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Abstract

Event Extraction (EE) has benefited from pre-001
trained language models (PLMs), in which002
the self-attention mechanism could pay atten-003
tion to the global relationship between trig-004
gers/arguments and context words to enhance005
performance. However, existing PLM-based006
methods are not good enough at capturing local007
trigger/argument-specific knowledge. To this008
end, we propose a Gaussian enhanced Self-009
attention Event extraction framework (GauSE),010
which models the syntactic-related local infor-011
mation of trigger/argument as a Gaussian bias012
for the first time, to pay more attention to the013
syntactic scope of the local region. Further-014
more, existing methods rarely consider multi-015
ple occurrences of the same triggers/arguments016
in EE. We explore the global interaction strate-017
gies among multiple localness of the same trig-018
gers/arguments to fuse the corresponding dis-019
tributions and capture more latent information020
scopes. Compared to traditional GCN-based021
models, our methods could introduce syntac-022
tic relationships without over-smoothing prob-023
lem in deep GCN layers. Experiments on EE024
datasets demonstrate the effectiveness and gen-025
eralization of our proposed approach.026

1 Introduction027

Event extraction is an essential information extrac-028

tion (IE) task, aims to extract event structures from029

unstructured event mentions. It consists of event de-030

tection (ED) and event argument extraction (EAE).031

For example, in the event mention "CNN’s Kelly032

Wallace reports on today’s attack in Netanya.", ED033

model should identify the event trigger "attack"034

and classify the event type "Conflict:Attack", EAE035

model should identify the event arguments "today"036

and "Netanya", then classify argument roles "Time-037

Within" and "Place". The extracted event structures038

could benefit numerous downstream tasks, such as039

biomedical science (Li et al., 2019; Wang et al.,040

2020), financial analysis (Deng et al., 2019; Liang041

et al., 2020), information retrieval (Glavas and Sna- 042

jder, 2014), and so on. 043

Existing EE methods mainly focus on feature 044

engineering. Inspired by the significant perfor- 045

mance of PLMs for various NLP tasks, some prior 046

work (Wang et al., 2019; Wadden et al., 2019) uti- 047

lizes general PLMs, such as BERT (Devlin et al., 048

2019), to construct global dependencies among 049

context words by self-attention. Although leverag- 050

ing PLMs has improved EE performance, it still 051

cannot capture the local information of specific 052

triggers or arguments. As shown in Figure 1, in 053

the sentence "Attack happened without declaration 054

of war, the attack was judged in trials.", the first 055

trigger "attack" is more important to the second 056

trigger "attack" than other words when computing 057

self-attention, trigger-specific information is not 058

strengthened enough by the original self-attention. 059

To avoid the information insufficiency problem, 060

dependency tree based Graph Convolution Network 061

(GCN) (Nguyen and Grishman, 2018; Liu et al., 062

2018; Yan et al., 2019) was adopted to capture syn- 063

tactic relations between triggers and related words. 064

However, in the literature, the information intro- 065

duced by GCN still exists some problems: (1) GCN 066

mainly focuses on the nearest syntactic neighbors 067

(Nguyen and Grishman, 2018; Liu et al., 2018), 068

as shown in Figure 2, the second trigger "attack" 069

just attaches 2-hop syntactic neighbor "happened", 070

early stop of message passing limits the capture of 071

neighbors; (2) in multi-hop message passing, due 072

to over-smoothing (Zhou et al., 2020) in deep lay- 073

ers of GCN, the importance of "War" will gradually 074

disappear to "happened", this phenomenon further 075

decreases deeper information passing; (3) existing 076

GCN-based methods have not modeled the rela- 077

tionship among the same triggers/arguments occur 078

multiple times in event mentions. 079

Another general localness-enhanced self- 080

attention method is modeling local regions as 081

Gaussian priors (Yang et al., 2018; Guo et al., 082
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[SEP]
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[SEP]
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Figure 1: Attention score in original self-attention, the connecting line colors are weighted by the attention values.
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Figure 2: Syntactic dependency parsing.

