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ABSTRACT

Inducing and leveraging sparse activations during training and inference is a
promising avenue for improving the computational efficiency of deep networks,
which is increasingly important as network sizes continue to grow and their appli-
cation becomes more widespread. Here we use the large width Gaussian process
limit to analyze the behaviour, at random initialization, of nonlinear activations
that induce sparsity in the hidden outputs. A previously unreported form of train-
ing instability is proven for arguably two of the most natural candidates for hidden
layer sparsification; those being a shifted ReLU (ϕ(x) = max(0, x−τ) for τ ≥ 0)
and soft thresholding (ϕ(x) = 0 for |x| ≤ τ and x − sign(x)τ for |x| > τ ). We
show that this instability is overcome by clipping the nonlinear activation magni-
tude, at a level prescribed by the shape of the associated Gaussian process variance
map. Numerical experiments verify the theory and show that the proposed magni-
tude clipped sparsifying activations can be trained with training and test fractional
sparsity as high as 85% while retaining close to full accuracy.

1 INTRODUCTION

Improving the computational efficiency of large deep neural networks is the subject of many lines of
work, including network weight pruning and quantization (Blalock et al., 2020), adapting network
architectures (Bizopoulos & Koutsouris, 2021), and inducing low-dimensional structure in hidden
layer outputs through low-rank, sparse, or similar structures (see Sec. 1.2). Two of the key quantities
that determine the computational efficiency of the forward pass of a deep network are the total
number of floating point operations (FLOPs) involved and the total amount of memory required.
These quantities are primarily influenced by the tensor products of layer weights and layer inputs.
The existence of efficient techniques for storing and computing with sparse vectors and matrices
makes the sparsification of DNN weights and layer inputs/outputs a promising strategy for making
the forward passes of deep networks more efficient. In contrast to the extensive literature on weight
pruning and quantization, this paper investigates the training of networks with nonlinear activation
functions that induce highly sparse hidden layer outputs throughout both training and inference.
Sparse hidden layers are especially appealing as they naturally combine with the other methods by
subselecting only a portion of the weight matrix active for that input.

To induce a target sparsity level we will leverage the fact that deep networks randomly initialized
with i.i.d. entries generate hidden layers whose entries approach Gaussian distributions with known
variance as the network width increases. For a survey of the Gaussian process behaviour of deep
networks see Roberts et al. (2022) and references therein, and for initial derivations of feedforward
networks (Lee et al., 2018), CNNs (Xiao et al., 2018), LSTMs and GRUs (Gilboa et al., 2019), RNNs
(Chen et al., 2018), ResNets (Yang & Schoenholz, 2017) and extra features like dropout (Schoenholz
et al., 2017; Huang et al., 2020) or batch normalization (Yang et al., 2019) and pruning (Hayou et al.,
2021). This manuscript considers random initializations of both feedforward networks, abridged
here as DNNs, of width Nl,

hl
j =

Nl∑
i=1

W l
ijx

l−1
i + blj , xl = ϕ(hl) for l = 1, 2, . . . , L, (1)
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and one-dimensional CNNs1 with input channel length Cl
in and kernel width 2k + 1,

hl
j(α) =

Cl
in∑

i=1

k∑
β=−k

W l
ij(β)x

l−1
i (α+ β) + blj , xl = ϕ(hl) for l = 1, 2, . . . , L; (2)

specifically, with a focus on activation functions ϕ that induce a prescribed substantial fractional
sparsity at initialization, which in practice is maintained throughout training and inference on un-
seen data. To the best of our knowledge, highly sparsifying activations have not been studied at
initialization, which may well be due to — as we will show — the failure of DNNs and CNNs
to train with the intuitive choices of sparsifying activation functions. We analytically identify the
source of this failure, which is due to an instability in the variance map of successive layers’ Gaus-
sian processes. That is, for arguably the most natural sparsifying activations, the Edge-of-Chaos
(EoC) initialization Poole et al. (2016) needed to train very deep networks happens to coincide with
introducing an instability that typically results in exponential growth of the Gaussian process vari-
ance with depth. Here, we introduce modified activation functions, using simple magnitude clipping,
which decouples EoC initialization from the Gaussian process variance, and demonstrate that this
allows training of very deep networks with activation sparsity up to 85%.

1.1 MAIN RESULTS

The Gaussian process model of DNNs (1) in the large width limit and CNNs (2) in the large channel
limit are characterized by their associated variance. For DNNs of width Nl with Gaussian weights
wi,j drawn i.i.d. N (0, σ2

w/Nl) and bias bj drawn i.i.d. N (0, σ2
b ) it was shown by Lee et al. (2018)

that the pre-activation outputs hl
j approach N (0, ql) where ql can be computed through the ‘variance

map’ or ‘length map’

ql = Vϕ(q
l−1) := σ2

w

∫
R

(
ϕ(
√
ql−1 z)

)2
γ(dz) + σ2

b , (3)

where γ(dz) is the standard Gaussian measure e−z2/2/
√
2π dz, and q0 = ∥x0∥22/N0, q1 = σ2

wq
0 +

σ2
b . Note that the variance map Vϕ(·) depends on ϕ, σ2

w, and σ2
b . Typically Vϕ has a single nonzero

fixed point, which is essential for the resulting theory2.

The Gaussian process model for CNNs (2) in the large channel limit is somewhat more complex due
to correlation within hl

j(α) and hl
j(α

′) when |α− α′| < 2k + 1. Xiao et al. (2018) proved that this
Gaussian process is characterized by the matrix

Σl
α,α′ = σ2

b +
σ2
w

2k + 1

k∑
β=−k

E
(
ϕ(hl−1

j (α+ β))ϕ(hl−1
j (α′ + β))

)
, (4)

where expectation is taken over the weights and biases. The full hidden layer vector hl then ap-
proaches the Gaussian distribution N (0,A ⋆ σl

α,α′) where A = 1
2k+1I2k+1 and ⋆ denotes a two-

dimensional circulant cross-correlation that accounts for the 2k + 1 overlapping locations. The
covariance matrix for the CNN Gaussian process follows a similar variance map as (3),

Σl
α,α′ = ql(δα,α′ + (1− δα,α′ρl)), (5)

where ρl−1 = ql−1
α,α′/

√
ql−1
α ql−1

α′ is the correlation coefficient of the inputs at layer l − 1 (Poole
et al., 2016). Assuming that both qla and qlb converge quickly to q∗ yields the following iterative
correlation map

ρl = Rϕ(ρ
l−1) =

1

q∗

(
σ2
w

∫∫
ϕ(u1)ϕ(u2)γ(dz1)γ(dz2) + σ2

b

)
, (6)

1Higher dimensional CNNs follow similarly but with more complex notation, see Lee et al. (2018).
2There are, however, some notable counter-examples, with ReLU having VReLU(q) = q + σ2

b and conse-
quently when σb = 0, all q are fixed points, while when σb > 0 the variance ql increases by σ2

b . Conversely
ELU with σb = 0 has VELU(q) < q for all q with q∗ = 0 the only fixed point, see Murray et al. (2022).
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where u1 =
√
q∗ z1 and u2 =

√
q∗(ρl−1z1+

√
1− (ρl−1)2 z2), which describes how the correlation

between two distinct inputs (in the DNN case) or two entries at different locations with overlapping
kernels (in the CNN case) evolves from one layer to the next, after both starting with or converging
to variance q∗.

Equipped with an accurate model of the hidden layer entries it is straightforward to compute the
fractional sparsity that a nonlinear activation will induce, and moreover to design activation func-
tions ϕ(·) which induce a prescribed sparsity level in the activations. Perhaps the most obvious
candidate for such sparsifying activation functions is a shifted ReLU, denoted here as ReLUτ , and
defined as

ReLUτ (x) =

{
x− τ, if x > τ

0, otherwise,
(7)

where τ > 0 allows greater sparsity than the standard ReLU when τ = 0.3 The other especially
natural sparsifying activation is the SoftThreshold function STτ defined as

STτ (x) =

{
x− sign(x)τ, if |x| > τ

0, otherwise,
(8)

which is an odd-function variant of the ReLUτ ; see Figure 1. The appeal of STτ to induce sparsity
is that it is an optimal denoiser (Donoho, 1995) for fixed values with additive Gaussian noise and is
widely used in the compressed sensing community (Foucart & Rauhut, 2013) to encourage sparsity.

Figure 1: From left to right: ReLU (i.e. ReLUτ with τ = 0), ReLUτ (τ = 1), STτ (τ = 1),
CReLUτ,m (τ = 1,m = 1), CSTτ,m (τ = 1,m = 1)

Unfortunately, (7) and (8) both suffer from a previously unreported instability of their hidden layer
variance map (3) which impedes training DNNs and CNNs with these activation functions. Specif-
ically, both (7) and (8) have the property that when initialized on the EoC, their associated Vϕ(q)
has a single fixed point q∗ with V ′

ϕ(q
∗) = 1, and moreover V ′′

ϕ (q∗) > 0, causing q∗ to be only
stable from the left, see Sec. A and B. Due to the natural stochasticity of ql for finite dimensional
networks, even for moderate depths, ql typically obtains a value in excess of q∗ and then diverges
exponentially. This phenomenon is unusual as most common activation functions have a unique
stable fixed point with V ′

ϕ(q
∗) < 1.

