {ΨGt

})km(j∗N+i) xk (7)

Thus, we have x̂j∗N+i = (ΨT ⊗ {ΨGt
})km(j∗N+i) xk or x̂ = ΨDx. In the above equations, X̂G is

the EFT of signal X over dynamic graph {Gt}, x, x̂ ∈ RNT are the columnwise vectorized form of
X, X̂G ∈ RN×T and m =

⌊
k
N

⌋
. ΨD ∈ RNT×NT is the EFT matrix over dynamic graph {Gt} with

(ΨD)
j
i = (ΨT ⊗ΨG)

j⌊ j
N ⌋

i .

We remark from equation 6 of EFT , that the following desirable properties (over the exact eigen-
decompostion of the joint laplacian) are satisfied: 1) The equation imparts interpretibility to the
frequency components, whether belonging to the time or vertex domain, as compared to the exact
eigendecomposition. This is possible because we are able to decompose the transform into the indi-
vidual transforms of each domain. 2) The transform equation is computationally efficient as compared
to the exact eigendecomposition of the joint laplacian. Specifically EFT reduces the computational
complexity for the dynamic graph (T timesteps) from a factor of O(T 3) to O(T + T log(T)).

Having derived the EFT transform, we state and prove its properties in the appendix C. The illustration
between EFT and other transforms is in Figure 1. The figure shows transforms (GFT, JFT, DFT,
EFT) in a circle, and arrows from one transform to the next indicate that the source transform can be
obtained by the destination transform using the simulation annotated on the edges. For example, the
GFT of a ring graph (T) gives the DFT and thus the DFT can be simulated by GFT using graph T .
Similarly DFT can be simulated by EFT when the number of nodes N = 1. Also the GFT of the
temporal ring of a static graph (topologically equivalent to a torus), where the nodes and edges remain
constant with time, gives the EFT and vice versa (when time T = 1). However when the graph
structure changes with time GFT cannot be used to simultae EFT . Thus, we can also look at the EFT
as a generalization of the previous transforms. We briefly explain the task specific implementation
of these modules in the below subsection and focus more on the representations and results in the
following sections.

5.1 IMPLEMENTATION DETAILS

Having obtained the representations using the proposed transform, we intend to perform filtering
in spectral space for dynamic graphs. Since our idea is to perform collective filtering along the
vertex and temporal domain in EFT, we need two modules to compute ΨGt (vertex aspect) and ΨT

(temporal aspect), respectively, in equation 6 of EFT. We now briefly explain these modules with
details in appendix D.2.

Filtering along the Vertex Domain: This module computes the convolution matrix ΨGt
in equation

6. The frequency response of the desired filter is approximated as Λ̂l =
∑Of

k=0 ckTk(Λ̃), where Of

is the polynomial/filter order, Tk is the Chebyshev polynomial basis, Λ̃ = 2Λ
λmax

− I , λmax is the
maximum eigenvalue and ck is the corresponding filter coefficients. The convolution of the graph
signal X with the filter (X ∗ Λl) gives the desired filter response in the vertex domain.

Filtering along the Temporal Domain: After performing filtering in the vertex domain, we aim to
filter over the temporal signals using ΨT as in equation 6. Formally, let Xt ∈ Rd be the signal of a
node at time t. Let X = {Xt} ∈ RT×d be the time ordered matrix of embeddings of the node. This
is converted to the frequency domain (X̂ ∈ RT×d) using the matrix ΨT as X̂ = ΨTX . Then we
multiply X̂ element-wise by a temporal filter FT ∈ RT×d to obtain the filtered signal X̂f = FT ⊙ X̂
which is then converted back to the temporal domain by using the inverse transform Ψ∗

T to get
Xf = Ψ∗

T X̂f . Xf is the filtered signal in the time-vertex domain of the dynamic graph.

6

Published as a conference paper at ICLR 2024

6 EXPERIMENTAL SETUP

Model Implementation and Datasets: Considering EFT is a spectral transform, we need a base
model to induce EFT in it. We select transformer as the base model inspired from (Zhou et al.,
2022; Bastos et al., 2022) that induce learnable filters into a vanilla transformer for downstream
tasks (implementation is inspired from (Zhou et al., 2022), hence, details are in appendix). To
illustrate the efficacy of the representations obtained from EFT, we consider eight datasets. We name
our model EFT-T. The first three (Amazon Beauty, Games, CD in Table 3) are large continuous
time dynamic graph datasets from sequential recommendation (SR) setting (Huang et al., 2023),
spread over two decades. We inherit these datasets, dynamic graph construction process in SR
setting, and metric from (Zhang et al., 2022). Other datasets (Pareja et al., 2020) (UCI, AS, SBM,
Elliptic, Brain) are standard (discrete) dynamic graph datasets to understand the generalizability
of our method and contain a sequence of time-ordered graphs. Details on datasets, metrics, and
experiment settings are in Appendix (cf., Table 4). Experiment code and associated datasets are on
Github: https://github.com/ansonb/EFT.

Baselines: We use baselines depending on the experiment setting for fairness. For SR link prediction,
we use strong baselines from previous best (Zhang et al., 2022): BPR-MF (Rendle et al., 2009),
FPMC (Rendle et al., 2010), GRU4Rec+ (Hidasi & Karatzoglou, 2018), Caser (Tang & Wang, 2018),
SASRec (Kang & McAuley, 2018), HGN (Ma et al., 2019), TiSASRec (Li et al., 2020a), SRGNN
(Wu et al., 2019), HyperRec (Wang et al., 2020), FMLPRec (Zhou et al., 2022), and DGSR (Zhang
et al., 2022). For link prediction, node classification on discrete dynamic graph datasets, we rely on
state of the art approaches of this setting (Xiang et al., 2022): GCN (Kipf & Welling, 2017), GAT
(Veličković et al., 2018), GCN-GRU (Pareja et al., 2020), DynGEM (Goyal et al., 2017), GAEN (Shi
et al., 2021), EvolveGCN (Pareja et al., 2020), dyngraph2vec (dg2vec) (Goyal et al., 2020).

7 RESULTS AND DISCUSSION

This section reports the various experiment results, supporting our theoretical contributions.

Figure 2: Reconstruction er-
ror on noisy synthetic data.

Denoising and reconstruction on synthetic dataset with pertur-
bation: Here, we aim to study whether EFT can better filter out
noise from a dynamic graph than DFT (Sundararajan, 2023) and GFT
(Ortega et al., 2018). The graphs are generated by sampling edge
weights from a random normal distribution and evolved by perturbing
the edge weights from the previous timestep. The graph signals are
sampled from the eigenvectors of the graphs at each timestep, while
the temporal signals are sampled from a sinusoidal signal. To add
an element of complexity and realism, noise is induced along both
the graph vertex and time signals (details in appendix D). As a result,
the dynamic graph signals evolve with time while being induced with
noise along both dimensions. We hypothesize that using EFT , which

transforms collectively across time and vertex dimensions, will result in better denoising and signal
reconstruction compared to using GFT or DFT, which only performs filtering in one dimension. Our
hypothesis is confirmed in Figure 2, which shows a decrease in error as the spectral energy of the
signal is preserved while noise is filtered. Moreover, EFT yields comparable results to absolute
transform (AD) while requiring less computational resources.

Compactness of EFT : Compaction refers to the ability of the transform to summarize the data
compactly. A transform with good compaction is desirable as it summarizes the signals well in
the frequency components, which can be used for efficient processing by downstream models. In
this experiment, we verify the compaction properties of the proposed transform for the time-vertex
frequencies on the temporal mesh graphs (Grassi et al., 2017) concerning GFT and DFT. In order to
test this, we remove varying percentile of the frequency components from the transformed frequency
domain of signal X . We then apply the inverse transform to obtain the signal Xr. We plot the error
∥X−Xr∥F

∥X∥F
vs the percentile of components removed. From figure 3a, 3b we can see that EFT has a

lower error and better compaction and thus is able to summarize the data better than the baselines
that only transform along a single dimension of vertex or time.

7

https://github.com/ansonb/EFT

Published as a conference paper at ICLR 2024

Table 1: For link prediction on large temporal graphs of sequential recommendation setting, table
shows our model comparison (EFT-T) on the metrics Recall@10 and NDCG@10. The best results
are shown in boldface. The second best result has been underlined. The improvement of our method
over the best-performing baseline is statistically significant with p < 0.05.

GRU4Rec+ Caser SASRec HGN TiSASRec FMLPRec SRGNN HyperRec DGSR EFT-T
Recall@10

Beauty 43.98 42.64 48.54 48.63 46.87 47.47 48.62 34.71 52.40 53.23
Games 67.15 68.83 73.98 71.42 71.85 73.62 73.49 71.24 75.57 77.78
CDs 67.84 61.65 71.32 71.42 71.00 72.41 69.63 71.02 72.43 75.42

NDCG@10
Beauty 26.42 25.47 32.19 32.47 30.45 32.38 32.33 23.26 35.90 37.10
Games 45.64 45.93 53.60 49.34 50.19 51.26 53.35 48.96 55.70 58.65
CDs 44.52 45.85 49.23 49.34 48.97 53.31 48.95 47.16 51.22 54.99

(a) Dog (b) Dancer (c) Dancer

Figure 3: Representations on dynamic mesh datasets. Left (a,b): Reconstruc-
tion error on the datasets illustrating the compactness of EFT . Right (c):
Illustration of filtering using EFT on the dynamic mesh of a Dancer.

Illustration of fil-
tering on tempo-
ral mesh Figure 3c
shows an example
of collective filter-
ing of a dynamic
mesh representing a
dancer (Grassi et al.,
2017). Similar to
Grassi et al. (2017),
we implement the
following filters: (a)
a low-pass filter that

jointly attenuates high frequency components of the dynamic graph, and (b) a wave filter whose
frequency response is described in Eq. (19) of Grassi et al. (2017). The former filter gives us the
frame of the mesh with stiff manoeuvers, whereas the fluid filter produces fluid movements. This
experiment shows that EFT can enhance the frequency components non-linearly. This also hints
towards why EFT performs better on evolving temporal graphs in subsequent experiments.

