
Mastering Task Arithmetic:
τJp as a Key Indicator for Weight Disentanglement

Kotaro Yoshida∗
Institute of Science Tokyo

yoshida.k.0253@m.isct.ac.jp

Yuji Naraki
Independent Researcher
yuji.1277@gmail.com

Takafumi Horie∗
Ritsumeikan University

horie.takafumi@em.ci.ritsumei.ac.jp

Ryosuke Yamaki
Ritsumeikan University, ProPlace Inc

yamaki.ryosuke@em.ci.ritsumei.ac.jp

Ryotaro Shimizu
University of California San Diego, ZOZO Research

r2shimizu@ucsd.edu

Yuki Saito
ZOZO Research

yuki.saito@zozo.com

Julian McAuley
University of California San Diego

jmcauley@ucsd.edu

Hiroki Naganuma
Université de Montréal, Mila, ProPlace Inc

naganuma.hiroki@mila.quebec

Abstract

Model-editing techniques using task arithmetic have rapidly gained attention.
Through task arithmetic, simply through arithmetic operations on the weights
of pre-trained and fine-tuned models create desired models, such as multi-task
models, models with specific tasks unsolvable, or domain-transferred models. How-
ever, task arithmetic faces challenges, such as low reproducibility and the high
cost associated with adjusting coefficients in the arithmetic operations on model
parameters, which have limited its practical success. In this paper, we present
three key contributions in the context of task addition and task negation within
task arithmetic. First, we propose a new metric called τJp which is based on
the product of the task vector (τ) and the Jacobian of the pre-trained model with
respect to its weights. We show that τJp has a causal relationship with the inter-
ference that occurs from arithmetic operations. Second, we show that introducing
regularization to minimize τJp significantly mitigates interference between task
inferences, which leads to eliminating coefficient tuning and better accuracy on
each task. Third, in the context of incremental learning, we confirmed that our
τJp regularization demonstrates more robust performance in environments where
future tasks to be learned are not accessible, validating the scalability of the ap-
proach. Finally, we demonstrate that the τJp regularizer further reinforces the
performance of task arithmetic by leveraging publicly available fine-tuned models,
offering practical benefits for real-world applications. Our code is available at
https://github.com/katoro8989/tau-Jp_Task_Arithmetic

*Work was performed when K.Yoshida and T.Horie were ProPlace interns

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

https://github.com/katoro8989/tau-Jp_Task_Arithmetic

1 Introduction

While there is a growing demand for foundational models in recent machine learning trends, the high
computational costs associated with their training (Zhou et al., 2023; Kaplan et al., 2020; Villalobos
et al., 2022) remain a significant barrier to broader practical use. To address this, model-editing
techniques using task arithmetic (Ilharco et al., 2023) have rapidly gained attention in the fields of
deep learning (Yadav et al., 2023; Davari and Belilovsky, 2023; Yu et al., 2024; Tang et al., 2023b;
Ortiz-Jimenez et al., 2023). Task arithmetic offers a significant advantage over traditional approaches
by enabling the efficient creation of edited models without the need for additional training, simply
through arithmetic operations on the weights of pre-trained and fine-tuned models. Specifically, task
arithmetic enables three operations; the creation of a single model capable of handling multiple tasks
(task addition), a model that selectively reduces the performance for a specific task (task negation),
and a model capable of handling tasks not explicitly included in the training data (task analogies).
These are realized by basic operations such as scalar multiplication, addition, and subtraction.

However, task arithmetic faces challenges, such as low reproducibility and the high cost associated
with adjusting coefficients in the arithmetic operations on model parameters, which have limited its
practical success (see Table 1 and Table 2). In addition, there is still limited theoretical understanding
of why and how these techniques work (Ortiz-Jimenez et al., 2023). Ortiz-Jimenez et al. (2023)
demonstrated in their experimental setup for task addition and task negation that the degree of inter-
ference between task inferences can be quantified using a metric called the weight disentanglement
error. They also observed that linearizing the model by the neural tangent kernel (NTK) (Jacot et al.,
2018) approximation reduced the weight disentanglement error. However, while their study provides
important insight into the condition of successful task arithmetic, its scope is limited to indirect
explanations and approaches to improvement.

Ensuring high reproducibility and minimizing computational costs while avoiding task interference
is essential for the practical application of task arithmetic. To address these challenges, we shed
light on the product of task vectors τ and the Jacobian matrix of the model function with respect
to its parameters. In particular, we investigate the relationship between this product and weight
disentanglement, drawing insights from the NTK regime and model linearization (Jacot et al., 2018;
Ortiz-Jimenez et al., 2023). We introduce a novel metric, τJp, and theoretically demonstrate that it
has a causal link to weight disentanglement. Based on this insight, we introduce the regularization
to minimize τJp and acquire task vectors with small interference between tasks. Moreover, we
demonstrate the effectiveness of the τJp regularizer in scenarios where future tasks to be learned
remain unknown or inaccessible. This is a critical requirement for scaling task arithmetic to more
complex and realistic environments. We further explore improving task arithmetic performance by
applying τJp regularization to the continual training of existing fine-tuned models. Our results show
that this approach is effective even with publicly available fine-tuned models, providing practical
advantages for real-world applications.

In this paper, we present three key contributions in the context of task addition and task negation
within task arithmetic.

• We propose a new metric, τJp (τ -Jacobian product), which can be shown to have a causal
relationship with weight disentanglement. We show that τJp tends to be inversely correlated
with normalized accuracy, i.e., the metric of performance variation from accuracy before
task arithmetic (Section 4).

• By introducing regularization during fine-tuning to minimize τJp, we significantly reduce
the interference between task predictions, thus greatly reducing the need for coefficient
adjustments (Section 5.1 and Section 5.2).

• We demonstrate that the regularization of τJp is effective in two practical scenarios: i) when
future tasks to be learned are unknown, or ii) when using publicly available fine-tuned
models. Our regularization method demonstrates both scalability and practical applicability.
(Section 5.3).

We believe that these contributions will lead to the practical application of model-editing techniques
using task arithmetic.

2

2 Related Work

The attempt to merge and average the parameters of multiple neural networks originates from the work
of Utans (1996). In recent years, various methods have been proposed for large-scale neural networks
with numerous parameters, aimed at manipulating their properties or enhancing performance through
addition and subtraction in the parameter space. Among these are many techniques related to task
arithmetic, including task analogies, as well as approaches associated with model merging. Among
the simpler methods of model merging are techniques that utilize either the simple or weighted
averaging of multiple models (Wortsman et al., 2022a; Choshen et al., 2022; Don-Yehiya et al., 2023;
Ramé et al., 2023; Muqeeth et al., 2023; Jolicoeur-Martineau et al., 2024), or the linear interpolation
between pre-trained and fine-tuned models (Ilharco et al., 2022; Wortsman et al., 2022b).

In the integration of models via model merging or task arithmetic, interference between the parameters
of multiple models or task vectors can arise, and various methods have been proposed to mitigate such
conflicts. For instance, some approaches apply masking operations to task vectors (Tang et al., 2023a;
Wang et al., 2024a; Huang et al., 2024), while others involve trimming or scaling techniques (Yadav
et al., 2023; Davari and Belilovsky, 2023; Yu et al., 2024), or leverage model linearization (Tang
et al., 2023b; Ortiz-Jimenez et al., 2023).

Theoretical and analytical studies on the effectiveness of model merging and task arithmetic include
research based on analyses of the loss landscape (Entezari et al., 2022; Qin et al., 2022; Gueta et al.,
2023), as exemplified by linear mode connectivity (Frankle et al., 2020), as well as approaches
that leverage model linearization within the NTK regime (Jacot et al., 2018). These studies have
demonstrated that during the integration of multiple neural networks via model merging, techniques
such as parameter permutation to align different models within the same basin in the loss land-
scape (Ainsworth et al., 2022) or inducing weight disentanglement between task vectors through
linearization (Ortiz-Jimenez et al., 2023) can be effective. Further detailed discussion is given in
Appendix A.

3 Background

Notation. Let θ ∈ Rp represent the weights of a neural network f : X → Y , where X ⊆ Rd

and Y ⊆ Rc are the input and output spaces with dimensionalities d and c, respectively. The
parameter θ has dimensionality p, representing the total number of model parameters. Additionally,
let θ0 represent the pre-trained weights and θ⋆ represent the fine-tuned weights. Let T denote the
index set of all possible tasks. Define the index set T ⊆ T as the set containing the indices of
all tasks used. For each task t ∈ T , the corresponding dataset Dt = {(xti , yti)}

|Dt|
i=1 is defined,

where xti ∈ X and yti ∈ Y . For a task t, fine-tuning is conducted by minimizing the loss function
1

|Dt|
∑|Dt|

i=1 L(f(xti ; θ), yti), starting from θ0, and yielding the fine-tuned weights θ⋆t .

