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Abstract—This paper proposes a new double-indicator control
scheme of redundant manipulators, which utilizes an untrained
dynamic neural network (DNN) solver. The control scheme
combines direction tracking, physical constraints, and anti-noise
design to address problems of the high computational complexity
and the lack of direction tracking in existing neural network-
based solutions. In addition, the DNN solver provides a control-
theoretic framework which ensures the global and exponential
convergence, stability, and robustness of the control scheme. In
our design, we specifically consider the effect of noises on the
system and incorporate the anti-noise mechanism. Furthermore,
the effectiveness and feasibility of the proposed control scheme
are verified through simulations with a KUKA LBR iiwa 7
R800 manipulator. The results show that the DNN-based double-
indicator control scheme can efficiently generate accurate motion
trajectories while maintaining the directional stability of the end-
effector, and can resist noises.

Index Terms—dynamic neural network (DNN), double control,
redundant manipulators, orientation maintenance, noise toler-
ance

I. INTRODUCTION

As non-redundant manipulators face difficulties in adapting
to increasingly complex work environments such as precision
manufacturing, medical surgery, and space exploration, redun-
dant manipulators with seven or more degrees of freedom
(DOF) have been widely used in various fields due to their
high flexibility and reliability [1], [2]. However, redundant
manipulators’ significant control complexity and computa-
tional requirements limit the application in cost-sensitive en-
vironments and hinder further popularization [3]. Existing
control schemes typically require significant computational
resources and have real-time performance and robustness
limitations. In addition, conventional control schemes often
exhibit deficiencies in adaptability and stability when dealing
with noises and physical constraints such as joint and speed
limits [4], [5]. Therefore, developing an efficient, stable, and
noise-resistant control scheme that can accurately control the
redundant manipulator in complex environments has become
a key research priority.

A fundamental and essential problem in controlling the
redundant manipulator is the solution of the motion planning
and inverse kinematics problems [6], [7]. The redundant
manipulator has redundant degrees of freedom, resulting in

multiple possible combinations of solutions for the joint angle
at the same end position and posture [8]. In addition, the
physical properties of the redundant manipulator and other
objectives (e.g., optimizing energy consumption, improving
workspace efficiency) are also factors to be considered in the
control scheme [9]. In control schemes of the redundant ma-
nipulator, pseudo-inverse methods are common means to solve
the problem of inverse kinematics [10]. For the manipulator
with the specific structure (e.g., spherical wrist structure, 6-
DOF manipulators [11]), the pseudo-inverse method is fast and
accurate [12], [13]. However, due to the physical limitations
of the manipulator (e.g., joint angle range and joint velocity
limitations [4], [5]), the pseudo-inverse method often fails to
account for these limitations adequately. At the same time,
they are difficult to optimize for additional objectives [14].
Therefore, the pseudo-inverse method cannot be used alone in
practical applications of the redundant manipulator [15].

In order to satisfy the desired objective, more sophisti-
cated optimization methods such as quadratic programming
(QP) are usually required [16]. The QP method transforms
joint constraints and other physical limitations into inequality
constraints versus equational constraints, thus allowing the
accommodation of these constraints when solving inverse
kinematics problems [17]. Currently, redundant manipulator
control strategies have achieved a wide range of applications
based on optimization solution methods, including the min-
imum kinetic energy (MKE) scheme and the cyclic motion
generation (CMG) scheme [18].

The MKE scheme aims to minimize the kinetic energy of
the manipulator by optimizing joint speeds, resulting in low
power consumption and smooth motion. The scheme is well
suited for long-term continuous operation or energy-sensitive
applications but may not consider physical constraints such as
joint angle ranges and velocity limits. In addition, it ignores
control objectives such as motion accuracy and stability [19].

The CMG scheme is a method that improves the motion
accuracy and stability of the redundant manipulator by de-
signing cyclic motion trajectories [20]. The method corrects
the joint drift phenomenon and thus improves the repeatability
and accuracy of the motion. However, it may face high
computational complexity during the optimization process and



may not directly optimize energy consumption, which limits
its applicability in energy-sensitive applications. In this paper,
we propose a new double-indicator control scheme that fully
combines the advantages of two control schemes to improve
the accuracy and smoothness of the motion of the redundant
manipulator.