Table 2: Results for Link Prediction (UCI, SBM, AS) and Node
Classification (Brn, Ell) tasks. Best values are in bold and second
bests are underlined.

Datasets SBM UCI AS Ell Brn
Metrics MAP MRR MAP MRR MAP MRR F1 F1
GCN 0.189 0.014 0.000 0.047 0.002 0.181 0.434 0.232
GAT 0.175 0.013 0.000 0.047 0.020 0.139 0.451 0.121

DynGEM 0.168 0.014 0.021 0.106 0.053 0.103 0.502 0.225
GCN-GRU 0.190 0.012 0.011 0.098 0.071 0.339 0.575 0.186
dg2vec V1 0.098 0.008 0.004 0.054 0.033 0.070 0.464 0.191
dg2vec V2 0.159 0.012 0.020 0.071 0.071 0.049 0.442 0.215

GAEN 0.1828 0.008 0.000 0.049 0.130 0.051 0.492 0.205
EGCN-H 0.195 0.014 0.013 0.090 0.153 0.363 0.391 0.225
EGCN-O 0.200 0.014 0.027 0.138 0.114 0.275 0.544 0.192

LED-GCN 0.196 0.015 0.032 0.163 0.193 0.469 0.471 0.261
LED-GAT 0.182 0.012 0.026 0.149 0.233 0.384 0.503 0.150

EFT-T 0.250 0.024 0.055 0.181 0.672 0.689 0.616 0.308

Performance comparison on
(continuous) large-scale tempo-
ral graph datasets: The results
on the large-scale SR datasets are
in Table 1 and EFT-T outperforms
baselines on all datasets. We note
that our gains to the best base-
line are higher in CDs, followed
by the Games and Beauty dataset.
We observe that as the density of
the graph and length of sequences
in the data increases (e.g., CD
dataset), the performance of EFT-
T enhances. We believe that as
graph density increases, higher-
order connections may encompass
noisy relations, a challenge conventional baselines struggle to filter out, whereas our method ef-
fectively handles this noise. Also, EFT effectively captures global interactions as it considers the
temporal aspect in the collective filtering module. Furthermore, compared to the FMLPRec model
that induces DFT into a transformer, EFT-T performs significantly better, concluding the necessity of
capturing evolving spectra of temporal graphs. We also note that among the graph-based methods,
SRGNN only considers connectivity information from the sequence graph, whereas HyperRec uses
higher-order connectivity information. This indicates that not using the graph information effectively
hampers performance but using higher-order connectivity without filtering to remove noise also
degrades the results.

8

Published as a conference paper at ICLR 2024

l[]

(a) Recall@10 (b) NDCG@10 (c) Recall@10 (d) NDCG@10

Figure 4: Effect of inducing 1) semantic noise in embeddings with and without filters (a-b) 2)
structural noise in the form of graph perturbations with and without graph filters (c-d), on the
performance of EFT . We consider large-scale SR setting.

Performance comparison on discrete temporal graph datasets: Table 2 summarizes link prediction
and node classification results. Across datasets, our model significantly outperforms all baselines,
which focus on learning local dependencies. It illustrates our framework’s effectiveness in filtering
noise and amplifying useful signals in evolving temporal graphs.

Effectiveness of filtering module (Figure 4): Our approach focuses on capturing use-
ful frequencies along vertex and time dimensions collectively while filtering the noise.
Hence, in this experiment, we aim to understand the effectiveness of the filters along
both graphs (vertex) and time dimension in the presence of explicitly added noise.

(a) Games (b) CDs

Figure 5: Filter frequency responses learnt by EFT
on dynamic graph datasets. The x-axis shows the
vertex frequency (0-2), y axis shows the normalized
temporal frequency and z axis shows the magnitudes
of the normalized frequency response.

Firstly, we induce semantic noise into the sys-
tem by adding a random vector (sampled from
a normal distribution) to the node embeddings.
Then, we run experiments on our model with
and without learnable collective graph-time
filters. To ensure a fair comparison, we keep
the parameters in both models the same and
simulate the no-filter configuration by using
a uniform distribution for the frequency re-
sponse (all-pass filter). In the presence of
noise, the performance of configuration with
filters is much better (p < 0.01) than that
without any filtering. Next, we induce struc-
tural noise into the system by adding random
nodes/edges. We observe that on inducing
structural noise, the performance of the con-
figuration with graph filters is statistically better (p < 0.01 using a paired t-test) compared to the
one without, confirming that collective filtering is needed to be robust to structural noise in dynamic
graphs. Additionally, we plotted the filter frequency responses of EFT on the Games and CDs datasets
in Figure 5. The figure shows dominating low-frequency response and higher-frequency components,
indicating global aggregation for the long-range interactions.

8 CONCLUSION

In this paper, we introduce a novel approach to transform temporal graphs into the frequency domain,
grounded on theoretical foundations. We propose pseudospectrum relaxations to the variational
objective obtaining a simplified transformation, making it computationally efficient for real-world
applications. We show that the error between the proposed transform and the exact solution to
the variational objective is bounded from above and study its properties. We further demonstrate
the practical effectiveness for temporal graphs. In the current scope, we do not consider generic
signed and directed graphs. To mitigate this, we suggest future works explore generalizing the
Laplacian and the resulting transform to such graphs, leveraging techniques proposed in (Mercado
et al., 2016; Cucuringu et al., 2021). Our work opens up new possibilities for dynamic graph analysis
and representation learning, and we encourage researchers to explore potential of EFT as a spectral
representation of the evolving graph in downstream graph representation learning models.

9

Published as a conference paper at ICLR 2024

REFERENCES

Einstein Albert, W Perrett, and G Jeffery. The foundation of the general theory of relativity. Ann.
Der Phys, 49:769–822, 1916.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
International Conference on Learning Representations, 2020.

Nikolaos Bastas, Theodoros Semertzidis, Apostolos Axenopoulos, and Petros Daras. evolve2vec:
Learning network representations using temporal unfolding. In MultiMedia Modeling: 25th
International Conference, MMM 2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings,
Part I 25, pp. 447–458. Springer, 2019.

Anson Bastos, Abhishek Nadgeri, Kuldeep Singh, Hiroki Kanezashi, Toyotaro Suzumura, and
Isaiah Onando Mulang’. How expressive are transformers in spectral domain for graphs? Transac-
tions on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/
forum?id=aRsLetumx1.

Anson Bastos, Abhishek Nadgeri, Kuldeep Singh, Toyotaro Suzumura, and Manish Singh. Learnable
spectral wavelets on dynamic graphs to capture global interactions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pp. 6779–6787, 2023.

Jonathan M. Blackledge. Chapter 2 - 2d fourier theory. In Digital Image Processing, Woodhead
Publishing Series in Electronic and Optical Materials, pp. 30–49. Woodhead Publishing, 2005.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-series
forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Conguri Huang, Yunhai Tong, Bixiong
Xu, Jing Bai, Jie Tong, and Qi Zhang. Spectral temporal graph neural network for multivariate
time-series forecasting, 2021.

Jinyin Chen, Xueke Wang, and Xuanheng Xu. Gc-lstm: Graph convolution embedded lstm for
dynamic network link prediction. Applied Intelligence, pp. 1–16, 2022.

Cheng Cheng, Yang Chen, Yeon Ju Lee, and Qiyu Sun. Svd-based graph fourier transforms on
directed product graphs. IEEE Transactions on Signal and Information Processing over Networks,
9:531–541, 2023. doi: 10.1109/TSIPN.2023.3299511.

Mihai Cucuringu, Apoorv Vikram Singh, Déborah Sulem, and Hemant Tyagi. Regularized spectral
methods for clustering signed networks. The Journal of Machine Learning Research, 22(1):
12057–12135, 2021.

da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation
learning on temporal graphs. In International Conference on Learning Representations, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Saul I. Gass and Michael C. Fu (eds.). Karush-Kuhn-Tucker (KKT) Conditions, pp. 833–834. Springer
US, Boston, MA, 2013. ISBN 978-1-4419-1153-7.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dynamic
graphs. IJCAI Workshop on Representation Learning for Graphs, 2017.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowl. Based Syst., 187, 2020.

Francesco Grassi, Andreas Loukas, Nathanaël Perraudin, and Benjamin Ricaud. A time-vertex signal
processing framework: Scalable processing and meaningful representations for time-series on
graphs. IEEE Transactions on Signal Processing, 66(3):817–829, 2017.

10

https://openreview.net/forum?id=aRsLetumx1
https://openreview.net/forum?id=aRsLetumx1

Published as a conference paper at ICLR 2024

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for session-
based recommendations. In Proceedings of the 27th ACM international conference on information
and knowledge management, pp. 843–852, 2018.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph
benchmark for machine learning on temporal graphs. arXiv preprint arXiv:2307.01026, 2023.

Junzheng Jiang, Hairong Feng, David B. Tay, and Shuwen Xu. Theory and design of joint time-vertex
nonsubsampled filter banks. IEEE Transactions on Signal Processing, 69:1968–1982, 2021. doi:
10.1109/TSP.2021.3064984.

Mengyuan Jing, Yanmin Zhu, Yanan Xu, Haobing Liu, Tianzi Zang, Chunyang Wang, and Jiadi
Yu. Learning shared representations for recommendation with dynamic heterogeneous graph
convolutional networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Bünyamin Kartal, Eray Özgünay, and Aykut Koç. Joint time-vertex fractional fourier transform,
2022.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21
(70):1–73, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, 2017.