3.1 Model Editing via Task Arithmetic

Task arithmetic (Ilharco et al., 2023) represents the difference between the weights of a fine-tuned
model and those of a pre-trained model — specifically, τ = θ⋆−θ0 — as a task vector. By performing
arithmetic operations, such as the addition or subtraction of multiple task vectors, and then adding
the result to the pre-trained weights θ0, the model can be effectively edited. Three key methods
leveraging task vectors for model editing have gained recognition in the field. Task addition creates
a multi-task model by summing task vectors obtained from various tasks and then adding this sum to
the weights of a pre-trained model. Task negation suppresses or erases the abilities and properties
only learned from a specific task by subtracting the corresponding task vector from the pre-trained
model’s weights. For instance, it can be used to forget harmful behaviors or biases learned during
training. Task analogies enable transfer learning to unseen tasks by using task vector addition and
subtraction based on analogical relationships between tasks, such as “A is to B as C is to D.” For
example, by leveraging three known tasks, task analogies can be used to infer the properties or
performance of a fourth, previously unseen task.

3

3.2 Weight Disentanglement

Ortiz-Jimenez et al. (2023) introduced the concept of weight disentanglement to measure the
degree of interference between task vectors in task arithmetic. Satisfying weight disentanglement is
represented by the following condition:

f

(
x; θ0 +

∑
t∈T

αtτt

)
=
∑
t∈T

f(x; θ0 + αtτt)1(x ∈ Dt) + f(x; θ0)1

(
x /∈

⋃
t∈T

Dt

)
(1)

The above equation implies that when performing task arithmetic using all task vectors within T , for
a given task t , the model will produce the same output as when using only the task vector τt , and
for tasks outside of T , the model will produce the same output as the pre-trained model. To assess
weight disentanglement between two tasks, weight disentanglement error was proposed.

ξ (α1, α2) =

2∑
t=1

Ex∼µt [dist (f (x; θ0 + αtτt) , f (x; θ0 + α1τ1 + α2τ2))] (2)

where dist(·, ·) measures the distance between two models’ vector outputs. For classification tasks,
it checks whether the predicted labels from the two models, ŷ1 and ŷ2, match, i.e., dist(ŷ1, ŷ2) =
1(ŷ1 ̸= ŷ2). This error captures the difference in output distributions when task vectors are applied
individually or jointly to a pre-trained model, reflecting the interference between task vectors in
function space. Ideally, in task arithmetic, each task vector would independently influence the model’s
output, resulting in the error being small.

3.3 Neural Tangent Kernel

The Neural Tangent Kernel (NTK) (Jacot et al., 2018) is a kernel that linearizes the learning dynamics
of infinite-width neural networks. In infinite-width networks, parameter updates during training
become infinitesimally small, allowing the following first-order Taylor approximation to hold:

f(x; θ) ≈ f(x; θ0) + (θ − θ0)
⊤∇θf(x; θ0). (3)

This approximation is valid in a regime commonly referred to as the NTK regime, or tangent space
(hereafter referred to as NTK regime), where the relationship between the parameter space and
function space becomes linearized. Recent studies have observed that fine-tuning large pre-trained
neural networks often operate within the NTK regime, as the parameter changes during fine-tuning
remain sufficiently small (Malladi et al., 2023; Ren et al., 2023). In contrast, it has also been reported
that in practice, fine-tuning finite-width models does not always result in perfectly linear behavior,
and fine-tuning can exhibit non-linear characteristics (Ortiz-Jimenez et al., 2023).

3.4 Task Arithmetic in the NTK regime

In task arithmetic, the reason why linear operations in the weight space of neural networks translate
directly to changes in the function space can be explained by the following NTK approximation:

f(x; θ0 +
∑
t∈T

αtτt) ≈ f(x; θ0) +
∑
t∈T

(αtτt)
⊤∇θf(x; θ0) (4)

where for all t ∈ T , τt denotes the task vector for task t, defined as τt = θ⋆t − θ0, and αt ∈ R.
In simple terms, in the NTK regime, the linearity of operations on task vectors is preserved in the
model’s output, resulting in corresponding linear effects on performance.

In practice, it has been reported that explicitly enforcing fine-tuning within the NTK regime improves
task arithmetic (Ortiz-Jimenez et al., 2023; Tang et al., 2023b). Ortiz-Jimenez et al. (2023); Tang et al.
(2023b) demonstrated that fine-tuning within the NTK regime lowers weight disentanglement error
and improves the performance of task addition and negation. One linearization method proposed by
Ortiz-Jimenez et al. (2023) is to fine-tune linearized models flin(x, θ) within their NTK regime when
creating task vectors and the formulation follows:

flin(x, θ) = f(x, θ0) + τ⊤∇θf(x, θ0) (5)

4

However, it remains unclear why linearizing the model suppresses weight disentanglement error and
how this, in turn, enhances task arithmetic. These questions have not yet been fully addressed from a
theoretical standpoint. We focus on the term τ⊤∇θf(x; θ0) in the NTK approximation and aim to
provide a theoretical explanation. Building on this theoretical foundation, we propose a novel method
to enhance task arithmetic.

4 Causal Impact of the τ -Jacobian Product on Weight Disentanglement

We theoretically explain weight disentanglement in the NTK regime and propose the τ -Jacobian
product as the underlying mechanism that drives weight disentanglement. We also experimentally
demonstrate the relationship between the τ -Jacobian product and model interference.

4.1 Weight disentanglement in the NTK regime

In this section, we attempt to provide a theoretical explanation of the relationship between weight
disentanglement and the task vector Jacobian product in the NTK regime. For simplicity, we
consider task arithmetic involving two tasks, A and B. In the NTK regime, the model’s output can be
approximated as follows:

f(x, θ0 + αAτA + αBτB) ≈ f(x, θ0) + αAτ
⊤
A∇θf(x, θ0) + αBτ

⊤
B∇θf(x, θ0) (6)

with αA, αB ∈ R. In this case, for inputs xA and xB from tasks A and B, it is evident that satisfying
the following two conditions is equivalent to achieving the weight disentanglement error of 0.

f(xA, θ0 + αAτA + αBτB) ≈ f(xA, θ0) + αAτ
⊤
A∇θf(xA, θ0) + 0 ≈ f(xA, θ0 + αAτA),

f(xB , θ0 + αAτA + αBτB) ≈ f(xB , θ0) + 0+ αBτ
⊤
B∇θf(xB , θ0) ≈ f(xB , θ0 + αBτB).

(7)

The above equations imply that the weight disentanglement error is 0 when the task vectors satisfy
the following conditions:

τ⊤A∇θf(xB , θ0) = 0,

τ⊤B∇θf(xA, θ0) = 0.
(8)

These conditions imply that the task vector for a given task is orthogonal to the Jacobian of the
pre-trained model, with respect to its parameters θ0, on the other task. In other words, linearizing
the model alone does not guarantee weight disentanglement; it is also necessary to satisfy the
aforementioned conditions (Eq. 8), as demonstrated theoretically.

We propose the following τ -Jacobian product (τJp) as a measure of how well the condition in Eq. (8)
is satisfied between two tasks:

τJp =
1

2

(
||τ⊤A∇θf(xB , θ0)||2 + ||τ⊤B∇θf(xA, θ0)||2

)
. (9)

The τJp is the average of the product of one task vector and the gradient of the pre-trained model
with respect to its weights on the other dataset, taken across both datasets. According to the condition
Eq. (8), a smaller τJp is desirable.

4.2 Relationship between τ -Jacobian product and interference

As demonstrated in Section 4.1, a smaller τJp improves weight disentanglement and reduces interfer-
ence between task vectors. In this section, we experimentally show that minimizing τJp effectively
mitigates task vector interference.

In the experiments, linearized fine-tuning (FT) (Ortiz-Jimenez et al., 2023) of different pre-trained
Vision Transformers (ViTs) (Dosovitskiy et al., 2021) under the same conditions as in Ilharco et al.
(2022); Ortiz-Jimenez et al. (2023) was conducted using CLIP (Radford et al., 2021) on eight image
tasks. Specifically, the eight tasks are Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT
(Helber et al., 2019), GTSRB (Stallkamp et al., 2011), MNIST (LeCun, 1998), RESISC45 (Cheng
et al., 2017), SUN397 (Xiao et al., 2016), and SVHN (Netzer et al., 2011).

