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Abstract

Event Extraction (EE) has benefited from pre-
trained language models (PLMs), in which
the self-attention mechanism could pay atten-
tion to the global relationship between trig-
gers/arguments and context words to enhance
performance. However, existing PLM-based
methods are not good enough at capturing local
trigger/argument-specific knowledge. To this
end, we propose a Gaussian enhanced Self-
attention Event extraction framework (GauSE),
which models the syntactic-related local infor-
mation of trigger/argument as a Gaussian bias
for the first time, to pay more attention to the
syntactic scope of the local region. Further-
more, existing methods rarely consider multi-
ple occurrences of the same triggers/arguments
in EE. We explore the global interaction strate-
gies among multiple localness of the same trig-
gers/arguments to fuse the corresponding dis-
tributions and capture more latent information
scopes. Compared to traditional GCN-based
models, our methods could introduce syntac-
tic relationships without over-smoothing prob-
lem in deep GCN layers. Experiments on EE
datasets demonstrate the effectiveness and gen-
eralization of our proposed approach.

1 Introduction

Event extraction is an essential information extrac-
tion (IE) task, aims to extract event structures from
unstructured event mentions. It consists of event de-
tection (ED) and event argument extraction (EAE).
For example, in the event mention "CNN’s Kelly
Wallace reports on today’s attack in Netanya.", ED
model should identify the event trigger "attack"
and classify the event type "Conflict:Attack"”, EAE
model should identify the event arguments "today"
and "Netanya", then classify argument roles "Time-
Within" and "Place". The extracted event structures
could benefit numerous downstream tasks, such as
biomedical science (Li et al., 2019; Wang et al.,
2020), financial analysis (Deng et al., 2019; Liang

et al., 2020), information retrieval (Glavas and Sna-
jder, 2014), and so on.

Existing EE methods mainly focus on feature
engineering. Inspired by the significant perfor-
mance of PLMs for various NLP tasks, some prior
work (Wang et al., 2019; Wadden et al., 2019) uti-
lizes general PLMs, such as BERT (Devlin et al.,
2019), to construct global dependencies among
context words by self-attention. Although leverag-
ing PLMs has improved EE performance, it still
cannot capture the local information of specific
triggers or arguments. As shown in Figure 1, in
the sentence "Attack happened without declaration
of war, the attack was judged in trials.", the first
trigger "attack” is more important to the second
trigger "attack” than other words when computing
self-attention, trigger-specific information is not
strengthened enough by the original self-attention.

To avoid the information insufficiency problem,
dependency tree based Graph Convolution Network
(GCN) (Nguyen and Grishman, 2018; Liu et al.,
2018; Yan et al., 2019) was adopted to capture syn-
tactic relations between triggers and related words.
However, in the literature, the information intro-
duced by GCN still exists some problems: (1) GCN
mainly focuses on the nearest syntactic neighbors
(Nguyen and Grishman, 2018; Liu et al., 2018),
as shown in Figure 2, the second trigger "attack"
just attaches 2-hop syntactic neighbor "happened"”,
early stop of message passing limits the capture of
neighbors; (2) in multi-hop message passing, due
to over-smoothing (Zhou et al., 2020) in deep lay-
ers of GCN, the importance of "War" will gradually
disappear to "happened", this phenomenon further
decreases deeper information passing; (3) existing
GCN-based methods have not modeled the rela-
tionship among the same triggers/arguments occur
multiple times in event mentions.

Another general localness-enhanced self-
attention method is modeling local regions as
Gaussian priors (Yang et al., 2018; Guo et al.,
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Figure 1: Attention score in original self-attention, the connecting line colors are weighted by the attention values.
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Figure 2: Syntactic dependency parsing.

2019), which could enhance the neighbor text
spans of central words. Compared to GCN-based
models, Gaussian-based methods could expand the
neighbor scopes and alleviate the over-smoothing
problem without changing the model structure.