Takashi Kurokawa, Taihei Oki, and Hiromichi Nagao. Multi-dimensional graph fourier transform,
2017.

P. Lancaster and H. K. Farahat. Norms on direct sums and tensor products. Mathematics of
Computation, 26(118):401–414, 1972. ISSN 00255718, 10886842.

Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequential
recommendation. In Proceedings of the 13th international conference on web search and data
mining, pp. 322–330, 2020a.

Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and S Yu Philip. Dynamic graph
collaborative filtering. In 2020 IEEE International Conference on Data Mining (ICDM), pp.
322–331. IEEE, 2020b.

Andreas Loukas and Damien Foucard. Frequency analysis of time-varying graph signals. In 2016
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 346–350. IEEE,
2016.

Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 825–833, 2019.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Proceedings of the 43rd international ACM SIGIR conference on research and development in
information retrieval, pp. 719–728, 2020.

Arash Golibagh Mahyari and Selin Aviyente. Fourier transform for signals on dynamic graphs. In
2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 2001–2004. IEEE, 2014.

Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.
Pattern Recognit., 97, 2020.

11

Published as a conference paper at ICLR 2024

Pedro Mercado, Francesco Tudisco, and Matthias Hein. Clustering signed networks with the
geometric mean of laplacians. Advances in neural information processing systems, 29, 2016.

Apurva Narayan and Peter HO’N Roe. Learning graph dynamics using deep neural networks.
IFAC-PapersOnLine, 51(2):433–438, 2018.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018.

Chao Pan, Siheng Chen, and Antonio Ortega. Spatio-temporal graph scattering transform. In
International Conference on Learning Representations, 2020.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, pp. 5363–5370. AAAI Press, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pp. 452–461, 2009.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov
chains for next-basket recommendation. In Proceedings of the 19th international conference on
World wide web, pp. 811–820, 2010.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Purnamrita Sarkar, Deepayan Chakrabarti, and Michael Jordan. Nonparametric link prediction in
dynamic networks. arXiv preprint arXiv:1206.6394, 2012.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. CoRR, abs/1612.07659, 2016. URL
http://arxiv.org/abs/1612.07659.

Min Shi, Yu Huang, Xingquan Zhu, Yufei Tang, Yuan Zhuang, and Jianxun Liu. Gaen: Graph
attention evolving networks. In IJCAI, pp. 1541–1547, 2021.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

Duraisamy Sundararajan. The discrete fourier transform. In Signals and Systems, pp. 125–160.
Springer, 2023.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM international conference on web search and data
mining, pp. 565–573, 2018.

Terrence Tao. When are eigenvalues stable?, 2008. URL https://terrytao.wordpress.com/
2008/10/28/when-are-eigenvalues-stable/.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Marisel Villafañe-Delgado and Selin Aviyente. Dynamic graph fourier transform on temporal
functional connectivity networks. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 949–953, 2017.

12

http://arxiv.org/abs/1612.07659
https://terrytao.wordpress.com/2008/10/28/when-are-eigenvalues-stable/
https://terrytao.wordpress.com/2008/10/28/when-are-eigenvalues-stable/

Published as a conference paper at ICLR 2024

Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James Caverlee. Next-item recommenda-
tion with sequential hypergraphs. In Proceedings of the 43rd international ACM SIGIR conference
on research and development in information retrieval, pp. 1101–1110, 2020.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341–23362. PMLR, 2022.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 346–353, 2019.

Xintao Xiang, Tiancheng Huang, and Donglin Wang. Learning to evolve on dynamic graphs (sa).
In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022. AAAI Press, 2022. URL
https://arxiv.org/pdf/2111.07032.pdf.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. Dynamic graph neural networks for
sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022.

Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. Filter-enhanced mlp is all you need for
sequential recommendation. In Proceedings of the ACM Web Conference 2022, pp. 2388–2399,
2022.

13

https://arxiv.org/pdf/2111.07032.pdf

Published as a conference paper at ICLR 2024

A PRELIMINARIES

Here we give an extended discussion of the preliminaries which could not be accommodated in the
main paper due to space constraints.

A.1 DISCRETE FOURIER TRANSFORM

The Discrete Fourier Transform (DFT) is used to obtain the frequency representation of a sequence
of signal values sampled at equal intervals of time. The magnitude and phase of the frequency
components are obtained by multiplying the signal values by complex sinusoids of the respective
frequencies. Consider a signal x sampled at N intervals of time t ∈ [0, N − 1] to obtain the sequence
{xt}. The DFT of xt is then given by,

Xk =

N−1∑
t=0

xte
−iωtk, ωt =

2πt

N
(8)

The transformed sequence Xk gives the values of the signal in the frequency domain. If we represent
X as the vector form of the signal we can define the DFT matrix ΨT such that Xk = ΨTX . Thus
Xk is the complex valued spectrum of {xt} at frequency ωt. We can perform filtering by removal of
noisy frequencies in this spectral domain. As required by signal processing applications we can then
obtain the signal sequence in the time domain from the frequency domain {Xk} using the Inverse
Discrete Fourier Transform (IDFT) as,

xt =
1

N

N−1∑
k=0

Xke
iωkt, ωk =

2πk

N
(9)

A.2 GRAPH FOURIER TRANSFORM

Graph Fourier Transform (GFT) is a generalization of the Discrete Fourier Transform to graphs. We
represent a graph as (V, E) where V is the set of N nodes and E represents the edges between them.
Denote the adjacency matrix by A. In the setting of an undirected graph A would be a symmetric
matrix. D is the degree matrix, defined as (D)ii =

∑
j(A)ij , which is diagonal. The Laplacian of the

graph is given by L̂ = D−A and the normalized Laplacian L is defined as L = I−D− 1
2AD− 1

2 . The
Laplacian(L) can be decomposed into its orthogonal basis, namely the eigenvectors and eigenvalues
as:L = Ψ∗

GΛΨG, where U is an N ×N matrix whose columns are the eigenvectors corresponding
to the eigenvalues λ1, λ2, . . . , λN and Λ = diag([λ1, λ2, . . . , λn]). Let X ∈ RN×d be the signal
on the nodes of the graph. The Fourier Transform X̂ of X is then given as: X̂ = ΨGX . Similarly,
the inverse Fourier Transform is defined as: X = Ψ∗

GX̂ . Note Ψ∗
G is the transposed conjugate of

ΨG. By the convolution theorem (Blackledge, 2005), the convolution of the signal X with a filter G
having its frequency response as Ĝ is given by (below, m represents the mth node in the graph, ΨGk

represents the kth eigenvector or column of ΨG):

(X ∗G)(m) =

N∑
k=1

X̂(k)Ĝ(k)ΨGk
(m)

(X ∗G)(m) =

N∑
k=1

(ΨGX)(k)Ĝ(k)Ψ∗
Gk

(m)

X ∗G = Ψ∗
GĜΨGX

(10)

Note that a sequence can be considered as a grid graph and for this graph the GFT specializes to the
DFT i.e ΨT = ΨG.

B THEORETICAL PROOFS

In this section we outline the proofs stated in the main paper and briefly discuss the implications etc.
that could not be accommodated in the main paper due to space constraints. For completeness we
restate the results.

14

Published as a conference paper at ICLR 2024

Lemma 1. (Variational Characterization of JD) The 2-Dirichlet S2(X) of the signals X on JD is
the quadratic form of the Laplacian LJD of JD i.e.

S2(X) = vec(X)TLJDvec(X)

Proof. The p-Dirichlet form is given by

Sp(X) =
1

p

N∑
n=1

∫ T

t=0

∥∆ni,tX∥2p

=
1

p

T∑
t=1

N∑
n=1

 ∑
nj

Gt∼ni

(
Xnj ,t −Xni,t

)2
+

(
∂Xni,t

∂t
dt

)2


p
2

Thus the 2-Dirichlet form is

S2(X) =
1

2

N∑
n=1

∫ T

t=0

∥∆ni,tX∥22

=
1

2

∫ T

t=0

N∑
n=1

 ∑
nj

Gt∼ni

(
Xnj ,t −Xni,t

)2
+

(
∂Xni,t

∂t
dt

)2


=

1

2

∫ T

t=0

N∑
n=1

∑
nj

Gt∼ni

(δXni,t)
2


+

1

2

(∫ T

t=0

N∑
n=1

(Xni,t−dt −Xni,t)
2

)
We consider the above sum in two parts. Taking the first part we have

1

2

∫ T

t=0

N∑
n=1

∑
nj

Gt∼ni

(
Xnj ,t −Xni,t

)2

=
1

2

∫ T

t=0

N∑
n=1

∑
nj

Gt∼ni

(
X2

nj ,t − 2 ∗Xnj ,t ∗Xni,t +X2
ni,t

)

=
1

2

∫ T

t=0

N∑
n=1

∑
nj

Gt∼ni

(
X2

nj ,t −Xnj ,t ∗Xni,t −Xnj ,t ∗Xni,t +X2
ni,t

)

=
1

2

∫ T

t=0

N∑
n=1

∑
nj

Gt∼ni

(
Xnj ,t

(
Xnj ,t −Xni,t

)
+Xni,t

(
Xni,t −Xnj ,t

))

=
1

2

∫ T

t=0

N∑
n=1

2 ∗
∑

nj
Gt∼ni

(
Xnj ,t

(
Xnj ,t −Xni,t

))

=

∫ T

t=0

N∑
n=1

∑
nj

Gt∼ni

(
Xnj ,t

(
Xnj ,t −Xni,t

))
= vec(X)⊤(IT ⊗ LGt

)vec(X)

15

Published as a conference paper at ICLR 2024

Considering the second part which is the ring graph along the time dimension we have

1

2

(∫ T

t=0

N∑
n=1

(Xni,t−dt −Xni,t)
2

)

=
1

2

(∫ T

t=0

N∑
n=1

X2
ni,t−dt − 2 ∗Xni,t−dt ∗Xni,t +X2

ni,t

)

=
1

2

(∫ T

t=0

N∑
n=1

2X2
ni,t−dt − 2 ∗Xni,t−dt ∗Xni,t

)
. . . Redistributing terms

=

∫ T

t=0

N∑
n=1

X2
ni,t−dt −Xni,t−dt ∗Xni,t

=

∫ T

t=0

N∑
n=1

Xni,t−dt (Xni,t−dt −Xni,t)

= vec(X)⊤(LT ⊗ IN)vec(X)

Combining the results of the 2 parts we get the below result

S2(X) = vec(X)⊤(IT ⊗ LGt
)vec(X) + vec(X)⊤(LT ⊗ IN)vec(X)

= vec(X)⊤ (IT ⊗ LGt + LT ⊗ IN) vec(X)

= vec(X)⊤LJDvec(X)

as required.