2019), which could enhance the neighbor text083

spans of central words. Compared to GCN-based084

models, Gaussian-based methods could expand the085

neighbor scopes and alleviate the over-smoothing086

problem without changing the model structure.087

In this paper, we combine the above methods in088

EE for the first time. Specifically, we enrich the089

trigger/argument specific information using Gaus-090

sian prior probability over the corresponding win-091

dow (i.e. the deviation of syntactic dependency092

distribution) to the central word (i.e. the position of093

trigger/argument), and further enhance the original094

self-attention.095

The above method is adapted to the situation096

that triggers/arguments appear once in event men-097

tions. However, the same triggers/arguments may098

occur multiple times in the same mentions, ac-099

cording to our statistics on the ACE-2005 dataset,100

13.18% (1959/14862) of mentions have the same101

triggers/arguments occurring multiple times. We102

hypothesize that the same triggers/arguments in103

the same mentions are identical, modeling the rela-104

tionship among multiple occurrences of the same105

triggers/arguments is beneficial. We further ex-106

plore several fusion methods among Gaussian pri- 107

ors to capture latent knowledge. Specifically, we 108

adopt Gaussian multiplication and GMM among 109

the identical trigger/argument distributions to pay 110

attention to intermediate words. In addition, we 111

regularize the output distributions of the same trig- 112

gers/arguments to be consistent by minimizing the 113

Wasserstein (WA) divergence among the outputs. 114

Our contributions are summarized as follows: 115

• We propose a novel Gaussian-enhanced self- 116

attention framework, which aims to alleviate 117

the trigger/argument specific syntactic infor- 118

mation insufficiency problem in EE for the 119

first time and better capture local dependen- 120

cies of event mention sequences. 121

• We propose efficient Gaussian high-order in- 122

teraction mechanisms to promote knowledge 123

fusion. In addition, we adopt a novel distri- 124

bution metric loss to strengthen the model’s 125

generalization. 126

• Experiments on several datasets indicate that 127

GauSE achieves significant performances on 128

both overall and few-sample settings. 129

2 Related Work 130

Event Extraction. Most of existing EE models 131

rely on feature construction. Traditional methods 132

(Ji and Grishman, 2008; Gupta and Ji, 2009; Li 133

et al., 2013) mainly focus on manual features. Re- 134

cently, neural network based models have been 135

widely used to extract features automatically, such 136

as convolutional neural networks (CNN) (Nguyen 137

and Grishman, 2015; Chen et al., 2015), recur- 138

rent neural networks (RNN) (Nguyen et al., 2016), 139
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Figure 3: Illustration of the proposed single Gaussian-based localness modeling approach.