It is possible to regain the stability of the fixed point of the Gaussian process variance map by suitable
modification of the sparsity-inducing activation functions ϕ. This can be achieved by clipping the
magnitude of these activations, (7) and (8); specifically, let

CReLUτ,m(x) =


0, if x < τ

x− τ, if τ < x < τ +m

m, if x > τ +m

(9)

and

CSTτ,m(x) =


0, if |x| < τ

x− sign(x)τ, if τ < |x| < τ +m

sign(x)m, if |x| > τ +m,

(10)

as plotted in Figure 1. This simple modification is sufficient to guarantee V ′
ϕ(q

∗) < 1 for m bounded.
Proof-of-concept experiments in Sec. 4 verify the efficacy of clipping to retain stability and show
a trade-off with m between the stability of training and the expressivity of the network. Moreover,
these experiments show that the for DNNs full test accuracy of a standard ReLU network baseline
can be retained, or even slightly improved, with activation sparsity as high as 85%. For CNNs
a similar phenomenon is observed with full accuracy of ReLU baseline being retained for 70%
sparsity, while 85% sparsity incurs just a 4% accuracy drop.

3This is a continuous variant of the Forced Activation Threshold ReLU considered in Kurtz et al. (2020).
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1.2 RELATED WORK

As noted and referenced above, there is a large body of work analysing the infinite-width limit
for stable initialization of very deep networks. Complementary to the sparse hidden layer results
presented here is the extensive literature on weight pruning (sparsifying the weights), both after a
network has been trained, as a type of network ‘post-processing’ (see e.g. Han et al. (2015)), and
at initialization, such that the weights are sparse during training (Lee et al., 2019; Tanaka et al.,
2020; Hayou et al., 2020). See Hoefler et al. (2021) for a review of the work on weight spar-
sification/pruning. In contrast, sparsification of the layer outputs—often referred to as the layer
‘activations’, or ‘feature maps’ in the case of CNNs—has received relatively little attention. Those
few works which do focus on sparsity in the activations tend to propose methods to increase the
sparsity of an existing, pre-trained network via fine-tuning. Georgiadis (2019) proposes inducing
sparse activations (feature maps) in already-trained CNNs by fine-tuning them with added L1 regu-
larisation, penalising the L1 norms of all feature maps. Kurtz et al. (2020) instead fine-tune ReLU
networks with Hoyer regularisation, and introduce the FATReLU (defined as 0 if x < τ else x) for
some threshold τ to increase the hidden layer sparsity.

1.3 ORGANISATION OF THE PAPER

Section 2 analyses natural candidates for sparsifying activation functions (7) and (8), to show why
very deep networks using these activation functions will almost always fail to train for τ > 0.
Section 3, analyses the magnitude-clipped variants (9) and (10), and shows analytically that this
circumvents the most important of the aforementioned inability of the networks to train. Section 4
validates the theory with proof-of-concept numerical experiments training DNNs and CNNs using
the proposed activation functions. Finally, Section 5 suggests a number of lines of future work.

2 THE INSTABILITY OF ReLUτ AND STτ AS SPARSIFYING ACTIVATION
FUNCTIONS

The instability of ReLUτ and STτ for τ > 0 is a consequence of the shape of their associated
variance maps Vϕ(q), (3) when initialized on the EoC. EoC initialization requires that the slope of
the correlation map Rϕ(ρ) at ρ = 1

χ1,ϕ := R′
ϕ(1) = σ2

w

∫
R
(ϕ′(

√
q∗z))2γ(dz), (11)

be equal to 1. χ1,ϕ determines the stability of the network to small perturbations of the inputs. When
χ1,ϕ < 1 the network maps perturbations together at an exponential rate (this is referred to as the
ordered regime 4), while when χ > 1 the perturbations diverge at an exponential rate (the chaotic
regime). Having χ1,ϕ = 1 but R(ρ) > ρ for ρ near 1 results in a stable convergence of correlations
at a sub-exponential rate, and also helps to prevent exploding or vanishing gradients; for details see
Yang & Schoenholz (2017) and App. A. As noted in Section 1.1 preserving χ1,ϕ = 1 depends on
ql converging to q∗, and thus also requires that the variance map Vϕ(q) be sufficiently stable around
q∗. Unfortunately it is impossible for ReLUτ or STτ to meet both of these requirements.

The variance maps Vϕ(q) for ϕ = ReLUτ and STτ are computed in App. B, tabulated in Table 1,
and plotted in Figure 2 with (σw, σb) on the EoC for different values of τ . The key observation is
that for both ReLUτ and STτ , the slope V ′

ϕ(q) at the fixed point Vϕ(q
∗) = q∗ is equal to χ1,ϕ, and

thus we necessarily have that V ′
ϕ(q

∗) = 1 on the EoC.

When τ = 0, ReLUτ is just the standard ReLU function, and STτ collapses to the identity. In both
cases, when (σw, σb) lie on the EoC, V ′

ReLUτ
(q) = 1 for all q, making any q a fixed point of VReLUτ

;
see the left-most plot in Figure 2.

For τ > 0 however, the second derivative V ′′
ϕ (q∗) is strictly positive, causing networks with ReLUτ

and STτ with τ > 0 to have unstable Gaussian process variance propagation and consequently prove
effectively impossible to train for large sparsity. We verify this claim experimentally – see App. C
for the experimental details and Table 2 for the results.

4The ordered regime χ1,ϕ < 1 is stable to perturbations, but for practical training is excessively so, with
exponential convergence of all inputs to a single point.
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ϕ V ′
ϕ(q) χ1,ϕ at q = q∗ V ′′

ϕ (q) τ̂ϕ(s, q
∗) σ2

w

ReLUτ σ2
wΦ
(
− τ√

q

)
σ2
wΦ
(
− τ√

q∗

)
Φ
(
− τ√

q

)−1
τe

− τ2

2q

2
√
2πq

3
2

√
q∗Φ−1(s) 1

1−s

STτ 2σ2
wΦ
(
− τ√

q

)
2σ2

wΦ
(
− τ√

q∗

)
2Φ
(
− τ√

q

)−1
τe

− τ2

2q

2
√
2πq

3
2

√
2q∗erf−1(s) 1

1−s

Table 1: Variance and correlation map derivatives for ReLUτ and STτ where Φ(·) is the CDF of
a standard normal distribution. The correspondence of V ′

ϕ and χ1,ϕ means that EoC initialization
implies that V ′

ϕ(q
∗) = 1 for all τ > 0. Moreover, the second derivative of the variance map V ′′

ϕ is
strictly positive for every q, resulting in instability of the fixed point Vϕ(q

∗) = q∗. The simplified
expression of σ2

w in the final column occurs when χ1,ϕ = 1.

Figure 2: Variance maps for ReLUτ and STτ with (σw, σb) on the EoC, for different values of τ .
Here q∗ = 1 is used to compute χ1,ReLUτ . The dashed line is the identity map. The curves for
ReLUτ and STτ overlap exactly for a given τ . Note, however, that a fixed value of τ corresponds to
substantially different activation sparsities for ReLUτ and STτ . Figure 9 in App. C compares V (q)
for fixed output sparsities.

In practice, we choose τ to control the ‘expected sparsity’ s (proportion of zeros) after applying
different activation functions. Assuming the activation function is applied to a random Gaussian
vector with independent entries, each with variance q∗, we have

s = P(ϕ(Z) = 0), Z ∼ N (0, q∗). (12)
The optimal (smallest) τ for a DNN with activation function ϕ = ReLUτ or STτ and activation spar-
sity s, denoted as τ̂ϕ(s, q∗), is computed in App. F and tabulated in Table 1. Substituting τ̂ϕ(s, q

∗)
into the expression for χ1,ϕ in Table 1 results in the value of σ2

w on the EoC, which turns out to be in-
dependent of q∗ for both ReLUτ and STτ , and which thus makes achieving approximate dynamical
isometry (Pennington et al., 2018) with these networks impossible, see App A.

3 GAINING STABILITY AND TRAINABILITY VIA CLIPPING

Clipping the maximum output magnitude of ReLUτ and STτ allows the EoC condition χ1,ϕ = 1 to
be satisfied while ensuring V ′

ϕ(q
∗) < 1. The clipped activation functions are denoted as CReLUτ,m

and CSTτ,m in (9) and (10) respectively. This allows CReLUτ,m and CSTτ,m to generate hidden
layer outputs which are both very sparse and trainable when initialized at the EoC.

