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ABSTRACT

Large Language Models (LLMs) have been the subject of active research, significantly ad-
vancing the field of Natural Language Processing (NLP). From BERT to BLOOM, LLMs
have surpassed state-of-the-art results in various natural language tasks such as question an-
swering, summarization, and text generation. Many ongoing efforts focus on understanding
LLMs’ capabilities, including their knowledge of the world, syntax, and semantics. How-
ever, extending the textual prowess of LLMs to symbolic reasoning has been slow and
predominantly focused on tackling problems related to the mathematical field. In this pa-
per, we explore the use of LLMs for automated planning - a branch of AI concerned with
the realization of action sequences (plans) to achieve a goal, typically executed by intel-
ligent agents, autonomous robots, and unmanned vehicles. We introduce Plansformer1;
an LLM fine-tuned on planning problems and capable of generating plans with favorable
behavior in terms of correctness and length with reduced knowledge-engineering efforts.
We also demonstrate the adaptability of Plansformer in solving different planning domains
with varying complexities, owing to the transfer learning abilities of LLMs. For one con-
figuration of Plansformer, we achieve 97% valid plans, out of which 95% are optimal for
Towers of Hanoi - a puzzle-solving domain.

1 INTRODUCTION

Large Language Models (LLMs), based on transformer-based (neural) architecture (Vaswani et al.,
2017; Devlin et al., 2018; Brown et al., 2020; Chowdhery et al., 2022), have significantly advanced
the field of Natural Language Processing (NLP). Their employment has grown dramatically in recent
times (Li, 2022), as researchers develop newer and bigger LLMs. From BERT to the most recent
BLOOM, language models have surpassed state-of-the-art results in various natural language tasks.
For example, PaLM (Chowdhery et al., 2022), achieved breakthrough performance on a plethora
of natural language tasks such as inference, question answering, and commonsense reasoning, and
outperformed an average human performance on the BIG-bench benchmark.

Despite the textual prowess of LLMs, their significance has been limited in the domains that in-
volve symbols. For example, domains with symbols such as mathematics (Hendrycks et al., 2021b;
Cobbe et al., 2021), and coding problems (Hendrycks et al., 2021a; Chen et al., 2021) deliberates the
failures of LLMs when it comes to handling symbols. In Automated Planning, (Valmeekam et al.,
2022) suggests that even state-of-the-art LLMs cannot reason with symbolic data and offer a new
suite of benchmarks to test their reasoning capabilities. Recently, there has been a lot of interest
in LLMs for code generation; for example, CodeT5 (Wang et al., 2021), CodeBERT (Feng et al.,
2020), Codex (Chen et al., 2021), etc. In this paper, we propose to employ LLMs that are trained to
generate code and repurpose them to generate valid plans. To advance the research in LLM-based
automated planning, we create a training and test dataset for several planning domains. We use
CodeT5 (base), a transformer-based code generation model that achieves state-of-the-art results in
CodeXGlue, as the pre-trained LLM. We select CodeT5 due to its ability to generate goal-directed,
sequential instruction and semantically meaningful program codes with syntactic and structural con-
straints. Then, we present, Plansformer, an LLM trained to generate symbolic plans of high quality
in terms of correctness and length. Our experimental results indicate that the syntactic/symbolic
knowledge learned from different programming languages in the CodeT5 model can be beneficial
for the PDDL-based automated planning task. For example, in one configuration of Plansformer
tested on a puzzle-solving domain, Towers of Hanoi - hanoi, our model was able to generate 97%

1The dataset, code, and all fine-tuned model checkpoints will be released for public usage.
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valid plans, out of which 95% are shortest length plans. The results reveal a promising direction to
harness LLMs for symbolic tasks such as planning.

In the remainder of the paper, we present preliminaries on automated planning and language models
and then propose an LLM repurposed planner called Plansformer. Next, we present the experimen-
tal results comparing our approach with state-of-the-art planners and other large language models.
Furthermore, we demonstrate the ability of Plansformer to adapt to other domains and discuss the
relevance to instruction generation. We conclude with a discussion of the results and presentation of
ongoing work.