This implies that LJD ⪰ 0. We can see that slower the changes in the signals along the dynamic
graph smaller the value of S2(X) and vice versa. Thus we have a notion of variation of signals on
the dynamic graph similar to the case of static graphs. The eigen decomposition of LJD therefore
characterizes signals on the dynamic graph by its projection to the optimizers of S2(X). In other
words, high collective dynamic graph frequency components inform of the presence of sharply
varying signals and smoother signals will have higher magnitude in the low frequency components.
Next we provide a solution to the relaxed pseudospectrum objective in 2.

Lemma 2. Consider the variational form xTLJDx =
∫ NT

i=0
x(i)

∫ NT

j=0
LJD (i, j)x(j)didj. The

optimization problem f = min
x,∥x∥≤1

[|xTLJDx−λs| − ϵ]+ has the optimal solution as yω ⊗ zωl , where

λs is the optimal value of equation 4, yω is the ω-th optimal solution of the ring graph, ztl is the l-th
optimal solution of the graph at time t and ϵ = O(δ).

Proof. We begin by considering the variational characterization of LJD which is given by the below
equation

λs = max
x,∥x∥≤1

∫ NT

i=0

x(i)

∫ NT

j=0

LJD (i, j)x(j)didj max
x,∥x∥≤1

xTLJDx (11)

Note that in the objective, xTLJDx is convex since LJD ⪰ 0 and thus ∇2
(
xTLJDx

)
= 2LJD ⪰ 0.

Also, we can check that ∥x∥2 ≤ 1 is convex. Thus applying the KKT conditions (Gass & Fu, 2013)
to the lagrangian L = xTLJDx+ λ(∥x∥2 − 1), we get the below equation

LJDx = λsx (12)

We recognize from the above equation that λs is the eigenvalue of LJD and x is the correspond-
ing eigenvector. However the computation of this exact solution is computationally costly and
here we are ineterested in finding an efficient form of the solution to the objective with the
pseudospectrum relaxation. As already seen, the pseudospectrum can be defined by the set
{λ ∈ C |

∥∥(LJD − λI)−1
∥∥ ≥ 1

ϵ } or equivalently {λ ∈ C | ∥(LJD − λI)∥ ≤ ϵ}, where

16

Published as a conference paper at ICLR 2024

∥.∥ is the operator norm. Thus we have that for the pseudospectrum, there exists a unit vector v such
that |(LJD − λI)v| ≤ ϵ and so |λs − λ| ≤ ϵ. This shows that the ϵ− neighborhood of the spectrum
of LJD is contained in the pseudospectrum i.e. if λ is in the pseudospectrum of LJD it is in the ϵ−
neighborhood of λs. We would now like to find a solution residing in the pseudospectrum of LJD .

We have {LGt} ∈ RN×N×T to be the Laplacian of the graphs at each timestep with eigenvalues λt
i

where i ∈ N, t ∈ [0, T]. LT ∈ RT×T be the Laplacian of the time adjacency matrix with eigenvalues
µj where j ∈ T . The Laplacian of the collective graph JD is expressed as

LJD = LT ⊕ {LGt
} = LT ⊗ IN + [IT ⊠ {LGt

}]
In the above equation, ⊠ is the timestep wise Kronecker product and operator [.] represents the
vectorization. If T is discrete this vectorization can be thought of as a reordering from RNT×T×N −→
RNT×NT . Consider a1, a2, . . . ap to be the linearly independent right eigenvectors of LT and
bt1, b

t
2, . . . b

t
qt to be the linearly independent right eigenvectors of LGt

. Consider the vector y =

[ak ⊠ {btl}], where {btl} represents the set of eigenvectors of Laplacian at time t i.e. LGt and the
operator ⊠ is again timestep wise followed by vectorization. Then we have

LJDy = LT ⊗ INy + [IT ⊠ {LGt
}]y

= (LT ⊗ {IN})[ak ⊠ {btl}] + [IT ⊠ {LGt}][ak ⊠ {btl}]
= (LT ⊗ {IN}□[ak ⊠ {btl}]) + (IT ⊗ {LGt

}□[ak ⊠ {btl}])
= [LTak ⊠ {IN}□{btl}] + [ITak ⊠ {LGt

□{btl}}]
= (µk[ak ⊠ {btl}]) + [ak ⊠ {λt

l{btl}}]
= (µk[ak ⊠ {btl}] + [ak ⊠ {λt

l{btl}}]
= ([ak ⊠ {btl}]diag({µk}) + [ak ⊠ {btl}diag({λt

l})]
= ([ak ⊠ {btl}]diag({µk + λt

l}))

where □ indicates timestep (column) wise product and diag(.) operator converts a vector to a diagonal
matrix. Now considering the graph at the 0-th timestep having eigenvalue λ0

l , we are interested in
verifying the pseudospectrum condition for µk + λ0

l }. We thus have to find the upper bound for∥∥LJD − (µk + λ0
l)I
∥∥.

In order to bound the above expression we consider the vector y = [ak ⊠ {btl}]. We have from the
above equations,∥∥LJDy − (µk + λ0

l)y
∥∥ = ([ak ⊠ {btl}]diag({µk + λt

l − (µk + λ0
l)})) (13)

We would like to study the rate of change of the eigenvalues as the graph changes. Consider a normal
matrix A of which the eigenvectors v1, . . . , vn form a basis of Cn. Also we consider w1, . . . , wn be
the dual basis, i.e. w∗

j vk = δjk for all 1 ≤ j, k ≤ n, where δjk is the Kronecker delta and

δjk =

{
1, if j = k

0, otherwise

Since the eigenvectors form a basis we can represent any vector u as a linear combination of
v1, . . . , vn as u =

∑n
j=1 ajvj . Also we have w∗

ju =
∑n

j=1 ajw
∗
j vj = aj . We thus have the below

equation

u =

n∑
j=1

(w∗
ju)vj (14)

for any vector u ∈ Cn. We know the below relation due to vk being the eigenvector of A with eigen
value λk

Avk = λkvk (15)
We also can write the following in terms of the dual basis (since A is a normal matrix)

w∗
kA =

∑
j

λjw
∗
kvjw

∗
j

w∗
kA = λkw

∗
k

(16)

17

Published as a conference paper at ICLR 2024

We now differentiate 21 using the product rule of differentiation to get

Ȧvk +Av̇k = λ̇kvk + λkv̇k (17)

Taking the inner product of the equation 23 with w∗
k, and using 22 we obtain:

Ȧvk +Av̇k = λ̇kvk + λkv̇k

w∗
kȦvk + w∗

kAv̇k = w∗
kλ̇kvk + w∗

kλkv̇k

w∗
kȦvk + λkw

∗
kv̇k = λ̇kw

∗
kvk + λkw

∗
kv̇k

w∗
kȦvk = λ̇k

λ̇k = w∗
kȦvk

(18)

Assuming λ0
k to be the eigenvalue at the start, we can get the value after time t by simply integrating

as follows,

λt
k = λ0

k +

∫ t

0

ωkȦvk0
dt (19)

Thus from the above result and equation 13 we have∥∥LJDy − (µk + λ0
l)y
∥∥ =

∥∥[ak ⊠ {btl}]diag({µk + λt
l − (µk + λ0

l)})
∥∥

=
∥∥[ak ⊠ {btl}]diag(λt

l − λ0
l })
∥∥

=

∥∥∥∥[ak ⊠ {btl}]diag(
∫ t

0

ωkȦvk0
dt)

∥∥∥∥
≤
∥∥[ak ⊠ {btl}]

∥∥∥∥∥∥diag(∫ t

0

ωkȦvk0dt)

∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

∫ t

0

ωkȦvk0
dtdt

∥∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

∫ t

0

∥∥∥ωkȦvk0

∥∥∥dtdt∥∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

∫ t

0

∥∥∥Ȧ∥∥∥dtdt∥∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

∫ t

0

δNdtdt

∥∥∥∥∥
≤

∥∥∥∥∥
∫ T

0

δNTdt

∥∥∥∥∥
≤ δNT 2

≤ O(δ)∥∥LJDy − (µk + λ0
l)y
∥∥ ≤ ϵ∥∥LJD − (µk + λ0

l)
∥∥ ≤ ϵ

Thus µk + λ0
l is in the pseudospectrum of LJD and so y = [ak ⊠ {btl}] is one of the solutions to the

objective with the pseudospectrum relaxation. Thus it follows that [ΨT ⊠{ΨGt
}] forms a basis of the

solution to the defined objective, where ΨT and ΨGt
have a∗k and btl as their row spaces respectively.

The above result gives us the definition of EFT in terms of the Kronecker product of the Time Fourier
Transform and the Graph Fourier Transform of the graph at each time. While both EFT and AD are
solutions to the pseudospectrum relaxed objectives they are not equal in general. To see this, we

18

Published as a conference paper at ICLR 2024

first need to look at the eigenvectors of LJD . Let ΨAD be the matrix whose rows form the right
eigenvectors of LJD . Below we state and prove the result of equivalence between ΨD and ΨAD for
the general case of dynamic graphs using a counter example

Remark 1. In general, the collective dynamic graph fourier transform as defined by the operator
ΨD does not form the eigenspace of the spectrum of LJD i.e. ΨD ̸= ΨAD.