The associated variance and correlation maps for CReLUτ,m and CSTτ,m are computed and plotted
for a variety of sparsity factors τ and clipping levels m in App. E. The stability of the fixed point q∗
when χ1,ϕ = 1 follows from the expressions for the gradient of their variance map V ′

ϕ(q) and the
slope χ1,ϕ:

V ′
CReLUτ,m

(q) = σ2
w

(
− m√

2πq
e
− 1

2

(
m+τ√

q

)2
+

1

2

(
erf
(
m+ τ√

2q

)
− erf

(
τ√
2q

)))
, (13)

V ′
CSTτ,m

(q) = 2V ′
CSTτ,m

(q), (14)

χ1,CReLUτ,m
=

σ2
w

2

(
erf
(
m+ τ√

2q∗

)
− erf

(
τ√
2q∗

))
, (15)
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χ1,CSTτ,m
= 2χ1,CReLUτ,m

. (16)

Crucially,

χ1,CReLUτ,m = V ′
CReLUτ,m

(q∗) +
σ2
wm√
2πq∗

exp

(
− (m+ τ)2

2q∗

)
> V ′

CReLUτ,m
(q∗), (17)

χ1,CSTτ,m
= V ′

CSTτ,m
(q∗) +

√
2σ2

wm√
πq∗

exp

(
− (m+ τ)2

2q∗

)
> V ′

CSTτ,m
(q∗). (18)

Thus, V ′
ϕ(q

∗) < 1 at the EoC (χϕ = 1), making q∗ locally stable for both ϕ = CReLUτ,m or
CSTτ,m. The local convergence rate of ql to the fixed point q∗ is determined by 1 − V ′

ϕ(q
∗). Note,

however, that certain values of m and s induce multiple fixed points, causing q∗ not to be globally
stable; see Figure 4b as well as the bottom right panels of Figures 10 and 11 in App E. Another effect
of bounding these activation functions is that σ2

w at the EoC (χ1,ϕ = 1) is no longer independent
of q∗ for a given expected sparsity s, although this unfortunately still does not enable us to achieve
approximate dynamical isometry for these activation functions, for details see App. F.

Figure 3: Plots of V ′
ϕ(m) (upper) and V ′′

ϕ (m) (lower) and at q∗ = 1 for CReLUτ,m (left) and
CSTτ,m (right) with for different fractional sparsities. For V ′

ϕ(m) the horizontal dashed black lines
are plotted at 0.5, 0.6, 0.7, 0.8, 0.9.

3.1 CHOOSING THE CLIPPING MAGNITUDE m FOR CReLUτ,m AND CSTτ,m .

A larger clipping hyperparameter m increases the expressivity of the network by allowing larger
activation values and a wider trainable (non-zero gradient) region of its domain. It also plays a role
in determining the shape of the variance map—crucially, V ′

ϕ(q
∗) (see Equation (13)), as well as the

curvature V ′′
ϕ (q∗). Figure 3 show V ′

ϕ(q
∗) and V ′′

ϕ (q∗) as functions of m for different sparsity levels.
As m increases, V ′

ϕ(q
∗) increases and tends to 1 from below as m → ∞.

While V ′
ϕ(q

∗) < 1 for each m, the curvature V ′′
ϕ (q∗) initially decreases to negative values and

then increases as m increases from 0. Stability for finite-dimensional networks requires Vϕ(q) to
be sufficiently stable around q∗ so that the natural stochasticity in ql remains in the local stable
region of Vϕ(q), meaning that ql does in practice remain approximately equal to q∗. In particular,
for larger values of m the curvature V ′′

ϕ (q∗) can cause Vϕ(q) curve up after crossing the Vϕ(q) = q
line and approximately follow it for an extended interval before flattening out again—resulting in

6
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(a) ϕ = CReLUτ,m, s = 0.85, m chosen such that
V ′
ϕ(q

∗) = 0.9 (orange), with q∗ = 1.
(b) ϕ = CSTτ,m, s = 0.85, m chosen such that
V ′
ϕ(q

∗) = 0.8 (orange) and 0.9 (green), with q∗ = 1.

Figure 4: Variance maps for CReLUτ,m in (a) and CSTτ,m in (b) at 85% sparsity and m chosen such
that even though V ′

ϕ(q
∗) < 1 the network is unstable to train. For CReLUτ,m training fails due to

Vϕ(q) being approximately q for a sufficiently large region around q∗ that the effective value of χ1

varies above 1 which results in exploding gradients. For CSTτ,m training fails for the same reason
of effective χ1 > 1, which occurs even more dramatically as Vϕ(q) exceeds q and has a second,
unstable, fixed point as well as another stable fixed point, but with χ1 substantially greater than 1.

an extended region in which |Vϕ(q) − q| is small. Increasing m (and thus V ′′ϕ(q∗)) even further
causes a bifurcation, with two new fixed points emerging: a locally unstable one close to the original
q∗, and another locally stable one at a larger value of q. These new fixed points cause a failure of
ql to converge to q∗ in practice – instead, ql converges to or hovers at a value greater than q∗,
corresponding to χ1,ϕ > 1, which results in exploding gradients. See Figure 4b for illustrations
of these phenomena which correspond to examples in Sec. 4 where networks fail to train. For this
reason, the values of m that have the best values of accuracy and ability to train are as large as
possible while V ′

ϕ(q
∗) and V ′′

ϕ (q∗) remain sufficiently small to ensure practical stability of q∗ based
on stochasticity of ql in finite-width networks; see Table 2 for examples of parameters and associated
test accuracy for CReLUτ,m and STτ respectively.

4 EXPERIMENTS

To confirm the theoretical predictions, we train both feedforward networks (abridged as DNNs) of
width 300 and depth 100 using CReLUτ,m and CSTτ,m to classify digits from the MNIST dataset
and, similarly, CNNs with 300 channels in each layer and depth 50 are trained to classify images
from the CIFAR10 dataset. Training such deep DNNs and CNNs allows us to verify the theory,
which aims to improve information propagation at initialization through many layers. The absolute
accuracy of the networks is not the focus of these experiments, rather it is the ability to retain
trainability and approximately the accuracy of standard ReLU networks for sparsities greater than
50%. The networks are initialized at the EoC using q∗ = 1, before being trained by stochastic
gradient descent (SGD) for 200 epochs with learning rate of 10−4 and 10−3 for the DNN and CNN
respectively. Each experiment is conducted with sparsity s = 0.6, 0.7, 0.8, and 0.85 and m selected
to have V ′

ϕ(q
∗) = 0.5, 0.7, and 0.9. The results are shown in Table 2. These results should be

contrasted with those for ReLUτ and STτ , also shown in Table 2, and described in App. C.

Whereas EoC-initialized ReLUτ and STτ DNNs failed to train consistently even when initialized at
sparsity levels 60% and 50% respectively, the EoC-initialized CReLUτ,m and CSTτ,m DNNs can
maintain full accuracy when initialized with up to 85% sparsity. CReLUτ,m and CSTτ,m CNNs
retain full accuracy for sparsity as high as 70% while 85% sparsity incurs a modest loss of accuracy
to 66%. Conversely, their non-clipped counterparts fail to train at all at 60% and 70% sparsity
respectively. Moreover, in those cases where training is stable and high accuracy is achieved, the
starting sparsity level is maintained throughout training, resulting in trained models which exhibit
approximately the same high activation sparsity levels when measured on the test set.

7



Published as a conference paper at ICLR 2024

DNN on MNIST CNN on CIFAR10
Test accuracy Test sparsity Test accuracy Test sparsity

mean std mean std
s τ m V ′

ϕ(q
∗) V ′′

ϕ (q∗)

ReLUτ 0.50 0.00 N/A 1.0 0.0 0.94 0.002 0.50 0.001 0.70 0.52
0.60 0.25 N/A 1.0 0.12 0.76 0.37 0.49 0.27 0.68 0.6
0.70 0.52 N/A 1.0 0.3 0.10 0.00 0.00 0.00 0.1 0.0

STτ 0.5 0.67 N/A 1.0 0.43 0.10 0.00 0.00 0.00 0.1 0.0
0.6 0.84 N/A 1.0 0.59 0.10 0.00 0.00 0.00 0.1 0.0
0.7 1.04 N/A 1.0 0.81 0.10 0.00 0.00 0.00 0.1 0.0

CReLUτ,m 0.60 0.25 1.22 0.5 -0.44 0.92 0.004 0.60 0.001 0.70 0.61
1.63 0.7 -0.42 0.92 0.003 0.60 0.004 0.69 0.61
2.25 0.9 -0.19 0.92 0.01 0.60 0.01 0.69 0.60

0.70 0.52 1.05 0.5 -0.37 0.93 0.01 0.70 0.002 0.70 0.70
1.45 0.7 -0.31 0.92 0.003 0.70 0.002 0.69 0.69
2.05 0.9 -0.04 0.92 0.01 0.70 0.01 0.68 0.69

0.80 0.84 0.89 0.5 -0.24 0.94 0.004 0.80 0.002 0.64 0.80
1.27 0.7 -0.12 0.93 0.01 0.80 0.01 0.64 0.78
1.85 0.9 0.21 0.94 0.01 0.79 0.02 0.65 0.78

0.85 1.04 0.81 0.5 -0.14 0.78 0.16 0.85 0.004 0.65 0.85
1.17 0.7 0.02 0.94 0.004 0.85 0.003 0.65 0.84
1.74 0.9 0.41 0.28 0.37 0.79 0.04 0.66 0.83

