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ABSTRACT

We study the theoretical aspects of Reinforced Language Models (RLMs) from
a bi-objective optimization perspective. Specifically, we consider the RLMs as
a Pareto optimization problem that maximizes the two conflicting objectives, i.e.,
reward objective and likelihood objectives, simultaneously. Our main contribution
consists of three parts. First, we establish the theoretical foundations of RLM as
a Pareto optimization problem by presenting Reward Upper BOund (RUBO) and
Pareto optimality. Our theoretical outcomes are supported by not only deductive
proofs but also empirical results. Second, we propose Reward Dropout, a sim-
ple yet powerful method that guarantees to improve a bi-objective optimization
of RLM. Lastly, we demonstrate that the Reward Dropout is consistently effec-
tive across five benchmark datasets and four benchmark LLMs, meaning that the
Reward Dropout significantly improves the optimization performance of RLMs.

1 INTRODUCTION

The emergence of ChatGPT has sparked public interest in language models (LMs), resulting in a
surge of LM research in both academia and industry. In particular, the use of reinforcement learning
(RL) to control LMs has emerged as a significant research topic. In fact, leveraging RL to fine-tune
LMs, or reinforced language models (RLMs) (Stiennon et al., 2020; Korbak et al., 2022; Ouyang
et al., 2022; Bai et al., 2022), has long been studied as one of the general approaches to building
controllable language models (CLMs) (Hu et al., 2017; Liu et al., 2022; Zhang et al., 2022a; Liu
et al., 2023), where the goal is to generate sequences of intended attributes. The sequences here
include texts (Yu et al., 2017; Li et al., 2017b; Ziegler et al., 2019; Liu et al., 2020a; Ouyang et al.,
2022), melodies (Jaques et al., 2017; Jiang et al., 2020), molecules (Guimaraes et al., 2017; Olive-
crona et al., 2017; Popova et al., 2018), menu lists (Chen et al., 2015; Lee et al., 2021; Mårtensson,
2021), purchase behaviors (Zhao et al., 2017; Bai et al., 2019; Zou et al., 2019; Shin et al., 2022),
etc. Despite its long history and recent popularity, however, there is still a lack of theoretical un-
derstanding of how RLM works, under what conditions it succeeds or fails, and whether it can be
guaranteed to improve control performance.

In this work, we study the theoretical aspects of RLMs through the lens of a Pareto optimization
problem. Specifically, in Section 2, we consider the objective function of RLM as the off-policy RL
problem (see Eq (4)) and in Section 3, we recast the RLM from a bi-objective problem that has the
nature of a Pareto optimization (see Eq (6)). Section 4 presents theoretical and empirical evidence
that the RLM is indeed a Pareto optimization problem. Based on this evidence, we propose Reward
Dropout, a simple yet powerful method that guarantees to improve the bi-objective optimization of
RLM. Finally, in Section 5, we evaluate the performance of Reward Dropout on five RLM bench-
mark datasets. Reward Dropout, which has its theoretical origins in Theorem 4.3, showed significant
performance improvements on all RLM benchmark datasets. Our contributions are summarized as
follows:

• Show that RLMs can be analyzed from a bi-objective perspective, which has the nature of
Pareto optimization.

• Propose a simple yet powerful method named Reward Dropout that guarantees to improve
the bi-objective optimization of RLMs.

• Demonstrate the effect of Reward Dropout is consistent across five benchmark datasets and
four benchmark LLMs.
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2 PRELIMINARIES

2.1 CONTROLLABLE LANGUAGE MODELS

Controllable language models (CLMs) are the models designed to address a controlled text gen-
eration (Hu et al., 2017; Liu et al., 2022; 2023; Zhang et al., 2022a). That is, the CLM aims
to inject a specific control code c into a language model (LM) so that the sequence (trajectory)
τ = [x1, x2, ..., xT ] is generated as intended. Current approaches for modeling CLMs include the
class conditional language model (CCLM) (Ficler & Goldberg, 2017; Dai et al., 2019; Keskar et al.,
2019; Sudhakar et al., 2019), Bayesian controllable language model (BCLM) (Dathathri et al., 2019;
Krause et al., 2020; Yang & Klein, 2021; Lu et al., 2021; Li et al., 2022), and reinforced language
model (RLM) (Bian et al., 2019; Yu et al., 2017; Xu et al., 2018; Luo et al., 2019; Liu et al., 2020c;
Stiennon et al., 2020; Korbak et al., 2022; Ouyang et al., 2022; Bai et al., 2022).

