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Abstract
Current fake image detectors trained on large
synthetic image datasets perform satisfactorily
on limited studied generative models. However,
these detectors suffer a notable performance de-
cline over unseen models. Besides, collecting
adequate training data from online generative
models is often expensive or infeasible. To over-
come these issues, we propose Few-Shot Detec-
tor (FSD), a novel AI-generated image detector
which learns a specialized metric space for effec-
tively distinguishing unseen fake images using
very few samples. Experiments show that FSD
achieves state-of-the-art performance by +11.6%
average accuracy on the GenImage dataset with
only 10 additional samples. More importantly,
our method is better capable of capturing the
intra-category commonality in unseen images
without further training. Our code is available
at https://github.com/teheperinko541/Few-Shot-
AIGI-Detector.

1. Introduction
The development of generative models has led to signifi-
cant strides in synthesizing photorealistic images, making
it much more difficult to distinguish AI-generated images
from real ones. Over the past few years, diffusion-based
models (Ho et al., 2020) have exceeded GANs (Goodfellow
et al., 2014) and become the mainstream paradigm of image
generation, due to their exceptional ability to synthesize
high-quality images. With the rapid release of open-source
models and web APIs, users can easily create vivid images
from brief textual descriptions. However, the increasing
abuse of deepfake technology has dramatically influenced
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human society and sparked unprecedented concerns on the
credibility of online information.

To curb the spread of AI-generated images used for ma-
licious purposes, there is a growing urgency to develop
detection methods capable of distinguishing fake images
from authentic ones. Early works (Zhang et al., 2019b;
Chai et al., 2020) focus on identifying artifacts in synthetic
images, which have proved to be particularly useful for
detecting GAN-generated images. With the improvement
of synthetic image datasets (Zhu et al., 2023; Boychev &
Cholakov, 2024), detecting fake images from seen genera-
tive models is no longer a difficult task. Thus, a novel chal-
lenge arises in developing classifiers that generalize across
unseen models. To address this problem, some studies (Ojha
et al., 2023; Liu et al., 2024) adopt a large vision-language
model to analyze images from a semantic perspective, while
others (Wang et al., 2023; Luo et al., 2024) leverage the
reconstruction ability of diffusion models.

Another difficulty is the acquisition of training data. It
is often expensive or infeasible to collect enough images
from closed-source models such as DALL-E (Ramesh et al.,
2021) and Midjourney (mid, 2022). This is due to their
service prices and access restrictions. However, most ex-
isting fake image detectors (Wang et al., 2023; Ojha et al.,
2023) require large amounts of training data to achieve good
generalization, and fine-tuning without adequate data often
results in overfitting. Furthermore, the ongoing release and
updating of generative models pose a significant challenge
for existing detection systems to keep up.

After gaining a deep insight into these limitations, we pro-
pose an innovative approach based on few-shot learning
to overcome them. A robust model is also developed to
validate the efficacy of our solution. We first point out
that current AI-generated image detection is a domain gen-
eralization task. Previous studies have been dedicated to
discovering a universal indicator effective for detecting di-
verse fake images. However, they overlook the significant
distinctions among data from different domains. We observe
that images from unseen domains can actually be obtained
in many real-world scenarios. Based on this fact, the com-
plicated task can be transformed into a more tractable one,
called few-shot classification, through limited samples from
unseen domains. Thus, we can extract rich domain-specific
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Figure 1. Challenge facing previous works and our solution. Most
classifiers exhibit significant performance degradation over unseen
data. We address this challenge by introducing a few-shot strategy
which is able to make full use of the limited unseen samples.

features from the given samples and use them to generalize
across the unseen data, as shown in Figure 1.

Based on the above analysis, we propose Few-Shot Detector
(FSD), a novel method which is able to detect fake images
with few given samples. In the few-shot classification task,
synthetic images from different generative models are clas-
sified into separate categories, whereas the real images are
classified into a single category. The objective is to develop
a classifier capable of generalizing to unseen classes that
are not in the training set, with only a limited number of
examples from them. To solve this problem, FSD utilizes
the Prototypical Network (Snell et al., 2017), which learns
a metric space to effectively handle unseen data. The given
samples are used to compute the prototypical representa-
tions of different classes. The test image is then classified
using the nearest-neighbor method by comparing it against
these representations. Thus, FSD can automatically adjust
for bias in previously unseen classes without additional
training or fine-tuning.