Proof. It is sufficient to show a single counter example to conclude the statement.

Consider the below weighted adjacency matrix for a certain graph at time t0

G0 =

[
1 0.5
0.5 1

]
Let this change to the following in the next timestep t1

G1 =

[
1 0.6
0.6 1

]
The Laplacian LJD is given by

LJD =

 1.5 −0.5 −1. −0.
−0.5 1.5 −0. −1.
−1. −0. 1.6 −0.6
−0. −1. −0.6 1.6


The EFT matrix ΨD is

ΨD =

0.5 −0.5 −0.5 0.5
0.5 0.5 −0.5 −0.5
0.5 −0.5 0.5 −0.5
0.5 0.5 0.5 0.5


Similarly the matrix ΨAD comes out to be the following (upto sign and row wise permutations)

ΨAD =

0.47 −0.47 −0.52 0.52
0.5 0.5 −0.5 −0.5
0.52 −0.52 0.47 −0.47
0.5 0.5 0.5 0.5


From the above we can see the two matrices differ and so we have a counter example.

From the above result we can see that in the general case of dynamic graphs the defined EFT and the
eigen decomposition of the defined Laplacian LJDare not the same. Thus we can have an alternate
definition of the collective dynamic graph fourier transform in terms of the decomposition of the joint
Laplacian LJD . We term ΨAD as the Absolute Drcomposition or AD for brevity.

Both EFT and AD have their own advantages. EFT has a simple primal definition and is easy to
compute whereas AD has a beautiful physical interpretation. Even though EFT and AD are not exactly
the same, in order to have desirable properties of both we can define approximation bounds that inform
under what conditions the two transforms can be used interchangeably upto the approximation error.
We work under the below assumptions for weighted graphs in order to bound the two transforms:

1. The rate of change of the graph with time is bounded
2. The eigenvalues of the graph Laplacian at any given timestep and between timesteps has a

multiplicity of 1

The condition 2 is required for stability of the bound and can be enforced for example by adding
random perturbations to the matrix.

Based on these assumptions we state and prove the bounds between EFT and AD below

19

Published as a conference paper at ICLR 2024

Theorem 1. Considering bounded changes in a graph G with N nodes over time T , the norm
of the difference between EFT (ΨD) and AD (ΨAD) is bounded as follows: ∥ΨD −ΨAD∥ ≤

O
(

N
3
2 Tω

1
2
max

(∆λG)min
+

N
3
2 Tω2

max

(∆λJ)min

)(∥∥∥L̇G

∥∥∥)
max

where (∆λG)min and (∆λJ)min refer to the minimum

difference between the eigenvalues of matrices LG and LJD respectively, L̇G is the rate of change of
LG and ωmax = 2π.

Proof. Consider LJ to be the Laplacian of collective graph when the graphs are static with time.
We can show this, in a similar manner as LJD to be LJ = LT ⊗ IN + IT ⊗ LG, where LG is the
Laplacian of the static graph. Let ΨJ be the matrix whose rows form the left eigenvectors of LJ .
Now we consider the graph to change infinitesimally with LG as the starting state of the Laplacian.
We intend to bound the frobenius norm ∥ΨD −ΨAD∥. We can manipulate this as follows

∥ΨD −ΨAD∥ = ∥ΨD −ΨAD +ΨJ −ΨJ∥
= ∥ΨD −ΨJ +ΨJ −ΨAD∥
≤ ∥ΨD −ΨJ∥+ ∥ΨJ −ΨAD∥

We thus find the bound in two parts first for the error between ΨD,ΨJ and second for the error
between ΨJ ,ΨAD.

In order to bound the matrices (which are formed by the eigenvectors) we first attempt to bound
the vectors forming the matrix. For this we study the rate of change of the vectors with time (as
the graph evolves) using the language of calculus. For deeper insights into this and the stability of
eigenvectors/values we refer the interested reader to (Tao, 2008). Consider a normal matrix A of
which the eigenvectors v1, . . . , vn form a basis of Cn. Also we consider w1, . . . , wn be the dual
basis, i.e. w∗

j vk = δjk for all 1 ≤ j, k ≤ n, where δjk is the Kronecker delta and

δjk =

{
1, if j = k

0, otherwise

Since the eigenvectors form a basis we can represent any vector u as a linear combination of
v1, . . . , vn as u =

∑n
j=1 ajvj . Also we have w∗

ju =
∑n

j=1 ajw
∗
j vj = aj . We thus have the below

equation

u =

n∑
j=1

(w∗
ju)vj (20)

for any vector u ∈ Cn. We know the below relation due to vk being the eigenvector of A with eigen
value λk

Avk = λkvk (21)
We also can write the following in terms of the dual basis (since A is a normal matrix)

w∗
kA =

∑
j

λjw
∗
kvjw

∗
j

w∗
kA = λkw

∗
k

(22)

We now differentiate 21 using the product rule of differentiation to get

Ȧvk +Av̇k = λ̇kvk + λkv̇k (23)

Taking the inner product of the equation 23 with w∗
k, and using 22 we obtain:

Ȧvk +Av̇k = λ̇kvk + λkv̇k

w∗
kȦvk + w∗

kAv̇k = w∗
kλ̇kvk + w∗

kλkv̇k

w∗
kȦvk + λkw

∗
kv̇k = λ̇kw

∗
kvk + λkw

∗
kv̇k

w∗
kȦvk = λ̇k

λ̇k = w∗
kȦvk

(24)

20

Published as a conference paper at ICLR 2024

In our case since A is normal, we have the eigenbasis vk as an orthonormal set, and the dual basis wk

is identical to vk.

We are interested in how the eigenvectors change with time. Taking the inner product of equation 23
with w∗

j for j ̸= k, we get

Ȧvk +Av̇k = λ̇kvk + λkv̇k

w∗
j Ȧvk + w∗

jAv̇k = w∗
j λ̇kvk + w∗

jλkv̇k

w∗
j Ȧvk + λjw

∗
j v̇k = λ̇kw

∗
j vk + w∗

jλkv̇k

w∗
j Ȧvk + λjw

∗
j v̇k = w∗

jλkv̇k

w∗
j Ȧvk + λjw

∗
j v̇k − w∗

jλkv̇k = 0

w∗
j Ȧvk + (λj − λk)w

∗
j v̇k = 0

w∗
j v̇k =

w∗
j Ȧvk

(λk − λj)

(25)

Using the above in 20 we obtain the following

v̇k =

n∑
j=1

(w∗
j v̇k)vj

v̇k =
∑
j ̸=k

(w∗
j v̇k)vj + (w∗

kv̇k)vk

v̇k =
∑
j ̸=k

w∗
j Ȧvk

λk − λj
vj + (w∗

kv̇k)vk

(26)

We consider the change in A so that the resulting matrix is also normal. Thus the eigenvectors of
the resulting matrix will also be orthonormal. This imples all the vectors lie on the surface of the
unit sphere in Cn and so the change in the eigenvectors should be along the surface of this sphere.
As such Ȧvk will be tangential to the sphere at vk and so v̇⊤k vk = 0. Note this need not be the case
in general if we consider non-unit vectors (that could also be eigenvectors). Thus we can represent
v̇k = 0vk +

∑
j ̸=k bjvj . Thus we have

v̇k = vk +
∑
j ̸=k

bjvj

w∗
kv̇k = w∗

k

∑
j ̸=k

bjvj


w∗

kv̇k =

∑
j ̸=k

bjw
∗
kvj


w∗

kv̇k = 0

21

Published as a conference paper at ICLR 2024

Using the above equations and the consideration that ∥vj∥ = 1 we have

v̇k =
∑
j ̸=k

w∗
j Ȧvk

λk − λj
vj

∥v̇k∥ =

∥∥∥∥∥∥
∑
j ̸=k

w∗
j Ȧvk

λk − λj
vj

∥∥∥∥∥∥
≤
∑
j ̸=k

∥∥∥∥∥ w∗
j Ȧvk

λk − λj
vj

∥∥∥∥∥
≤
∑
j ̸=k

∥∥∥∥∥ w∗
j Ȧvk

λk − λj

∥∥∥∥∥∥vj∥

Since we consider orthonormal vectors ∥vj∥ = 1

∴ ∥v̇k∥ ≤
∑
j ̸=k

∥∥∥∥∥ w∗
j Ȧvk

λk − λj

∥∥∥∥∥
≤
∑
j ̸=k

∥∥∥w∗
j Ȧvk

∥∥∥
∥λk − λj∥

≤
∑
j ̸=k

σ(Ȧ)

∥λk − λj∥

≤
∑
j ̸=k

∥∥∥Ȧ∥∥∥
∥λk − λj∥

≤
∑
j ̸=k

∥∥∥Ȧ∥∥∥
(∆λ)min

≤ N − 1

(∆λ)min

∥∥∥Ȧ∥∥∥

where σ(.) is the operator norm and (∆λ)min is the absolute of the minimum difference between
the eigenvalues of A. in the above we have seen how the change in eigenvectors is bounded by the
change in the matrix. Using this result we now attempt to bound the change in the required transform
matrices.