In CCLM approach, we prepend a code c to the sequence, i.e., concat (c, τ), so that the language
model parameters θlm are directly updated on c,

ln pclm(τ |c) :=
T∑

t=1

ln plm(xt|x<t, c) . (1)

Note that a target code c′ is fed to pclm(τ̂ |c′) to intend a specific control during inference. On the
other hand, in BCLM approach, we separate the control part from the language model using Bayes’
theorem by defining a distinctive classifier pcls(c|τ),

ln pclm(τ |c) = ln
p(τ)p(c|τ)

p(c)
∝ ln plm(τ) + ln pcls(c|τ) . (2)

Similar to CCLM, a target code c′ is fed to pcls(c
′|τ̂) during inference. The differences is that c

is given as a label of pcls(·|τ) rather than a conditional variable of plm(xt|x<t, ·). The parameters
of plm(τ) and pcls(c|τ) are separately pre-trained (i.e., θlm is not updated on c), and the decoding
process is controlled online by summing up the log-likelihoods of on-the-fly sequences τ̂ and target
codes c′ (i.e., sampling τ̂ that maximizes ln plm(τ̂) + ln pcls(c

′|τ̂)).

2.2 REINFORCED LANGUAGE MODEL

Reinforced Language Models (RLM) is somewhere in the middle of CCLM and BCLM. Analogous
to BCLM, the RLM separates the control part as a reward model R(τ) := pcls(c|τ), but like CCLM,
θlm is updated on c through R(τ),

ln pclm(τ |c) ≈ ln plm(τ |θclm) where θclm = argmax
θlm

E
τ∼plm(τ̂ |θlm)

[R(τ)] . (3)

In general, RLM studies (Stiennon et al., 2020; Korbak et al., 2022; Ouyang et al., 2022; Bai et al.,
2022) focuses on maximizing the objective function defined as:

argmax
θ

E
τ∼πRL

θ

[R(τ)]− KL[πRL
θ (τ)||πSL

θ̄ (τ)] ⇐⇒ argmin
θ

KL
[
πRL
θ (τ)

∣∣∣∣πSL
θ̄ (τ)eR(τ)

]
(4)

where πSL
θ̄

is a behavior model pre-trained on a supervision dataset, R(·) is a reward function, and
πRL
θ is a target model optimized for πSL

θ̄
and R(·) simultaneously. This suggests that RLM is not only

a bi-objective problem, but also an off-policy RL problem where the behavior model πSL
θ̄

determines
the sampling distribution of sentences τ ∼ πRL

θ . Note that R(·) is commonly defined as a reward
model Rϕ parameterized by ϕ, i.e., a pre-trained classifier that predicts how likely the given sentence
τ contains the code of intended attributes.

3 PROBLEM STATEMENT

3.1 OPTIMIZING RLM AS BI-OBJECTIVES PROBLEM

Given an off-policy RL can be viewed as a probabilistic inference (Kappen et al., 2012; Rawlik et al.,
2012; Levine, 2018), Eq (4) indicates that RLM can be addressed by the probabilistic inference
framework. This framework allows us an approximate inference that estimates the target trajectory
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τ ∼ π ∈ Tπ under the behavior trajectory τ ∼ β ∈ Tβ , by minimizing Kullback-Leibler Divergence
(KLD):

KL
[
π(τ)

∣∣∣∣β(τ)eR(τ)
]
=
∑
τ

π(τ) ln
π(τ)

β(τ)eR(τ)
, (5)

where β(τ) is a behavior policy and π(τ) is a target policy. Treating RLM as a probabilistic inference
implies that a control variable is defined as an entire trajectory τ , rather than an action xt as is in
traditional RL frameworks. Consequently, we can optimize RLM by minimizing Eq (5), and an
optimal solution π∗(τ) is obtained as a composite of the reward objective R(·) and the (behavior
policy’s) likelihood objective β(·):

π∗(τ) =
β(τ)eR(τ)∑
τ β(τ)e

R(τ)
= β(τ)eR(τ)

(
∵
∑
τ

β(τ)eR(τ) = 1
)
, (6)

which confirms that optimizing RLMs is the bi-objectives problem. Note that
∑

τ β(τ)e
R(τ) = 1

is a necessary condition for Eq (5) to have a minimum value.