2 BACKGROUND

2.1 AUTOMATED PLANNING

Given the initial and goal states, alongside a set of legal actions, the objective of a planning agent
is to devise a sequence of actions that advance the agent from the initial to the goal state. This
paper adopts the Planning Domain Description Language (PDDL) (McDermott et al., 1998; Fox &
Long, 2003) notations. In PDDL, a planning environment is described in terms of objects in the
world, predicates that describe relations between these objects, and actions that modify the world by
manipulating these relations. The output plan consists of a series of time steps, each of which can
have one or more instantiated actions with concurrency semantics (Ghallab et al., 2004). A planner
devises plans by searching in the space of states, where a state is a configuration of physical objects
or partial plans. There is a single agent in the most basic formulation, called classical planning.
The actions have unit cost, take constant time to execute, have deterministic effects, with the fully
observable world, domain-specific conditions/constraints, and all goals have to be achieved (Ghallab
et al., 2004). In more sophisticated planning settings, many of these conditions are relaxed. There
may be multiple agents, and the cost and duration of actions can be non-uniform. At the same
time, its effects can be non-deterministic, the world can be partially observable, and the agent may
maximize as many goals as it can achieve in a given time and resource budget.

2.2 LARGE LANGUAGE MODELS AND SYMBOLIC TASKS

Large Language Models (LLM) such as BERT (Wolf et al., 2020), RoBERTa (Liu et al., 2019),
and GPT3 (Brown et al., 2020) are pre-trained on extensive unstructured knowledge from public
data such as Wikipedia, Bookcorpus, and Commoncrawl, have shown impressive results in several
NLP tasks. It demonstrated the ability to generalize to multiple tasks from question answering and
machine translation to story generation and instruction following (Wang et al., 2018; 2019). LLMs
have shown the ability to generate output in natural language (Wolf et al., 2020; Raffel et al., 2020),
adapt to novel tasks in a zero or few-shot approach (Brown et al., 2020; Radford et al., 2019) and
decode with constraints on output space (Hokamp & Liu, 2017; Welleck et al., 2019; Kumar et al.,
2021). Recent progress in LLMs has demonstrated the generation of structured output that requires
precise syntactic/symbolic knowledge with structural constraints such as knowledge graphs (Petroni
et al., 2019), protein structure (Unsal et al., 2022; Ferruz & Höcker, 2022), and programming lan-
guages (Ahmad et al., 2021). As the LLMs collect the related knowledge necessary to solve an NLP
task, (Petroni et al., 2019) have shown that the LLMs are potential representations of the significant
knowledge bases. In protein data (Unsal et al., 2022; Ferruz & Höcker, 2022), LLMs generate the
functional properties of the proteins by enforcing the structural constraints specific to protein science
and determining the complex functional relationships in the protein binding. Code generation has
recently become very popular in the LLM research community. Several models such as CodeBERT
(Feng et al., 2020), Codex (Chen et al., 2021), and CodeT5 (Wang et al., 2021) have shown signifi-
cant improvement in transfer from pre-trained models for natural language to structured codes. One
of the key contributors to the success of these LLMs in code generation is fine-tuning the models
on task-specific data. For instance, CodeXGlue (Lu et al., 2021), a benchmark dataset for code
understanding and generation with sample codes from several programming languages, is used to
fine-tune CodeBERT, CodeT5, and others. In this paper, we harness CodeT5 for further fine-tuning
to the classical automated planning domain due to its ability to generate goal-directed, sequential
instruction and semantically meaningful program codes with syntactic and structural constraints.
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Figure 1: Plansformer Model Architecture showing modeling and evaluation phases. Modeling
phase involves finetuning CodeT5 with data from planning domain. Evaluation phase shows both
the planner and model testing.

The closest prior art addressing the ability of LLMs to generate symbolic plans are the studies of
(Hernandez et al., 2021; Valmeekam et al., 2022; Huang et al., 2022). (Hernandez et al., 2021) looks
at different ways to generate plans using GPT-3 versions, a prominent generative LLM. (Valmeekam
et al., 2022) discusses different scenarios for generating plans, like finding a satisficing plan or
adapting a previous one, and discusses encodings to generate plans and verify using a plan validator.
(Huang et al., 2022) generates step-by-step instructions for a user-defined task using LLM prompt-
ing. All these studies require the (human-guided) mapping of a natural language-based sequence of
instructions generated by the LLM to the admissible action in the planning domain as an additional
step.