In addition, much research has been devoted to applying
neural networks in the control of the manipulator, and they
are well supported by theory [21]–[23]. In [24], a conven-
tional adaptive neural network (NN) controller is optimized
to achieve global stability by introducing the switching mech-
anism. Furthermore, recurrent neural networks (RNN) have
unique advantages in controlling the manipulator [25]–[27].
The hidden layer of RNN takes the hidden state of the previous
step as input and decides the current hidden state along with
the current input, which makes the RNN highly effective
in dealing with time series, natural language processing,
and other tasks involving sequential information [28], [29].
In [30], an RMG scheme based on orthogonal projection
(OPRMG) is presented, and a novel RNN is constructed
by the gradient descent method and gradient compensation,
theoretically eliminating the position error. By adding more
dynamic adjustment mechanisms, DNN not only inherits the
ability of RNN to process sequence data but also adjusts the
structure or parameters according to the dynamic changes of
the input data, which enhances flexibility and adaptability. In
addition, DNN also realizes the simultaneous processing of
multiple related tasks [31]. Furthermore, noise is unavoidable
in the actual control system [32], which may originate from
various aspects such as the control signal, the precision limi-
tation of hardware implementation, and other factors, includ-
ing environmental disturbances and sensor inaccuracies [33].
However, when constructing RNN for the real-time control
computation, it is often assumed that there is no system or
external noises [34], [35]. However, there are diverse methods
to deal with noise from the traditional control perspective,
such as integral control and other complex internal model
control. In [36], the design and implementation of DNN for
the kinematic force control of the manipulator is discussed
under polynomial noises, and an improved FP-DNN solver is
presented to enhance the robustness of the system effectively
eliminates the effect of polynomial noises by automatically
adjusting the convergence parameters. In addition, in terms of
error control, a novel zeroed neural network (ZNN) model is
presented in [37] for solving the problem of cyclic motion
planning (CMP) for the redundant manipulator under physical
constraints, and it achieves the improvement of the accuracy
of the control with the QP-based CMP scheme. The paper
further proposes an untrained DNN solver that ensures global
convergence, stability, and noise resistance and significantly
reduces computational complexity, providing a more efficient
and robust solution for controlling redundant manipulators.
The paper also enhances noise control capabilities by intro-
ducing a simple noise-resistant mechanism, building on the
dual-criteria approach.

The main contributions of this paper are (1) a novel double-

indicator control framework that combines kinetic energy
minimization and cyclic motion generation to improve the
smoothness and accuracy of manipulator motion significantly;
(2) the introduction of an untrained dynamic neural network
solver that ensures global convergence, stability, and noise
resistance while reducing computational complexity; (3) the
development of a simple sliding average filter as a noise
reduction mechanism, which enhances the system’s robustness
in noisy environments; and (4) validation of the proposed
control scheme through simulations with the KUKA LBR iiwa
7 R800 manipulator, demonstrating the method’s effectiveness
and feasibility.

The rest of the paper is divided into four parts. In Section
II, the joint angle range limit, angular velocity limit, and other
physical factors of the redundant manipulator are transformed
into constraints of the optimization problem, the objective
function is constructed based on the double-indicator scheme,
and the end-effector posture is considered. The solver of
the dynamic neural network is constructed, and its global
exponential convergence is analyzed in Section III. In Section
IV, random errors in joint angular velocities are introduced to
simulate unavoidable systematic errors in the actual control
process, and the simple sliding average anti-noise approach
effectively reduces the effect of the noise. In Section V,
results of simulations using 7-DOF KUKA LBR iiwa 7 R800
manipulators are given to compare the performance of the
control schemes.