graph neural networks (GNN) (Nguyen and Grish-140

man, 2018; Lai et al., 2020), and PLM-based mod-141

els because of their significant performance (Wang142

et al., 2019; Yang et al., 2019; Wadden et al., 2019;143

Tong et al., 2020). Existing NN models regard144

triggers/arguments and other context words as the145

same, trigger/argument specific information cannot146

be captured. In this work, we enhance the weight147

of specific local knowledge to better utilize rich148

syntactic information in event mentions.149

Localness Modeling of Self-Attention. To im-150

prove the quality of designed features, besides lin-151

guistic features, syntactic information has been ex-152

plored in many works. Dependency-bridge based153

RNN (Sha et al., 2018) introduced the dependency154

tree into EE. Syntactic dependency tree based GCN155

(Nguyen and Grishman, 2018; Liu et al., 2018;156

Yan et al., 2019) promoted information propagation157

over graphs. Although these works could capture158

syntactic information, over-smoothing still limits159

message passing. Furthermore, the relations among160

the same triggers/arguments occurring multiple161

times in event mentions have not been explored.162

Several works have demonstrated that explicitly163

modeling localness by Gaussian bias benefits more,164

such as restricting self-attention on neighbor in-165

formation (Sperber et al., 2018), adopting relative166

neighbor position encoding between tokens (Shaw167

et al., 2018), dynamically adjusting attention distri-168

bution (Yang et al., 2018; Guo et al., 2019) to better169

model localness. Compared to GCN-based mod-170

els, these methods could introduce local knowledge171

without complicated model architecture. 172

In this work, we adjust the syntactic information 173

into a Gaussian-enhanced self-attention mechanism 174

for the first time, which alleviates information loss 175

and explores the interactions among several Gaus- 176

sian priors, to model latent knowledge efficiently. 177

3 Methodology 178

The overall GauSE framework consists of three 179

Gaussian-based enhancement strategies: (1) Single 180

Localness Modeling, (2) Localness Fusion Learn- 181

ing, (3) Localness Regularization Learning. 182

3.1 Preprocessing 183

To build syntactic-aware neighbor signals for mod- 184

eling trigger/argument specific information, we use 185

the automatic syntactic dependency parser spaCy1 186

to parse event mentions into syntactic dependency 187

tree structures. Formally, given an event mention, 188

the dependency tree structure consists of tokens as 189

nodes and syntactic dependencies as edges. 190

3.2 Single Localness Modeling 191

The original self-attention mechanism computes 192

attention scores as Figure 1. Specifically, given an 193

input event mention s = {w1, ..., wn} contains n 194

tokens, the hidden state H of s is calculated by the 195

transformed queries Q ∈ Rn×d, keys K ∈ Rn×d, 196

and values V ∈ Rn×d as follows: 197

H = Att(Q,K, V ) (1) 198

1https://spacy.io/api/dependencyparser
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where Att(·) means the dot-product self-attention199

mechanism, which is defined as:200

Att(Q,K, V ) = softmax(ScoreOri)V (2)201

202

ScoreOri =
QKT

√
d

(3)203

The original calculation regards all words as204

the same, even the syntactic information that205

dependency-based GCN introduced is limited206

to over-smoothing. To efficiently model trig-207

ger/argument specific syntactic information, we208

suppose that trigger ti or argument ai represents209

the central word of the event mention s; further, we210

strengthen the importance of tokens in the range211

of 1-hop syntactic neighbors. We hypothesize that212

1-hop neighbors have the most critical syntactic213

information. Considering the distance factor, the214

syntactic contributions of different tokens to cen-215

tral words obey the normal distribution. We model216

this phenomenon via Gaussian prior in this paper.217

Specifically, as shown in Figure 3, the Gaussian218

bias G ∈ Rn×n, where n is the length of event219

mention, is defined to strengthen the original self-220

attention score, i.e. ScoreOri in Equation 2:221

Att(Q,K, V ) = softmax(ScoreOri+G)V (4)222

The element Gi,j ∈ (−∞, 0] measures the syn-223

tactic distance between context token wj in the224

1-hop syntactic neighbor scope and the central trig-225

ger/argument word wi, defined as:226

Gi,j = −(Pj − Pi)
2

2σi2
(5)227

where Pj and Pi are the positions of neighbor and228

central tokens, σi represents the standard deviation,229

which is generally defined as Di
2 , Di is the win-230

dow size of the corresponding central word, i.e. the231

distance of 1-hop syntactic neighbor to specific trig-232

ger/argument. Furthermore, due to the exponential233

operation in softmax, the enhanced Gaussian bias234

equates to multiplying the original self-attention235

score by a Gaussian weight.236

3.3 Localness Fusion Learning237

Since the Gaussian bias was introduced indepen-238

dently for each central word, it may be beneficial to239

consider them simultaneously, when the same trig-240

gers/arguments appear multiple times in the event241

mentions. As shown in Figure 2, the trigger "at-242

tack" occurs twice in the same event mention, and243

they represent the same event type about "war", 244

the interaction between them could provide bene- 245

ficial syntactic neighbor knowledge to each other. 246

Specifically, we adopt localness interaction strate- 247

gies, i.e. Gaussian multiplication and GMM, to 248

promote message passing among several Gaussian 249

distributions of the same triggers/arguments. 250
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Figure 4: Localness fusion learning strategies.

Considering the tokens that simultaneously ap- 251

pear in the same trigger/argument neighbors should 252

be enhanced, as shown in Figure 4(a), the first trig- 253

ger word "attack" has syntactic neighbor context 254

region "attack happened without", while the sec- 255

ond "attack" has neighbor "of war, the attack was 256

judged", the text "happened without declaration of 257

war", which appears in the interaction of several 258

syntactic neighbor texts of "attack", should be paid 259

more attention to, we adopt Gaussian multiplica- 260

tion to obtain the corresponding latent distribution: 261

Gi,j = −(Pj − Pi)
2

2σ2
i

− (Pj − µmul)
2

2σ2
mul

(6) 262

263

µmul = σ2
mul

N∑
k=1

µk

σk2
(7) 264

265

1

σ2
mul

=
N∑
k=1

1

σk2
(8) 266
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where µk and σk denote the positions and syntactic267

window sizes of same triggers/arguments, µmul268

and σmul denote the latent Gaussian bias.269

To combine several Gaussian distributions of270

the same trigger/argument words, as shown in Fig-271

ure 4(b), we adopt GMM enhancement strategy to272

promote message passing of co-occurrence syntac-273

tic neighbor regions, which is defined as:274

Gi,j = −α
(Pj − Pi)