3 PLANSFORMER FOR SYMBOLIC PLANS

Figure 1 provides an illustrative overview of how we generate and test our planner, called Plans-
former. The first phase, modeling, shows how we fine-tune the CodeT5 to address planning syntax
and semantics. The second phase, evaluation, deals with assessing the competency of Plansformer
as a model and as a planner. The key idea here is to utilize an LLM (CodeT5) pretrained on code
generation and further train it on planning problem instances with corresponding valid plans. We
evaluate its competence in generating valid plans (or almost valid plans for unseen planning prob-
lem instances) using two types of testing: 1) Model testing measures if Plansformer could generate
meaningful responses (as in the test dataset), 2) Planner testing measures if the generated plans are
valid/optimal (independently of whether they were the same plans as in the test dataset).

3.1 MODELING PHASE

In the modeling phase, we first create a planning-based dataset for finetuning the CodeT5 to generate
plans. The modeling phase of Figure 1 depicts the different modules employed.

3.1.1 PLANNING DATASET

We generate a PDDL-based dataset2 as a benchmark to finetune pretrained CodeT5 and facilitate
further research at the intersection of LLMs and automated planning. We use the domain model

2The link is omitted during the review process.

3



Under review as a conference paper at ICLR 2023

Figure 2: Snapshot of one instance of the plan dataset for blocksworld domain.

(in PDDL) to generate corresponding valid problem files with varying complexities automatically.
In this paper, we focus on four different classical planning domains, i.e., Blocksworld, Towers of
Hanoi, Grippers, Driverlog.

Blocksworld, or bw, is a well-studied domain (Gupta & Nau, 1991) with blocks placed on a table
or arranged in vertical stacks. Here, one can alter the arrangement of the blocks with the available
actions such as pick-up, put-down, stack, and unstack. We generate the problems with 2 to 5 block
configurations.

Towers of Hanoi, or hn, consists of 3 pegs and multiple disks of varying diameters. Initially, all
disks are placed in the first peg, and the end goal is to move the disks to the last peg. The only
limitation to consider when moving the disks is that only a smaller disk can be placed on top of a
bigger disk. Although the domain has only one action, the problem-solving is recursive (Gerety &
Cull, 1986). Here, we generate the problems with configurations of 2 to 5 disks.

Grippers, or gr domain involves moving balls across rooms using robotic grippers. It has problems
generated with configurations of 2 to 5 balls, 3 to 5 robots, and 2 to 4 rooms.

Driverlog or dl domain involves moving packages on trucks between locations driven by drivers. It
has problems generated with configurations of 1 to 3 drivers, 1 to 3 trucks, 2 to 4 packages, and 3 to
6 locations.

Each planning domain explained above includes multiple problem instances. We generate the corre-
sponding plans for each problem instance using FastDownward planner (Helmert, 2006). FastDown-
ward is a classical planning system based on a heuristic search and offers different search algorithms
such as causal graph heuristics and A* search. FastDownward can generate optimal plans with A*

LM-Cut heuristic (Helmert & Domshlak, 2011). Hence, FastDownward can be regarded as a potent
planner for generating a dataset of optimal plans.

We show the snapshot of the generated dataset in Figure 2, with more examples in Section 1 of sup-
plementary material. Unlike the traditional planner which requires two different files - domain and
problem (as pddl files, See Figure 2 in supplementary material), Plansformer reduces the knowledge-
engineering efforts with a simplified input format that includes the problem instance coupled with a
corresponding valid plan. The problem instance captures all the essential information in the domain
and problem instance, such as the goal, the initial state, and the possible actions that can be taken in
that domain. The generated dataset for each domain consists of 18,000 plans with different problem
configurations. For training, we use 5-fold cross-validation with an 80%-20% split of the generated
dataset for each domain. The average plan length (number of actions in the generated plan) for
blocksworld is 9, gripper is 9, driverlog is 10, and hanoi is 12.