II. OPTIMISING PROBLEM CONSTRUCTION

This section presents the double-indicator control scheme
that considers both the minimum kinetic energy objective
and the objective of cyclic motion generation, constitutes
an optimized objective function, and transforms the original
problem into a quadratic programming problem by regrading
the physical constraints of joints as equation or inequality
constraints.

For a manipulator with k degrees of freedom, its transition
from the joint angle space θ(t) ∈ Rk to the end-effector state
space p(t) ∈ Rb is realized in forward kinematics by the
mapping function [38], [39]:

θ(t) = ψ(p(t)), (1)

where ψ(·) contains the physical information of the manipu-
lator, such as the joint offset, linkage length, linkage torsion
angle, and other relevant parameters, and b is the dimension
of the manipulator’s workspace. We can illustrate this in
detail by using the denavit-hartenberg (DH) parameter and the
transformation matrix of the manipulator. The transformation
matrix is viewed as the following structure:

Ai =

[
Ri li
0 1

]
,

where Ri ∈ R3×3, is a rotation matrix and li ∈ R3 is a
translation vector. For the joint angle space θ(t) ∈ Rk, the
total transformation matrix is written as

T = A1 ·A2 ·A3 · · · · ·Ak.



The spatial coordinate of the end-effector relative to the origin
on the base coordinate system is written as

p = T (1 : 3, 4).

By deriving both sides of (1) with respect to time, the mapping
relation for the velocity is obtained, thereby constructing a
concise and efficient affine system:

ṗ(t) = J θ̇(t), (2)

where ṗ(t) is the velocity of the end-effector; J =
∂ψ(θ)/∂θ ∈ Rb×k denotes the Jacobi matrix; The θ̇(t)
denotes the joint velocity.

Furthermore, the posture of the end-effector of a redundant
manipulator with more than 6 DOF may be shifted in 3D
space. Thus, the posture needs to be controlled as well. The
posture of the end-effector can be obtained by the rotating
matrix description:

R =


x1 y1 z1

x2 y2 z2

x3 y3 z3

 . (3)

Since the rotation matrix R is an orthogonal matrix with
determinant 1, any second-order submatrix of it uniquely
determines the entire matrix. Therefore, we reconstruct the
direction vectors as r =

[
x1 y1 x2 y2

]T
. Thus, the

control of the posture is described as r(t) = r(0), and the
dynamic control equation is constructed as

ṙ(t)− ṙd(t) = −ν(r(t)− rd(t)), (4)

where ν > 0 is the error amplification factor with respect to
the posture of the end-effector. By introducing the Jacobian
matrix J ′ = ∂r/∂θ ∈ R4×k to ṙ(t) = J ′θ̇, we get:

J ′θ̇ = ṙd − ν(r − rd). (5)

Since the solution of (2) is not unique for k > 6, a
reasonable optimisation objective function is specified by
constructing a double-indicator scheme to determine a solution
that meets the objective, satisfies the physical constraints and
geometrical structure, and restricts the end-effector posture.
Since equations in the following section are mostly dynamic
equations and most of the variables are time series, the time
variable t is removed to simplify the description without
affecting the understanding. Then the double-indicator control
scheme is described as follows:

min
θ̇

1

2

(
ξθ̇TG(θ)θ̇ + (1− ξ)∥θ̇ +m(θ − θ0)∥22

)
s.t. J θ̇ = ṗd

J ′θ̇ = ṙd

λi ≤ θ̇i ≤ λ+
i , i = 1, 2, . . . , k, (6)

where ξ ∈ [0, 1] is used as the weight coefficients of different
performance indicators; ∥·∥ 2 denotes the Euclidean paradigm

of a vector or matrix; θ0 is the vector consisting of the
initial angles of each joint of the redundant manipulators;
m > 0 is the moderating factor of the CMG scheme;
λ+
i = min

{
θ̇i, κ(θi − θi)

}
, λ−

i = max
{
θ̇i, κ(θi − θi)

}
where θ̇i and θ̇i denote the upper and lower limits of the
velocity of the ith joint, respectively, and the upper and lower
limits of the joint angle are defined in the same way. Since
the limitation of the size of the joint angle adjustment needs
to be considered at the same time, κ(θi − θi) is also taken
into account, and κ is used as a coefficient to appropriately
scale or adjust the joint angle when it exceeds the permissible
range. For subsequent ease of presentation, this optimization
problem is formally simplified below. Expand and simplify the
objective function:

min
θ̇

1

2
ξθ̇TG(θ)θ̇ +

1

2
(1− ξ)∥θ̇ +m(θ − θ0)∥22.