In this paper, we combine the above methods in
EE for the first time. Specifically, we enrich the
trigger/argument specific information using Gaus-
sian prior probability over the corresponding win-
dow (i.e. the deviation of syntactic dependency
distribution) to the central word (i.e. the position of
trigger/argument), and further enhance the original
self-attention.

The above method is adapted to the situation
that triggers/arguments appear once in event men-
tions. However, the same triggers/arguments may
occur multiple times in the same mentions, ac-
cording to our statistics on the ACE-2005 dataset,
13.18% (1959/14862) of mentions have the same
triggers/arguments occurring multiple times. We
hypothesize that the same triggers/arguments in
the same mentions are identical, modeling the rela-
tionship among multiple occurrences of the same
triggers/arguments is beneficial. We further ex-

plore several fusion methods among Gaussian pri-
ors to capture latent knowledge. Specifically, we
adopt Gaussian multiplication and GMM among
the identical trigger/argument distributions to pay
attention to intermediate words. In addition, we
regularize the output distributions of the same trig-
gers/arguments to be consistent by minimizing the
Wasserstein (WA) divergence among the outputs.
Our contributions are summarized as follows:

* We propose a novel Gaussian-enhanced self-
attention framework, which aims to alleviate
the trigger/argument specific syntactic infor-
mation insufficiency problem in EE for the
first time and better capture local dependen-
cies of event mention sequences.

* We propose efficient Gaussian high-order in-
teraction mechanisms to promote knowledge
fusion. In addition, we adopt a novel distri-
bution metric loss to strengthen the model’s
generalization.

* Experiments on several datasets indicate that
GauSE achieves significant performances on
both overall and few-sample settings.

2 Related Work

Event Extraction. Most of existing EE models
rely on feature construction. Traditional methods
(Ji and Grishman, 2008; Gupta and Ji, 2009; Li
et al., 2013) mainly focus on manual features. Re-
cently, neural network based models have been
widely used to extract features automatically, such
as convolutional neural networks (CNN) (Nguyen
and Grishman, 2015; Chen et al., 2015), recur-
rent neural networks (RNN) (Nguyen et al., 2016),
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Figure 3: Illustration of the proposed single Gaussian-based localness modeling approach.

graph neural networks (GNN) (Nguyen and Grish-
man, 2018; Lai et al., 2020), and PLM-based mod-
els because of their significant performance (Wang
etal., 2019; Yang et al., 2019; Wadden et al., 2019;
Tong et al., 2020). Existing NN models regard
triggers/arguments and other context words as the
same, trigger/argument specific information cannot
be captured. In this work, we enhance the weight
of specific local knowledge to better utilize rich
syntactic information in event mentions.
Localness Modeling of Self-Attention. To im-
prove the quality of designed features, besides lin-
guistic features, syntactic information has been ex-
plored in many works. Dependency-bridge based
RNN (Sha et al., 2018) introduced the dependency
tree into EE. Syntactic dependency tree based GCN
(Nguyen and Grishman, 2018; Liu et al., 2018;
Yan et al., 2019) promoted information propagation
over graphs. Although these works could capture
syntactic information, over-smoothing still limits
message passing. Furthermore, the relations among
the same triggers/arguments occurring multiple
times in event mentions have not been explored.
Several works have demonstrated that explicitly
modeling localness by Gaussian bias benefits more,
such as restricting self-attention on neighbor in-
formation (Sperber et al., 2018), adopting relative
neighbor position encoding between tokens (Shaw
et al., 2018), dynamically adjusting attention distri-
bution (Yang et al., 2018; Guo et al., 2019) to better
model localness. Compared to GCN-based mod-
els, these methods could introduce local knowledge

without complicated model architecture.

In this work, we adjust the syntactic information
into a Gaussian-enhanced self-attention mechanism
for the first time, which alleviates information loss
and explores the interactions among several Gaus-
sian priors, to model latent knowledge efficiently.