2

2σi2
−

N∑
k=1

βk
(Pj − Pk)

2

2σk2
(9)275

where α and βk denote the weights of origi-276

nal and other Gaussian biases of the same trig-277

gers/arguments, in this way, all of the Gaussian bi-278

ases of triggers/arguments that exist multiple times279

in the same event mentions could be weighted to280

share knowledge between each other.281

Considering the exponential operation in282

softmax, we further define GMM as follows:283

Gi,j = log(
α√
2πσi2

exp−(Pj − Pi)
2

2σi2

+

N∑
k=1

βk√
2πσk2

exp−(Pj − Pk)
2

2σk2
)

(10)284

The above interaction strategies fuse multi-285

ple Gaussian distributions, so that all of the286

Gaussian enhanced knowledge of the same trig-287

gers/arguments could be paid more attention to si-288

multaneously. In this way, message passing among289

multiple distributions could be realized more effi-290

ciently. Besides, our method is compatible with the291

original BERT in model parameters and could be292

applied conveniently.293

3.4 Localness Regularization Learning294

Considering most of the same triggers/arguments295

occurring multiple times in the same event men-296

tions are identical in EE, we hope the informa-297

tion learned from the same triggers/arguments298

Gaussian distributions could be similar. Specifi-299

cally, the corresponding distributions of predictions300

PGk
k (y||xi) should be more consistent, where Gk301

means the kth Gaussian distribution of the same302

triggers/arguments.303

As shown in Figure 5, since the output predic-304

tions PGj

j (y||xi) and PGk
k (y||xi) of the same trig-305

gers/arguments specific Gaussian enhanced knowl-306

edge are different, where Gj and Gk means the307

jth and kth Gaussian distribution of the same trig-308

gers/arguments, the predictions are different for309

Embedding layer

Gaussian enhanced encoding layer

Output layer

Input

logit1 logit2
DWA(logit1||logit2)

loss1 lossWA⨁

First “attack” Second “attack”

Attack without declaration of war, the attack
in Trials.
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-1.0

loss2⨁

Figure 5: Localness regularization learning by
Wassertein Distance metric.

the same input event mention xi. To alleviate the 310

inconsistency problem, we adopt a distribution di- 311

vergence metric, i.e. WA Distance2, to regularize 312

the corresponding prediction distributions: 313

Li
WA =∑N−1

j=1

∑N
k=j+1WA(P

Gj

j (y||xi), PGk
k (y||xi))

N(N − 1)/2
(11)

314

With the negative log-likelihood learning objec- 315

tive Li
NLL of Gaussian enhanced predictions for 316

given training data (xi, yi): 317

Li
NLL = −

∑N
j=1 log(P

Gj

j (yi||xi))
N

(12) 318

Based on these training objectives, we define the 319

final training objective as to minimize Li
total for 320

the input event mention xi: 321

Li
total =Li

NLL + Li
WA

=−
∑N

j=1 log(P
Gj

j (yi||xi))

N

+

∑N−1
j=1

∑N
k=j+1 WA(P

Gj

j (y||xi), P
Gk
k (y||xi))

N(N − 1)/2
(13)

322

In this way, our method further regularizes the 323

model output distributions and enhances the gener- 324

alization of the original model. 325

2where WA Distance could solve the asymmetry problem
in Kullback-Leibler (KL) divergence, avoid the bidirectional
calculation between two output distributions.
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Dataset Doc Ins EveT
ACE 2005 ED subset 599 4,090 33

ACE 2005 EAC subset 599 4,090 35
OntoEvent 4,115 60,546 100
FewEvent - 70,852 100

Table 1: Statics of existing widely-used EE datasets.
ACE 2005 dataset contains ED and EAC subsets. (Doc:
document, Ins: instance, EveT: event type.)