After expanding the quadratic term and ignoring the constant
term, it is written as:

min
θ̇

1

2
ξθ̇TG(θ)θ̇ +

1

2
(1− ξ)

(
θ̇T θ̇ + 2mθ̇T (θ − θ0)

)
.

Definition: Φ = ξG(θ) + (1 − ξ)I , η = (1 − ξ)m(θ − θ0).
Thus, the objective function is written as:

min
θ̇

1

2
θ̇TΦθ̇ + ηT θ̇.

By reconstructing the matrix and vectors, we obtain: Φ =
ξG(θ) + (1 − ξ)I ∈ Rk×k, ξ = [J ; J ′] ∈ R(b+4)×k, d =
[ṗd; ṙd] ∈ Rb+4, η = (1−ξ)m(θ−θ0) ∈ Rk, Ω = [I;−I] ∈
R(2k)×k, ϵ = θ̇ ∈ Rk, χ = [λ+;λ−] ∈ R2k. The identity
matrix I ∈ Rk×k, λ− ≤ ϵ ≤ λ+, where λ− (λ+) represents
the lower (upper) limit of the joint velocity. The suggested
double-indicator control technique is rewritten as

min
ϵ

1

2
ϵTΦϵ+ ηT ϵ

s.t. ξϵ = d

Ωϵ ≤ χ, (7)

which is a QP problem with ϵ as the decision variable.

III. DYNAMIC NEURAL NETWORK SOLVER

This section describes the construction of the proposed
dynamic neural network solver (6) and provides proofs of
the global convergence and exponential convergence. Unlike
traditional neural networks, the untrained dynamic neural
network (DNN) solver proposed in this paper offers several
key advantages: (1) it does not require pre-training, allowing
it to adapt flexibly to real-time control without the need for
extensive datasets; (2) it ensures global convergence and sta-
bility, even in complex multi-degree-of-freedom control tasks,
making it robust against varying environmental conditions;
(3) it has inherent noise-resistance capabilities, enhancing
its effectiveness in noisy environments; and (4) it reduces
computational complexity, enabling more efficient real-time



control, particularly in resource-constrained systems. These
properties make the DNN solver highly suitable for controlling
redundant manipulators under challenging conditions.

To obtain the global optimal solution of the convex QP
problem (7), the KKT conditions need to be satisfied [40],
[41]. The Lagrangian function is constructed as follows:

L(ϵ,ν,µ) =
1

2
ϵTΦϵ+ηT ϵ+νT (ξϵ−d)+µT (Ωϵ−χ), (8)

where ν ∈ Rb+4 and µ ∈ R2k are KKT multipliers.
The following KKT conditions need to be met in order to

solve the optimization problem:

∂L

∂ϵ
= Φϵ+ η + ξTν +ΩTµ = 0,

∂L

∂ν
= ξϵ− d = 0,

∂L

∂µ
= Ωϵ− χ = 0,

ϵ ≤ ϵ ≤ ϵ,
µi ≥ 0, i = 1, 2, . . . , 2k,

where µi denotes the ith element of µ; ϵ and ϵ are the upper
and lower bounds of ϵ, respectively. Their ith elements are:

ϵi = min{θ̇i, κ(θi − θi)}, i = 1, 2, . . . , k

ϵi = max{θ̇i, κ(θi − θi)}, i = 1, 2, . . . , k.