Experiments show that FSD achieves notable improvements
over the state-of-the-art method by +11.6% average accu-
racy on the GenImage dataset. We observe that only 10
samples from the tested classes can significantly improve
the detection performance, which highlights the superiority
and practicality of FSD. We also show that our approach is
better equipped to keep pace with the rapid advancements in
image generation, thereby demonstrating the effectiveness
of categorizing generated images by their sources.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to recon-
ceptualize AI-generated image detection as a few-shot
classification task, bringing this task closer to real-
world applications.

• We introduce an innovative synthetic image detection
method, named Few-Shot Detector (FSD). Our ap-
proach is able to utilize a few samples from unseen
domains to achieve better detection performance.

• Our experiments demonstrate the generalization abil-
ity of FSD, which significantly outperforms current
state-of-the-art methods and can easily deal with new
generative models without further training.

2. Related Work
2.1. Image Synthesis

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have revolutionized the field of generative
modeling over the last decade. By simultaneously train-
ing a generator and a discriminator in an adversarial manner,
GANs can generate samples of high resolution and good
quality (Brock et al., 2019; Karras et al., 2020). However,
they are prone to mode collapse, which makes it difficult for
them to fully capture the data distribution. An alternative
approach is likelihood-based modeling, which estimates the
parameters of data distributions by maximizing the like-
lihood function. Based on this methodology, variational
autoencoders (VAEs) (Kingma & Welling, 2014) ensure a
smooth latent space that facilitates interpolation and explo-
ration of new samples. In contrast, normalizing flow mod-
els (Papamakarios et al., 2021) enable exact log-likelihood
computation, allowing them to capture more complex data
distributions. However, neither of them can match GANs in
high-quality image generation.

Diffusion Models (Ho et al., 2020; Song et al., 2021) have
recently achieved remarkable performance in image syn-
thesis. By reversing a gradual noising process, diffusion
models can generate images from random noise through suc-
cessive denoising steps. Ho & Salimans (2022) introduce
classifier-free guidance which enables generating images
from text descriptions, eliminating the need for training
a separate classifier. Another significant advancement is
the Latent Diffusion Model (LDM) (Rombach et al., 2022),
which applies the diffusion process in latent space with a
powerful autoencoder. This approach greatly enhances the
visual fidelity of synthetic images while substantially reduc-
ing the required computational resources. Leveraging vast
amounts of training data, large-scale latent diffusion models
(Podell et al., 2024; Esser et al., 2024) have emerged as the
leading technique in image generation and the main source
of synthetic images at present.

2.2. AI-generated Image Detection

Model-agnostic detection method. Learning-based meth-
ods have been applied to detecting fake images from GANs
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Figure 2. Detection pipeline of Few-Shot Detector. FSD first maps the real and fake images from the support set to the metric space by
the Prototypical Network and calculates the representation of each type. A test image is then mapped into the same space and classified
according to the nearest-neighbor principle.

(Zhang et al., 2019b; Qian et al., 2020; Chai et al., 2020).
They treat synthetic image detection as a binary classifica-
tion task, aiming to find synthetic clues in generated images.
Numerous studies (Zhang et al., 2019a; Gragnaniello et al.,
2021) have found that classifiers often fail to generalize
across unseen generative models, bringing generalization
ability to the primary research objective. Wang et al. (2020)
reveal that detectors for CNN-generated images can be sur-
prisingly generalizable due to the common systematic flaws
shared among CNNs. Based on this work, Liu et al. (2023)
analyze multi-view features to learn a robust representation,
while Tan et al. (2024b) focus on high-frequency informa-
tion to capture source-agnostic features.

However, these common cues disappear when it comes to
diffusion models, leading to the poor performance of earlier
methods when applied to them. Therefore, more attention
has been paid to semantic level. For instance, Ojha et al.
(2023) prove that the informative image features from a
pretrained CLIP model (Radford et al., 2021) can be suc-
cessfully used for detecting fake images. Other studies
(Liu et al., 2024; Tan et al., 2024a) deeply integrate tex-
tual information with images, thereby further enhancing the
generalization capability. Moreover, a patch-based detec-
tion method (Chen et al., 2024) extracts features from a
single patch rather than the entire image, which significantly
accelerates the detection speed.