For the first part we bound ∥ΨD −ΨJ∥. Let ∆v represent the (infinitesimal) change in the eigenvec-
tors of LG in time t and let ∆vi be the infinitesimal change per unit time in the vector at step i. Thus
using the triangle inequality we have the below equations

∥∆v∥ ≤
∑
i

∥∆vi∥

∥∆v∥ ≤
∫
t

∥v̇(t)∥dt

22

Published as a conference paper at ICLR 2024

Using the above derived inequality ∥v̇k∥ ≤ N−1
(∆λ)min

∥∥∥Ȧ∥∥∥ for LG we have

∥∆v∥ ≤
∫
t

∥∥∥∥ N − 1

(∆λ)min

∥∥∥L̇G(t)
∥∥∥∥∥∥∥dt

≤
∫
t

N − 1

(∆λ)min

(∥∥∥L̇G(t)
∥∥∥)

max
dt

Finally taking the maximum norm of the rate of change in LG over the entire time duration we have
the following

∥∆v∥ ≤ N − 1

(∆λ)min

(∥∥∥L̇G

∥∥∥)
max

∫
t

dt

∥∆v∥ ≤ N − 1

(∆λ)min

(∥∥∥L̇G

∥∥∥)
max

t

≤ O(N − 1)T

(∆λ)min

(∥∥∥L̇G

∥∥∥)
max

where
(
L̇G

)
max

is the maximum of the norm of the rate of change of LG over all timesteps
considered and we absorb the total time t into the constant factor considering finite time. Thus we
have, ∥∥∥Ψ̇G

∥∥∥ =

√∑
i

∥vi∥2

≤
√
N(N − 1)T

(∆λG)min

(
L̇G

)
max

≤ O(N
3
2T)

(∆λG)min

(
L̇G

)
max

Thus using theorem 8 from (Lancaster & Farahat, 1972) and the fact that ∥Ψt
T ∥ = 1 we have,

∥ΨD −ΨJ∥ = ∥([ΨT ⊠ ({ΨGt
} −ΨG)])∥

=

(∫
ω

∥Ψω
T ⊗ (ΨGω

−ΨG)∥2
) 1

2

≤
(∫

ω

∥Ψω
T ∥

2∥(ΨGω
−ΨG)∥2

) 1
2

≤
(∫

ω

∥(ΨGω
−ΨG)∥2

) 1
2

≤
(∫

ω

∥∆ΨGω∥
2

) 1
2

≤

∫
ω

(
O(N

3
2T)

(∆λG)min

∥∥∥L̇Gω

∥∥∥
max

)2
 1

2

≤

ωmax

(
O(N

3
2T)

(∆λG)min

∥∥∥L̇G

∥∥∥
max

)2
 1

2

∥ΨD −ΨJ∥ ≤

(
O(N

3
2Tω

1
2
max)

(∆λG)min

∥∥∥L̇G

∥∥∥
max

)

23

Published as a conference paper at ICLR 2024

where T is the time duration over which the evolution ghof the graphs is considered.

For the second part we can show that

∥ΨJ −ΨAD∥ =
∥∥∥Ψ̇J

∥∥∥
=

√∫ Nωmax

i=0

∥vi∥2

≤
√
Nωmax(Nωmax − 1)T

(∆λJ)min

(
L̇J

)
max

≤ O((Nωmax)
3
2T)

(∆λJ)min

(
L̇J

)
max

Also we have,
LJ = LT ⊕ LG

= LT ⊗ IN + IT ⊗ LG

L̇J = IT ⊗ L̇G∥∥∥L̇J

∥∥∥ =
∥∥∥IT ⊗ L̇G

∥∥∥∥∥∥L̇J

∥∥∥ = ∥IT ∥
∥∥∥L̇G

∥∥∥∥∥∥L̇J

∥∥∥ =

∫
ω

(dω)
1
2

∥∥∥L̇G

∥∥∥∥∥∥L̇J

∥∥∥ =
√
ω
∥∥∥L̇G

∥∥∥
∴ ∥ΨJ −ΨAD∥ ≤ O(N

3
2)

(∆λJ)min

(
L̇J

)
max

≤ O(N
3
2ω2T)

(∆λJ)min

(
L̇G

)
max

Combining the two parts we get the result
∥ΨD −ΨAD∥ ≤ ∥ΨD −ΨJ∥+ ∥ΨJ −ΨAD∥

≤ O

(
N

3
2Tω

1
2
max

(∆λG)min
+

N
3
2Tω2

max

(∆λJ)min

)(∥∥∥L̇G

∥∥∥)
max

(27)

For the discrete case this bound becomes

∥ΨD −ΨAD∥ ≤ O

(
(NT)

3
2

(∆λG)min
+

(NT 2)
3
2

(∆λJ)min

)(∥∥∥L̇G

∥∥∥)
max

(28)

We thus see that as the graph evolves infinitesimally the difference between ΨD and ΨAD is bounded
from above by the change in the graph matrix representation. This is desirable since it allows us to
approximate ΨAD (formed by the eigendecomposition of LJD) which has a physical interpretation
using the defined ΨD which is simple to compute, when the graph changes in a stable manner. In
such cases, EFT therefore characterizes signals on the dynamic graph by its proximity (projection) to
the optimizers of S2(X) meaning high (collective dynamic graph) frequency components correspond
to sharply varying signals and low frequency components to smoother signals. Having derived the
transform, we next state and prove the properties of the proposed transform in the next section.

24

Published as a conference paper at ICLR 2024

C PROPERTIES OF PROPOSED TRANSFORM

Having designed the Evolving Graph Fourier Transform, we now look at some of the properties of
the transform. The below defines some properties of EFT before learning its representations and
applying to downstream tasks (proofs are in appendix section B).

Property 1. (Equivalence in special case) Consider ΨT to be the time Fourier transform and
ΨGt

to be the Graph Fourier transform at time t. Let ΨJD be the Graph fourier transform
of JD. In the special case of Gti = Gtj∀i, j ∈ {T} we have (ΨJD)

j
i = (ΨD)ji = (ΨT ⊗

{ΨGt})
j⌊ j

N ⌋
i .

Property 2. EFT is an invertible transform and the inverse is given by EFT−1(X̂)ji =(
Ψ−1

G X̂
)kk
i

(
Ψ⊤∗

T

)j
k

in matrix form and EFT−1(x̂)j∗N+i =
(
Ψ∗

T ⊗Ψ−1
G

)k⌊ k
N ⌋

j∗N+i
x̂k in vector

form.

Property 3. EFT is a unitary transform if and only if GFT is unitary at all timesteps considered
i.e. ΨDΨ∗

D = INT iff ΨGt
Ψ∗

Gt
= IN ,∀t.

Property 4. EFT is invariant to the order of application of DFT or GFT on signal X.

Property 3 allows us to define the stability of the proposed transform. Consider the EFT matrix E and
the signal vector x (normalized). The transform would be given by Ex. Now consider the perturbed
matrix E + ϵ, where ϵ is the (fixed) perturbation. The relative difference between the output would
be ∥(E + ϵ)x− Ex∥/∥Ex∥ = ∥ϵx∥/∥Ex∥. Since E is orthogonal, x is not in the null space of E
and so the relative difference is bounded by ϵ. So a small change in E should cause a small change in
the output as desired.

As seen in property 1, EFT can be simulated by GFT in the special case that the graph structure does
not change with time. The illustration between other transforms is in Figure 1. The figure shows
transforms (GFT, JFT, DFT, EFT) in a circle, and arrows from one transform to the next indicate that
the source transform can be obtained by the destination transform using the simulation annotated on
the edges. Please note that the analysis has been performed for one-dimensional signals. However,
the same holds true for higher dimensions as well by conducting the EFT dimension-wise. Here
dimension-wise means the feature dimension of a node. Each node may have a multidimensional
signal residing on it and the EFT can be independently applied to each channel or dimension of the
node signals on the dynamic graph. Below subsection provides proofs for the above stated properties.

C.1 PROOFS OF PROPERTIES

In this section we now prove the properties stated above. We repeat the statements for completeness.
Though EFT and AD are not same in the general case they are equivalent when the graph structure
does not change with time. Below result proves the result for the discrete case with graphs sampled
at uniform timesteps

Property 5. (Special Equivalence between AD and EFT) Consider ΨT to be the time fourier
transform and ΨGt

to be the Graph fourier transform at time t. Let ΨJD be the Graph fourier
transform of JD. In the special case of Gti = Gtj∀i, j ∈ {T} we have (ΨJD)

j
i = (ΨD)ji =

(ΨT ⊗ {ΨGt})
j⌊ j

N ⌋
i .

Proof. As before consider {LGt
} ∈ RN×N×T to be the Laplacian of the graphs at each timestep

with eigenvalues λt
i where i ∈ N, t ∈ T . Let LT ∈ RT×T be the Laplacian of the time adjacency

matrix with eigenvalues µj where j ∈ T . The Laplacian of the collective graph JD is expressed as

(LJD)
j
i = (LT ⊕ {LGt

})j⌊
j
N ⌋

i = LT ⊗ IN + (IT ⊗ {LGt
})j⌊

j
N ⌋

i

Consider x1, x2, . . . xp to be the linearly independent right eigenvectors of LT and zt1, z
t
2, . . . z

t
qt to be

the linearly independent right eigenvectors of LGt . Consider the vector yj = (xk⊗ztl)
⌊ j

N ⌋
j , y ∈ RNT .