4 Experiments326

The experiments aim to demonstrate that GauSE327

with several Gaussian enhanced strategies could328

benefit EE tasks in both overall and low-resource329

settings.330

4.1 Datasets331

We evaluate our methods on three generally-used332

EE datasets, including ACE 2005 English subset333

(Walker et al., 2006), the recently-constructed large-334

scale OntoEvent dataset (Deng et al., 2021), and335

FewEvent dataset (Deng et al., 2020). The statics336

of these datasets are introduced in Table 1. EE337

performance is assessed with two subtasks: Event338

Detection (ED) and Event Argument Classification339

(EAC). In the ACE 2005 dataset, we evaluate both340

ED and EAC subtasks, while in OntoEvent and341

FewEvent, we only evaluate ED subtask due to the342

structures of the corresponding datasets. We further343

evaluate our model in low-resource scenarios of the344

FewEvent dataset.345

4.2 Baselines346

For evaluation, we adopt several official EE base-347

lines, including: (1) vanilla CNN-based model DM-348

CNN (Chen et al., 2015); (2) the model dependent349

on syntactic dependency knowledge, such as RNN-350

based model JRNN (Nguyen et al., 2016), GCN-351

based model JMEE (Liu et al., 2018), graph-based352

models DYGIE++ (Wadden et al., 2019), OneIE353

(Lin et al., 2020), PathLM (Li et al., 2020) and354

OntoED (Deng et al., 2021), joint-based model355

Joint3EE (Nguyen and Nguyen, 2019); (3) GAN-356

based model GAIL (Zhang et al., 2019); and357

(4) some new forms of EE models, such as QA-358

based model BERT_QA (Du and Cardie, 2020),359

generation-based paradigm Text2Event (Lu et al.,360

2021).361

We adopt the official BERT-based model DM-362

BERT (Wang et al., 2019) as our baseline to further363

continue our experiments.364

Model ED EAC
P R F1 P R F1

DMCNN 75.60 63.60 69.10 62.20 46.90 53.50
JRNN 66.00 73.00 69.30 54.20 56.70 55.40
Joint3EE 68.00 71.80 69.80 52.10 52.10 52.10
DYGIE++ - - 69.70 - - 48.80
GAIL 74.80 69.40 72.00 61.60 45.70 52.40
OneIE - - 74.70 - - 56.80
PathLM - - 73.40 - - 56.60
BERT_QA 71.12 73.70 72.39 56.77 50.24 53.31
Text2Event 69.60 74.40 71.90 52.50 55.20 53.80
DMBERT 71.60 72.30 70.87 53.14 54.24 52.76
+Gau 73.43 74.23 72.98 53.82 54.45 53.22
+Fusion 74.22 76.24 74.70 56.35 55.12 54.27
+Regularization 77.16 77.96 76.80 57.43 58.37 57.03

Table 2: Evaluation of EE with various models on ACE
2005. P (%), R(%) and F1(%) represent precision,
recall and F1-score respectively.

4.3 Experiment Settings 365

Gaussian enhanced model settings. Before the 366

detailed experiments, we adopt pre-process method 367

to determine the syntactic neighbors of triggers and 368

arguments. Specifically, we obtain the syntactic de- 369

pendency tree by spaCy and select 1-hop neighbors 370

to calculate Gaussian enhanced regions. 371

General settings. We adopt the same model struc- 372

ture as BERT, which is with 12 layers, 768 hidden 373

sizes and 12 attention heads. AdamW (Loshchilov 374

and Hutter, 2017) optimizer is used with the learn- 375

ing rate of 1×10−5, a dropout rate of 0.1 is adopted 376

to avoid over-fitting. The dimension of token em- 377

bedding is 768, while the maximum length of in- 378

put event mention is 128. The hyperparameters of 379

α and β are set to 0.5 and 0.5, respectively. We 380

evaluate the performance of EE with Precision (P), 381

Recall (R) and F1 Score (F1). We follow the eval- 382

uation protocol of previous EE models, event in- 383

stances are split into training, validating and testing 384

sets with the ratio of 0.8, 0.1 and 0.1, respectively. 385

We run each method 5 times on all datasets and re- 386

port the average performances to get stable results. 387

4.4 Overall Evaluation 388

The evaluation results are shown in Tables 2 to 4. 389

We can see that: 390

(1) By modeling trigger/argument syntactic re- 391

lated regions, GauSE could efficiently utilize la- 392

tent knowledge which benefits to EE task. GauSE 393

achieves significant improvements compared to the 394

basic model DMBERT on all datasets and outper- 395

forms all baselines, especially models based on 396

syntactic dependency tree, such as JRNN, JMEE 397

and Joint3EE. The results demonstrate the effec- 398
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Model ED
P R F1