Diffusion-based detection method. The reconstruction
capability of open-source diffusion models has opened a
new technological pathway. DIRE (Wang et al., 2023) first
uses the reconstruction loss to train a classifier, based on the
observation that synthetic images can be reconstructed with
higher fidelity compared to real ones. SeDID (Ma et al.,
2023) analyzes the loss errors between noised and denoised
features at specific steps of processing, while LARE2 (Luo
et al., 2024) focuses on the single-step reconstruction re-
sult in latent space. Both of them improve the detection
speed by not fully completing the entire reconstruction pro-
cess. FakeInversion (Cazenavette et al., 2024) employs

BLIP (Li et al., 2022) to obtain a text description of the
image for better reconstruction, which is capable of detect-
ing unseen high-fidelity generated images. AEROBLADE
(Ricker et al., 2024) evaluates autoencoder (AE) in different
latent diffusion models and presents a training-free method
for detecting fake images based on AE reconstruction errors.
Although these approaches have achieved great success on
open-source generative models, they still face challenges in
detecting synthetic images from various inaccessible models
due to the substantial differences among them.

3. Method
In this section, we first describe the few-shot classification
task for synthetic image detection. Then we elaborate on
our novel representation, namely Few-Shot Detector (FSD),
as illustrated in Figure 2.

3.1. Few-shot Synthetic Image Detection

Few-shot classification is a specialized machine learning
task, where the classifier is challenged to generalize to en-
tirely new classes not present in the training set, using only
a limited number of examples from these novel classes. Dif-
ferent from end-to-end detection methods that aggregate
all synthetic images produced by different generative mod-
els into a single fake class, we classify these images based
on their generators. This means that we consider the pro-
ductions of each model as an individual class. Conversely,
authentic images continue to be grouped into a single class.
During detection, the support set comprises labeled images
aiding in the classification task, while the query set contains
unlabeled images to be classified. The objective of this task
is to determine the category of each image in the query set
based on the support set.

In detail, we are given a support set S = S1∪S2∪· · ·∪SN ,
which comprises samples from N new classes. Each subset
Si = {(xi1, yi1), (xi2, yi2), . . . , (xiK , yiK)} denotes the
collection of images from class i. K is the number of sam-
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Figure 3. Prototypical calculation. During training, the metric
space is learned by minimizing the distances between query sam-
ples and their corresponding centers. During testing, the test image
is only classified between real and fake.

ples in each class. xij ∈ RD is an image of D dimensions
and yij = i indicates its corresponding label. Each unla-
beled image in the query set will be assigned to one of the
N classes. This is the so-called N -way K-shot task.

3.2. Few-Shot Detector

Our FSD is based on the Prototypical Network (Snell et al.,
2017), an effective method for addressing the few-shot ques-
tion above. The Prototypical Network aims to learn a metric
space in which samples from the same class are close in
distance, while samples from different classes are relatively
distant from each other. Thus, we can represent each class
by a single vector, known as the prototypical representation.
For each sample in the query set, classification is conducted
by simply finding the nearest representation to it.

In detail, as depicted in Figure 2, FSD adopts a neural
network fϕ : RD → RM to compute the M -dimensional
vector in the metric space of an image, where ϕ is the learn-
able parameters. The prototypical representation ci for class
i is defined as the average of the embedded vectors derived
from its corresponding support set Si:

ci =
1

|Si|
∑

xj∈Si

fϕ(xj). (1)

After gaining all the N prototypical representations and
the vector fϕ(xq) of a test image xq in the query set, we

Algorithm 1 Prototypical Loss Computation Algorithm
Input: Training set D = D1 ∪ D2 ∪ · · · DN , where Dk

denotes the subset of class k; number of training class
Nc; number of support examples per class Ns; number
of query examples per class Nq .
Output: training loss J .
V ← randomly select Nc classes from {1, 2, . . . , N}
for k in V do
Sk ← randomly select Ns samples from Dk

Qk ← randomly select Nq samples from Dk/Sk

ck ← 1
Ns

∑
xi∈Sk

fϕ(xi)
end for
J ← 0
for k in V do
J ← J− 1

NcNq

∑
xj∈Qk

log Softmax(−d(fϕ(xj), ck))

end for
Return J

compute the distances between the test vector and all the
representations d(fϕ(xq), ci), using a distance function d :
RM × RM → R+

0 . The probability that the query sample
xq belongs to class i is determined by:

p(y = i|xq) = Softmax1≤i≤N (−d(fϕ(xq), ci)). (2)

The image xq is assigned to the class with the maximum
probability, or the nearest prototypical representation to it.