3.2 PARETO OPTIMIZATION PROBLEM

There are two cases of the bi-objectives problem: when the two objectives are in conflict or not.
The latter case is referred to as a Pareto optimization problem (Ngatchou et al., 2005; Kyriakis &
Deshmukh, 2022; Lin et al., 2019; 2022) that entails the following concepts:
Definition 3.1 (Pareto Dominance). Assume arbitrary policies πa, πb ∈ Θπ . πa is said to domi-
nate πb, denoted as πb ≺ πa, if and only if Eτ∼πb [R(τ)] ≤ Eτ∼πa [R(τ)] and Eτ∼πb [β(τ)] ≤
Eτ∼πa [β(τ)] for all τ .
Definition 3.2 (Pareto Improvement). If πb ≺ πa, the move from πb to πa is a Pareto improvement.
Let π̂, π∗ ∈ Θπ be non-optimal and optimal policies, respectively. A Pareto improvement always
occurs for π̂.
Definition 3.3 (Pareto Optimality). A policy π∗ ∈ Θπ is Pareto optimal if there is no π̂ ∈ Θπ such
that π∗ ≺ π̂, and a trajectory τ∗ ∈ Tπ∗ is said to be a Pareto optimal point.
Definition 3.4 (Pareto Set / Frontier). A Pareto set is a set of Pareto optimal points, and its image
in the objective space is the Pareto frontier.

Simply put, the target policy π(τ) is called Pareto optimal when policy improvement is no longer
possible. Note that an optimal policy π∗(τ) is the Pareto solution, a trajectory sampled from it is the
Pareto optimal point τ∗ ∼ π∗, and a line connecting all optimal points is called the Pareto frontier.
In Section 4, we show that optimizing an RLM is the Pareto optimization problem where the reward
objective R(·) and the likelihood objective β(·) are in a trade-off.

3.3 TERMS & NOTATIONS

Given that RLMs integrate both RL and LM contexts, some readers may find the context-specific
terminology confusing. Therefore, in this paper, we aim to use consistent terminology across these
contexts to eliminate potential confusion. In the subsequent paragraph, we define some interchange-
able terms and notations used in our study

In the RL context, τ is a trajectory consisting of total T actions, where each t-th action at is sampled
from the behavior policy β(τ). In the LM context, τ is a text sequence x = [x1, · · · , xT ] consisting
of total T words sampled from the behavior LM βθ̄(τ). Actions (words) are tokenized by zero or
natural numbers, so the trajectory (sequence) space T is defined over non-negative integer space, τ ∈
T ⊆ Z0. From RLM perspectives, the two contexts have the same training goal: “to optimize the
target policy π(τ) or target LM πθ(τ) w.r.t. the reward objective R(τ), but adhere to the likelihood
objective (i.e., behavior policy or behavior LM) β(τ).” The parameters of the behavior and target
LMs are denoted as θ̄ and θ, respectively. θ̄ is a pre-defined (pre-trained) fixed parameter and θ is
a parameter that is initialized to θ̄ and fine-tuned during a training process. In this paper, we use
the terms “policy” and “LM” interchangeably. Therefore, let us focus on whether a given policy (or
LM) is either behavior or target one. Finally, we refer to β(τ) as the behavior policy or likelihood
objective. The former name comes from the off-policy RL perspective, while the latter comes from
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the Pareto optimization perspective. Note that π(τ) and β(τ) are the probability density functions,
i.e., π(τ), β(τ) ∈ [0, 1],

∑
τ π(τ) =

∑
τ β(τ) = 1. Similarly, R(τ) ∈ [0, 1] was considered to have

values between 0 and 1.

4 THEORETICAL ANALYSIS, METHODOLOGY, AND VALIDATION

In this section, we prove that RLM can theoretically be considered a Pareto optimization problem.
First, we show that reward is upper-bounded (see Theorem 4.1), and that the Pareto optimality is
achieved by the reward upper bound such that the reward objective R(τ) is negatively logarithmic
to the likelihood objective β(τ) (see Theorem 4.2). Furthermore, we present that the negation of
the reward upper bound yields a Pareto improvement condition (see Theorem 4.3) and propose a
simple yet powerful method, called Reward Dropout, that guarantees to improve the bi-objective
optimization of RLM. Finally, we empirically verify the theoretical results and validate whether
Reward Dropout is effective.

4.1 REWARD UPPER BOUND, PARETO OPTIMALITY & IMPROVEMENT

The essence of Pareto optimality lies in that both objectives have a trade-off at the optimal points, or
in other words, both objectives, R(τ) and β(τ), must be better off simultaneously up to the optimal
points. This implies one objective can be improved only up to “a certain level” without sacrificing
the other; here, that level represents “an optimal state.” Accordingly, if the optimal state is specified,
the reward objective R(τ) should be upper-bounded by the likelihood objective β(τ). In this regard,
we present Theorem 4.1 that provides a Reward Upper BOund (RUBO). RUBO provides us with an
interesting intuition: “the larger the KL divergence between π(τ) and β(τ), the higher the expected
reward Eτ∼π[R(τ)].” In other words, reward maximization requires π to deviate as far away from
β as possible. The proof is given in Appendix B.1.
Theorem 4.1 (Reward Upper Bound). If

∑
τ π(τ) = 1 and π(τ) = β(τ)eR(τ) hold, then

Eτ∼π[R(τ)] ≤ KL
[
π(τ)

∣∣∣∣β(τ)] holds.