CSTτ,m 0.50 0.67 0.97 0.5 -0.32 0.92 0.004 0.51 0.01 0.69 0.49
1.36 0.7 -0.23 0.92 0.01 0.50 0.004 0.69 0.48
1.96 0.9 0.08 0.92 0.004 0.49 0.01 0.71 0.49

0.60 0.84 0.89 0.5 -0.24 0.93 0.01 0.60 0.003 0.68 0.59
1.27 0.7 -0.12 0.92 0.004 0.60 0.003 0.67 0.59
1.85 0.9 0.21 0.93 0.004 0.59 0.01 0.67 0.57

0.70 1.04 0.81 0.5 -0.14 0.94 0.005 0.70 0.004 0.68 0.69
1.17 0.7 0.02 0.93 0.005 0.71 0.01 0.68 0.67
1.74 0.9 0.41 0.27 0.36 0.41 0.18 0.68 0.68

0.80 1.28 0.72 0.5 0.00 0.92 0.04 0.80 0.001 0.66 0.79
1.06 0.7 0.23 0.95 0.01 0.80 0.01 0.65 0.78
1.61 0.9 0.69 0.11 0.01 0.15 0.01 0.31 0.18

0.85 1.44 0.67 0.5 0.11 0.76 0.16 0.85 0.005 0.63 0.84
1.00 0.7 0.39 0.93 0.01 0.85 0.01 0.63 0.83
1.53 0.9 0.89 0.14 0.04 0.11 0.01 0.29 0.12

Table 2: Experimental results for ReLUτ and STτ with sparsity s up to 0.7, and for CReLUτ,m and
CSTτ,m with sparsity s up to 0.85 and m selected to have V ′

ϕ(q
∗) = 0.5, 0.7, and 0.9. DNNs have

100 layers and are tested on MNIST with 5 runs and the mean and standard deviation are reported for
both test accuracy and average activation sparsity calculated on the test set. For the 50-layer CNN
experiments on CIFAR10 a single experiment was conducted for each hyperparameter combination.

Upon analysing the ‘failure’ cases for DNN in which low accuracy is achieved, two failure modes
are identified. The first of these corresponds to the analysis and predictions made in Section 3.1.
For CReLUτ,m and s = 0.6, 0.7, and 0.8, we see negative or small positive values of V ′′

ϕ (q∗) for
all values of V ′

ϕ(q
∗); this corresponds to a variance map at initialization with sufficient symmetry

around q∗ to ensure that ql stays, in practice, very close to q∗ on average, thus avoiding any exploding
gradients, and preserving trainability. Once s increases to 0.85, however, we start to observe the
potential for m to be too large—when m is set such that V ′

ϕ(q
∗) = 0.9, then V ′′

ϕ (q∗) = 0.41, a high
chance of failure in training is observed for the reasons described in Section 3.1 and highlighted by
the variance map in Figure 4. Indeed, training fails in four out of five experiments, reflected by the
low mean test accuracy and high standard deviation. Figure 5a plots the gradient norms at each layer
for the first 15 steps of training for one of these failed runs. Even at the very first step, the gradients
grow as the backwards pass proceeds (up to O(103)), and this reaches O(106) by step 35.

The same trend is observed for DNNs and s ≥ 0.8 with ϕ = CSTτ,m. Starting from the lowest
tested value of m in these cases, increasing m initially increases test accuracy, but at a certain point,

5The reason for the drop back to very low levels at later steps is due to the fact that once the weights (and
thus activations) grow large enough, they almost all begin to land in the zero-gradient interval of the activation
functions, resulting in no further gradient flow through those layers.
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m becomes too large, such that the corresponding combination of V ′
ϕ(q

∗) and V ′′
ϕ (q∗) cause failure

in some (and then all) of the five experiments. Figure 5b shows the layerwise gradient norms over
the first 15 training steps of a failed run with CSTτ,m with s = 0.85 and m = 1.22. Though on step
1 the gradients remain ∼ O(1), very quickly the exploding gradient phenomenon emerges.

In contrast, Table 2 shows that CNNs with CReLUτ,m exhibit a more stable test accuracy, whereas
the analogous tests for CSTτ,m show a loss of accuracy for large m where V ′

ϕ(q
∗) = 0.9 once

V ′′
ϕ (q∗) ≥ 0.69 at s = 0.8 and m = 1.61 as well as s = 0.85 and m = 1.53.

The second failure mode accounts for the failure to train to high accuracy once starting sparsity
reaches 85% for low values of m (the failure when s = 0.85 and m is large is captured in the
first failure mode); specifically, the failure of DNNs to obtain high accuracy when s = 0.85 and
m = 0.81 for CReLUτ,m, as well as when s = 0.85 and m ≤ 0.83 for CSTτ,m. In all of these cases,
EoC initialization avoids exploding gradients at initialization and performance does improve during
training for all of the five runs. However, the resulting accuracy is reduced, reaching a maximum of
≈78% when s = 0.85 at m = 0.81, for example. This is discussed further in App. G.

One final observation from Table 2 is that for DNNs the maximum accuracy actually increases with
increasing sparsity (up to a point, and for sufficiently large values of m). Maximum accuracy for
ReLUτ networks is achieved when sparsity is 80% and 85% (accuracy of 94%), and for CSTτ,m

networks when sparsity is 80% (accuracy of 95%). However, CNNs in contrast do not show the
aforementioned improved accuracy as a result of sparsity, instead they exhibit a more gradual loss
of accuracy and train for a somewhat larger range of m.

(a) CReLUτ,m: s = 0.85, m = 1.74, V ′
ϕ(q

∗) = 0.9 (b) CSTτ,m: s = 0.85, m = 1.22, V ′
ϕ(q

∗) = 0.8

Figure 5: Gradient norms per layer for the first 15 steps of a failed training run of DNNs on MNIST.

5 CONCLUSIONS AND AVENUES FOR FUTURE WORK

The analysis here explains why arguably the most natural highly-sparsifying activation functions
ReLUτ and STτ fail to train for deep DNNs and CNNs. This instability is then overcome with
a simple modification in the form of a bound on the absolute value of these functions, yielding a
stable EoC initializations for the resulting networks, which allows for training very deep networks
with these modified activation functions with activation sparsity up to 85%.

There are multiple natural and promising avenues to extend this line of work. Firstly, a more com-
plete explanation of the unstable training dynamics when s is very large and m is small (the second
failure mode identified in Section 4). Secondly, extension of EoC analysis for these sparsifying
activation functions from DNNs and CNNs to transformer architectures, and networks with skip
connections like ResNet would be important to have the greatest impact in recent applications.
Additionally, it would be interesting to investigate whether smooth variants of CReLUτ,m and or
CSTτ,m exhibit any preferable properties over their piecewise-linear variants, specifically through
controlling higher order moments of the spectrum of the input-output Jacobian. Finally, derivations
of formulae for the largest choice of m for which the variance map is stable to the variance of ql
determined by the network width, input channels or other numbers of network parameters.

9



Published as a conference paper at ICLR 2024

REPRODUCIBILITY

Derivations of the theory in Section 2 and 3 can be found in Appendices B and E. Experimental
setup and hyperparamters are detailed in Section 4 and Appendices C and D.
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Georgios Georgiadis. Accelerating convolutional neural networks via activation map compression.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7078–
7088, 2019. doi: 10.1109/CVPR.2019.00725.

Dar Gilboa, Bo Chang, Minmin Chen, Greg Yang, Samuel S. Schoenholz, Ed H. Chi, and Jeffrey
Pennington. Dynamical isometry and a mean field theory of lstms and grus, 2019. URL https:
//arxiv.org/abs/1901.08987.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Robust pruning at initial-
ization. In International Conference on Learning Representations, 2020.

Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Robust pruning at ini-
tialization. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=vXj_ucZQ4hA.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Wei Huang, Richard Yi Da Xu, Weitao Du, Yutian Zeng, and Yunce Zhao. Mean field theory
for deep dropout networks: Digging up gradient backpropagation deeply. In Giuseppe De Gi-
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Jérôme Lang (eds.), ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-
8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325
of Frontiers in Artificial Intelligence and Applications, pp. 1215–1222. IOS Press, 2020. doi:
10.3233/FAIA200221. URL https://doi.org/10.3233/FAIA200221.

10

https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlr.press/v80/chen18i.html
https://arxiv.org/abs/1901.08987
https://arxiv.org/abs/1901.08987
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://openreview.net/forum?id=vXj_ucZQ4hA
https://openreview.net/forum?id=vXj_ucZQ4hA
https://doi.org/10.3233/FAIA200221


Published as a conference paper at ICLR 2024

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activa-
tion sparsity for fast inference on deep neural networks. In International Conference on Machine
Learning, pp. 5533–5543. PMLR, 2020.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
B1EA-M-0Z.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1VZqjAcYX.