First, we investigated the relationship between τJp and weight disentanglement. Figure 1 visualizes
weight disentanglement alongside τJp. In the top row showing Linear FT, we can see that when τJp

5

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

Li
ne

ar
 F

T

Cars-MNIST
(Jp: 4.1)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

DTD-GTSRB
(Jp: 6.6)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

EuroSAT-RESISC45
(Jp: 10.1)

0.0

0.1

0.2

0.3

0.4

0.5

W
ei

gh
t D

ise
nt

an
gl

em
en

t E
rro

r

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0O
ur

s

(Jp: 0.7)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

(Jp: 1.3)

-3.0 -1.0 0.0 1.0 3.0
1

-3.0

-1.0

0.0

1.0

3.0

2

0

(Jp: 1.7)

0.0

0.1

0.2

0.3

0.4

0.5

W
ei

gh
t D

ise
nt

an
gl

em
en

t E
rro

r

Figure 1: Visualization of weight disentanglement in ViT-B-32 with respect to τJp. The upper row
illustrates the linearized model without regularization, while the lower row presents the model with
our proposed regularization. Overall, it is observed that when τJp is large, weight disentanglement
becomes sensitive to the coefficients. As τJp increases, weight disentanglement shows greater
robustness to variations in the coefficients. Furthermore, our proposed regularization enhances this
robustness with respect to the coefficients. The red cross at the center represents the pre-trained
model, and the red box indicates the typical coefficient search range in task arithmetic.

is large, the blue area becomes more prominent, indicating that the weight disentanglement error is
more sensitive to each coefficient and interference is not being prevented. As τJp decreases, the error
tends to become more robust to changes in the coefficients.

Next, we focus on the actual performance of task arithmetic. We analyzed the correlation between
normalized accuracy and τJp, presenting the resulting scatter plot in Figure 2. Each data point repre-
sents a model trained by performing task addition on two out of the eight image tasks. Normalized
accuracy is defined as the accuracy of each task after applying task arithmetic relative to its accuracy
before task arithmetic, which is set to 1.0. Across all model scales, we observed a consistent trend
where task pairs with smaller τJp values tend to exhibit higher normalized accuracy.

5 Enhancing Task Arithmetic by Mitigating Interference Between Tasks

5.1 τ -Jacobian Product for Regularization

As demonstrated in Section 4, to prevent interference between task vectors in task arithmetic and
to improve performance, it is necessary not only to linearize the model but also to keep τJp small
simultaneously. Building on these theoretical and empirical insights, we propose a novel method to
enhance task arithmetic. Specifically, we introduce a regularization during fine-tuning that encourages
τJp to be small — that is, we promote learning to occur in a subspace where τ is orthogonal to the
Jacobian of the pre-trained model, with respect to θ0, for different tasks.

Inspired by this requirement, we propose the following τJp-based regularized loss function:

LτJp(flin(x; θ), y) = L(flin(x; θ), y) + λ
∑

t∈Torth

||(θ − θ0)
⊤∇θflin(xt, θ0)||2 (10)

where Torth denotes the set containing indices of other tasks for which we aim to suppress interference.
Our objective is to ensure that θ⋆ − θ0 is orthogonal to all ∇θf(xt, θ0) for t ∈ Torth ; that is, we add
the L2 norm of their product as a regularization term. The hyperparameter λ adjusts the strength of

6

2.5 5.0 7.5 10.0
-Jacobian product

0.94

0.96

0.98

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Correlation Coefficient: -0.800
p-value: 0.000

ViT-B-32

2.5 5.0 7.5 10.0
-Jacobian product

0.95

0.96

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Correlation Coefficient: -0.841
p-value: 0.000

ViT-B-16

5 10 15 20
-Jacobian product

0.97

0.98

0.99

1.00

No
rm

al
ize

d
Ac

cu
ra

cy

Correlation Coefficient: -0.606
p-value: 0.000

ViT-L-14

Ours Linear FT
Figure 2: Visualization of the relationship between τJp and normalized accuracy. Each point
represents a pair of tasks from the set of eight tasks, yielding

(
8
2

)
combinations, i.e., 28 in total. We

observed a correlation, where smaller τJp values are associated with higher normalized accuracy. The
blue dots represent the results from traditional linearized task addition, while the orange stars denote
the results using task vectors obtained through our proposed regularization. A significant difference
in τJp values between the two approaches is evident, indicating that our proposed regularization
reduces τJp and improves task addition performance.

the regularization. It is important to note that, for the computation of the regularization terms, only
the input data for each sample in Torth is required, and labels are not necessary.

However, in practical applications, when there are numerous tasks in Torth where interference needs
to be reduced, calculating penalties for all tasks at each iteration results in significant memory and
computational overhead. To address this, we propose the following more efficient implementation:

L̂
(i)
τJp(flin(x; θ), y) = L(flin(x; θ), y) + λ||(θ − θ0)

⊤∇θflin(x(i mod |Torth|), θ0)||
2 (11)

where i denotes the iteration number, and at each iteration, the task for which the penalty is calculated
is rotated within Torth (specifically, (i mod |Torth|)). With this approach, it is sufficient to calculate the
penalty for one task per iteration, ensuring scalability with respect to the size of Torth. In Appendix D,
we conducted a comparison between the loss functions in Eq. (10) and Eq. (11) using ViT-B-32.
Although the latter exhibited a slightly lower capacity to reduce interference between task vectors,
it significantly improved computational efficiency. Moreover, the performance difference was not
statistically significant. Therefore, for the remainder of the experiments, we will adopt L̂τJp in
Eq. (11).

5.2 Enhancement through τ -Jacobian Product Regularization

We compared linearized fine-tuning using the regularization in L̂τJp, standard fine-tuning (Non-lin.
FT), and fine-tuning with only linearization (Linear FT) in both task addition and negation scenarios.
The experimental setup for task addition follows that described in Section 4.2. For task negation,
we also introduced a control task — ImageNet (Deng et al., 2009) — to maintain performance
during negation. In our proposed method, during training for each task within the eight tasks, Torth
consisted of all tasks except the target task, as well as ImageNet. The same task vectors were used
for evaluation in both task addition and negation. Further details on the fine-tuning settings can be
found in Appendix C.

First, the results of task addition presented in Table 1 show that both the “One-shot” and “Tuned”
of our method consistently outperform existing tuned approaches (see table caption for definitions).
These methods achieve notable improvements in both average absolute (Abs.) and normalized
(Norm.) performance. The one-shot method performs better than prior methods while reducing
the cost of tuning the inference-time hyperparameter. Notably, for ViT-L-14, the both one-shot and
tuned methods yield the same results, indicating that αt = 1.0 is optimal, and achieve a normalized
accuracy of 99%. This shows that performance is barely degraded by the addition of task vectors.

Next, examining the task negation results presented in Table 2, we observe that although our method’s
one-shot approach does not achieve sufficient forgetting of the target task (Targ.), it significantly

7

outperforms existing methods in preserving the performance on the control tasks (Cont.). In contrast,
in the tuned case, our method greatly enhances the forgetting of the target task, while still surpassing
existing methods in preserving control task performance across all cases.

We clarify why the one-shot approach (with αt = 1.0) was effective for task addition but not for
task negation. As detailed in Appendix B, in the ideal case where τJp is zero (no interference), the
optimal coefficient αt for task addition is 1, making the one-shot method effective. Conversely, for
task negation, the optimal αt should be infinitely large in this ideal scenario. However, in realistic
situations where τJp is not zero and interference exists, there is no well-defined theoretical optimal
coefficient for task negation. This makes the one-shot approach with αt = 1.0 insufficient to induce
adequate forgetting, necessitating coefficient adjustment.

Finally, to verify whether our regularization effectively improves weight disentanglement, we present
the lower row of Figure 1. Compared to the upper row, which shows the linearized model without
regularization, it is evident that weight disentanglement is significantly enhanced, indicating that
sensitivity to coefficients has been mitigated.