Proof sketch. Show that Eq (5), i.e., KL
[
π(τ)||β(τ)eR(τ)

]
, is non-negative and yields an inequal-

ity. Then, we can rewrite the inequality such that the reward is upper-bounded.

According to Definitions 3.1 through 3.4, Pareto optimality requires that the likelihood β(τ) and
reward R(τ) objectives should be negatively related for all the optimal points τ∗ ∼ π∗, and the
Pareto frontier should be drawn as a rightward sloping line accordingly. That is, the optimal policy
π∗(τ) must yield a result that the two objectives are negatively related. In this regard, we present
Theorem 4.2. Theorem 4.2 states that as long as RUBO holds, β(τ) and R(τ) have a negative
logarithmic relationship for all optimal solutions, i.e., ∀τ∗ ∼ π∗ where π∗ is given by Eq (6), i.e.,
π∗(τ) = β(τ)eR(τ). This clarifies that optimizing RLM is a Pareto optimization problem. The proof
is given in Appendix B.2.
Theorem 4.2 (Pareto Optimality). If Eτ∼π[R(τ)] ≤ KL

[
π(τ)

∣∣∣∣β(τ)] holds, then ∀τ∗ ∼
π∗, R(τ) = − lnβ(τ) holds.
Proof sketch. Show that when the expected reward is maximized, i.e., maxEτ∼π [R(τ)], the in-
equality by reward upper bound, i.e., Eτ∼π[R(τ)] ≤ KL [π(τ)||β(τ)], becomes equality, and that
R(τ) and β(τ) are negatively related in this equality.

In a Pareto optimization problem, any policy that is not Pareto optimal always has room for Pareto
improvement. By Theorems 4.1 and 4.2, we confirmed that Eq (6), i.e., π(τ) = β(τ)eR(τ), is a
Pareto optimal, and thus, by Definition 3.2, π(τ) ̸= β(τ)eR(τ) always results in the Pareto im-
provement. That is, satisfying a condition for π(τ) ̸= β(τ)eR(τ) guarantees to improve the opti-
mization of RLM. We derive this condition through reductio ad absurdum, i.e., the proof by con-
tradiction, in Theorem 4.3. Specifically, Theorem 4.3 shows that the negation of Theorem 4.1, i.e.,
Eτ∼π[R(τ)] > KL[π(τ)||β(τ)], leads to the negation of Eq (6), i.e., π(τ) ̸= β(τ)eR(τ), and the
Pareto improvement holds accordingly. As shown by the proof in Appendix B.3, Eτ∼π[R(τ)] >
KL[π(τ)||β(τ)] is equivalent to Eτ∼πθ

[R(τ)] +Eτ∼πθ
[lnβ(τ)] > 0, and thus updating θ to satisfy

Eτ∼πθ
[R(τ)] + Eτ∼πθ

[lnβ(τ)] > 0 guarantees policy improvement. In short, we can better opti-
mize θ by manipulating R(·) or β(·) such that Eτ∼π [R(τ)]+Eτ∼π [lnβ(τ)] > 0 is always satisfied.
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(a) w/o initializing πθ to βθ̄

quantile=0.0
quantile=0.8
quantile=0.9
quantile=0.95

(b) w/ initializing πθ to βθ̄

quantile=0.0
quantile=0.8
quantile=0.9
quantile=0.95

Figure 1: Presenting the bi-objectivity and trade-off in Eq (5), and illustrating the Reward Dropout
effect according to different quantiles and scenarios. The red, green, orange, and blue horizontal
lines represent the Reward Upper BOund (RUBO). It is worth noting that Reward Dropout works
consistently in both scenarios (a) and (b).

Theorem 4.3 (Pareto Improvement Condition). For π(τ) ̸= β(τ)eR(τ) to hold, Eτ∼π[R(τ)] >
KL
[
π(τ)

∣∣∣∣β(τ)], or equivalently Eq (7), must hold.