Michael Murray, Vinayak Abrol, and Jared Tanner. Activation function design for deep networks:
linearity and effective initialisation. Applied and Computational Harmonic Analysis, 59:117–154,
2022.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep learn-
ing through dynamical isometry: theory and practice. Advances in neural information processing
systems, 30, 2017.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral universality
in deep networks. In International Conference on Artificial Intelligence and Statistics, pp. 1924–
1932. PMLR, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Daniel A. Roberts, Sho Yaida, and Boris Hanin. The Principles of Deep Learning Theory. Cam-
bridge University Press, 2022. https://deeplearningtheory.com.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=H1W1UN9gg.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information pro-
cessing systems, 33:6377–6389, 2020.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla con-
volutional neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 5393–5402. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/xiao18a.html.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/81c650caac28cdefce4de5ddc18befa0-Paper.pdf.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A
mean field theory of batch normalization. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=SyMDXnCcF7.

11

https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1VZqjAcYX
https://deeplearningtheory.com
https://openreview.net/forum?id=H1W1UN9gg
https://openreview.net/forum?id=H1W1UN9gg
https://proceedings.mlr.press/v80/xiao18a.html
https://proceedings.mlr.press/v80/xiao18a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/81c650caac28cdefce4de5ddc18befa0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/81c650caac28cdefce4de5ddc18befa0-Paper.pdf
https://openreview.net/forum?id=SyMDXnCcF7


Published as a conference paper at ICLR 2024

A GAUSSIAN PROCESS: VARIANCE, COVARIANCE, AND GRADIENT
PROPAGATION AT INITIALIZATION

Numerous prior works Poole et al. (2016); Schoenholz et al. (2017); Pennington et al. (2017); Mur-
ray et al. (2022) have considered how the hyperparameters σ2

w and σ2
b , and the choice of activation

function ϕ, affect signal and information propagation through the network at initialization, as well
as the network’s trainability via gradient backpropagation. The standard approach in these works is
to perform a mean-field analysis in which one considers each layer to have infinite width, that is,
N l −→ ∞ for all l. In particular (Poole et al., 2016) considered the (width-scaled) length of the
pre-activations.

The shape of both Vϕ and Rϕ, along with the number of fixed points they admit and their associated
stabilities depend on ϕ, σ2

w and σ2
b . Of particular interest is the slope of this correlation map at

ρ∗ = 1, which is given by

χ1,ϕ := R′
ϕ(1) = σ2

w

∫
R

(
ϕ′(

√
q∗ z)

)2
γ(dz). (19)

When χ1,ϕ < 1, the fixed point ρ∗ is stable, and any pair of points will asymptotically converge
exponentially fast to being exactly aligned, whereas when χ1,ϕ > 1, the fixed point ρ∗ is unstable,
and another fixed point emerges ρ∗ < 1. In the latter case, even two input points which are arbitrarily
close to one another will asymptotically decorrelate. The former χ1,ϕ < 1 regime is referred to in
the literature as the ‘ordered’ regime, and the latter χ1,ϕ > 1 regime is dubbed the ‘chaos’ regime.
The ‘Edge of Chaos’ (EoC) is the set of points (σw, σb) which separate these two regions, that is,
the set of points (σw, σb) such that V (q∗) = q∗ and χ1,ϕ = 1.

It has been proven that initialising a network at the Edge of Chaos improves the depth of information
propagation at initialization Yang & Schoenholz (2017). Moreover, as shown in Schoenholz et al.
(2017), EoC initialization also helps to prevent exploding and vanishing gradients early in training,
which otherwise make a network untrainable. To understand why this is the case, consider the
backpropagation algorithm with which deep networks are trained via (stochastic) gradient-based
optimisation methods. Given a loss function L(x, θ) where θ =

⋃L
l=1{W l}∪{bl}, backpropagation

calculates the gradients with respect to the weights and biases according to the follow recurrence
relations

∂L(x, θ)
∂hL

:= δL = DL∇hlL(x, θ), (20)

∂L(x, θ)
∂hl

:= δl = (DlW l+1)⊤δl+1, (21)

∂L(x, θ)
∂bli

= δli, (22)

∂L(x, θ)
∂wl

i,j

= hl−1
j δli, (23)

where Dl is the diagonal matrix with entries Dl
ii = ϕ′(hl

i). In Pennington et al. (2018) it was shown
that in the infinite-width limit, though error vectors δl are not Gaussian-like hl, the second moment
of the error vectors distribution evolves according to its own recurrence relation which depends
on the value of χ1,ϕ. Specifically, they show that (given the simplifying assumption that weights
used during forward and backward passes are drawn independently from each other) q̃l := E[(δli)2]
evolves according to

q̃l = q̃l+1Nl+1

Nl
χ1,ϕ. (24)

Thus when χ1,ϕ > 1, the gradient norm is expected to increase exponentially over the course of the
backward pass (a phenomenon known as ‘exploding gradients’), and conversely to shrink exponen-
tially (known as ‘vanishing gradients’) when χ1,ϕ < 1. Both of these phenomena impede successful
training of the network. In contrast, when χ1,ϕ = 1 (and all layers have the equal width), gradient
norm is preserved in expectation from one layer to the next, which allows for meaningful updates to
be applied to all parameters.
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The χ1,ϕ = 1 condition also emerges from the analysis of the input-output Jacobian using tools
from free probability in Pennington et al. (2017). The input-output Jacobian J is given by

J =
∂xL

∂x0
=

L∏
l=1

DlW l. (25)

The Jacobian is (as expected) closely related to the operations involved in backpropagation - and
more precisely involves the product of the linear backpropagation operators applied to compute
each layer’s error vector during the backwards pass (see Equation (21)). In Pennington et al. (2018),
the authors consider the limiting spectral density of JJ⊤ with moment generating function

MJJ⊤(z) =

∞∑
k=1

mk

zk
. (26)

To briefly recap the key points of the analysis in Pennington et al. (2018), assuming normalised input
such that q1 = q∗, then the distribution of Dl is independent of l, and the moments of D are given
by

µk =

∫
(ϕ′(

√
q∗z))2kγ(dz). (27)

The first two of these (µ1 and µ2) define the first two moments of the spectrum of JJ⊤, m1 and m2,
according to

m1 = (σ2
wµ1)

L = (χ1,ϕ)
L (28)

m2 = (σ2
wµ1)

2LL

(
µ1

µ2
2

+
1

L
− 1− s1

)
, (29)

where s1 is the first moment of the S-transform of WW⊤. When W is Gaussian with mean 0 and
variance σ2

w/Nl−1 (as in the setup considered here), s1 = −1 . In Pennington et al. (2018), the
authors also consider the case when W is orthogonal, in which case s1 = 0.

From Equation (28), m1 = (χ1,ϕ)
L, which implies that for large L, the scale of the error vectors

in early layers is likely to blow up or collapse to 0 if χ1,ϕ > 1 or χ1,ϕ < 1 respectively. However,
while this χ1,ϕ = 1 condition stops the growth of m1 as L grows large, this only tells us about the
growth in error vector in expectation. In Pennington et al. (2018), the authors’ key motivation is
to investigate the possibility of imposing a stronger condition: (approximate) dynamical isometry,
where all singular values of the Jacobian are concentrated around one, protecting against even the
worst case growth and decay in the error signal.

Equations (28) and (29) yield an expression for the variance of the spectrum of JJ⊤ when χ1,ϕ = 1,

σ2
JJ⊤ = m2 −m2

1 = L

(
µ1

µ2
2

− 1− s1

)
. (30)

The variance of the spectrum of JJ⊤ for both ReLUτ and STτ can be readily calculated using (27)
in App. F which grows linearly with depth as L/(1−s) and Ls/(1−s) for Gaussian and orthogonal
weights respectively.

This shows that even with χ1,ϕ = 1, the variance of the Jacobian spectrum grows linearly with depth
L for generic µk and s1. Whether or not this is possible to avoid depends on the activation function
and weights initialisaton scheme. One case analysed in Pennington et al. (2018), for example, is the
HardTanh activation for which σ2

w(q
∗) −→ 1 as q∗ −→ 0. Together with Equation (30), this means

that while for Gaussian weights, with s1 = −1, σ2
JJ⊤ ∝ L for all q∗, with orthogonal weights

(s1 = 0) one has that

σ2
JJ⊤ −→ 0 as q∗ −→ 0, (31)

for fixed L, meaning that one can arbitrarily shrink the variance of the spectrum of the Jacobian by
sufficiently shrinking q∗. They show similarly that it is possible to achieve arbitrarily small σ2

JJ⊤

for networks with Erf activation functions and orthogonal (but not Gaussian) weights initializations,
and also that this is not possible for ReLU networks (neither with Gaussian nor orthogonal weights).
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Empirically, even in the absence of dynamical isometry, EoC initialization yields significant benefits
in terms of enabling and speeding up initial training of very deep nets Pennington et al. (2017).

The process for calculating EoC σ2
w and σ2

b is as follows: (i) select a q∗, say the variance of your
(typically already normalised) input data; (ii) use Equation (11) with χ1,ϕ = 1 to solve for σ2

w; (iii)
use Equation (3) with V (q∗) = q∗ to solve for σ2

b .