25

Published as a conference paper at ICLR 2024

Then we have

(LJDy)i = (LT ⊗ IN)jiyj + (IT ⊗ {LGt
})j⌊

j
N ⌋

i yj

= (LT ⊗ {IN})j⌊
j
N ⌋

i (xk ⊗ ztl)
⌊ j

N ⌋
j + (IT ⊗ {LGt

})j⌊
j
N ⌋

i (xk ⊗ ztl)
⌊ j

N ⌋
j

= (LT ⊗ {IN}□xk ⊗ ztl)
⌊ i

N ⌋
i + (IT ⊗ {LGt□xk ⊗ ztl})

⌊ i
N ⌋

i

= (LTxk ⊗ {IN}□ztl)
⌊ i

N ⌋
i + (ITxk ⊗ {LGt

□ztl})
⌊ i

N ⌋
i

= (µkxk ⊗ ztl)
⌊ i

N ⌋
i + (xk ⊗ {λt

lz
t
l})

⌊ i
N ⌋

i

= (µkxk ⊗ ztl + xk ⊗ {λt
lz

t
l})

⌊ i
N ⌋

i

= (xk ⊗ ztldiag({µk}) + xk ⊗ {ztl}diag({λt
l}))

⌊ i
N ⌋

i

= ((xk ⊗ ztl)diag({µk + λt
l}))

⌊ i
N ⌋

i

where □ indicates timestep (column) wise product and diag(.) operator converts a vector to a diagonal
matrix. In the special case where Gti = Gtj∀i, j ∈ T we have λti

l = λtj
l . Thus we get

(LJDy)i = ((xk ⊗ ztl)diag({µk + λlIT }))
⌊ i

N ⌋
i

= (µk + λl(xk ⊗ ztl)diag({IT }))
⌊ i

N ⌋
i

= (µk + λl(xk ⊗ ztl))
⌊ i

N ⌋
i

= (µk + λl)yi

Thus yj = (xk ⊗ ztl)
⌊ j

N ⌋
j is the eigenvector of LJD

with eigenvalue µk + λl. But y is nothing but
one of the columns of Ψ∗

D. By the rank nullity theorem, the row spaces of the transform matrices
ΨD and GFT of JD share the same orthogonal basis. Thus the two transforms are equivalent in this
case.

Note the eigenvalues (ΛT ⊕ ΛG) obtained in the result above are exactly the ones used for plotting
the frequency response of EFT as we compress the sequence of graphs into a single dynamic graph.

Next we prove some properties of EFT as stated in the main paper

Property 6. EFT is an invertible transform and the inverse is given by EFT−1(X̂)ji =(
Ψ−1

G X̂
)kk
i

(
Ψ⊤∗

T

)j
k

in matrix form and EFT−1(x̂)j∗N+i =
(
Ψ∗

T ⊗Ψ−1
G

)k⌊ k
N ⌋

j∗N+i
x̂k in vector

form.

Proof. We begin by noting the expression for EFT (ΨD)

(ΨD)
i
j = (ΨT ⊗ΨGt

)
j⌊ j

N ⌋
i

where ΨGt ∈ RN×N is the graph fourier transform of the graph at time t, ΨT ∈ RT×T is the time
fourier transform. Let ΦGt = Ψ−1

Gt
be the inverse graph fourier transform of the graph at timestep t

and ΦT = Ψ∗
T be the inverse time fourier transform.

We can write ΨD as a block matrix in the following form

ΨD =
[
CB1, CB2, . . . CBT

]
CBi = Ψi

T ⊗ΨGi

where Ψi
T is the i-th column of ΨT and CBi ∈ RNT×N .

26

Published as a conference paper at ICLR 2024

Consider ΦD in a similar but row block format as follows

ΦD =


RB1

RB2

...
RBT

 (29)

RBi = ΦTi ⊗ΦGi
(30)

where ΦTi is the i-th row of ΦT and RBi ∈ RN×NT .

Now taking the matrix product of ΦD and ΨD we get

ΦDΨD =


RB1

RB2

...
RBT

 [CB1 CB2 . . . CBT
]

=


RB1CB1 RB1CB2 . . .
RB2CB1 RB2CB2 . . .

...
RBTCB1 RBTCB2 . . .


We can verify that RBiCBj evaluates to the following

RBiCBj = (ΦTi ⊗ΦGi
)
(
Ψj

TΨGj

)
(31)

=
(
ΦTiΨ

j
T

)
⊗
(
ΦGi

ΨGj

)
(32)

(33)

Now the columns of ΦT form the eigenvectors of a circulant matrix (LT). Also we know that if
columns form basis of column space then rows form the basis of the row space. Thus we have

ΦTiΨ
j
T =

{
1, if i = j

0, otherwise
(34)

ΦGiΨGi = IN (35)

∴ RBiCBj =

{
IN , if i = j

0, otherwise
(36)

(37)

Thus we have shown that ΦDΨD = INT . Thus ΦD is a left inverse of ΨD. We know that for a square
matrix left inverse is also the right inverse and can be readily verified in a similar manner. Thus EFT

is invertible and the inverse of the transformed signal in vector form is (ΦT ⊗ {ΦGt})
j⌊ j

N ⌋
i x̂j =(

Ψ∗
T ⊗ {Ψ−1

Gt
}
)j⌊ j

N ⌋
i

x̂j . Similarly for the matrix form of the signal we have the inverse of the

transform given as
(
{ΦGt}X̂

)jj
i

(
Φ⊤

T

)k
j
=
(
{Ψ−1

Gt
}X̂
)jj
i

(
Ψ⊤∗

T

)k
j
.

Property 7. EFT is a unitary transform if and only if GFT is unitary at all timesteps considered i.e.
ΨDΨ∗

D = INT iff ΨGtΨ
∗
Gt

= IN ,∀t

Proof. This property can be proved in a similar manner as in proof of property 6. The only difference
here is we consider ΦD to be the transposed conjugate of ΨD rather than inverse i.e. ΦD = Ψ∗

D and

27

Published as a conference paper at ICLR 2024

also ΦGi
= Ψ∗

Gi
. Similar to the previous proof we have the following

ΦDΨD =


RB1

RB2

...
RBT

 [CB1 CB2 . . . CBT
]

=


RB1CB1 RB1CB2 . . .
RB2CB1 RB2CB2 . . .

...
RBTCB1 RBTCB2 . . .


RBiCBj = (ΦTi ⊗ΦGi)

(
Ψj

TΨGj

)
=
(
ΦTiΨ

j
T

)
⊗
(
ΦGiΨGj

)

∴ ΦDΨD =


(
ΦT1Ψ

1
T

)
⊗ (ΦG1ΨG1)

(
ΦT1Ψ

2
T

)
⊗ (ΦG1ΨG2) . . .(

ΦT2Ψ
1
T

)
⊗ (ΦG2

ΨG1
)

(
ΦT2Ψ

2
T

)
⊗ (ΦG2

ΨG2
) . . .

...(
ΦTTΨ

1
T

)
⊗ (ΦGT

ΨG1
)
(
ΦTTΨ

2
T

)
⊗ (ΦGT

ΨG2
) . . .



=


1⊗ (ΦG1

ΨG1
) 0⊗ (ΦG1

ΨG2
) . . .

0⊗ (ΦG2
ΨG1

) 1⊗ (ΦG2
ΨG2

) . . .
...

0⊗ (ΦGT
ΨG1) 0⊗ (ΦGT

ΨG2) . . .



=


(
Ψ∗

G1
ΨG1

)
0 . . .

0
(
Ψ∗

G2
ΨG2

)
. . .

...
0 0 . . .



Part 1: If ΨG1 is unitary then Ψ∗
G1

= Ψ−1
G1

. Thus in this case ΦDΨD = INT which implies
ΦD = Ψ∗

D = Ψ−1
D implying ΨD is unitary.

Part 2: Considering ΨD is unitary whic means ΦD = Ψ∗
D = Ψ−1

D . Thus ΦDΨD = INT and
so Ψ∗

Gi
ΨGi

= IN −→ Ψ−1
Gi

= Ψ∗
Gi

. ∴ ΨGi
is unitary proving the 2nd part and completing the

proof.

Property 8. EFT is invariant to the order of application of DFT or GFT on signal X.

The above property can be observed from equation 6 using the fact that matrix multiplication is
associative.

28

Published as a conference paper at ICLR 2024

D DATASETS

Table 3: The statistics of the Large scale
Dynamic graph datasets for link predic-
tion.

SR Datasets Beauty Games CDs
of Users 52,024 31,013 17,052
of Items 57,289 23,715 35,118

of Interactions 394,908 287,107 472,265
Average length 7.6 9.3 27.6

Density 0.01% 0.04% 0.08%

Continuous Time Dynamic Graph link prediction
dataset in sequential recommendation setting: For
showing the efficacy of our method on large dynamic
graphs, we perform experiments on three real-world
e-commerce datasets (cf., Table 3) for sequential rec-
ommendation. Specifically, we pose the sequential
recommendation as a link prediction problem on tem-
poral graphs. The penultimate and last interactions
are used for validation and testing, respectively. The
graphs at each interaction timestamp is constructed as
detailed in (Zhang et al., 2022) i.e., at time t, the sub-
graph (Gt) containing all interactions till t is consid-

ered. Then the m-hop neighborhood Gm
t (u) around the user u is sampled from it. The next

item to predict is the item (it+1) interacted with at time t + 1. Thus the training set would con-
tain (Gm

1 (u), i2), (G
m
2 (u), i3) . . . (G

m
T−2(u), iT−1) and the test set would have (Gm

T−1(u), iT). The
graph construction is done in the preprocessing phase to speed-up training and testing.

Table 4: Statistics and details for link pre-
diction on the benchmark dynamic graph
datasets. LP is the abbreviation for Link
Prediction and NC is for Node Classifica-
tion.

Nodes # Edges # Time Steps Task
(Train / Val / Test)

SBM 1,000 4,870,863 35 / 5 / 10 LP
UCI 1,899 59,835 62 / 9 / 17 LP
AS 6,474 13,895 70 / 10 / 20 LP

Elliptic 203,769 234,355 31 / 5 / 13 NC
Brain 5,000 1,955,488 10 / 1 / 1 NC

Benchmark Dynamic Graph Datasets: Table 4 sum-
marizes datasets for link prediction on benchmark dy-
namic graph datasets. Each dataset contains a sequence
of time-ordered graphs. SBM is a synthetic dataset to
simulate evolving community structures. UCI dataset
is a student community network where nodes represent
the students, and the edges represent the messages ex-
changed between them. AS dataset summarizes a tem-
poral communication network indicating traffic flow be-
tween routers. The Elliptic (Ell) dataset delineates le-
gitimate versus unlawful transactions within the elliptic
network of Bitcoin transactions. In this context, nodes
symbolize individual transactions, while edges corre-

spond to the pathways of monetary transfers. The Brain (Brn) dataset focuses on nodes representing
minuscule cerebral regions or cubes, with the edges signifying their interconnections.