Method Coef. Tuning ViT-B-32 ViT-B-16 ViT-L-14
Abs. (↑) Norm. (↑) Abs. (↓) Norm. (↑) Abs. (↓) Norm. (↑)

Pre-trained - 47.3 - 54.5 - 65.1 -

Non-lin. FT One-shot 19.9 20.5 19.1 19.7 37.6 39.0
Tuned 70.4 78.0 75.5 81.5 84.0 89.3

Linear FT One-shot 55.4 61.7 58.2 63.6 80.5 86.7
Tuned 74.3 85.0 78.7 87.6 85.8 92.8

Ours One-shot 84.2 97.2 87.5 98.4 90.8 99.0
Tuned 84.5 97.6 87.6 98.5 90.8 99.0

Table 1: Results of task addition using the eight tasks presented in Section 4.2. “Ours” refers to our
proposed linearized fine-tuning with τJp regularization. “One-shot” indicates task addition where
task vectors are used without scaling, i.e., with α = 1.0, while “Tuned” refers to task vectors that are
further optimized with coefficient adjustments. Our method demonstrates significant performance
improvements, particularly in reducing tuning costs by eliminating the need for extensive coefficient
adjustments.

Method Coef. Tuning ViT-B-32 ViT-B-16 ViT-L-14
Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑) Targ. (↓) Cont. (↑)

Pre-trained - 47.3 66.7 54.5 69.3 65.1 77.3

Non-lin. FT One-shot (10.9) (44.7) (10.8) (51.6) (15.2) (68.6)
Tuned 24.0 60.7 20.3 64.7 18.4 72.4

Linear FT One-shot (6.3) (57.2) (5.4) (62.2) (3.0) (67.9)
Tuned 11.8 60.6 8.8 65.0 8.3 72.2

Ours One-shot 11.8 62.5 11.8 67.8 15.1 75.1
Tuned 6.7 60.8 4.7 66.0 3.7 73.0

Table 2: Results of task negation using the eight tasks presented in Section 4.2. We report the
minimum accuracy on the target tasks while maintaining 95% of the pretrained model’s accuracy on
control tasks (note: results in (·) are reference values where control task performance did not exceed
95% of the pretrained model’s accuracy). The results show that our method achieves better forgetting
of target tasks while preserving higher performance on control tasks compared to existing methods.

5.3 Scalable Regularization in Practical Applications

First, in situations where tasks are introduced incrementally, similar to incremental learning, we
demonstrate that comparable performance can be achieved by applying regularization exclusively
to previously learned tasks(Section 5.3.1). Then, we demonstrate that simply adding a few addi-
tional steps of regularization-based training to existing linearized task vectors yields significant
improvements (Section 5.3.2).

8

5.3.1 Incremental Addition

Method Abs. (↑) Norm. (↑)

No reg. (Linear FT) 74.3 85.0
Incremental reg. (Ours) 83.6 96.5
Full reg. (Ours) 84.5 97.6

Table 3: Comparison of original regularization and
the incremental regularization in task addition on
ViT-B-32

In practical applications, scalability to new tasks
is critical. Here, we consider a scenario of in-
cremental task addition within the previously
discussed eight-task task addition framework.
Specifically, when training on a task t ∈ T ,
future tasks are not taken into account, and reg-
ularization is applied only with respect to past
tasks, i.e., (Torth = {1, 2, . . . , t− 1}).

Table 3 presents a comparison of task addition on ViT-B-32 using three approaches: applying
regularization to all tasks (Full reg.), applying regularization incrementally (Incremental reg.), and
Linear FT (No reg.). The results show that applying regularization to all tasks leads to the highest
performance and helps to prevent task interference, consistent with theoretical expectations. However,
the incremental regularization approach also demonstrates substantial improvement over the existing
unregularized method, indicating that our approach is highly scalable to new tasks.

5.3.2 Penalization on a Existing Task Vector

0 100 200 300 400 500 600 700 800 900 1000
Steps from Linear FT

97.5

98.0

98.5

99.0

99.5

100.0

N
or

m
al

iz
ed

 A
cc

ur
ac

y

3

4

5

6

7

8

9

10

Jp

Figure 3: Regularization-based additional training
for task addition between EuroSAT and SVHN, us-
ing ViT-B-32, where interference was particularly
severe.

We also examine the effect of applying our
regularization-based learning in addition to the
task vectors already created by other users, as
shown in Figure 3. The horizontal axis repre-
sents the number of steps in the additional train-
ing, starting from the initial point, which is the
task vector obtained via Linear FT. The left ver-
tical axis (blue) shows the normalized accuracy
during task addition, while the right vertical axis
(red) represents τJp. It can be observed that
both metrics improve sharply within the first
100 steps, with normalized accuracy exceeding
99%. Afterward, the improvement is more grad-
ual. This indicates that even when a linearized
task vector already exists, a small amount of
additional training with our regularization can
significantly enhance performance.

6 Limitations

Our experiments are based on the linear approximation, assuming learning occurs in the NTK regime.
As noted by Ortiz-Jimenez et al. (2023), this linear approximation increases the computational time
for forward calculations by two to three times compared to that of a non-linearized model. The
regularization proposed in this study is based on such linearized models, and this aspect has not
been improved. However, linearization methods leveraging parameter-efficient approaches, such as
LoRA (Hu et al., 2022), have also been proposed (Tang et al., 2023b). Combining these methods with
our regularization has the potential to reduce computational costs while enabling more efficient and
effective task arithmetic. Our contribution lies in elucidating the internal structure of task arithmetic
using τJp and confirming the sufficient effectiveness of our regularization under precise linearization.
Validation on larger models (e.g., LLMs) using approximate linearization methods, such as those
mentioned above, is left for future work.

7 Conclusion

In this paper, we proposed a novel metric, τJp, to better understand weight disentanglement in task
arithmetic and demonstrated its inverse correlation with normalized accuracy. By incorporating regu-
larization to minimize τJp during fine-tuning, we significantly reduced task interference, minimizing
the need for coefficient adjustments in task addition and negation. In incremental learning, we found
that our τJp regularization method shows strong performance in situations where future tasks to be

9

learned are unknown or accessible, confirming the scalability of the approach. Furthermore, the τJp
regularizer improves the performance of task arithmetic by utilizing publicly available fine-tuned
models, which makes it beneficial for practical use in real-world scenarios. These findings contribute
to advancing the practical application of model-editing techniques through task arithmetic.

Acknowledgments and Disclosure of Funding

Our deepest gratitude goes out to the anonymous reviewers whose invaluable insights substantially
enhanced the quality of this manuscript. We sincerely thank Yoshikazu Ikeda (ProPlace Inc, Osaka
University) for his invaluable assistance in setting up the infrastructure, which greatly contributed to
the success of this research. This research was supported by the GCP Startups Booster Program and
Microsoft for Startups.

References
Ainsworth, S. K., Hayase, J., and Srinivasa, S. (2022). Git re-basin: Merging models modulo

permutation symmetries. arXiv preprint arXiv:2209.04836. 3, 13

Caruana, R. (1997). Multitask learning. Machine learning, 28:41–75. 15

Cheng, G., Han, J., and Lu, X. (2017). Remote sensing image scene classification: Benchmark and
state of the art. Proceedings of the IEEE, 105(10):1865–1883. 5

Choshen, L., Venezian, E., Slonim, N., and Katz, Y. (2022). Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044. 3, 13

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014). Describing textures in the
wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3606–3613. 5

Davari, M. and Belilovsky, E. (2023). Model breadcrumbs: Scaling multi-task model merging with
sparse masks. arXiv preprint arXiv:2312.06795. 2, 3, 13

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee. 7

Don-Yehiya, S., Venezian, E., Raffel, C., Slonim, N., and Choshen, L. (2023). ColD fusion:
Collaborative descent for distributed multitask finetuning. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 788–806. 3, 13

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations. 5

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. (2022). The role of permutation invari-
ance in linear mode connectivity of neural networks. In International Conference on Learning
Representations. 3, 13

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. (2020). Linear mode connectivity and the
lottery ticket hypothesis. In Proceedings of the International Conference on Machine Learning,
pages 3259–3269. 3, 13

Gueta, A., Venezian, E., Raffel, C., Slonim, N., Katz, Y., and Choshen, L. (2023). Knowledge is
a region in weight space for fine-tuned language models. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. 3, 13

Helber, P., Bischke, B., Dengel, A., and Borth, D. (2019). Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7):2217–2226. 5, 17

10

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022).
LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations. 9

Huang, C., Ye, P., Chen, T., He, T., Yue, X., and Ouyang, W. (2024). Emr-merging: Tuning-free
high-performance model merging. arXiv preprint arXiv:2405.17461. 3, 13

Huang, Y., Zhang, Y., Chen, J., Wang, X., and Yang, D. (2021). Continual learning for text
classification with information disentanglement based regularization. In Toutanova, K., Rumshisky,
A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y., editors, Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2736–2746,
Online. Association for Computational Linguistics. 13

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S., Schmidt, L., Hajishirzi, H., and Farhadi,
A. (2023). Editing models with task arithmetic. arXiv preprint arXiv:2212.04089. 2, 3, 17

Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Hajishirzi, H., Kornblith, S., Farhadi, A., and
Schmidt, L. (2022). Patching open-vocabulary models by interpolating weights. Advances in
Neural Information Processing Systems. 3, 5, 13, 14, 15

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Convergence and generalization
in neural networks. Advances in Neural Information Processing Systems, 31. 2, 3, 4, 13

Jolicoeur-Martineau, A., Gervais, E., FATRAS, K., Zhang, Y., and Lacoste-Julien, S. (2024). Popula-
tion parameter averaging (PAPA). Transactions on Machine Learning Research. 3, 13

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., and Amodei, D. (2020). Scaling laws for neural language models. 2

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan,
J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell,
R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526. 16

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops,
pages 554–561. 5

LeCun, Y. (1998). The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/. 5,
18

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. (2023). A kernel-based view of language
model fine-tuning. In Proceedings of the International Conference on Machine Learning, pages
23610–23641. 4

Muqeeth, M., Liu, H., and Raffel, C. (2023). Soft merging of experts with adaptive routing. arXiv
preprint arXiv:2306.03745. 3, 13

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A. Y., et al. (2011). Reading digits
in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, page 4. Granada. 5, 18

Ortiz-Jimenez, G., Favero, A., and Frossard, P. (2023). Task arithmetic in the tangent space: Improved
editing of pre-trained models. Advances in Neural Information Processing Systems. 2, 3, 4, 5, 9,
13, 14, 15, 16

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S. (2023). Generative
agents: Interactive simulacra of human behavior. In In the 36th Annual ACM Symposium on User
Interface Software and Technology (UIST ’23), UIST ’23, New York, NY, USA. Association for
Computing Machinery. 16

Qin, Y., Qian, C., Yi, J., Chen, W., Lin, Y., Han, X., Liu, Z., Sun, M., and Zhou, J. (2022). Exploring
mode connectivity for pre-trained language models. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 6726–6746. 3, 13

11

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language
supervision. In International conference on machine learning, pages 8748–8763. PMLR. 5

Ramé, A., Ahuja, K., Zhang, J., Cord, M., Bottou, L., and Lopez-Paz, D. (2023). Model ratatouille:
Recycling diverse models for out-of-distribution generalization. In Proceedings of the International
Conference on Machine Learning, pages 28656–28679. 3, 13

Ren, Y., Guo, S., Bae, W., and Sutherland, D. J. (2023). How to prepare your task head for finetuning.
arXiv preprint arXiv:2302.05779. 4

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2011). The german traffic sign recognition
benchmark: a multi-class classification competition. In The 2011 international joint conference on
neural networks, pages 1453–1460. IEEE. 5

Tang, A., Shen, L., Luo, Y., Ding, L., Hu, H., Du, B., and Tao, D. (2023a). Concrete subspace learning
based interference elimination for multi-task model fusion. arXiv preprint arXiv:2312.06173. 3,
13

Tang, A., Shen, L., Luo, Y., Zhan, Y., Hu, H., Du, B., Chen, Y., and Tao, D. (2023b). Parameter
efficient multi-task model fusion with partial linearization. arXiv preprint arXiv:2310.04742. 2, 3,
4, 9, 13

Utans, J. (1996). Weight averaging for neural networks and local resampling schemes. In Proceedings
of the AAAI Workshop on Integrating Multiple Learned Models, pages 133–138. 3, 13

Villalobos, P., Sevilla, J., Besiroglu, T., Heim, L., Ho, A., and Hobbhahn, M. (2022). Machine
learning model sizes and the parameter gap. 2

Wang, K., Dimitriadis, N., Ortiz-Jiménez, G., Fleuret, F., and Frossard, P. (2024a). Localizing task
information for improved model merging and compression. In Proceedings of the International
Conference on Machine Learning. 3, 13

Wang, L., Zhang, X., Su, H., and Zhu, J. (2024b). A comprehensive survey of continual learning:
Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(8):5362–5383. 13

Wang, X., Chen, T., Ge, Q., Xia, H., Bao, R., Zheng, R., Zhang, Q., Gui, T., and Huang, X.
(2023). Orthogonal subspace learning for language model continual learning. arXiv preprint
arXiv:2310.14152. 13, 17

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R., Gontijo-Lopes, R., Morcos, A. S., Namkoong,
H., Farhadi, A., Carmon, Y., Kornblith, S., and Schmidt, L. (2022a). Model soups: averaging
weights of multiple fine-tuned models improves accuracy without increasing inference time. In
Proceedings of the International Conference on Machine Learning, volume 162, pages 23965–
23998. PMLR. 3, 13

Wortsman, M., Ilharco, G., Kim, J. W., Li, M., Kornblith, S., Roelofs, R., Lopes, R. G., Hajishirzi, H.,
Farhadi, A., Namkoong, H., et al. (2022b). Robust fine-tuning of zero-shot models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7959–7971. 3,
13

Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva, A. (2016). Sun database: Exploring a large
collection of scene categories. International Journal of Computer Vision, 119:3–22. 5

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal, M. (2023). TIES-merging: Resolving
interference when merging models. Advances in Neural Information Processing Systems. 2, 3, 13

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. (2024). Language models are super mario: Absorbing
abilities from homologous models as a free lunch. In Proceedings of the International Conference
on Machine Learning. 2, 3, 13

Zhou, C., Li, Q., Li, C., Yu, J., Liu, Y., Wang, G., Zhang, K., Ji, C., Yan, Q., He, L., Peng, H., Li, J.,
Wu, J., Liu, Z., Xie, P., Xiong, C., Pei, J., Yu, P. S., and Sun, L. (2023). A comprehensive survey
on pretrained foundation models: A history from bert to chatgpt. 2

12

A Related Work

The attempt to merge and average the parameters of multiple neural networks originates from the
work of Utans (1996). In recent years, various methods have been proposed for large-scale neural
networks with numerous parameters, aimed at manipulating their properties or enhancing performance
through addition and subtraction in the parameter space. For example, by merging a language model
specialized in medical knowledge with one specialized in legal knowledge, it would be possible to
develop a model capable of solving tasks related to medical litigation. Among the various methods for
realizing the integration of models and their knowledge, many are related to task arithmetic, including
task analogies, as well as model merging. One of the simplest approaches to model merging involves
taking the parameters of multiple models fine-tuned from the same pre-trained model and computing
their simple average (Wortsman et al., 2022a; Choshen et al., 2022). Building on this, various
extensions have been proposed. For instance, Don-Yehiya et al. (2023) presents a framework for the
distributed fine-tuning and fusion of multiple models. Ramé et al. (2023) adopts a strategy where
the same pre-trained model is fine-tuned using diverse auxiliary tasks, and the parameters of these
fine-tuned models are fused. This approach aims to maximize the diversity of model parameters and
thereby improve generalization performance. Jolicoeur-Martineau et al. (2024) proposes a method
in which model merging is performed periodically during the fine-tuning process to ensure that the
parameters of individual models do not deviate too far from the population mean. Muqeeth et al.
(2023) introduces a technique in the context of Mixture-of-Experts (MoE), where a merged expert is
created by computing the weighted average of parameters across multiple expert networks. Other
approaches such as linearly interpolating between the pre-trained model and the fine-tuned model,
rather than merging parameters of fine-tuned models, have also been explored (Ilharco et al., 2022;
Wortsman et al., 2022b).

On the other hand, in the integration of models via model merging or task arithmetic, interference
between the parameters of multiple models or task vectors can arise, and various methods have been
proposed to mitigate such conflicts. For instance, several methodologies utilize masking operations
on task vectors (Tang et al., 2023a; Wang et al., 2024a; Huang et al., 2024), while others involve
trimming or scaling techniques (Yadav et al., 2023; Davari and Belilovsky, 2023; Yu et al., 2024),
or leverage model linearization (Tang et al., 2023b; Ortiz-Jimenez et al., 2023). Additionally, in
incremental learning (Wang et al., 2024b), Huang et al. (2021) and Wang et al. (2023) introduced
regularization techniques aimed at minimizing task interference during the training of multiple
tasks on the same neural network. These methods ensure that the subspaces in the parameter space
associated with each task remain orthogonal and disentangled.

Theoretical and analytical studies on the effectiveness of model merging and task arithmetic include
research based on analyses of the loss landscape (Entezari et al., 2022; Qin et al., 2022; Gueta et al.,
2023), as exemplified by linear mode connectivity (Frankle et al., 2020), as well as approaches that
leverage model linearization within the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018).
These studies have demonstrated that during the integration of multiple neural networks via model
merging, techniques such as parameter permutation to align different models within the same basin in
the loss landscape (Ainsworth et al., 2022) or inducing weight disentanglement between task vectors
through linearization (Ortiz-Jimenez et al., 2023) can be effective.