3 Methodology

The overall GauSE framework consists of three
Gaussian-based enhancement strategies: (1) Single
Localness Modeling, (2) Localness Fusion Learn-
ing, (3) Localness Regularization Learning.

3.1 Preprocessing

To build syntactic-aware neighbor signals for mod-
eling trigger/argument specific information, we use
the automatic syntactic dependency parser spaCy'
to parse event mentions into syntactic dependency
tree structures. Formally, given an event mention,
the dependency tree structure consists of tokens as
nodes and syntactic dependencies as edges.

3.2 Single Localness Modeling

The original self-attention mechanism computes
attention scores as Figure 1. Specifically, given an
input event mention s = {wy, ..., w, } contains n
tokens, the hidden state H of s is calculated by the
transformed queries Q € R™*?, keys K € R**¢,
and values V' € R™*< as follows:

H = At(Q, K, V) (1)

'https://spacy.io/api/dependencyparser
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where Att(-) means the dot-product self-attention
mechanism, which is defined as:

Att(Q, K, V) = softmax(Scoreo.;)V  (2)

QKT
Vd
The original calculation regards all words as
the same, even the syntactic information that
dependency-based GCN introduced is limited
to over-smoothing. To efficiently model trig-
ger/argument specific syntactic information, we
suppose that trigger ¢; or argument a; represents
the central word of the event mention s; further, we
strengthen the importance of tokens in the range
of 1-hop syntactic neighbors. We hypothesize that
1-hop neighbors have the most critical syntactic
information. Considering the distance factor, the
syntactic contributions of different tokens to cen-
tral words obey the normal distribution. We model
this phenomenon via Gaussian prior in this paper.
Specifically, as shown in Figure 3, the Gaussian
bias G € R™ "™, where n is the length of event
mention, is defined to strengthen the original self-
attention score, i.e. Scorep,; in Equation 2:

Scoreo,; =

3

Att(Q, K, V') = softmaz(Scoreo,i+G)V (4)

The element G; ; € (—o0,0] measures the syn-
tactic distance between context token w; in the
1-hop syntactic neighbor scope and the central trig-
ger/argument word w;, defined as:

P. — P.)?

Gij= —7( ]201‘2 g (5)
where P; and P; are the positions of neighbor and
central tokens, o; represents the standard deviation,
which is generally defined as %, D; is the win-
dow size of the corresponding central word, i.e. the
distance of 1-hop syntactic neighbor to specific trig-
ger/argument. Furthermore, due to the exponential
operation in so ftmax, the enhanced Gaussian bias
equates to multiplying the original self-attention
score by a Gaussian weight.

3.3 Localness Fusion Learning

Since the Gaussian bias was introduced indepen-
dently for each central word, it may be beneficial to
consider them simultaneously, when the same trig-
gers/arguments appear multiple times in the event
mentions. As shown in Figure 2, the trigger "at-
tack" occurs twice in the same event mention, and

they represent the same event type about "war",
the interaction between them could provide bene-
ficial syntactic neighbor knowledge to each other.
Specifically, we adopt localness interaction strate-
gies, i.e. Gaussian multiplication and GMM, to
promote message passing among several Gaussian
distributions of the same triggers/arguments.
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Figure 4: Localness fusion learning strategies.

Considering the tokens that simultaneously ap-
pear in the same trigger/argument neighbors should
be enhanced, as shown in Figure 4(a), the first trig-
ger word "attack" has syntactic neighbor context
region "attack happened without", while the sec-
ond "attack" has neighbor "of war, the attack was
judged”, the text "happened without declaration of
war", which appears in the interaction of several
syntactic neighbor texts of "attack", should be paid
more attention to, we adopt Gaussian multiplica-
tion to obtain the corresponding latent distribution:
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where p;, and oy, denote the positions and syntactic
window sizes of same triggers/arguments, fiy,,;
and o,,,,; denote the latent Gaussian bias.