DMCNN 62.51 62.35 63.72
JRNN 63.73 63.54 66.95
JMEE 52.02 53.80 68.07
AD-DMBERT 67.35 73.46 71.89
OneIE 71.94 68.52 71.77
PathLM 73.51 68.74 72.83
OntoED 75.46 70.38 74.92
DMBERT 80.00 78.30 78.40
+Gau 80.45 79.80 79.70
+Fusion 81.18 80.32 80.30
+Regularization 82.30 80.57 80.90

Table 3: Evaluation of ED with various models on On-
toEvent. P (%), R(%) and F1(%) represent precision,
recall and F1-score respectively.

Model ED
P R F1

DMBERT 81.75 81.83 80.52
+Gau 82.27 82.58 81.30
+Fusion 82.53 83.00 81.65
+Regularization 83.17 83.80 82.43

Table 4: Evaluation of ED with various models on Few-
Event. P (%), R(%) and F1(%) represent precision,
recall and F1-score respectively.

tiveness of GauSE, and our method could intro-399

duce syntactic information more efficiently. Fur-400

thermore, using single self-attention enhancement401

strategies, GauSE surpasses most of the methods402

based on complicated architectures without addi-403

tional parameters.404

(2) By combining different Gaussian enhance-405

ment strategies, GauSE could achieve different406

extents of improvements. The general ablation407

study indicates that different Gaussian enhance-408

ment strategies benefit the model differently. The409

interaction among Gaussian distributions could pro-410

mote message passing, so that the improvements411

of Gau Fusion, which combines Gau Mul and Gau412

GMM, are more significant than Gau. Gau Regu-413

larization could further improve the performance414

by strengthening the basic model’s generalization.415

(3) By enhancing the syntactic neighbor infor-416

mation, our model could extend to other keyword-417

based tasks. The experiments on both ED and418

EAC tasks explicitly excel baselines, implies that419

our model could leverage and propagate trig-420

ger/argument specific syntactic knowledge. Fur-421
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Figure 6: ED performance (F1-score) on FewEvent with
different ratios of training data.

Model ED
20% 40% 60% 80% 100%

DMBERT 56.27 72.47 78.17 79.10 80.52
+Gau 56.48 72.77 78.30 79.75 81.30
+Mul 56.70 73.10 78.53 79.90 81.55
+GMM 57.05 73.07 78.50 79.87 81.46
+Fusion 57.25 73.67 79.03 80.23 81.65
+WA 62.17 75.27 79.50 80.73 81.83
+WA & logits 62.47 75.53 80.13 81.17 82.43

Table 5: Few-sample evaluation with F1-score (%)
performance of event classification with various models
on FewEvent.

thermore, we could select keywords in texts in other 422

tasks, then adopt Gaussian enhanced keyword- 423

specific syntactic knowledge to benefit models. 424

4.5 Few-sample Evaluation 425

In this section, considering that auxiliary informa- 426

tion for the basic model will be more urgent in 427

low-resource EE scenarios, we also study how to 428

influence the performance of our Gaussian enhance- 429

ment strategies by changing the available training 430

data size. We compare the ED performance, i.e., 431

F1 score results, of all our proposed methods on 432

the FewEvent dataset when trained with different 433

ratios of randomly-sampled training data. We can 434

observe from the experiment results that: 435

(1) GauSE is especially beneficial for extremely 436

low-resource EE scenarios. As shown in Figure 6, 437

the improvements of our Gaussian enhanced strate- 438

gies compared to the basic model DMBERT are 439

generally more significant when less training data is 440

available. Specifically, in extremely low-resource 441

EE scenarios (training model with less than 20% 442

data), Gau Fusion based strategy obtains 37.23% 443
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Model ACE ED ACE AC ONTO ED FEW ED
P R F1 P R F1 P R F1 P R F1