B Scaling Coefficients for Task Vectors in the NTK Regime

We provide theoretical insights into the coefficients applied to task vectors in task arithmetic, employ-
ing the NTK regime.

B.1 Theoretical insights

First, as a preliminary step, we present the following two important theorems.
Theorem 1. In the weight space Rp, let θ0 ∈ Rp denote the initial point and θ⋆ ∈ Rp the fine-tuned
point. For any scalar α ∈ R, define a point on the straight line passing through θ0 and θ⋆ as:

θ(α) = (1− α)θ0 + αθ⋆.

Under the NTK regime, the model’s output can be approximated by:

f(x; θ(α)) ≈ (1− α)f(x; θ0) + αf(x; θ⋆).

13

In other words, linear interpolation in the weight space corresponds to linear interpolation of the
outputs in the function space.

Proof. Noting Eq.(3) and that f(x; θ⋆) ≈ f(x; θ0) + τ⊤∇θf(x; θ0) based on it, we obtain the
following:

f(x; θ(α)) = f
(
x; (1− α)θ0 + αθ⋆

)
= f

(
x; θ0 + α(θ⋆ − θ0)

)
= f(x; θ0 + ατ)

≈ f(x; θ0) + ατ⊤∇θf(x; θ0)

≈ f(x; θ0) + α
(
f(x; θ⋆)− f(x; θ0)

)
= (1− α)f(x; θ0) + αf(x; θ⋆)

Theorem 2. Consider a convex loss function L(f(x; θ)) with respect to the model output f(x; θ).
Then, in the NTK regime, the loss function L(f(x; θ(α))) is convex with respect to α.

Proof. According to Theorem 1, in the NTK regime, f(x; θ(α)) is a linear interpolation between
f(x; θ0) and f(x; θ⋆), such that

f(x; θ(α)) = (1− α)f(x; θ0) + αf(x; θ⋆).

Since the loss function L is convex with respect to the model output, the composite function
L(f(x; θ(α))) is convex with respect to α ∈ R. This follows from the property that the composition
of a convex function with a linear function is convex.

Specifically, because L is convex and f(x; θ(α)) is a linear function of α, the function L(f(x; θ(α)))
is convex with respect to α.

Finally, based on Theorem 2, we can provide the following explanations for the coefficients in task
addition and negation of the linearized model.

Task addition. If the θ⋆ obtained through finetuning for each task is optimal (i.e., minimizes the
loss), then, according to Theorem 2, the loss is minimized at α = 1.0.0. Furthermore, if all τJp are
zero, setting the task-specific coefficients α1 = α2 = · · · = αT = 1.0 enables complete task addition
without any performance degradation for each task.

Task negation. If the θ⋆ obtained through finetuning for a particular task is optimal (i.e., minimizes
the loss), then the loss decreases monotonically in the direction from θ0 towards θ⋆ along τ . Con-
versely, moving in the direction of −τ leads to an increase in loss (i.e., forgetting occurs). This is
because the loss is convex with respect to α. Therefore, in this case, optimal coefficients cannot
theoretically be obtained, and as long as the NTK regime holds, increasing α indefinitely in the
negative direction results in greater forgetting.

C Implementation Details

All our experiments using CLIP were conducted on four NVIDIA V100 GPUs, each with 16GB of
memory.

C.1 Finetuning Details

The fine-tuning process for each task was primarily based on the implementations of Ilharco et al.
(2022); Ortiz-Jimenez et al. (2023). Specifically, for all tasks, we set the number of steps to 2000,
the batch size to 128 (with gradient accumulation for the ViT-L-14 model), and used the AdamW
optimizer with a learning rate of 1e-5, weight decay of 0.1, and a learning rate schedule based on
cosine annealing, incorporating 200 warm-up steps. As noted by Ilharco et al. (2022); Ortiz-Jimenez
et al. (2023), freezing the text encoder during the fine-tuning of CLIP does not significantly impact
final performance, so we adopted a fixed classification head by using the output of the pre-trained

14

text encoder on class-specific text prompts (e.g., “a photo of {classname}”), while fine-tuning only
the image encoder. For the fine-tuning of the linearized model, we followed the exact implementation
outlined in Ilharco et al. (2022).

The computation of the τ -Jacobian product for the proposed regularization was performed efficiently
using Jacobian-vector products, as in Ortiz-Jimenez et al. (2023). Due to computational constraints,
hyperparameter tuning for the penalty coefficient λ was performed on a single dataset (Cars) using
the values [1e-0, 1e-1, 1e-2]. The optimal value selected from this tuning process, λ = 0.1, was then
applied consistently across all other datasets.

C.2 Task Vector Coefficients

In the CLIP experiments, the coefficients for the models with Non-lin. FT, Linear FT, and Ours
(Tuned), which required coefficient adjustment, were standardized across all task vectors. Specifically,
in Eq. (4), we set α1 = α2 = · · · = αT . For task addition, the coefficient search range was set to
α ∈ {0.0, 0.05, . . . , 1.0}, and for task negation, the range was α ∈ {0.0, 0.1, . . . , 3.0}.

As demonstrated in Appendix B, under the NTK regime, theoretically, if there is no interference
between task vectors, an optimal coefficient of α = 1.0 should be achieved for task addition. However,
for task negation, the NTK approximation theoretically allows α to grow arbitrarily large within the
valid approximation range. Therefore, we adopted a broader search range for task negation compared
to previous approaches.

For coefficient selection, in task addition, we chose the coefficient that yielded the highest normalized
accuracy on the validation split. For task negation, we selected the coefficient that achieved the lowest
accuracy while still maintaining at least 95% of the pre-trained model’s accuracy on the control task
(ImageNet) validation split.

D Comparison of Strict Regularization and Cyclical Regularization

Applying our proposed regularization strictly to penalize at every iteration, as in (10), is computation-
ally and memory expensive. Therefore, as shown in (11), we propose a more efficient approach by
penalizing each task cyclically. Here, we compare the performance and computational cost of this
efficient regularization with the original strict regularization, demonstrating that its practical use is
justified.

Table 4 presents the results of comparing the two approaches in task addition using ViT-B-32. The
comparison metrics include absolute accuracy, normalized accuracy, and the actual time taken per
iteration. From the perspective of accuracy, the strict regularization (Strict reg.) slightly outperforms
the efficient implementation (Cyclical reg.), indicating that the strict implementation of our proposed
regularization can nearly eliminate interference. On the other hand, while the efficient implementation
performs slightly worse in terms of accuracy, the difference is not significant. Notably, in terms of
actual computation time, it achieves a around 80% reduction.

Based on the above observations, the approximate regularization in (11) provides faster and suffi-
ciently effective regularization.

Method Abs. (↑) Norm. (↑) Sec. / Iter.(↓)

Cyclical reg. (11) 84.5 97.6 0.374
Strict reg. (10) 86.4 99.3 2.027

Table 4: Comparison of the strict regularization and the efficient regularization in task addition on
ViT-B-32

E Task Arithmetic and Multi Task Learning

Multi-Task Learning (MTL) (Caruana, 1997) involves training a single model simultaneously on
data from multiple tasks. When sufficient input data and labels are available for each target task,

15

leveraging them concurrently enables the construction of a unified model capable of handling multiple
tasks effectively.

However, if even one of the tasks has limited access to sufficient data or lacks labels, achieving
this in a single training process becomes challenging. Additionally, adding new capabilities to a
pre-trained model while maintaining its performance on other tasks (Kirkpatrick et al., 2017), or
forgetting harmful abilities, is not a straightforward task.

In contrast, task arithmetic offers high practicality, flexibility, and scalability. Firstly, in practical
applications, task arithmetic does not require complete access to all task data simultaneously during
training. Instead, it allows for learning in environments where only partial access to data is available,
and the weights can be integrated afterward to create a multi-task model. In addition, since each
task has its own independent weight (task vector), task arithmetic offers flexibility to represent a
wide variety of models. For example, with task vectors for N tasks, it is possible to represent 2N
different models through task vector addition or negation. In the context of recent advancements
such as Large Language Model (LLM)-based chatbots and multi-agent systems (Park et al., 2023),
where diverse models are needed to adapt to various situations, the flexibility of task arithmetic is
highly significant. Furthermore, as discussed in Section 5.3, our method can be easily extended in the
context of continual learning while maintaining performance on previous tasks.