3.1.2 TOKENIZER

We use a Byte-level BPE tokenizer, following the standard practice in LLMs, with a vocabulary size
of 32,005. We add PDDL-specific tokens, namely, [GOAL], [INIT], [ACTION], [PRE],
[EFFECT] to represent the goal state, initial state, possible actions with their associated precondi-
tions and effects these actions cause in the environment respectively. We do not re-train a specific
tokenizer for this task from scratch following the previous work (Chen et al., 2021), where GPT-3’s
tokenizer was reused to generate code.
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3.1.3 FINE-TUNING CODET5

While there are many LLMs to select as a candidate for this work, we shortlist the models pre-trained
on code generation to exploit the syntactic information in the programming languages implicitly
captured in their weights. Although Codex (Chen et al., 2021), built using GPT-3, has reported the
best performance in solving code-related tasks, its lack of public access led us to choose an equally
competitive LLM: CodeT5 (Wang et al., 2021). CodeT5 is a masked language model consisting
of an encoder-decoder stack inspired by the transformer architecture (Vaswani et al., 2017). It is
capable of performing a wide range of tasks including code generation and understanding tasks.
The generation tasks include code summarization, code generation, translation, and refinement. The
understanding tasks include code defect detection and clone detection. CodeT5 is pretrained with
example codes from eight programming languages - Python, Java, JavaScript, PHP, Ruby, Go, C,
and C#. Its pre-training tasks include identifier awareness and bimodal generation, which optimizes
code-to-code understanding. The CodeT5 model possesses several properties amenable to the plan-
ning domain, such as its ability to generate goal-directed, sequential instruction and semantically
meaningful program codes with syntactic and structural constraints. With this pre-trained knowl-
edge already encoded within CodeT5, we finetune it with 14400 samples (80% of the generated
dataset) for each independent domain from the planning dataset. As a result of this finetuning, the
weights of CodeT5 are updated to account for the task of plan generation. We give the planning
problem instance as input to CodeT5’s encoder and generate the intermediate features for the de-
coder of CodeT5 to output a plan.

3.2 EVALUATION PHASE

Plansformer is an LLM that ingests a new problem instance as input and outputs a plan for that
problem instance. Therefore, to evaluate its competency, we must test its quality as a model and
planner. The evaluation phase is described in the lower part of Figure 1, showing both testing
phases.

3.2.1 PLANNER TESTING

Unlike in natural language, symbolic plans have richer information content, inherently captured in
their structure. Thus, we have an additional evaluation phase for plan validation to check how well
Plansformer can mimic an automated planner. The sequence of actions generated by Plansformer
must help an agent to navigate from the initial state to the goal state for a given problem instance.
We call a generated plan cost-optimal 3 if it is the shortest possible among all other plans. Several
metrics exist in the automated planning literature to evaluate a plan generated by Plansformer. In
this paper, we consider validity and optimality. We evaluate the plan generated by Plansformer using
a plan validation tool, called VAL (Howey et al., 2004), to check for its optimality and validity. VAL
is an automatic validation tool for PDDL. VAL takes as input the task posed to Plansformer and the
corresponding generated plan. It applies PDDL-based relaxation conditions to check for validity
and optimality.

3.2.2 MODEL TESTING.

It is typical to evaluate natural language tasks such as summarization or generation using metrics
such as BLEU and ROUGE. Both BLEU and ROUGE are widely used metrics in NLP. In general,
BLEU measures precision and helps understand how closely a machine translation (here, plan gener-
ated by Plansformer) is compared to a human translation (here, plan generated by an automated plan-
ner). On the other hand, ROUGE measures recall, i.e., how many of the words referenced in human
summaries appeared in the summaries generated by the machine. In particular, we adopt ROUGE-L,
which considers sentence-level structure similarity by identifying the longest co-occurring sequence
n-grams. Although ROUGE and BLEU have no direct intuition in automated planning, we use these
metrics to look at the task of plan generation from the perspective of LLMs. The evaluation based on
these metrics provides us with an insight into the performance of Plansformer as a language model.
In the next section, we evaluate Plansformer as a planner to give conclusive evidence on how well
Plansformer generates the plans.