B VARIANCE AND CORRELATION MAPS FOR ReLUτ AND STτ

Recall that the variance map for a general activation function ϕ is the following:

Vϕ(q) = σ2
w

∫
R
(ϕ(

√
qz))2 γ(dz) + σ2

b , (32)

where γ(dz) = exp(−z2/2)/
√
2π dz is the standard normal distribution. We define

Φ(z) :=

∫ z

−∞
γ(dt) (33)

being the cumulative distribution function (CDF) of a standard normal distribution, which is related
to the error function by

erf(x) = 2Φ(
√
2x)− 1 ⇐⇒ Φ(

√
2x) =

erf(x) + 1

2
, (34)

erf−1(x) =
1√
2
Φ−1

(
x+ 1

2

)
⇐⇒ Φ−1(x) =

√
2erf−1(2x− 1). (35)

Recall further that Φ(−z) = 1− Φ(z), as well as the following identities:∫ ∞

z

t γ(dt) =
exp(−z2/2)√

2π
,

∫ ∞

z

t2 γ(dt) = z
exp(−z2/2)√

2π
+ (1− Φ(z)). (36)

With these in mind, the variance map for ϕ = ReLUτ can be computed as follows:

VReLUτ
(q) = σ2

w

∫ ∞

τ/
√
q

(
√
qz − τ)2 γ(dz) + σ2

b

= σ2
w

[∫ ∞

τ/
√
q

(qz2 − 2
√
qτz + τ2) γ(dz)

]
+ σ2

b

= σ2
w

[
q

∫ ∞

τ/
√
q

z2 γ(dz)− 2
√
qτ

∫ ∞

τ/
√
q

z γ(dz) + τ2
∫ ∞

τ/
√
q

γ(dz)

]
+ σ2

b

= σ2
w

[
q

(
τ√
2πq

exp

(
−τ2

2q

)
+ 1− Φ

(
τ
√
q

))

−
2
√
qτ

√
2π

exp

(
−τ2

2q

)
+ τ2

(
1− Φ

(
τ
√
q

))]
+ σ2

b

= σ2
w

[
(q + τ2)

(
1− Φ

(
τ
√
q

))
−

√
qτ

√
2π

exp

(
−τ2

2q

)]
+ σ2

b . (37)

Therefore,

V ′
ReLUτ

(q) = σ2
w

[
Φ̃

(
τ
√
q

)
− τ(q + τ2)

2q3/2
√
2π

exp

(
−τ2

2q

)
− τ

2
√
2πq

exp

(
−τ2

2q

)

−√
qτ

(
τ√
2πq

)
exp

(
−τ2

2q

)
τ

2q3/2

]

= σ2
w

[
1− Φ

(
τ
√
q

)]
= σ2

wΦ

(
− τ
√
q

)
. (38)
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Figure 6: Correlation maps for ReLUτ with (σw, σb) on, and on either side of, the EoC, for different
values of τ – except in the case where no q∗ exists for those hyperparameters.

Let q∗ be a fixed point of the variance map, such that VReLUτ
(q∗) = q∗. The slope of the correlation

map at ρ = 1 is then given by

χ1,ReLUτ
= σ2

w

∫
R

(
ϕ′(

√
q∗z)

)2
γ(dz)

= σ2
w

∫ ∞

τ/
√
q∗

γ(dz) = σ2
w

[
1− Φ

(
τ√
q∗

)]
= V ′

ReLUτ
(q∗). (39)

As a result, if a DNN is initialized at the EoC (i.e. χ1,ReLUτ
= 1), then the fixed point of the variance

map satisfies V ′
ReLUτ

(q∗) = χ1,ReLUτ
= 1. Moreover, note that for all q,

V ′′
ReLUτ

(q) = σ2
w

τ

2
√
2πq3/2

exp

(
−τ2

2q

)
> 0. (40)

This shows that the fixed point q∗ is unstable when the DNN is initialized at the EoC.

This phenomenon also holds for DNNs with soft thresholding activation function STτ . In fact,

VSTτ
(q) = σ2

w

[∫ −τ/
√
q

−∞
(
√
qz + τ)2 γ(dz) +

∫ ∞

τ/
√
q

(
√
qz − τ)2 γ(dz)

]
+ σ2

b

= 2σ2
w

[∫ ∞

τ/
√
q

(
√
qz − τ)2 γ(dz)

]
+ σ2

b

= 2VReLUτ
(q)− σ2

b (41)

and, if q∗ is a fixed point of the above variance map, then the slope of the corresponding correlation
map at ρ = 1 is

χ1,STτ
= σ2

w

∫
R

(
ϕ′(

√
q∗z)

)2
γ(dz)

= σ2
w

(∫ −τ/
√
q∗

−∞
+

∫ ∞

τ/
√
q∗

)
γ(dz) = 2σ2

w

[
1− Φ

(
τ√
q∗

)]
. (42)

As a result,

V ′
STτ

(q) = 2V ′
ReLUτ

(q), χ1,STτ
= 2χ1,ReLUτ

= V ′
STτ

(q∗), V ′′
STτ

(q) = 2V ′′
ReLUτ

(q) > 0, (43)

and the fixed point q∗ is unstable when such DNN is initialized at the EoC.

Correlation maps Rϕ(ρ) for ReLUτ and STτ are plotted in Figures 6 and 7 for different choices of
the hyperparameters (σw, σb), excluding those cases when q∗ > 0 does not exist. Attempting to
regain the stability of V (q) by setting χ1,ReLUτ

< 1 would result in the DNN being unstable to small
perturbations, i.e. R(ρ) being unstable at ρ = 1. Alternatively, having χ1,ReLUτ

≥ 1 results in the
Gaussian process having variance growing exponentially with depth and the associated exponential
scaling of the gradient with depth.
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Figure 7: Correlation maps for STτ with (σw, σb) on, and on either side of, the EoC, for different
values of τ – except in the case where no q∗ exists for those hyperparameters.

Figure 8: Edge of Chaos for ReLUτ and STτ for different τ . As expected, the σ2
w values for ReLUτ

are twice those for STτ for the same q∗. The black dot corresponds to q∗ = 1.

C EXPERIMENTS DEMONSTRATING TRAINING INSTABILITY FOR ReLUτ AND
STτ .

Width 300, depth 100 feedforward networks are trained with the above activation functions to per-
form image classification on the MNIST dataset. The networks are initialized at the EoC using
q∗ = 1, and trained with SGD with 10−4 learning rate for 200 epochs.

When τ > 0 (the only exception being ReLUτ with s = 0.5, i.e. standard ReLU), the input is
normalised to have variance < q∗, to give the best chance of trainability given the instability of q∗
in these cases (in particular the input variance is set to be 0.75). As seen numerically however, in
particular at higher sparsities, these measures are insufficient to enable trainability of ReLUτ and
STτ networks.

A variety of starting sparsity levels ([50%, 60%, 70%]) are tested for each activation function,
and track both their test accuracy, as well as the sparsity of their activations during evaluation, to
check to what extent the initial sparsity levels are maintained during training. We plot the Variance
maps Vϕ for each activation function for these settings in Figure 9. For each activation function-
hyperparameter combination, we train 5 runs. Table 2 shows the mean and standard deviation of the
test accuracy and activation sparsity after training, measured on the test set.

The results concord with our expectations based at the EoC and variance map analyses above. First,
STτ networks fail to train at any of the tested sparsities. This reflects the notable instability of q∗
for STτ with the corresponding values of τ , as shown in Figure 9. Similarly, ReLUτ networks also
fail to train once sparsity (and thus τ ) grow sufficiently large.

The CNN experiments on the CIFAR10 dataset use networks with 50 layers, and 300 channels per
layer, and were trained for 200 epochs with SGD and learning rate 1e-3. A single experiment was
run per (activation function, sparsity) pair. Again, both activation functions fail to train at high
sparsities.
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D ADDITIONAL EXPERIMENTAL IMPLEMENTATION DETAILS

For both MNIST and CIFAR10, 10% of the training set was held out as the validation set. Results
reported are computed on the test set.

All layers are initialized on the EOC, with a slight modification for the first layer. In our experiments,
the first layer is initialized so as to preserve the input variance in the first layer’s pre-activations. This
was an additional effort to try our best to protect against the instability of q∗ for the non-clipped
activation functions. The EoC initialization is based on the assumption that the input to the layer
are ‘post-activations’, that is, the incoming vector is a Gaussian which has been passed through the
activation function. However, as the input to the first layer has not been passed through an activation
function – and thus is dense, not sparse – multiplication of the inputs by a weight matrix initialized
at the EoC would substantially grow the variance, possibly to a value larger than q∗, which would
then prevent convergence to q∗ with these activation functions.

Experiments were run on a single V100 GPU, and were implemented using Pytorch Lightning.

Figure 9: Variance maps for ReLUτ (left) and STτ (right) with (σw, σb) at the EoC for different
values of sparsity s.