Synthetic Dataset Consider the dynamic graph over T timesteps. Thus we have T graph snapshots.
We compute the eigenvectors at each snapshot and place them over the graph’s nodes. Moreover, for
each node (spread over T timesteps) we compute a periodic signal that is added to the eigenvector
component Evec(Gt). So the expression for the noise added to the signal would be: X(i, t) =∑

k αkEvec(Gt)[i, k] +
∑

f βf ∗ eiωtf [t]. In our experiments, we have used only one randomly
chosen eigenvector. Also we consider only a single sinusoid frequency ω. αk, βf are parameters
and are set to 1

2 in our experiments. For noise, we add to X(i, t) a signal taken from a Gaussian
distribution with 0 mean i.e. X(i, t) = X(i, t) +N (0, δ), where δ is the standard deviation.

D.1 EXPERIMENTAL SETUP

We implement our models using the DGL framework (Wang et al., 2019) in the pytorch library
(Paszke et al., 2017). The hyperparameters are selected from the following search space: learning
rate ∈ [0.01, 0.0003], l2 regularization parameter α ∈ [0.01, 0.00001], embedding and hidden
layer dimensions ∈ {32, 64, 128}, filter order ∈ {2, 4, 8, 16}, subgraph size ∈ {1, 2, 3, 4}. The
experiments are run on a single Tesla P100 GPU. We run our method for 5 runs per dataset and
report the mean of the results. For the baselines we report the best results that have been reported
unless mentioned otherwise. If results are not available we run baselines by using the implementation
provided with default parameters and optimizing the hidden size (width) and layer number (depth) of
the network. Regarding graph construction, for the Sequential Recommendation (SR) datasets we
use similar to (Zhang et al., 2022). For the Session Based Recommendation (SBR) setting we use the
transition graph of the items in the sequence as in (Wu et al., 2019). We also try with higher order
graphs, albeit without any gains, as reported in (Wu et al., 2019). Moreover, since for SBR the last

29

Published as a conference paper at ICLR 2024

item is of more significance to the prediction task and the datasets suffer from overfitting we modify
the prediction layer accordingly and incorporate appropriate changes from baselines.

D.2 IMPLEMENTATION

We intend to perform filtering in spectral space for dynamic graphs using EFT. Since our idea is to
perform collective filtering along the vertex and temporal domain in EFT, we need two modules to
compute ΨGt

(vertex aspect) and ΨT (temporal aspect), respectively, in equation 6 of EFT. We now
explain these modules in detail.

Filtering along the vertex domain: This module computes the convolution matrix ΨGt in equation
6. Consider the filter response Λ̂l which is a diagonal matrix with diagonal values representing
the magnitude of the corresponding frequency(eigenvalue). In order to avoid the computational
cost of the eigendecomposition, we choose to approximate the it using polynomials. In this work,
we use the Chebyshev polynomials (Defferrard et al., 2016). Specifically, the frequency response
of the desired filter is approximated as Λ̂l =

∑Of

k=0 ckTk(Λ̃), where Of is the polynomial/filter
order, Tk is the Chebyshev polynomial basis, Λ̃ = 2Λ

λmax
− I , λmax is the maximum eigenvalue

and ck is the corresponding filter coefficients. Thus, we can approximate the filtering operation as:
X ∗ Λl ≈ U

(∑Of

k=0 ckTk(Λ̃l)
)
U∗X =

∑Of

k=0 ckTk(U Λ̃lU
∗)X =

∑Of

k=0 ckTk(L̃)X . Having the
filter coefficients ck as learnable parameters enables learning of filter for the task. The convolution
X ∗ Λl gives the desired filtered response.

Filtering along the temporal Domain: After performing filtering in the vertex domain, we aim to
filter over the temporal signals using ΨT as in equation 6. To apply the ΨT (Fourier transform), we
must first ensure that the signals in sequences are sampled at uniform intervals. In the continuous
time setting, interactions between nodes could occur at anytime or the sampling could be non-
uniform, Thus, we perform a mapping from RT×d −→ RT×d that aims to map the input space to a
uniformly sampled space. For computational reasons, we select the current and next embeddings
(with positional information) along with the timestamp information (Et(t) ∈ Rd) for getting the
mapped embedding akin to interpolation. Formally, let Xi

t ∈ Rd be the embeddings of the node
at time t. This is first mapped to the interpolated space using a universal approximator: Xt =
W i

2σ
i(W i

1[X
i
t ;X

i
t+1;Et(t)] + bi1) + bi2, where W i

1, W i
2, bi1, bi1 are learnable parameters and σi is a

non-linearity. We call this module the time encoding layer , which is essential for applying Fourier
transform along the temporal dimension. Let X = Xt ∈ RT×d be the interpolated sequence of
embeddings of the node. This is converted to the frequency domain (X̂ ∈ RT×d) using the DFT
matrix ΨT as X̂ = ΨTXt Then we multiply X̂ element-wise by a temporal filter FT ∈ RT×d to
obtain the filtered signal X̂f = FT ⊙ X̂ which is then converted back to the temporal domain by
using the inverse transform Ψ∗

T to get Xf = Ψ∗
T X̂f . Xf is the equivalent of X̂G in equation 6 that is

the output of EFT. In practice, the fast Fourier transform is used that can perform the computations in
order O(T log(T)). Hence, overall time complexity of the architecture is O((N +E)T +NTlogT).
To map the output back to the original space from the interpolated space we would need further
mapping layers. Similar to (Zhou et al., 2022), we use the standard layer normalization (LN) and
feedforward (FFN) layers: XF = LN (LN (Xt + D(Xf)) + D (FFN (LN (Xt + D(Xf))))), where
W f

2 ,W
f
1 , b

f
1 , b

f
2 are learnable parameters and D(.) represents dropout. We could stack filter layers

with the node embeddings obtained from previous layers as inputs. XF is the final filtered signal that
is used in the downstream prediction. For the concerned node n we denote this as Xn

F .

D.3 COMPUTATIONAL COMPLEXITY

Considering the spectral transform, the exact eigendecomposition of the joint laplacian would take
order O((NT)3) whereas our method of EFT would take O(N3T +NT log(T)). Thus we reduce
the complexity from a factor of T 3 to T log(T). This would be beneficial in cases where there are
many timesteps considered. For the model at the implementation level since we have made use of
a function approximator that runs in time linear to the number of edges (ε), the time complexity is
O(ε+NT log(T)). We have performed a wall clock run time analysis for the training of our method
and the results in table 5 shows that it is comparable to a dynamic graph based baseline (that doesn’t
use any spectral transform):

30

Published as a conference paper at ICLR 2024

Table 5: Wall clock running (sec/epoch) time of our and baseline method on SR datasets

Dataset Method Wall clock time (sec/epoch)
Beauty DGSR 565
Beauty EFT 753
Games DGSR 1719
Games EFT 2535

CD DGSR 5415
CD EFT 12637

(a) Games (b) Beauty (c) Games (d) Beauty

Figure 6: Effect of the parameters (filter order and subgraph size) on EFT performance.

E ABLATION STUDY

Table 6: Ablation study of our model. We report Recall@10
(R@10) and NDCG@10 on Beauty and Games datasets.

Beauty Games
R@10 NDCG@10 R@10 NDCG@10

EFT 53.23 37.10 77.78 58.75
w/o Temporal filter 52.42 36.12 76.55 56.95
w/o Graph filter 38.27 24.39 58.36 40.06
+High Pass Filter 47.53 31.10 76.88 57.24
+Low Pass Filter 52.71 36.76 77.74 58.49
+Band Pass Filter 52.27 36.09 76.67 56.98
+Band Stop Filter 45.34 29.09 77.63 58.42

Component ablation: In our first ab-
lation study, we study the effect of
various modules of the EFT archi-
tecture by systematically removing
model components. Table 6 summa-
rizes our findings. For example, per-
formance declines when we remove
the graph filtering module ("w/o graph
filter" in Table 6). It confirms that
the graph filters help to reduce long-
range noise and positively impact per-
formance. Next, we replace learnable
filters of EFT with several static filters
such as highpass, bandpass, lowpass,

etc. Performance with static filters is less than that of dynamic filters, supporting our choice of having
learnable filters in EFT .

Parameter Selection: In this experiment, we study the effect of filter and graph construction
parameters that will help select optimal parameters for the model. Specifically, we run experiments
for 1) the order of the graph filter and 2) subgraph size, which is the number of hops considered
around the given user node for constructing the graph. The results are in Figure 7 with apt transform
of the 2 metric scales for comprehension. For the filter order, we observe that for both datasets,
there exists an optimal filter order at which the best performance is achieved. We observe that
increasing filter order further causes overfitting on these datasets. For the subgraph size, we observe
an increasing trend in the results, indicating that higher subgraph sizes (> 1) benefit the performance
over a single hop (which is the sequence itself). This shows that modeling the SR as a graph learning
problem is helpful over considering only the sequence. We conclude that beyond the subgraph size of
two, the results saturate for these datasets.

31

	Introduction
	Related Work
	Preliminaries
	Theoretical Framework: An Optimization Perspective
	Constructing an Evolving Graph Fourier Transform
	Implementation Details

	Experimental Setup
	Results and Discussion
	Conclusion
	Preliminaries
	Discrete Fourier Transform
	Graph Fourier Transform

	Theoretical Proofs
	Properties of Proposed Transform
	Proofs of Properties

	Datasets
	Experimental Setup
	Implementation
	Computational Complexity

	Ablation Study