3We also refer to it as optimality interchangeably
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Models ROUGE-Lrecall ROUGE-Lprecision ROUGE-Lfmeasure BLEU
Codex 0.72 0.52 0.60 0.36
GPT-2 0.04 0.14 0.06 0.07
T5-base 0.16 0.70 0.26 0.02
CodeT5-base 0.41 0.28 0.33 0.02
Plansformer 0.93 0.93 0.93 0.89
Plansformer-bw 0.97 0.99 0.98 0.90
Plansformer-hn 0.99 0.96 0.97 0.95
Plansformer-gr 0.94 0.94 0.94 0.92
Plansformer-dl 0.82 0.83 0.82 0.79

Table 1: Results of model testing (best performance in bold).

4 EXPERIMENTAL RESULTS

In this section, we present the quantitative and qualitative results obtained using Plansformer to gen-
erate symbolic plans for multiple domains of varying complexities. We select a test-bed of 3, 600
unique and unseen problem instances (20% of the dataset) for each domain for evaluating Plans-
former. All the results reported in this paper are averaged over 5 randomly selected (80% − 20%)
train-test splits. We report the results for the Plansformer variants by evaluating the corresponding
test-bed. For example, Plansformer-bw’s results are reported based on the performance results
obtained on bw test-bed. We evaluate Plansformer using both model and planner testing to find its
efficiency as a language model and a planner.

4.1 IS PLANSFORMER A GOOD MODEL?

Plansformer has an encoder-decoder pair, where the encoder attends to tokens on either side of
the masked word, whereas the decoder auto-regressively generates plans. Table 1 compares all the
Plansformer models with other LLMs using the model evaluation metrics (ROUGE and BLEU).
In this experiment, we consider the best-performing models from (bidirectional) masked language
models (e.g., T5 (Raffel et al., 2020)) and (unidirectional) causal language models (e.g., GPT-2
(Radford et al., 2019)) for the experiments. We present the actual plan generations from a few of
these models in Figure 5 of supplementary material.

We report the performance of the baseline models averaged over the four planning domains. We
also show the performance of Plansformer on individual domains (Plansformer-bw, Plansformer-
hn, Plansformer-gr and Plansformer-dl). We observe that Plansformer performs best on all metrics,
followed by Codex, with a significant ROUGE-Lrecall score. We believe that the performance gain
from Codex compared to other baseline models is due to it’s ability to relate the natural language
understanding (a skill inherited from GPT-3) with code generation. It is interesting to see that
CodeT5 performs poorly compared to Codex and Plansformer, demonstrating the advantages of the
natural language understanding with code generation task on this evalutation metrics. We conclude
that the models pre-trained with code-related tasks have an advantage over other models in plan
generation task due to the similarities of PDDL with other programming languages. Despite with
the best model testing metrics, We need to test Plansformer for plan validation to see its effectiveness
as a planner.

4.2 IS PLANSFORMER A GOOD PLANNER?

In this section, we report the results from the planner testing. We evaluate the generated plans for
validity and optimality. We also report the average time taken to solve the problem instances. Ta-
ble 2 shows the plan validation scores obtained by different models. We consider FastDownward
(Helmert, 2006) for plan validation to generate the ground truth plans. FastDownward planner gen-
erates a 100% valid and optimal plan for a given input (i.e., a combination of domain description and
problem instance) when the landmark-cut heuristic is used within a standard A* search framework
(Helmert & Domshlak, 2011).

We can see that Blockworld bw domain achieved the highest performance gain via
Plansformer-bw - generated 90.04%, out of which 88.44% are optimal. This better perfor-
mance is analogous to the fact that bw is the easiest domain among the four domains. Although it
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Models Valid Plans (%) Invalid Plans Optimal Plans (%) Avg. Time (sec)
Incomplete/Wrong (%) Failed (%)

FastDownward
(Ground Truth)

100% - - 100% 10.28s

Codex 0.15% 0% 99.85% 0.15% 1s
GPT-2 0% 100% 0% 0% 0.05s
T5-base 0.25% 82.7% 17.3% 0.25% 0.47s
CodeT5-base 0.6% 99.4% 0% 0.6% 0.68s
Plansformer 83.64% 16.18% 0.19% 73.27% 0.06s
Plansformer-bw 90.04% 9.94% 0.02% 88.44% 0.05s
Plansformer-hn 84.97% 14.72% 0.31% 82.58% 0.05s
Plansformer-gr 82.97% 16.61% 0.42% 69.47% 0.06s
Plansformer-dl 76.56% 23.44% 0% 52.61% 0.09s

Table 2: Results of plan validation.

is hard to find optimal plans, we can find a valid plan linear in the number of blocks to any problem
instances by putting them down and picking from the table (Gupta & Nau, 1991).