To effectively handle inequality constraints in (7), a DNN
solver is constructed in the following form:

ρϵ̇ = −ϵ+Πϵ(ϵ− (Φϵ+ η + ξTν +ΩTµ)),

ρν̇ = −ν +Πν(ν + ξϵ− d),

ρµ̇ = −µ+Πµ(µ+Ωϵ− χ),

where the convergence coefficient ρ > 0. Additionally, in the
DNN solver (7), projection functions Πϵ, Πν , and Πµ are used
to enforce range constraints on the variables ϵ, ν, and µ. They
are defined as follows:

Πϵ(ϵi) =


ϵi, ϵi ≥ ϵi

ϵi, ϵi < ϵi < ϵi,

ϵi, ϵi ≤ ϵi

Πν(νi) = νi,

Πµ(µi) =

{
µi, µi ≥ 0

0, µi < 0.

IV. NOISE MODELLING AND INTRODUCTION OF
ANTI-NOISE MECHANISMS

This section focuses on modeling the system noise during
the control of the manipulator and incorporating additional
anti-noise mechanisms.

Gaussian white noise is used to imitate genuine noise
conditions because it considers the variability and instability of
the noise in real-world scenarios. The angular velocity θ̇ of the
joint of the manipulator is mainly impacted by the noise in the

trajectory control of a manipulator’s end effector. Simplifying
the control system:

ẋ(t) = f(x(t),u(t)),

where the state vector of the control system is x(t), and u(t)
is the control input, including the joint velocity vector w(t).
The control algorithm for the joint velocity is expressed as:

w(t) = k(x(t)),

where k is an abstract function that computes the joint
velocity. To simulate random errors in the manipulator or the
environment, the noise is added to the computed joint velocity
w(t):

wnoisy(t) = w(t) + n(t),

where n(t) is the noise vector, typically assumed to be zero-
mean Gaussian white noise:

n(t) ∼ N (0, σ2).

A simple moving average filter is introduced to smooth the
noisy joint velocity:

wfiltered(t) =
1

N

N−1∑
i=0

wnoisy(t− i∆t), (9)

where N is the size of the moving window, and ∆t is the time
step. At each time step, the smoothed joint angular velocity
wfiltered(t) is used as part of the state vector to update the
system state:

x(t+∆t) = x(t) + ∆t · ẋ(t). (10)

The Gaussian white noise model effectively models the real-
world noise impact on the control system of the manipulator.
It incorporates a moving average filter to mitigate noise
effects, enhancing control accuracy and reliability in noisy
environments.

V. SIMULATION EXPERIMENT

In this section, the simulation is implemented based on
physical structure parameters of the 7-DOF manipulators
KUKA LBR iiwa 7 R800, thus verifying the accuracy and
feasibility of the proposed double-indicator scheme based on
the DNN solver (6). In addition, comparing it with the con-
ventional single-objective scheme, the validity of the simple
anti-noise mechanism is verified in the simulation(9).

A. Parameter Setting

In the simulation, the MKE scheme weight is set as
ξ = 0.3, CMG scheme modulation factor is set as
m = 10.2, position error amplification factor is set as
δ = 10.2, convergence coefficient is set as ρ = 9 ×
10−5, and G is set as I . In addition, for the conve-
nience of the simulation, the initial joint angles are set
as θ(0) = (−2.357,−0.547, 0.023, 1.721, 0.005,−0.681, 0)T

rad, the simulation time t = 10 s, the trajectory plan-
ning interval is 0.0001 s, the sliding average window size



N = 10, the white noise amplitude is 0.01, and the pre-
defined heart-shaped trajectory is tracked based on the sim-
ulation of the KUKA LBR iiwa 7 R800 manipulator. The
generation formula of the heart-shaped trajectory is set as
x(t) = x(0) + a · 16 · sin3(ωt)
y(t) = y(0) + a · (13 cos(ωt)− 5 cos(2ωt)− 2 cos(3ωt)

− cos(4ωt))− 5a

z(t) = z(0).