As shown in Figure 3(a), during each training step, Nc

classes are randomly selected from the training set. For
each selected class i, we randomly choose Ns samples from
it as the support set Si and another Nq samples as the query
set Qi. We compute the Nc prototypical representations ac-
cording to Equation (1). The Prototypical Network outputs a
probability distribution over the Nc classes for each sample
in the query set. The optimization target is to minimize the
negative log-probability J(ϕ). Pseudo code to compute the
loss J(ϕ) is provided in Algorithm 1.

3.3. Zero-shot Classification

We propose a zero-shot detection approach to verify the
applicability of FSD in real-world settings. In the zero-shot
task, there are no additional samples from the test classes.
Instead, we are provided with a metadata vector for each
class in the training set to categorize the test images. We put
considerable emphasis on this task, since acquiring samples
from all potential generative models can be impractical. The
zero-shot results can represent the performance of our model
in general scenarios.

In this work, we simply define the metadata vector as the
prototypical representation derived from an extensive collec-
tion of samples. That is, we randomly select a large number
of images from each class in the training set and then com-
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Table 1. Comparison of our FSD with previous studies. We train several classifiers on different subsets and report the accuracy for each
unseen test subset. The best results are highlighted in boldface, while the second-optimal results are marked with underline.

Method Test Subset Avg
Midjourney GLIDE ADM SD VQDM BigGAN Acc(%)

Spec (Zhang et al., 2019b) 50.0 64.7 52.8 56.1 56.5 63.0 57.2
CNNSpot (Wang et al., 2020) 52.8 73.3 55.0 55.9 54.4 66.2 59.6

F3Net (Qian et al., 2020) 50.1 52.5 66.4 57.0 59.4 50.4 56.0
GramNet (Liu et al., 2020) 51.3 62.6 53.8 56.8 52.2 57.2 55.7
DIRE (Wang et al., 2023) 57.9 68.2 57.3 58.2 59.6 50.8 58.7
LARE2 (Luo et al., 2024) 62.7 80.2 63.5 79.6 76.9 72.0 72.5

FSD (zero-shot) 75.1 93.9 74.1 88.0 69.1 62.1 77.1
FSD (10-shot) 80.9 97.1 79.2 88.8 76.2 82.2 84.1

pute the prototypical representations following Equation (1).
If the nearest representation of a test image is labeled as a
synthetic class, the image will be considered fake.

4. Experiment
In this section, we first introduce the experimental setups
and then provide a comparison between FSD and previous
studies. We also visualize the feature space to highlight the
superiority of our approach.

4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our proposed method on the widely
used GenImage dataset (Zhu et al., 2023), which contains
1, 331, 167 real images from ImageNet (Deng et al., 2009)
and 1, 350, 000 generated images from 7 diffusion models
and one GAN. The diffusion generators include Midjourney
(mid, 2022), Stable Diffusion V1.4 (Rombach et al., 2022),
Stable Diffusion V1.5 (Rombach et al., 2022), Wukong
(wuk, 2022), ADM (Dhariwal & Nichol, 2021), GLIDE
(Nichol et al., 2022) and VQDM (Gu et al., 2022). The
only GAN utilized is BigGAN (Brock et al., 2019). The
real images are first divided into 8 subsets. Each subset is
subsequently partitioned into a training part and a test part.
Each generator is associated with one specific subset and
uses the category labels of the real images within the subset
to produce synthetic images. Consequently, the GenImage
dataset consists of 8 fake-vs-real subsets for analysis.

In this study, the synthetic images in different subsets are
categorized into distinct classes, while real images from all
subsets are aggregated into a single class. We also observe
that 3 diffusion models, SD v1.4, SD v1.5 and Wukong,
share an identical model structure, making it challenging to
differentiate among them. Thus, we merge their correspond-
ing subsets into a unified subset, named Stable Diffusion
(SD). Ultimately, the dataset used in our experiments com-
prises 7 classes of images from different sources.