Method ViT-B-32 ViT-B-16 ViT-L-14 xself yself xother yother Flexibility
Non-lin. FT 70.4 75.5 84.0 ✓ ✓ ✗ ✗ ✓

Linear FT 74.3 78.7 85.5 ✓ ✓ ✗ ✗ ✓

Ours 84.5 87.6 90.8 ✓ ✓ ✓ ✗ ✓

MTL 87.8 90.8 92.6 ✓ ✓ ✓ ✓ ✗

Table 5: Comparison of task addition and MTL. On the right side, the table shows the types of data
required for training on task t ∈ T , as well as the flexibility of the model. Here, xself represents the
input data of the current task, yself represents the labels of the current task, and xother and yother
refer to data from tasks other than t. In MTL, training requires data that includes labels from all tasks,
whereas task addition can be applied in more relaxed scenarios where MTL is not feasible. Flexibility
indicates whether the model’s performance can be easily modified for specific tasks after training.
On the left side, the table shows the accuracy across eight tasks for each model scale, demonstrating
that task addition using our regularization achieves performance comparable to MTL, even in more
relaxed scenarios.

F Additional Results

Here, we present more detailed experimental results related to the discussions in the main text.

F.1 Single Task Accuracy on Each Task

Figure 4 presents the accuracy for each task using the three FT methods described in Section 5.2,
along with the pre-trained model.

As noted by Ortiz-Jimenez et al. (2023), Non-linear FT outperforms the linearized FT methods
(Linear FT and Ours) due to the non-linear advantage.

Notably, despite the regularization in our proposed method, which constrains learning to a subspace
orthogonal to ∇θf(xt; θ0), t ∈ Torth , there is no degradation in performance compared to the
original Linear FT. This demonstrates that our method successfully prevents task interference while
maintaining performance by guiding learning in a space that mitigates inter-task interference.

F.2 Effect of Task Addition on Each Task

In Figure 5, we present the absolute and normalized accuracies for each task after task addition,
comparing different methods. The right-hand plots of normalized accuracy demonstrate that our
method not only achieves the highest accuracy across most tasks but also maintains consistent

16

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-b-32 (single task)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-b-16 (single task)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-l-14 (single task)

Non-linear FT Linear FT Ours Pre-trained
Figure 4: The absolute accuracy after fine-tuning for each of the eight tasks, comparing Non-linear
FT (blue), Linear FT (orange), Ours (red), and the pre-trained model (green).

performance across all tasks, indicating that task-independent regularization is effectively achieved.
Moreover, in the left-hand plots of absolute accuracy, our method outperforms existing methods on
all tasks except for EuroSAT (Helber et al., 2019). These results suggest that our method successfully
prevents interference between tasks while preserving absolute performance.

F.3 τJp on Each Task Pair

Figure 6 illustrates the τJp between task pairs for both Linear FT and Ours. These results demonstrate
that our proposed regularization reduces the τJp between tasks. Compared to Linear FT, Ours shows
a notably lower τJp in the off-diagonal components of the heatmap, i.e., between different datasets.
These results suggest that our proposed method effectively decreases the τJp values.

F.4 Relationship between τJp and cosine similarity of task vectors

Interpreting similarity or interference between tasks in terms of cosine similarity of their task vectors
has been a common practice (Ilharco et al., 2023; Wang et al., 2023). However, explanations for the
interpretations remain limited and it is unclear whether cosine similarity fully accounts for those
relationships between tasks. In this section, we attempt to analyze the relationship between task
interference and task vector similarity through the lens of τJp.

17

We consider two tasks, A and B. Assuming that the fine-tuning of task B is conducted with a single
update using the entire dataset, τB can be expressed as follows:

τB = ∇θLB(f(xB , θ0))

= ∇θf(xB , θ0)
∂LB

∂f(xB , θ0)
(12)

The first equation above is derived from the fact that the loss function becomes convex with respect
to the weights in the NTK regime (Theorem 2 in Appendix B). Using this expression, the cosine
similarity can be rewritten as:

cos(τA, τB) =
τ⊤A τB

|τA| · |τB |

=
1

|τA| · |τB |
τ⊤A∇θf(xB , θ0)

∂LB

∂f(xB , θ0)
(13)

In the above, τ⊤A∇θf(xB , θ0) is part of τJp, which, as we have demonstrated, explicitly affects
task interference (or weight disentanglement) in the model. Although τ⊤A∇θf(xB , θ0) is included
in the cosine similarity, based on the equation, the presence of other components also affects their
relationship, making it difficult to claim a theoretical correlation between them.

Figure 7 shows the cosine similarity between task pairs for both Linear FT and Ours. In Linear FT,
the cosine similarity between MNIST (LeCun, 1998) and SVHN (Netzer et al., 2011) is particularly
high, whereas in Ours, the values are much smaller and comparable to those of other task pairs. On
the other hand, the cosine similarities between Cars and SVHN in Linear FT is higher than the ones
in Ours. Therefore, no consistent trend was observed between cosine similarity and τJp.

In Figure 8, we present a scatter plot with τJp on the horizontal axis and the cosine similarity between
the two task vectors on the vertical axis. Weak positive correlations were observed between these
values in three model sizes. In particular, since cosine similarity tends to be small value when the
number of dimension is large, the correlation is considered weak in the setting of ViT-L-14.

Based on these analysis, cosine similarity appears to be less effective in representing weight disentan-
glement compared to τJp. This implies that τJp regularization performs better than cosine similarity
for reducing task interference.

18

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0
Ab

so
lu

te
 A

cc
ur

ac
y

ViT-b-32 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

ViT-b-32 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-b-16 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

ViT-b-16 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 A
cc

ur
ac

y

ViT-l-14 (addition)

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B
MN

IST
RE

SIS
C4

5
SV

HN
SU

N3
97

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ac

cu
ra

cy

ViT-l-14 (addition)

Non-linear FT Linear FT Ours
Figure 5: The absolute accuracy (left column) and normalized accuracy (right column) for each of the
eight tasks after task addition, comparing Non-linear FT (blue), Linear FT (orange), and Ours (red).

19

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

9.036 5.420 5.221 5.148 4.134 4.990 4.896 5.716

5.420 10.128 7.767 6.644 6.366 7.062 6.691 7.064

5.221 7.767 15.789 9.527 7.726 10.056 10.349 6.912

5.148 6.644 9.527 12.063 8.396 6.297 9.898 5.848

4.134 6.366 7.726 8.396 12.973 5.488 9.692 5.131

4.990 7.062 10.056 6.297 5.488 11.388 6.226 6.693

4.896 6.691 10.349 9.898 9.692 6.226 12.862 5.731

5.716 7.064 6.912 5.848 5.131 6.693 5.731 8.272

Linear FT (ViT-B-32)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

7.578 1.046 0.909 0.948 0.721 0.973 0.887 1.096

1.046 6.406 1.377 1.279 1.006 1.424 1.267 1.336

0.909 1.377 8.472 1.490 0.869 1.684 1.433 1.038

0.948 1.279 1.490 10.759 1.329 1.104 2.339 1.054

0.721 1.006 0.869 1.329 12.497 0.833 1.685 0.771

0.973 1.424 1.684 1.104 0.833 7.734 1.058 1.237

0.887 1.267 1.433 2.339 1.685 1.058 11.570 0.985

1.096 1.336 1.038 1.054 0.771 1.237 0.985 5.023

Ours (ViT-B-32)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

9.423 5.760 5.621 5.225 4.452 5.464 5.324 6.064

5.760 10.355 8.155 7.080 6.106 7.597 7.826 7.628

5.621 8.155 16.072 10.012 7.642 10.106 9.802 7.294

5.225 7.080 10.012 11.790 8.511 6.894 9.564 6.403

4.452 6.106 7.642 8.511 12.313 5.406 8.980 5.281

5.464 7.597 10.106 6.894 5.406 11.778 7.057 7.067

5.324 7.826 9.802 9.564 8.980 7.057 13.568 6.497

6.064 7.628 7.294 6.403 5.281 7.067 6.497 8.639

Linear FT (ViT-B-16)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

7.585 0.984 0.835 0.868 0.615 0.925 0.793 0.999

0.984 5.940 1.311 1.228 0.902 1.352 1.205 1.270

0.835 1.311 8.616 1.491 0.827 1.607 1.325 0.970

0.868 1.228 1.491 9.848 1.167 1.083 1.993 0.971

0.615 0.902 0.827 1.167 11.748 0.788 1.427 0.670

0.925 1.352 1.607 1.083 0.788 7.263 0.995 1.201

0.793 1.205 1.325 1.993 1.427 0.995 11.718 0.874

0.999 1.270 0.970 0.971 0.670 1.201 0.874 4.937

Ours (ViT-B-16)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

18.750 9.715 9.601 8.168 8.469 9.403 9.012 10.007

9.715 17.118 13.534 10.961 11.079 11.950 11.438 12.149

9.601 13.534 33.275 15.810 14.911 18.494 17.907 12.044

8.168 10.961 15.810 21.477 15.748 10.910 17.204 9.980

8.469 11.079 14.911 15.748 33.686 10.385 19.543 10.082

9.403 11.950 18.494 10.910 10.385 22.311 11.477 11.651

9.012 11.438 17.907 17.204 19.543 11.477 26.420 9.741

10.007 12.149 12.044 9.980 10.082 11.651 9.741 14.988

Linear FT (ViT-L-14)