B. Comparison And Result Analysis

Based on the tracking simulation of the intended trajecto-
ries, the above scheme combining the DNN solver (6) and
the simple anti-noise mechanism (9) shows its feasibility in
controlling the redundant manipulators. In Fig. 1(d), the end-
effector position deviations stay below 1×10−4 m throughout
the simulation, indicating a high tracking accuracy. In Fig.
1(b), the joint angles of the manipulators are kept within their
physical limits, i.e., θ = −2.5rad, θ = 2.5rad, indicating that
the physical constraints are taken into account, thus confirming
the practical feasibility of the control scheme. The curves in
Fig. 1(c) depicts the variation of angular velocity under the
proposed control scheme, showing that the angular velocity
variations of all joints are within the specified range and
the transition is smooth, reflecting the high stability of the
proposed control scheme.

The research results indicate that the innovative control
scheme based on DNN exhibits excellent performance in
trajectory tracking tasks of the manipulator. This approach
achieves high precision and stability and significantly reduces
the energy consumption, demonstrating the potential as a
comprehensive control strategy.

The core of this control scheme lies in the double-indicator
optimization framework, which is implemented via a DNN
solver. A vital feature of this framework is the flexibility,
allowing researchers to balance the importance of different
performance metrics by adjusting the objective weights ξ.
Simulations conducted in a noiseless simulation environment
demonstrate the adaptability of this method in Table I.

Overall, this research not only advances the technological
development in the field of the manipulator control but also
offers valuable insights into achieving multi-objective opti-
mization of complex systems.

C. Comparisons

The proposed double-indicator scheme for DNN-based solu-
tions (6) focuses on the objectives by adjusting the objective
weight values ξ, and Table I demonstrates the multifaceted
performance of the mentioned scheme for a series of different
values of ξ without the inclusion of simulated noise. The
comparison results indicate that the highest accuracy in the
simulations is achieved when ξ = 0.9, suggesting that when
the weight of the MKE scheme is higher, the value of MAX
E decreases, leading to improved stability and accuracy in
the control process. When the weight of the CMG scheme is
relatively more significant, i.e., when ξ is smaller, the value
of MAX |θ(T)− θ(0)| decreases accordingly, resulting in a

(a) (b)

(c) (d)

Fig. 1: Simulation results of KUKA manipulators with heart-
shaped tracking trajectory analog noise added executed by the
double-indicator scheme based on DNN solver (6). (a) Target
versus actual trajectories. (b) Time histories of joint angles. (c)
Time histories of joint velocities. (d) Time histories of end-
effector spatial position error.

minor variation in the joint angle from the start to the end of
the trajectory. Moreover, considering objectives and accuracy,
ξ = 0.2 represents an optimal balance between the schemes.

For the effect of the noise incorporation and the proof of
the effectiveness of the anti-noise mechanism, Fig. 2 shows
the comparison of the error curves for the three cases of no
noise added, noise added, and noise added with an anti-noise
mechanism for the ξ = 0.2 scenario.

Table II compares the errors of three models. Due to the
nature of the trajectories, it is easy to observe that the errors
are significant at the beginning, and the maximum error (MAX
E(10−5)) is mainly determined by this. It is less affected by
the slight amplitude noise. In addition, the complete picture
of the overall error may not be given; thus, the mean squared
error (MSE) is also compared.

Fig. 2(a) shows the scenario without the added noise. The
error curves (Ex, Ey , Ez) are relatively smooth and have small
amplitudes, which indicates that the system can maintain high
accuracy without the noise interference. Fig. 2(b) illustrates the
situation after the addition of the voice noise. As the amplitude
increases significantly, the error curve becomes more unstable,
which indicates that the noise causes a large disturbance to
the system, resulting in a significant increase in the error. Fig.
2(d) presents the case after adding noise and applying an anti-
noise mechanism. Compared to Fig. 2(b), the fluctuation and
amplitude of the error curve are reduced, which indicates that
the anti-noise mechanism reduces the interference of noise
on the system to some extent and improves the system’s
noise immunity. Comparing Fig. 2(a) and (c), the impact of
incorporating the noise reduction mechanism on the error is