To combine several Gaussian distributions of
the same trigger/argument words, as shown in Fig-
ure 4(b), we adopt GMM enhancement strategy to
promote message passing of co-occurrence syntac-
tic neighbor regions, which is defined as:

(P; — P,
EPRN Ci k) Zﬁk ’“) )

202

where o and ) denote the weights of origi-
nal and other Gaussian biases of the same trig-
gers/arguments, in this way, all of the Gaussian bi-
ases of triggers/arguments that exist multiple times
in the same event mentions could be weighted to
share knowledge between each other.

Considering the exponential operation in
softmax, we further define GMM as follows:

(P — P)?

exp — 5

(6]
Gij :10g(27

20,

(10)

+ Z exp —

The above interaction strategies fuse multi-
ple Gaussian distributions, so that all of the
Gaussian enhanced knowledge of the same trig-
gers/arguments could be paid more attention to si-
multaneously. In this way, message passing among
multiple distributions could be realized more effi-
ciently. Besides, our method is compatible with the
original BERT in model parameters and could be
applied conveniently.

3.4 Localness Regularization Learning

Considering most of the same triggers/arguments
occurring multiple times in the same event men-
tions are identical in EE, we hope the informa-
tion learned from the same triggers/arguments
Gaussian distributions could be similar. Specifi-
cally, the corresponding distributions of predictions
PkG *(yl||x;) should be more consistent, where Gy,
means the k;;, Gaussian distribution of the same

triggers/arguments.
As shown in Figure 5, since the output predic-
tions P I (y||z;) and P *(y||z;) of the same trig-

gers/arguments specific Gaussian enhanced knowl-
edge are different, where GG; and G}, means the
Jen, and kyy, Gaussian distribution of the same trig-
gers/arguments, the predictions are different for
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Figure 5: Localness regularization learning by
Wassertein Distance metric.

the same input event mention x;. To alleviate the
inconsistency problem, we adopt a distribution di-
vergence metric, i.e. WA Distance?, to regularize
the corresponding prediction distributions:

b=
S WA, “ yllzs), PO (yll:))

N(N —1)/2
(11

With the negative log-likelihood learning objec-
tive LZN 11, of Gaussian enhanced predictions for
given training data (z;, y;):

S log(P;

7 _
NLL — — N

(3/1" i)

12)

Based on these training objectives, we define the
final training objective as to minimize L; , ,, for
the input event mention x;:

Liotat =Lnrr + Lwa

% log(P; 9 (yilli))
B N
Z e WAP, 5 (yllzi), PE* (ylla:))
N(N —1)/2
(13)

In this way, our method further regularizes the
model output distributions and enhances the gener-
alization of the original model.

Zwhere WA Distance could solve the asymmetry problem

in Kullback-Leibler (KL) divergence, avoid the bidirectional
calculation between two output distributions.



Dataset Doc Ins EveT
ACE 2005 ED subset 599 4,090 33
ACE 2005 EAC subset 599 4,090 35
OntoEvent 4,115 60,546 100
FewEvent - 70,852 100

Table 1: Statics of existing widely-used EE datasets.
ACE 2005 dataset contains ED and EAC subsets. (Doc:
document, Ins: instance, EveT: event type.)

4 Experiments

The experiments aim to demonstrate that GauSE
with several Gaussian enhanced strategies could
benefit EE tasks in both overall and low-resource
settings.

4.1 Datasets

We evaluate our methods on three generally-used
EE datasets, including ACE 2005 English subset
(Walker et al., 2006), the recently-constructed large-
scale OntoEvent dataset (Deng et al., 2021), and
FewEvent dataset (Deng et al., 2020). The statics
of these datasets are introduced in Table 1. EE
performance is assessed with two subtasks: Event
Detection (ED) and Event Argument Classification
(EAC). In the ACE 2005 dataset, we evaluate both
ED and EAC subtasks, while in OntoEvent and
FewEvent, we only evaluate ED subtask due to the
structures of the corresponding datasets. We further
evaluate our model in low-resource scenarios of the
FewEvent dataset.