Evaluation metrics. Following previous AI-generated im-

age detection studies (Zhu et al., 2023; Wang et al., 2023;
Luo et al., 2024), we adopt the accuracy (ACC) and average
precision (AP) as our evaluation metrics. The threshold step
for computing AP is set to 0.1.

4.2. Implementation Details

To be more comparable with previous works, we adopt the
ResNet-50 (He et al., 2016) pretrained on ImageNet (Deng
et al., 2009) as the backbone of our model, which outputs a
prototype vector of 1024 dimensions. Following Wang et al.
(2023), the input images are first resized to 256× 256 and
then randomly cropped to 224×224 with random horizontal
flipping during training. In contrast, only a center crop to
224 × 224 is performed after resizing the images during
testing. The distance in the metric space is measured with
Squared Euclidean Distance.

To fit the classification task, we employ different few-shot
strategies for training and testing. Specifically, we select
one synthetic subset as the test set and utilize the remaining
6 subsets to train a classifier. At every training step, 3
classes are randomly selected from the training set, with
5 samples chosen from each class for the support set and
another 5 samples per class for the query set. We employ
Adam as the optimizer to minimize the cross-entropy loss
with a base learning rate of 10−4. We also adopt a StepLR
scheduler with γ = 0.5 and step size = 80000. Each
classifier is trained for 200, 000 steps, with a batch size of
16. During testing, we conduct a binary classification task
by comparing the selected test class against the real class.
For zero-shot detection, we randomly select 1024 samples
from each training subset to compute the metadata vectors.
Our method is implemented with the PyTorch library and
all the experiments are conducted on a single A100 with
40GB memory.

4.3. Comparison to Existing Methods

We compare FSD with several state-of-the-art synthetic im-
age detection methods and summarize the results in Table 1.
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Table 2. Results of 10-shot cross-generator image classification on different subsets. Each classifier is trained on the dataset excluding the
subset from the first column. All classifiers are tested on the 6 synthetic classes, reporting accuracy/average precision (%).

Excluding Subset Test Subset
Midjourney GLIDE ADM SD VQDM BigGAN

Midjourney 80.9 / 84.6 99.9 / 99.9 98.5 / 99.3 97.1 / 98.7 99.5 / 99.9 88.0 / 92.9
GLIDE 86.8 / 89.9 97.1 / 98.0 97.9 / 98.9 97.1 / 98.8 99.2 / 99.7 91.9 / 97.1
ADM 87.6 / 91.8 99.8 / 99.9 79.2 / 83.8 94.8 / 97.2 98.8 / 99.4 91.0 / 96.1

SD 86.1 / 89.7 99.9 / 99.9 97.4 / 98.8 88.8 / 92.5 96.6 / 98.5 89.5 / 95.4
VQDM 82.4 / 85.9 99.9 / 99.9 97.3 / 98.6 95.6 / 98.0 76.2 / 79.4 83.5 / 89.1

BigGAN 88.9 / 91.6 99.9 / 99.9 98.3 / 99.3 98.1 / 99.3 96.4 / 98.3 82.2 / 86.8

The compared group includes CNNSpot (Wang et al., 2020),
Spec (Zhang et al., 2019b), F3Net (Qian et al., 2020), Gram-
Net (Liu et al., 2020), DIRE (Wang et al., 2023) and LARE2

(Luo et al., 2024). The first four methods are model-agnostic,
focusing on identifying synthetic artifacts within fake im-
ages. The last two methods leverage the reconstruction error
of Stable Diffusion to differentiate between fake and real
images. To conduct a comprehensive comparison, we train 6
classifiers on different training sets, each of which excludes
a specific test subset. However, previous studies typically
provide several classifiers, and each classifier is trained on
one distinct subset and evaluated on the others. To mini-
mize the difference between our method and previous works,
we report the average performance of 5 classifiers trained
on non-test categories and evaluated on each test subset,
which can better represent their generalization ability on
each class.

As illustrated in Table 1, our FSD attains state-of-the-art
performance across 5 out of the 6 test classes, surpassing
previous state-of-the-art by +11.6% accuracy on average.
The suboptimal performance of our model on the VQDM
class can be attributed to the involvement of image quanti-
zation in VQDM, which significantly differs from the other
generative models in our experiments. Another reason is that
LARE2 is specifically designed to detect synthetic images
generated by diffusion models, which enables it to achieve
unexpectedly high performance on the VQDM class. Al-
though our few-shot method may not be directly comparable
to other approaches due to accessing only a few samples
in the test class, we still regard this discrepancy as a signif-
icant strength of our model. The definite improvement in
performance demonstrates FSD’s capability to effectively
leverage a limited number of unseen samples.