On a relatively more complex domain, i.e., dl, Plansformer-dl achieves 76.56% valid plans,
out of which 52.61% are optimal. We notice a 20% difference between valid and optimal plans for
dl, with an observation that the model can come up with completely new and valid action sequences,
although may not optimal. We can see that the number of optimal plans generated reduces with the
increasing complexity of the domains. We include both incomplete/wrong generations from the
models and failed plans when reporting invalid plans. An incomplete/wrong generation is a partially
correct ordering of action sequences, whereas a failed plan is an entire plan consists of impossible
ordering of actions, not allowed by the domain definition. Figure 3 shows an example of incomplete
generation and failed plans. All Plansformer models generate close to 0% failed plans for respective
domains. It is a testament to Plansformer models’ ability to understand and generate valid action
sequences for a given domain.

Figure 3: Different types of invalid plans generated by Plansformer on Blocksworld domain
(Plansformer-bw).

Codex, the second best performing model according to ROUGE and BLEU scores, only generates
0.15% valid plans, emphasizing the need for a two-stage evaluation phase - where both model and
generated plans are tested. We notice that the average time taken by Plansformer to completely
solve the test-bed of problems is 2̃00x faster than the FastDownward, an automated planner that
generated ground truth plans. Plansformer may offer an immense advantage in generating approx-
imately correct plans in real-time applications. Interestingly, CodeT5, used to build Plansformer,
takes considerable time to solve the same problem instances from the test bed. We believe that the
Plansformer is faster since it generates valid and likely optimal plans shorter in length than usually
long incoherent sequences generated by CodeT5, which tend to be time-consuming. The difference
between plans generated by CodeT5 and Plansformer for the same problem is shown in Figure 4.

There have been very few relevant works that can be compared with Plansformer. Although some
recent works such as (Huang et al., 2022) use LLMs to generate “plans”, it is different from auto-
mated planning and is not symbolic in nature. These “plans” are step-by-step actions to perform
a trivial everyday task such as “Brush teeth”. These methods use a user-constructed prompt to
enable an LLM to generate appropriate steps from its prior knowledge. We believe the work by
(Valmeekam et al., 2022) is similar in spirit to ours, using a PDDL-based natural language prompt
to obtain symbolic plans using GPT-3. The significant difference between their dataset and ours is
the difference in the object names, for example, a block is named as b1 in our dataset as opposed
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to a in (Valmeekam et al., 2022). This difference lets us evaluate Plansformer4 on the dataset from
(Valmeekam et al., 2022) with randomized object names as opposed to our dataset introduced in
Section 3.1.1. On this dataset, Plansformer generated 66% valid plans, whereas, GPT3 with PDDL-
based natural language prompting generated only 0.6% valid plans. The significant difference in
performance enables us to validate the advantage of our approach in generating valid plans despite
randomized object names.

Plansformer, trained and tested on the same domain, displays superior performance both as a model
and a planner. However, LLMs are also well known for transfer learning, i.e., a model trained for
solving one domain can be re-purposed to solve other related domains. In the next section, we
explore how Plansformer trained on one domain can be adapted to another.

Figure 4: Long invalid generation from CodeT5 as opposed to a valid optimal plan from
Plansformer-bw for the same problem.