4.2 Baselines

For evaluation, we adopt several official EE base-
lines, including: (1) vanilla CNN-based model DM-
CNN (Chen et al., 2015); (2) the model dependent
on syntactic dependency knowledge, such as RNN-
based model JRNN (Nguyen et al., 2016), GCN-
based model JMEE (Liu et al., 2018), graph-based
models DYGIE++ (Wadden et al., 2019), OnelE
(Lin et al., 2020), PathLM (Li et al., 2020) and
OntoED (Deng et al., 2021), joint-based model
Joint3EE (Nguyen and Nguyen, 2019); (3) GAN-
based model GAIL (Zhang et al., 2019); and
(4) some new forms of EE models, such as QA-
based model BERT_QA (Du and Cardie, 2020),
generation-based paradigm Text2Event (Lu et al.,
2021).

We adopt the official BERT-based model DM-
BERT (Wang et al., 2019) as our baseline to further
continue our experiments.

Model ED EAC

P R F1 P R F1
DMCNN 75.60 63.60 69.10 62.20 46.90 53.50
JRNN 66.00 73.00 69.30 54.20 56.70 55.40
Joint3EE 68.00 71.80 69.80 52.10 52.10 52.10
DYGIE++ - - 69.70 - - 48.80
GAIL 7480 6940 72.00 61.60 4570 52.40
OnelE - - 74.70 - - 56.80
PathLM - - 73.40 - - 56.60
BERT_QA 71.12 73770 7239 56.77 50.24 53.31
Text2Event 69.60 7440 7190 5250 5520 53.80
DMBERT 71.60 7230 70.87 53.14 5424 52776
+Gau 7343 7423 7298 5382 5445 5322
+Fusion 7422 7624 7470 5635 55.12 5427

+Regularization 77.16 77.96 76.80 57.43 5837 57.03

Table 2: Evaluation of EE with various models on ACE
2005. P(%), R(%) and F'1(%) represent precision,
recall and F1-score respectively.

4.3 Experiment Settings

Gaussian enhanced model settings. Before the
detailed experiments, we adopt pre-process method
to determine the syntactic neighbors of triggers and
arguments. Specifically, we obtain the syntactic de-
pendency tree by spaCy and select 1-hop neighbors
to calculate Gaussian enhanced regions.

General settings. We adopt the same model struc-
ture as BERT, which is with 12 layers, 768 hidden
sizes and 12 attention heads. AdamW (Loshchilov
and Hutter, 2017) optimizer is used with the learn-
ing rate of 1 x 10~?, a dropout rate of 0.1 is adopted
to avoid over-fitting. The dimension of token em-
bedding is 768, while the maximum length of in-
put event mention is 128. The hyperparameters of
« and S are set to 0.5 and 0.5, respectively. We
evaluate the performance of EE with Precision (P),
Recall (R) and F1 Score (F1). We follow the eval-
uation protocol of previous EE models, event in-
stances are split into training, validating and testing
sets with the ratio of 0.8, 0.1 and 0.1, respectively.
We run each method 5 times on all datasets and re-
port the average performances to get stable results.

4.4 Overall Evaluation

The evaluation results are shown in Tables 2 to 4.
We can see that:

(1) By modeling trigger/argument syntactic re-
lated regions, GauSE could efficiently utilize la-
tent knowledge which benefits to EE task. GauSE
achieves significant improvements compared to the
basic model DMBERT on all datasets and outper-
forms all baselines, especially models based on
syntactic dependency tree, such as JRNN, IMEE
and Joint3EE. The results demonstrate the effec-



ED

Model P R Fi
DMCNN 62.51 62.35 63.72
JRNN 63.73 63.54 6695
JMEE 52.02 53.80 68.07
AD-DMBERT 67.35 73.46 71.89
OnelE 7194 68.52 71.77
PathLM 73.51 68.74 72.83
OntoED 7546 70.38 74.92
DMBERT 80.00 78.30 78.40
+Gau 80.45 79.80 79.70
+Fusion 81.18 80.32 80.30
+Regularization 82.30 80.57 80.90

Table 3: Evaluation of ED with various models on On-
toEvent. P(%), R(%) and F1(%) represent precision,
recall and F1-score respectively.