Based on Table 1, we find that FSD achieves notable per-
formance in zero-shot scenarios, in which the prototypical
representations are calculated from samples in the training
classes. These results show that our approach is also suitable
for detecting synthetic images even when samples from the
same sources are not provided, thus broadening the appli-
cation scope of FSD. We attribute this advantage to FSD’s

ability to capture not only the intra-class characteristics but
also the common features across all classes. Another ob-
servation is that the discrepancy between zero-shot results
and few-shot results remains notable, which indicates the
necessity of gathering training data from a wider range of
generative models.

4.4. Cross-generator Classification

We evaluate the 10-shot performance of FSD on both seen
classes and unseen classes. We also train 6 classifiers for
the cross-generator image classification task, in which each
classifier is trained on 6 out of 7 subsets in the dataset and
subsequently tested on the remaining one. We report the
accuracy and average precision across each scenario and
summarize the results in Table 2.

As shown in Table 2, each row presents the classification
results for one classifier across all the 6 synthetic classes.
The results show that it is easy for a classifier to detect
fake images from those classes encountered during training,
which is consistent with the previous studies (Zhu et al.,
2023; Luo et al., 2024). When it comes to detecting the
unseen classes, as shown in the diagonal of Table 2, FSD
suffers from a slight decline in performance, demonstrating
the generalization capability of our model. Another finding
is that FSD performs nearly perfectly on the VQDM class
when this class is included in the training set. However,
the performance significantly declines when this class has
been excluded. This fact shows that it is still challenging to
generalize across vastly different unseen generative models,
indicating that our approach remains inadequate in capturing
the discriminative features between classes.

We also observe the varying performance of FSD across
different classes. For instance, images generated by GLIDE,
ADM, SD and VQDM are relatively easy to detect by our
model when these classes are included in the training set,
while those from Midjourney and BigGAN are a little chal-
lenging to identify. Particularly, images from the GLIDE
class can be distinguished with exceptional accuracy, even
when not included in the training set. These facts indicate
the necessity of treating images from different sources as
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(a) Test on Midjourney (b) Test on GLIDE (c) Test on ADM

(d) Test on Stable Diffusion (e) Test on VQDM (f) Test on BigGAN

Figure 4. Visualization of network features for different classifiers over different classes using t-SNE. Each classifier is trained on those
subsets excluding the test one in each sub-figure. The features are extracted from the final layer of our model.

distinct categories, which has not been fully explored in
previous research. Moreover, it is essential to collect im-
ages from representative generative models for training, as
generalization on similar generators is easier than on those
that are vastly different.

4.5. Visualization

To further analyze the effectiveness of FSD, we utilize t-
SNE (van der Maaten & Hinton, 2008) visualization to
illustrate the feature space of classifiers on different training
sets, as shown in Figure 4. Each classifier is trained on
those subsets excluding the test one in each sub-figure. We
randomly selected 1024 samples from the test part of each
class for visualization. The features are extracted from the
final layer of our model.

From Figure 4, we can see that features of images from
different generative models exhibit distinct distributions,
each of which is marked by a unique color. Most classes
within the training set can be well-separated due to the large
margins among their distributions. However, the bound-
ary of the Midjourney class represented in red is not as
clear as that of the others. This can be attributed to its API
service, which may utilize multiple generative models for
image generation as inferred from our analysis. Although
the boundary of the test class in each sub-figure is a little
ambiguous, the distribution of this class still remains iden-

tifiable, which demonstrates that our method successfully
captures the intra-category features of unseen data.

The results also support the validity of our approach that
categorizes samples from different generators as different
classes. However, such categorization also introduces the
issue of eliminating the significant differences between seen
data and unseen data. As illustrated in Figure 4(e), the
distribution of the VQDM class in orange exhibits a large
overlap with that of the real class in gray, due to VQDM’s
significant differences in image tokenization compared to
other models. This also indicates that our method still faces
the challenge of detecting images from models that are
significantly different from those generative models used in
training, which will be the main focus of our future work.