0

5

10

15

20

25

30

35

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

10.697 1.573 1.536 1.521 1.234 1.653 1.431 1.769

1.573 6.653 1.836 1.779 1.430 1.978 1.764 1.779

1.536 1.836 12.235 1.873 1.658 4.601 2.684 1.640

1.521 1.779 1.873 15.160 1.742 1.745 4.431 1.580

1.234 1.430 1.658 1.742 20.717 1.285 1.585 1.141

1.653 1.978 4.601 1.745 1.285 11.408 1.545 1.744

1.431 1.764 2.684 4.431 1.585 1.545 16.765 1.336

1.769 1.779 1.640 1.580 1.141 1.744 1.336 5.508

Ours (ViT-L-14)

0

5

10

15

20

25

30

35

Figure 6: Heatmaps visualizing τJp on each task pair. The darker the color of the cell, the higher
the value it represents. The values within cells indicates τJp. The figures in the left columns show
the model with our proposed regularization, while the figures in the right columns show the existing
linearized model without regularization. Our proposed regularization results lower τJp between
different tasks.

20

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.031 0.020 0.028 0.024 0.024 0.022 0.032

0.031 1.000 0.043 0.058 0.044 0.044 0.049 0.052

0.020 0.043 1.000 0.038 0.029 0.045 0.035 0.027

0.028 0.058 0.038 1.000 0.059 0.030 0.070 0.033

0.024 0.044 0.029 0.059 1.000 0.027 0.122 0.026

0.024 0.044 0.045 0.030 0.027 1.000 0.028 0.035

0.022 0.049 0.035 0.070 0.122 0.028 1.000 0.025

0.032 0.052 0.027 0.033 0.026 0.035 0.025 1.000

Linear FT (ViT-B-32)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.042 0.019 0.027 0.040 0.046 0.031 0.039

0.042 1.000 0.007 0.008 0.011 0.029 0.015 0.025

0.019 0.007 1.000 0.032 0.020 0.006 0.011 0.013

0.027 0.008 0.032 1.000 0.034 0.024 0.009 0.023

0.040 0.011 0.020 0.034 1.000 0.032 0.063 0.033

0.046 0.029 0.006 0.024 0.032 1.000 0.030 0.040

0.031 0.015 0.011 0.009 0.063 0.030 1.000 0.030

0.039 0.025 0.013 0.023 0.033 0.040 0.030 1.000

Ours (ViT-B-32)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.038 0.024 0.034 0.028 0.027 0.027 0.037

0.038 1.000 0.048 0.065 0.050 0.047 0.054 0.064

0.024 0.048 1.000 0.044 0.033 0.043 0.036 0.032

0.034 0.065 0.044 1.000 0.060 0.035 0.062 0.043

0.028 0.050 0.033 0.060 1.000 0.028 0.103 0.034

0.027 0.047 0.043 0.035 0.028 1.000 0.030 0.041

0.027 0.054 0.036 0.062 0.103 0.030 1.000 0.034

0.037 0.064 0.032 0.043 0.034 0.041 0.034 1.000

Linear FT (ViT-B-16)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.048 0.014 0.033 0.030 0.003 0.065 0.041

0.048 1.000 0.004 0.017 0.021 0.008 0.046 0.026

0.014 0.004 1.000 0.031 0.029 0.041 0.010 0.016

0.033 0.017 0.031 1.000 0.019 0.026 0.031 0.025

0.030 0.021 0.029 0.019 1.000 0.036 0.035 0.022

0.003 0.008 0.041 0.026 0.036 1.000 0.001 0.002

0.065 0.046 0.010 0.031 0.035 0.001 1.000 0.045

0.041 0.026 0.016 0.025 0.022 0.002 0.045 1.000

Ours (ViT-B-16)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.030 0.018 0.022 0.018 0.020 0.016 0.028

0.030 1.000 0.032 0.044 0.033 0.033 0.027 0.048

0.018 0.032 1.000 0.027 0.022 0.032 0.021 0.026

0.022 0.044 0.027 1.000 0.035 0.023 0.028 0.032

0.018 0.033 0.022 0.035 1.000 0.019 0.046 0.024

0.020 0.033 0.032 0.023 0.019 1.000 0.017 0.033

0.016 0.027 0.021 0.028 0.046 0.017 1.000 0.021

0.028 0.048 0.026 0.032 0.024 0.033 0.021 1.000

Linear FT (ViT-L-14)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
rs

DT
D

Eu
ro

SA
T

GT
SR

B

M
NI

ST

RE
SI

SC
45

SV
HN

SU
N3

97

Cars

DTD

EuroSAT

GTSRB

MNIST

RESISC45

SVHN

SUN397

1.000 0.029 0.033 0.029 0.029 0.029 0.031 0.026

0.029 1.000 0.026 0.019 0.015 0.022 0.022 0.016

0.033 0.026 1.000 0.036 0.031 0.032 0.026 0.030

0.029 0.019 0.036 1.000 0.027 0.031 0.028 0.027

0.029 0.015 0.031 0.027 1.000 0.040 0.006 0.024

0.029 0.022 0.032 0.031 0.040 1.000 0.016 0.020

0.031 0.022 0.026 0.028 0.006 0.016 1.000 0.019

0.026 0.016 0.030 0.027 0.024 0.020 0.019 1.000

Ours (ViT-L-14)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Heatmaps visualizing cosine similarity of taskvectors on each task pair. The darker the
color of the cell, the higher the value it represents. The values within cells indicates cosine similarity.
The figures in the left columns show the model with our proposed regularization, while the figures in
the right columns show the existing linearized model without regularization.

21

2.5 5.0 7.5 10.0
-Jacobian product

0.000

0.025

0.050

0.075

0.100

0.125

Co
sin

e
Si

m
ila

rit
y

Correlation Coefficient: 0.502
p-value: 0.000

ViT-B-32

2.5 5.0 7.5 10.0
-Jacobian product

0.000

0.025

0.050

0.075

0.100

Co
sin

e
Si

m
ila

rit
y

Correlation Coefficient: 0.555
p-value: 0.000

ViT-B-16

5 10 15 20
-Jacobian product

0.01

0.02

0.03

0.04

0.05

Co
sin

e
Si

m
ila

rit
y

Correlation Coefficient: 0.246
p-value: 0.067

ViT-L-14

Ours Linear FT
Figure 8: Visualization of the relationship between τJp and cosine similarity. Each point represents a
pair of tasks from the set of eight tasks, yielding

(
8
2

)
combinations, i.e., 28 in total. The blue dots

represent the results from traditional linearized task addition, while the orange stars denote the results
using task vectors obtained through our proposed regularization.

22

	Introduction
	Related Work
	Background
	Model Editing via Task Arithmetic
	Weight Disentanglement
	Neural Tangent Kernel
	Task Arithmetic in the NTK regime

	Causal Impact of the -Jacobian Product on Weight Disentanglement
	Weight disentanglement in the NTK regime
	Relationship between -Jacobian product and interference

	Enhancing Task Arithmetic by Mitigating Interference Between Tasks
	-Jacobian Product for Regularization
	Enhancement through -Jacobian Product Regularization
	Scalable Regularization in Practical Applications
	Incremental Addition
	Penalization on a Existing Task Vector

	Limitations
	Conclusion
	Related Work
	Scaling Coefficients for Task Vectors in the NTK Regime
	Theoretical insights

	Implementation Details
	Finetuning Details
	Task Vector Coefficients

	Comparison of Strict Regularization and Cyclical Regularization
	Task Arithmetic and Multi Task Learning
	Additional Results
	Single Task Accuracy on Each Task
	Effect of Task Addition on Each Task
	Jp on Each Task Pair
	Relationship between Jp and cosine similarity of task vectors