E VARIANCE AND CORRELATION MAPS FOR CReLUτ,m AND CSTτ,m

The variance map of CReLUτ,m is computed as followed:

VCReLUτ,m
(q) = σ2

w

[∫ (τ+m)/
√
q

τ/
√
q

(
√
q z − τ)2 γ(dz) +

∫ ∞

(τ+m)/
√
q

m2γ(dz)

]
+ σ2

b

= σ2
w(v1(q)− v2(q) + v3(q)) + σ2

b , (44)

where

v1(q) =

∫ ∞

τ/
√
q

(
√
q z − τ)2 γ(dz) =

∫ ∞

τ/
√
q

(qz2 − 2
√
q τz + τ2) γ(dz),

v2(q) =

∫ ∞

(τ+m)/
√
q

(
√
q z − τ)2 γ(dz) =

∫ ∞

(τ+m)/
√
q

(qz2 − 2
√
q τz + τ2) γ(dz),

v3(q) =

∫ ∞

(τ+m)/
√
q

m2. γ(dz). (45)

Notice that v1(q) = v11(q)− τv12(q) + τ2v13(q), where

v11(q) = q

∫ ∞

τ/
√
q

z2 γ(dz), v12(q) = 2
√
q

∫ ∞

τ/
√
q

z γ(dz), v13(q) =

∫ ∞

τ/
√
q

γ(dz). (46)
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Therefore,

dv11
dq

=
d

dq

[
q

∫ ∞

τ/
√
q

z2 γ(dz)

]

=

∫ ∞

τ/
√
q

z2 γ(dz) + q
d

dq

[∫ ∞

τ/
√
q

z2 γ(dz)

]

=
τ√
2πq

exp

(
−τ2

2q

)
+ 1− Φ

(
τ
√
q

)
+

τ3

2
√
2π q3/2

exp

(
−τ2

2q

)
,

dv12
dq

=
d

dq

[
2
√
q

∫ ∞

τ/
√
q

z γ(dz)

]

=
1
√
q

∫ ∞

τ/
√
q

z γ(dz) + 2
√
q
d

dq

[∫ ∞

τ/
√
q

z γ(dz)

]

=
1√
2πq

exp

(
−τ2

2q

)
+

τ2√
2π q3/2

exp

(
−τ2

2q

)
,

dv13
dq

=
d

dq

[∫ ∞

τ/
√
q

γ(dz)

]
=

τ

2
√
2π q3/2

exp

(
−τ2

2q

)
.

Hence
dv1
dq

=
dv11
dq

− τ
dv12
dq

+ τ2
dv13
dq

=
τ√
2πq

exp

(
−τ2

2q

)
+ 1− Φ

(
τ
√
q

)
+

τ3

2
√
2π q3/2

exp

(
−τ2

2q

)
− τ√

2πq
exp

(
−τ2

2q

)
− τ3√

2π q3/2
exp

(
−τ2

2q

)
+

τ3

2
√
2π q3/2

exp

(
−τ2

2q

)
= 1− Φ

(
τ
√
q

)
. (47)

One could similarly derive

dv2
dq

=
τ +m√
2πq

exp

(
− (τ +m)2

2q

)
+ 1− Φ

(
τ +m
√
q

)
+

(τ +m)3

2
√
2π q3/2

exp

(
− (τ +m)2

2q

)
− τ√

2πq
exp

(
− (τ +m)2

2q

)
− τ(τ +m)2√

2π q3/2
exp

(
− (τ +m)2

2q

)
+

τ2(τ +m)

2
√
2π q3/2

exp

(
− (τ +m)2

2q

)
=

m√
2πq

exp

(
− (τ +m)2

2q

)
+ 1− Φ

(
τ +m
√
q

)
+

m2(τ +m)

2
√
2π q3/2

exp

(
− (τ +m)2

2q

)
(48)

Finally,
dv3
dq

=
m2(τ +m)

2
√
2π q3/2

exp

(
− (τ +m)2

2q

)
, (49)

so
dVCReLUτ,m

dq
= σ2

w

[
dv1
dq

− dv2
dq

+
dv3
dq

]
= σ2

w

[
Φ

(
τ +m
√
q

)
− Φ

(
τ
√
q

)
− m√

2πq
exp

(
− (τ +m)2

2q

)]
= σ2

w

[
1

2
erf
(
τ +m√

2q

)
− 1

2
erf
(

τ√
2q

)
− m√

2πq
exp

(
− (τ +m)2

2q

)]
. (50)
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The slope of the associated correlation map at ρ = 1 for DNNs initialized at the fixed point q∗ is

χ1,CReLUτ,m
= σ2

w

∫ (τ+m)/
√
q∗

τ/
√
q∗

γ(dz) = σ2
w

(
Φ

(
τ +m√

q∗

)
− Φ

(
τ√
q∗

))
= σ2

w

[
1

2
erf
(
τ +m√

2q∗

)
− 1

2
erf
(

τ√
2q∗

)]
. (51)

Therefore

χ1,CReLUτ,m
= V ′

CReLUτ,m
(q∗) +

σ2
wm√
2πq∗

exp

(
− (m+ τ)2

2q∗

)
> V ′

CReLUτ,m
(q∗), (52)

which makes any fixed points q∗ of VCReLUτ,m
at the EoC locally stable, as described in Sec. 3.

For the other activation functions CSTτ,m, the variance map is:

VCSTτ,m
(q) = σ2

w

[ ∫ −(τ+m)/
√
q

−∞
m2 γ(dz) +

∫ −τ/
√
q

−(τ+m)/
√
q

(
√
qz + τ)2 γ(dz)

+

∫ (τ+m)/
√
q

τ/
√
q

(
√
qz − τ)2 γ(dz) +

∫ ∞

(τ+m)/
√
q

m2 γ(dz)

]
+ σ2

b

= 2σ2
w

[∫ (τ+m)/
√
q

τ/
√
q

(
√
qz − τ)2 γ(dz) +

∫ ∞

(τ+m)/
√
q

m2 γ(dz)

]
+ σ2

b

= 2VCReLUτ,m
(q)− σ2

b , (53)

and the slope of the associated correlation map is

χ1,CSTτ,m = σ2
w

(∫ −τ/
√
q∗

−(τ+m)/
√
q∗

+

∫ (τ+m)/
√
q∗

τ/
√
q∗

)
γ(dz)

= 2σ2
w

∫ (τ+m)/
√
q∗

τ/
√
q∗

γ(dz) = 2χ1,CReLUτ,m . (54)

This yields V ′
CSTτ,m

(q∗) = 2V ′
CReLUτ,m

(q∗), and that

χ1,CSTτ,m = 2χ1,CReLUτ,m = V ′
CSTτ,m

(q∗) +

√
2σ2

wm√
πq∗

exp

(
− (m+ τ)2

2q∗

)
> V ′

CSTτ,m
(q∗), (55)

which shows that any fixed points q∗ of VCSTτ,m
at the EoC are locally stable as well.
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Figure 10: Variance maps for CReLUτ,m with (σw, σb) at and on either side of the EoC, for different
s and m, with q∗ = 1. From top to bottom, the rows correspond to m = 1, m = 1.5, and m = 2,
and from left to right the columns correspond to τ = 0, τ = 0.25, τ = 0.5 and τ = 1.
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Figure 11: Variance maps for CSTτ,m with (σw, σb) at and on either side of the EoC, for different τ
and m, with q∗ = 1. From top to bottom, the rows correspond to m = 1, m = 1.5, and m = 2, and
from left to right the columns correspond to τ = 0, τ = 0.25, τ = 0.5 and τ = 1.
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Figure 12: Correlation maps for CReLUτ,m with (σw, σb) at and on either side of the EoC, for
different τ and m. From top to bottom, the rows correspond to m = 1, m = 1.5, and m = 2, and
from left to right the columns correspond to τ = 0, τ = 0.25, τ = 0.5 and τ = 1. Fixed points
ρ∗ < 1 (where the correlation map crosses the diagonal R(ρ) = ρ) are indicated by round markers
on the relevant curves.
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Figure 13: Correlation maps for CSTτ,m with (σw, σb) at and on either side of the EoC, for different
τ and m. From top to bottom, the rows correspond to m = 1, m = 1.5, and m = 2, and from left to
right the columns correspond to τ = 0, τ = 0.25, τ = 0.5 and τ = 1. Fixed points ρ∗ < 1 (where
the correlation map crosses the diagonal R(ρ) = ρ) are indicated by round markers on the relevant
curves.
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F RELATIONSHIP BETWEEN σ2
w AND THE EXPECTED SPARSITY AT THE EOC,

CONTROL OF VARIANCE OF THE INPUT-OUTPUT JACOBIAN.