4.3 CAN PLANSFORMER ADAPT TO ANOTHER DOMAIN?

The base models, i.e., Plansformer-x, where x can bw, hn, gr, and dl, cannot generate valid plans
for other domains (i.e., Plansformer-bw on hn, gr, and dl) since each domain differs from the
others in terms of action space, complexity, and solving. However, LLMs allow us to utilize the
model trained in one domain to adapt to another using either making use of prompt conditioning or
transfer learning with further fine-tuning on the problem instances from the new domain. We have
seen from the previous work on prompt conditioning (Valmeekam et al., 2022) that the performance
of the model on an unseen domain is very sensitive to the manually-identified prompt. A small
perturbation to the prompt can significantly affect the model’s performance, and creating a perfect
prompt requires understanding the inner workings of LLM on hand and trial and error. In recent
years, researchers have started looking at automatic prompt generation (Shin et al., 2020), which we
would like to explore in the future.

Instead of the prompt conditioning, we follow the transfer learning approach by finetuning Plans-
former base models with problem instances from other domains to check the ability of Plansformer
to adapt to new domains. For brevity, we demonstrate variants of Plansformer-bw models on
three other domains. Figure 5 shows different Plansformer-bw models and their plan validation
scores on respective test-bed from target domains. We report that the results for transfer learning
setup of Plansformer base models convey the same insights as Plansformer-bw shown here and
are presented in Section 4.2 of supplementary material .

We consider different numbers of problem instances for finetuning Plansformer-bw on a given
domain to see how the performance of the model varies across the sample size. We use the model
naming format to convey the details on the amount of problem instances used for finetuning the
Plansformer base model, i.e., bw-hn[500] implies that we further finetune Plansformer-bw
using 500 problem instances from hn and report the results. In Figure 5, we can see an overall
increase in the number of valid plans for every testing domain as we increase the problem instances
available for finetuning. We observe that the models fine-tuned with 2000, which is 14% of the
training size of base models, achieves 50% of the valid plans recorded by Plansformer-hn,
Plansformer-gr, and Plansformer-dl. Despite the complexity of these planning domains,
we obtain > 90% valid plans for all testing domains by increasing the finetuning samples to that of
the training size of base models. Plansformer-bw-hn[14400] obtains the best performance
among all models, by achieving 97.05% valid plans, out of which 95.22% are optimal. In Figure
5(d), we compare Plansformer-hn trained with different number of data points from hn domain

4We would like to note that Plansformer is trained only on the dataset introduced in Section 3.1.1 and is not
trained/finetuned on the dataset in (Valmeekam et al., 2022) for this experiment
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Figure 5: Plansformer-bw as the base model fine-tuned with and tested on (a) hanoi (b) grippers
(c) driverlog, and (d) shows the comparison of valid plans generated by Plansformer-bw-hn derived
models with Plansformer-hn trained using similar data points.

against the Plansformer-bw (base model) finetuned on the same data points. We can see a clear
advantage of the transfer learning capability in LLMs, as both the bw and hn domains have similar
plan semantics. Similar trends can be seen for the other domains and the results are reported in
Section 4.2 of supplementary material.

We notice that the failed plans decrease with additional problem instances used for finetuning. Using
the same amount of problem instances as training (14, 400), we observe that the number of failed
plans is less than that of the base models built for the respective domains. The number of optimal
plans consistently increases with the number of problem instances in hn domain for finetuning. It is
13% more than Plansformer-hn, whereas we can see some variations for the other two domains.
We also report the fine-tuning results of all possible Plansformer models and their performance
in Figure 6 of the supplementary material. We have also trained a single Plansformer model on
all the domains (multi-task setting) and found that the individual model has relatively comparable
performance to that of 5 (See supplementary material Section 4.2 for more details).

5 CONCLUSIONS AND ONGOING WORK

In this paper, we have explored using LLMs to generate symbolic plans for multiple domains. We
have taken an LLM tailored to code and trained it further over a set of planning problem instances
and corresponding valid plans. We then tested the model’s capability to generate plans for unseen
planning problem instances, evaluating the correctness and length of such plans. Our approach
is compared to an existing state-of-the-art planner, showing that our LLM-based planner, called
Plansformer, can solve most instances with high quality both in terms of correctness and length while
needing much less time to generate such plans. Although Plansformer shows promising results, this
work is not done and can be extended in many directions. One can seek to eliminate invalid plans
comprising both failed or incomplete plans, drive efficiency further, explore more planning domains,
e.g., from competitions (ICAPS, 2022), and tackle other planning settings (Valmeekam et al., 2022).
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