ED
Model P R Fi
DMBERT 81.75 81.83 80.52
+Gau 82.27 82.58 81.30
+Fusion 82.53 83.00 81.65
+Regularization 83.17 83.80 82.43

Table 4: Evaluation of ED with various models on Few-
Event. P(%), R(%) and F1(%) represent precision,
recall and F1-score respectively.

tiveness of GauSE, and our method could intro-
duce syntactic information more efficiently. Fur-
thermore, using single self-attention enhancement
strategies, GauSE surpasses most of the methods
based on complicated architectures without addi-
tional parameters.

(2) By combining different Gaussian enhance-
ment strategies, GauSE could achieve different
extents of improvements. The general ablation
study indicates that different Gaussian enhance-
ment strategies benefit the model differently. The
interaction among Gaussian distributions could pro-
mote message passing, so that the improvements
of Gau Fusion, which combines Gau Mul and Gau
GMM, are more significant than Gau. Gau Regu-
larization could further improve the performance
by strengthening the basic model’s generalization.

(3) By enhancing the syntactic neighbor infor-
mation, our model could extend to other keyword-
based tasks. The experiments on both ED and
EAC tasks explicitly excel baselines, implies that
our model could leverage and propagate trig-
ger/argument specific syntactic knowledge. Fur-
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Figure 6: ED performance (F1-score) on FewEvent with
different ratios of training data.

ED

Model 20% 40% 60% 80% 100%
DMBERT 5627 7247 7817 79.10 8052
+Gau 5648 7277 7830 7975 81.30
+Mul 5670 73.10 7853 79.90 81.55
+GMM 5705 73.07 7850 79.87 81.46
+Fusion 5725 73.67 79.03 8023 81.65
+WA 62.17 7527 79.50 80.73 81.83
+WA & logits 6247 7553 80.13 81.17 82.43

Table 5: Few-sample evaluation with Fl-score (%)
performance of event classification with various models
on FewEvent.

thermore, we could select keywords in texts in other
tasks, then adopt Gaussian enhanced keyword-
specific syntactic knowledge to benefit models.

4.5 Few-sample Evaluation

In this section, considering that auxiliary informa-
tion for the basic model will be more urgent in
low-resource EE scenarios, we also study how to
influence the performance of our Gaussian enhance-
ment strategies by changing the available training
data size. We compare the ED performance, i.e.,
F1 score results, of all our proposed methods on
the FewEvent dataset when trained with different
ratios of randomly-sampled training data. We can
observe from the experiment results that:

(1) GauSE is especially beneficial for extremely
low-resource EE scenarios. As shown in Figure 6,
the improvements of our Gaussian enhanced strate-
gies compared to the basic model DMBERT are
generally more significant when less training data is
available. Specifically, in extremely low-resource
EE scenarios (training model with less than 20%
data), Gau Fusion based strategy obtains 37.23%