Recall that the ‘expected sparsity’ with respect to an activation function ϕ could be computed un-
der the usual mean-field assumption (that each pre-activation Z follows a normal distribution with
variance q∗):

s = P(ϕ(Z) = 0), Z ∼ N (0, q∗). (56)

When studying DNNs with sparsifying activation functions (ϕ = ReLUτ , STτ , CReLUτ,m or
CSTτ,m), we would like to find the optimal τ̂ such that the DNNs achieve the expected sparsity
s. The optimal τ is related to the s and q∗ as followed:

• For ϕ = ReLUτ or CReLUτ,m:

τ̂ = τ̂ϕ(s, q
∗) := inf

τ
{τ |P(ϕ(Z) = 0) ≥ s, Z ∼ N (0, q∗)}

= inf
τ
{τ |P(Z < τ) ≥ s, Z ∼ N (0, q∗)}

=
√
q∗Φ−1(s). (57)

• and for ϕ = STτ or CSTτ,m,

τ̂ = τ̂ϕ(s, q
∗) := inf

τ
{τ |P(ϕ(Z) = 0) ≥ s, Z ∼ N (0, q∗)}

= inf
τ
{τ |P(−τ < Z < τ) ≥ s, Z ∼ N (0, q∗)}

=
√

2q∗erf−1(s) =
√
q∗Φ−1

(
s+ 1

2

)
. (58)

There is a simple formula to compute σ2
w for initialising the DNNs at the EoC (χ1,ϕ = 1) with

activation functions ϕ = ReLUτ or STτ . In particular,

• for ϕ = ReLUτ :

σ2
w = σ2

w(s, q
∗) :=

(
1− Φ

(
τ̂ϕ(s, q

∗)√
q∗

))−1

=
(
1− Φ

(
Φ−1(s)

))−1
=

1

1− s
, (59)

• and for STτ , using the identity erf−1(s) = 1√
2
Φ−1

(
s+1
2

)
:

σ2
w = σ2

w(s, q
∗) :=

1

2

(
1− Φ

(
τ̂(s, q∗)√

q∗

))−1

=
1

2

(
1− Φ

(
Φ−1

(
s+ 1

2

)))−1

=
1

1− s
. (60)

Notice that the σ2
w above are independent of the variance of the pre-activation q∗. This is not true

for the cases of the clipped activations ϕ = CReLUτ,m or CSTτ,m, instead, the initialization σ2
w at

the EoC now depends on q∗, m, and s. In fact,

• for CReLUτ,m, using the identity Φ−1(s) =
√
2erf−1(2s− 1):

σ2
w = 2

(
erf
(
m+ τ√

2q∗

)
− erf

(
τ√
2q∗

))−1

= 2

(
erf
(
m+

√
2q∗erf−1(2s− 1)√

2q∗

)
− erf

(
erf−1(2s− 1)

))−1

= 2

(
erf
(

m√
2q∗

+ erf−1(2s− 1)

)
− 2s+ 1

)−1

, (61)
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• and for CSTτ,m:

σ2
w =

(
erf
(
m+ τ√

2q∗

)
− erf

(
τ√
2q∗

))−1

=

(
erf
(
m+

√
2q∗erf−1(s)√
2q∗

)
− erf

(
erf−1(s)

))−1

=

(
erf
(

m√
2q∗

+ erf−1(s)

)
− s

)−1

. (62)

Despite the fact that that σ2
w is now dependent on q∗, the derivatives of CReLUτ,m and CSTτ,m take

only values of zero or one, like those of their non-clipped counterparts, and thus the moments of
the spectra as computed by (27) are independent of k, see Table 3. Once again, for both clipped
activation functions, µk = µ for all k such that µ1/µ

2
2 = σ2

w as was the case for ReLUτ and STτ .
For both CReLUτ,m (s ≥ 0.5) and CSTτ,m (s ≥ 0), from Equations (61) and (62) that

σ2
w −→ 1

1− s
as q∗ −→ 0, (63)

meaning that σ2
JJ⊤ grows linearly with L with these activation functions, with at least the same rate

as their unclipped counterparts.

Nonetheless, the prospect of a stable EoC initialization stands as a substantial improvement over the
unclipped variants, and as we show in Section 4, this appears sufficient to enable trainability of very
deep networks with sparse activations in practice.

Table 3: Summary statistics for the Jacobian’s spectrum

µk (= µ) σ2
w MD2(z) σ2

JJ⊤

ReLUτ 1− Φ

(
τ√
q∗

)
1

µ

1

σ2
w

1

1− z
L
(
σ2
w − 1− s1

)
STτ 2

(
1− Φ

(
− τ√

q∗

))
1

µ

1

σ2
w

1

1− z
L
(
σ2
w − 1− s1

)
CReLUτ,m

1

2

(
erf
(
m+ τ√

2q∗

)
− erf

(
τ√
2q∗

))
1

µ

1

σ2
w

1

1− z
L
(
σ2
w − 1− s1

)
CSTτ,m erf

(
m+ τ√

2q∗

)
− erf

(
τ√
2q∗

)
1

µ
1
σ2
w

1
1−z L

(
σ2
w − 1− s1

)
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G FAILURE TO TRAIN FOR HIGH SPARSITY AND LOW MAGNITUDE CLIPPING

The second failure mode discussed in Section 4 appears not to be a failure of the initialization, and
thus rather suggests the existence of challenges when training networks with such a high level of
activation sparsity combined with small values of m. Indeed, inspecting the training loss curves (see
e.g. Figure 14) suggests that though training begins in an expected fashion, the problem for those
runs exhibiting low accuracy is a combination of slow training, and instability later on in training—
in these cases, we see the emergence of large spikes in training loss, which (to varying degrees) are
not fully recovered from. Investigating the source and/or dynamics of the observed training speed
and stability issues late in training is beyond the scope of this paper, and we defer it to future work.

(a) CSTτ,m, s = 0.85, m = 0.81 (b) CSTτ,m, s = 0.9, m = 0.76

Figure 14: The loss curves during training for each of the 5 runs, for two activation function and
hyperparameter configurations with high activation sparsity which achieve low test accuracy as a
result of slow and/or unstable training. The legend shows the corresponding final test accuracy
achieved by each model.

H EXPERIMENTS WITH SHALLOWER NETWORKS

We have repeat the DNN experiments on MNIST from the main paper, but with depth 30 instead of
depth 100. The results are shown in Tables 4 and 5

We can see from these new results that the key conclusions from the 100 layer experiments hold true
with 30 layers too. While ReLUτ and STτ networks fail to train consistently once sparsity reaches
80% and 70% respectively, CReLUτ,m and CSTτ,m networks can train consistently to high accuracy
with activation sparsity of 90%.
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Test Accuracy Test Sparsity
mean std mean std

s τ

ReLUτ 0.70 0.52 0.93 0.01 0.67 0.01
0.80 0.84 0.60 0.46 0.47 0.42
0.85 1.04 0.27 0.37 0.18 0.38
0.90 1.28 0.10 0.00 0.02 0.00

STτ 0.70 1.04 0.27 0.38 0.14 0.31
0.80 1.28 0.10 0.00 0.00 0.00
0.85 1.44 0.10 0.00 0.01 0.00
0.90 1.64 0.27 0.37 0.19 0.38

Table 4: Experimental results for ReLUτ and STτ DNNs with 30 layers on MNIST, with sparsity s
up to 0.9. The mean and standard deviation of 5 runs are reported for both test accuracy and average
activation sparsity calculated on the test set.

Test Accuracy Test Sparsity
mean std mean std

s τ m V ′(q∗) V ′′(q∗)

CReLUτ,m 0.70 0.52 1.05 0.5 -0.37 0.91 0.01 0.70 0.01
1.45 0.7 -0.31 0.92 0.00 0.70 0.01
2.05 0.9 -0.04 0.93 0.01 0.69 0.01

0.80 0.84 0.89 0.5 -0.24 0.90 0.02 0.80 0.01
1.27 0.7 -0.12 0.92 0.01 0.80 0.01
1.85 0.9 0.21 0.92 0.01 0.78 0.02

0.85 1.04 0.81 0.5 -0.14 0.90 0.01 0.85 0.01
1.17 0.7 0.02 0.91 0.01 0.84 0.01
1.74 0.9 0.41 0.92 0.01 0.84 0.01

0.90 1.28 0.72 0.5 0.00 0.85 0.06 0.90 0.01
1.06 0.7 0.23 0.90 0.03 0.89 0.01
1.61 0.9 0.69 0.91 0.01 0.74 0.02

CSTτ,m 0.70 1.04 0.81 0.5 -0.14 0.91 0.01 0.70 0.00
1.17 0.7 0.02 0.92 0.01 0.69 0.01
1.74 0.9 0.41 0.93 0.01 0.66 0.02

0.80 1.28 0.72 0.5 0.00 0.90 0.01 0.80 0.01
1.06 0.7 0.23 0.91 0.01 0.79 0.01
1.61 0.9 0.69 0.92 0.01 0.49 0.16

0.85 1.44 0.67 0.5 0.11 0.88 0.02 0.84 0.01
1.00 0.7 0.39 0.91 0.01 0.84 0.01
1.53 0.9 0.89 0.27 0.37 0.44 0.21

0.90 1.64 0.62 0.5 0.28 0.77 0.17 0.90 0.01
0.93 0.7 0.63 0.91 0.01 0.89 0.01
1.44 0.9 1.20 0.11 0.00 0.25 0.01

Table 5: Experimental results for CReLUτ,m and CSTτ,m DNNs wth 30 layers on MNIST, with
sparsity s up to 0.9. The mean and standard deviation of 5 runs are reported for both test accuracy
and average activation sparsity calculated on the test set.
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