TABLE I: Performance Metrics for Different ξ Values

ξ 0.1 0.2 0.4 0.5 0.6 0.8 0.9

MAX E(10−5) 7.25 5.59 6.50 4.06 7.88 4.24 1.75
MAX |θ(T)− θ(0)| (10−2) 1.18 1.74 3.88 5.88 8.71 27.0 219

MAX θ̇TGθ̇(10−6) 4.54 4.54 4.54 4.54 4.54 4.54 4.54

(a) (b)

(c) (d)

Fig. 2: Simulation results of the double-indicator scheme
based on the DNN solver (6) based on the simulation results
of the KUKA manipulators with a heart-shaped tracking
trajectory(ξ = 0.2). (a) Time course of end-effector position
error without adding noise. (b) Time course of end-effector
position error after adding noise without adding an anti-noise
mechanism. (c) Time course of end-effector position error
after adding anti-noise mechanism but without noise. (d) Time
course of end-effector position error after adding noise and an
anti-noise mechanism.

TABLE II: Comparison of Errors in Different Scenarios

Scenario MAX E MSE

Without Noise

No Filter 6.70× 10−5 2.00× 10−10

Filtered 6.47× 10−5 1.97× 10−10

With Noise

No Filter 7.07× 10−5 3.28× 10−10

Filtered 6.87× 10−5 2.49× 10−10

not apparent when no noise is added. However, the noise
reduction mechanism still significantly reduces the system
error at this time, which can be seen in Table II.

The simulation outcomes demonstrate that, in the absence
of noise, the system exhibits a maximum error (MAX E) of
5.63×10−5 meters and a mean square error (MSE) of 1.94×
10−10 meters. After introducing unfiltered noise, the maximum
error escalates to 7.75× 10−5 meters, while the mean square

error rises to 3.42× 10−10 meters. These findings underscore
the detrimental effect of noise on the system’s accuracy.

Upon implementation of the filtering mechanism, a signif-
icant reduction in the maximum error to 6.71 × 10−5 meters
and a decrease in the mean square error to 2.67×10−10 meters
are observed. Even without noise, the filtering mechanism
reduces the system error. These results substantiate the efficacy
of the anti-noise mechanism in mitigating error propagation.
While the error levels with the filter in place remain elevated
compared to the noise-free scenario, the marked improvement
over the unfiltered noise condition unequivocally demonstrates
the effectiveness and necessity of the noise mitigation strategy.

D. Physical Simulation
To demonstrate the operability and realism of the proposed

scheme, physical simulations based on the KUKA LBR iiwa
7 R800 manipulators using CoppeliaSim analog simulation
software are carried out, where the trajectories of the end-
effector were recorded, and some central time nodes are
extracted and displayed in Fig. 3.

Fig. 3 clearly shows the excellent tracking performance
of the manipulator along the cardioid trajectory. Specifically,
the manipulator accurately follows the predefined cardioid
trajectory with the tracking error kept to a minimum value.
It highlights the high accuracy and stability of the proposed
control scheme. In addition, it validates the effectiveness and
practicality of the redundant manipulator control scheme in
complex trajectory-tracking tasks.

VI. CONCLUSION
This paper has proposed a new double-indicator scheme

for trajectory tracking of redundant manipulators. The scheme
considers the position of the end effector and kinetic energy
consumption while introducing noise-resistant mechanisms to
enhance accuracy and stability further. Additionally, a DNN
solver, validated to exhibit global exponential convergence
when handling optimization problems derived from this con-
trol scheme, has been employed to achieve fast and efficient
control of the manipulators. Finally, this scheme’s effective-
ness, high reliability, and specificity in the control of redundant
manipulators have been demonstrated through comparative
simulations.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: CoppeliaSim-based simulation results of DNN solver-
based double-indicator scheme controlling KUKA 7-degree-
of-freedom manipulators at different time nodes, tracking
predefined heart-shaped trajectories. (a) t = 2s. (b) t = 4s.
(c) t = 6s. (d) t = 8s. (e) t = 10s. (f) Heart-shaped trajectory
tracking results.
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