Model ACE ED ACE AC ONTO ED FEW ED
P R F1 P R F1 P R F1 P R F1
DMBERT 71.60 7230 70.87 53.14 54.24 5276 80.00 7830 78.40 81.75 81.83 80.52
+Gau 7343 7423 7298 53.82 5445 5322 8045 79.80 79.70 82.27 82.58 81.30
+Mul 73.39 75.24 73.56 5535 54.72 53.72 81.16 80.29 80.13 8248 82.85 81.55
+GMM 73.18 74.78 73.28 55.15 5520 54.13 81.00 79.98 79.85 82.78 82.62 81.46
+Fusion 7422 7624 74770 56.35 55.12 5427 81.18 80.32 80.30 82.53 83.00 81.65
+WA 76.52 78.00 76.30 57.67 58.03 56.83 81.90 80.10 80.23 83.57 82.83 81.83
+WA & logits  77.16 7796 7680 57.43 5837 57.03 8230 80.57 8090 83.17 83.80 82.43

Table 6: Ablation study of EE with various models on three datasets. P(%), R(%) and F'1(%) represent precision,

recall and F1-score respectively.

F1 score with 10% training data, while Gau WA
& logits based strategy, which enhances the gen-
eralization of the basic model, obtains 47.13% F1
score, in comparison to 34.93% in DMBERT.

(2) GauSE could achieve better performance
with less data constantly. As shown in Table 5,
GauSE obtains more advanced performances with
less training data than baseline continuously. Es-
pecially, DMBERT requires 100% training data to
almost achieve the best performance, while Gau
Fusion based strategy only needs 80%. Gau Fu-
sion based strategy could even obtain 81.65% F1
score with overall data, while Gau WA & logits
based strategy obtains 82.43%, 1.91% higher than
80.52% in DMBERT. These results demonstrate
that GauSE is especially beneficial for low-resource
EE tasks, which is essential since the annotation of
EE is quite expensive and laborious.

5 Detailed Ablation Analysis

To evaluate the effect of different Gaussian-based
enhancement strategies, we study the performances
of the corresponding modules, and the ablation
results are shown in Table 6. We can observe that:

(1) Gaussian Fusion strategy could generally
guide the generation of more syntactic knowl-
edge. The introduction of Gaussian enhanced self-
attention syntactic region could achieve general
improvements based on DMBERT. The F1-score
performance of Gau is 1.16% higher than the basic
model on the average of all datasets. The Gau Mul
strategy surpasses the Gau GMM strategy slightly
since Gau Mul generates more unseen information.
The fusion of Gau Mul and Gau GMM indicates
that promoting message passing among several dis-
tributions of the same triggers or arguments could
further benefit the model to some extent. The F1-
score performance of Gau Fusion is 0.93% higher
than Gau on average.

(2) Gaussian regularization strategy is essential
for the generalization of the model. The compari-
son between Gau WA and Gau WA & logits shows
the importance of adjusted Gaussian logit guidance.
Since Gau WA only relies on the regularization
of different Gaussian prediction distributions, the
adjusted predictions cannot guide the further clas-
sification, so that the improvements are relatively
implicit; Gau WA even results in a 0.07% perfor-
mance drop by comparison with Gau Fusion on the
OntoEvent dataset. Gau WA & logits utilizes all
of the Gaussian enhanced logits to further improve
regularization. The F1-score performance of Gau
WA & logits is 0.49% higher than Gau WA on the
average of all datasets, while 3.65% higher than
basic model DMBERT on average.

6 Conclusion and Future Work

In this paper, we propose GauSE, a Gaussian en-
hanced self-attention EE mechanism for the first
time to better utilize the syntactic related trig-
ger/argument specific knowledge. To explore the
latent information among Gaussian distributions,
we design several interaction strategies based on
existing ones. Concretely, we construct Gaussian
fusion methods and regularization methods based
on distribution divergence metric. Experiments
on several datasets demonstrate that our model
achieves significant improvements above the previ-
ous state-of-the-art models, especially those based
on syntactic knowledge. Further experiments in
few-sample scenarios indicate that our model bene-
fits low-resource EE tasks.

We will explore more efficient interaction strate-
gies among Gaussian enhanced information to in-
troduce latent knowledge for future work. And
expand our methods to other keyword-based IE
tasks, such as relation extraction, to improve the
generalization ability of our model.
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