4.6. Ablation Study

Impact of the number of shots. An important aspect is to
determine the minimum number of samples required by our
approach to achieve satisfactory performance. We choose
different numbers of support samples in each class, ranging
from 1 to 200. To present a comprehensive overview of this
aspect, we conduct the experiment across all the 6 classifiers
described in Section 4.4. We evaluate each classifier on the
corresponding test class with varying numbers of support
samples. To maintain a consistent total number of test sam-
ples across different settings, we set a fixed ratio of 1 : 3

7



Few-Shot Learner Generalizes Across AI-Generated Image Detection

1 3 5 10 25 50 100 200

50

60

70

80

90

100

Number of shots per class

A
cc

ur
ac

y
(%

)

Midjourney
GLIDE
ADM

SD
VQDM

BigGAN

Figure 5. Influence of the number of shots. Each classifier is
trained on those subsets excluding the test one. The 10-shot setting
is the most cost-effective setting across all categories.

between the support set and the query set. The results are
shown in Figure 5. Each line represents the performance of
one classifier across varying sizes of support set.

From Figure 5, we can see that using more support samples
results in better performance. However, it also increases the
required computational resources. We find that detecting
with 10 shots achieves an optimal balance between per-
formance and resource consumption for most of the test
classes. For example, our model brings the accuracy on
the ADM class from 62.6% to 79.2% when increasing the
number of shots from 1 to 10, with an improvement of
+16.6%. However, it achieves 81.7% accuracy when us-
ing 200 shots, gaining only an increase of +2.5% over the
10-shots scenario. As it is easy to collect 10 samples from
online generative models and the computational cost is very
low, we ultimately decide to use the 10-shots results of FSD
for comparison.

Impact of the multi-class classification. Different from
previous studies that treat the fake images as a single class
and train a binary classifier to detect them, we categorize
the images from different generators as distinct classes. We
argue that distinguishing images from different generators
can also benefit the detection performance. Thus, we train
another binary classifier and compare it with our method on
the ADM class, which is difficult to distinguish according
to our experiments. Both classifiers utilize the ResNet-
50 as the backbone and both of them are trained on the
dataset excluding the ADM class. We also apply the t-
SNE visualization and randomly select 1024 samples for
visualizing. Features of the binary classifier are extracted
from the output layer of the ResNet-50, with dimensions of
2048. The visualization results are shown in Figure 6.

Figure 6(a) shows that our FSD successfully distinguishes
those images across different classes which have been used
in training. Images from the unseen ADM class colored

(a) FSD (b) Binary Classifier

Figure 6. Visualization of network features for our FSD (a) and
a binary classifier (b) on the ADM class. In the feature space of
FSD, images from the unseen class in purple are tightly clustered
together. However, they are significantly more dispersed in the
feature space of the binary classifier.

in purple also cluster together in the visualization picture.
In contrast, the traditional binary classifier fails to distin-
guish images from Midjourney and Stable Diffusion, as
shown in Figure 6(b). The unseen samples in purple are
quite dispersed, failing to form a compact cluster. Thus,
distinguishing them from the real ones can be extremely
difficult. This fact indicates that our method possesses a
certain ability to extract intra-category commonality from
unseen classes, thereby enabling an accurate differentiation
among various classes. Moreover, we find that it is difficult
for a classifier to distinguish samples from Stable Diffusion
V1.4 and Stable Diffusion V1.5. One plausible explana-
tion could be the shared usage of an identical backbone
and VAE, which makes their products highly similar. This
implies that we should carefully select the representative
generative models to build the training set, which we leave
for future work.

5. Conclusion and Limitations
The key point of detecting fake images in real-world sce-
narios is to make full use of the limited number of images
from unseen generative models. In this paper, we propose
the Few-Shot Detector (FSD), a novel AI-generated image
detector based on few-shot learning. Experiments show that
FSD achieves state-of-the-art performance in synthetic im-
age detection with only 10 samples from the test generators,
demonstrating the strong generalization ability of our model.
We visualize the feature space to highlight the advantage of
categorizing synthetic images by their sources, an approach
that has not been widely adopted in previous studies.

However, our method still suffers from a few limitations.
Since it is not feasible to obtain few-shot samples from
all generative models, our collection of synthetic images
is confined to part of these models, which may lead to a
decrease in detection performance. Another weakness is that
our method does not perform satisfactorily when detecting
images from a vastly different generative model. We aim to
address these issues in our future work.
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