DMBERT 71.60 72.30 70.87 53.14 54.24 52.76 80.00 78.30 78.40 81.75 81.83 80.52
+Gau 73.43 74.23 72.98 53.82 54.45 53.22 80.45 79.80 79.70 82.27 82.58 81.30
+Mul 73.39 75.24 73.56 55.35 54.72 53.72 81.16 80.29 80.13 82.48 82.85 81.55
+GMM 73.18 74.78 73.28 55.15 55.20 54.13 81.00 79.98 79.85 82.78 82.62 81.46
+Fusion 74.22 76.24 74.70 56.35 55.12 54.27 81.18 80.32 80.30 82.53 83.00 81.65
+WA 76.52 78.00 76.30 57.67 58.03 56.83 81.90 80.10 80.23 83.57 82.83 81.83
+WA & logits 77.16 77.96 76.80 57.43 58.37 57.03 82.30 80.57 80.90 83.17 83.80 82.43

Table 6: Ablation study of EE with various models on three datasets. P (%), R(%) and F1(%) represent precision,
recall and F1-score respectively.

F1 score with 10% training data, while Gau WA444

& logits based strategy, which enhances the gen-445

eralization of the basic model, obtains 47.13% F1446

score, in comparison to 34.93% in DMBERT.447

(2) GauSE could achieve better performance448

with less data constantly. As shown in Table 5,449

GauSE obtains more advanced performances with450

less training data than baseline continuously. Es-451

pecially, DMBERT requires 100% training data to452

almost achieve the best performance, while Gau453

Fusion based strategy only needs 80%. Gau Fu-454

sion based strategy could even obtain 81.65% F1455

score with overall data, while Gau WA & logits456

based strategy obtains 82.43%, 1.91% higher than457

80.52% in DMBERT. These results demonstrate458

that GauSE is especially beneficial for low-resource459

EE tasks, which is essential since the annotation of460

EE is quite expensive and laborious.461

5 Detailed Ablation Analysis462

To evaluate the effect of different Gaussian-based463

enhancement strategies, we study the performances464

of the corresponding modules, and the ablation465

results are shown in Table 6. We can observe that:466

(1) Gaussian Fusion strategy could generally467

guide the generation of more syntactic knowl-468

edge. The introduction of Gaussian enhanced self-469

attention syntactic region could achieve general470

improvements based on DMBERT. The F1-score471

performance of Gau is 1.16% higher than the basic472

model on the average of all datasets. The Gau Mul473

strategy surpasses the Gau GMM strategy slightly474

since Gau Mul generates more unseen information.475

The fusion of Gau Mul and Gau GMM indicates476

that promoting message passing among several dis-477

tributions of the same triggers or arguments could478

further benefit the model to some extent. The F1-479

score performance of Gau Fusion is 0.93% higher480

than Gau on average.481

(2) Gaussian regularization strategy is essential 482

for the generalization of the model. The compari- 483

son between Gau WA and Gau WA & logits shows 484

the importance of adjusted Gaussian logit guidance. 485

Since Gau WA only relies on the regularization 486

of different Gaussian prediction distributions, the 487

adjusted predictions cannot guide the further clas- 488

sification, so that the improvements are relatively 489

implicit; Gau WA even results in a 0.07% perfor- 490

mance drop by comparison with Gau Fusion on the 491

OntoEvent dataset. Gau WA & logits utilizes all 492

of the Gaussian enhanced logits to further improve 493

regularization. The F1-score performance of Gau 494

WA & logits is 0.49% higher than Gau WA on the 495

average of all datasets, while 3.65% higher than 496

basic model DMBERT on average. 497

6 Conclusion and Future Work 498

In this paper, we propose GauSE, a Gaussian en- 499

hanced self-attention EE mechanism for the first 500

time to better utilize the syntactic related trig- 501

ger/argument specific knowledge. To explore the 502

latent information among Gaussian distributions, 503

we design several interaction strategies based on 504

existing ones. Concretely, we construct Gaussian 505

fusion methods and regularization methods based 506

on distribution divergence metric. Experiments 507

on several datasets demonstrate that our model 508

achieves significant improvements above the previ- 509

ous state-of-the-art models, especially those based 510

on syntactic knowledge. Further experiments in 511

few-sample scenarios indicate that our model bene- 512

fits low-resource EE tasks. 513

We will explore more efficient interaction strate- 514

gies among Gaussian enhanced information to in- 515

troduce latent knowledge for future work. And 516

expand our methods to other keyword-based IE 517

tasks, such as relation extraction, to improve the 518

generalization ability of our model. 519
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