E
τ∼π

[R(τ)] + E
τ∼π

[lnβ(τ)] > 0 (7)
Proof sketch. Show that the contraposition of RUBO, i.e., Eτ∼π[R(τ)] > KL

[
π(τ)

∣∣∣∣β(τ)], yields
the Pareto improvement, i.e., π(τ) ̸= β(τ)eR(τ). For this, we can use “the proof by contradiction”
method: p→ q ⇒ ¬q → ¬p.

4.2 REWARD DROPOUT

According to Theorem 4.3, the target policy is guaranteed to improve both R(τ) and β(τ) simulta-
neously as long as Eq (7) holds. The message behind it is simple: “all you need is to manipulate
either or both R(·) and β(·) so that Eτ∼π [R(τ)] +Eτ∼π [lnβ(τ)] > 0 is achieved for all τ .” How-
ever, in an off-policy RL context, β(τ) is either a pre-defined policy or a pre-trained LM, whose
distribution or parameter should be fixed. Accordingly, it is only R(τ) that can be manipulated, and
“we need to manipulate R(τ) such that only a few high rewards are considered.” The reason why
“only a few high rewards” should be considered is that Eτ∼π [R(τ)] refers to the average reward
r̃, and the average is sensitive to bias caused by outliers. Extremely saying, a single high reward
is more effective at satisfying Eq (7) than many average rewards. As a practical implementation of
reward manipulation, we proposed Reward Dropout, a technique that leaves only a few high rewards
and sets the rest to zero. Specifically, it sorts rewards in ascending order, divides them into equal
intervals, and then sets rewards that fall below a certain quartile to zero. Reward Dropout is an ex-
ample of an RL technique that leverages quantized reward intervals (Dabney et al., 2018; Lu et al.,
2022), and is therefore applicable to any models or algorithms that deal with RL problems.

4.3 BI-OBJECTIVITY, TRADE-OFF, AND THE EFFECT OF REWARD DROPOUT

In this section, we present empirical evidence that optimizing RLM is a Pareto optimization problem
where “the two conflicting objectives are optimized simultaneously.” Also, we show that satisfying
Eq (7), or Reward Dropout, is indeed effective for improving the optimization of RLM. Lastly, we
experiment with how the initialization of the target policy affects the optimization performance.

5



Under review as a conference paper at ICLR 2024

To evaluate the performance, we visualized a trend of likelihood and reward objectives. Both objec-
tives were represented by behavior model βθ̄ and reward model Rϕ, respectively. For the behavior
model we used a benchmark LLM (e.g., OpenAI GPT-2) without fine-tuning, while for the reward
model, we implemented a Transformer-based classifier by ourselves and pre-trained it on the rele-
vant dataset according to control attributes (e.g., sentiment, topic, etc.). In this experiment, we used
AG News (Zhang et al., 2015) dataset, and the reward model was trained to predict how likely the
given sentence belongs to a sports topic. Figure 1 shows the result in two different scenarios: (a) πθ

was initialized with random parameters, and (b) πθ was initialized with behavior parameters θ̄.

Figure 1a illustrates a result of scenario (a) and demonstrates that both objectives are maximized
simultaneously (i.e., bi-objectives optimization) until the RUBO is touched, after which we can
observe that R(·) continues to fall while β(·) continues to rise (i.e., trade-offs between β(·) and
R(·)). This supports Theorems 4.1 and 4.2 that (1) the reward is upper-bounded (2) β(·) and R(·)
are log-negatively related, and provides evidence that RLM is a Pareto optimization problem. On
the other hand, Figure 1b illustrates a result of scenario (b). In general, RLM researchers prefer
to follow this scenario (so do we) because if we initialize the target policy πθ to the pre-trained
LLM βθ̄, we do not need to optimize our model for the likelihood objective but only for the reward
objective; the large parameter space of LLM is robust enough to withstand parameter degeneracy
due to reward optimization. For training practicality and stability, all experiments in this paper were
designed to follow scenario (b).

The key takeaway from Figure 1 is that Reward Dropout drives performance improvement in both
scenarios (a) and (b). It is also noteworthy that as the quantile increases, i.e., as the model learns
rewards that are biased toward the top few outliers, performance improves more significantly. This
is exactly what we intended for Reward Dropout, as described in Section 4.2. Most importantly, the
sum of the likelihood and reward values always increases with Reward Dropout, which is evidence
that Reward Dropout is definitely achieving Pareto Improvement.

5 BENCHMARK EXPERIMENTS

In this section, we evaluate the performance of Reward Dropout on five benchmark datasets and test
whether the effect of Reward Dropout maintains regardless of the capacity of behavior LMs.

Datasets To validate the effectiveness of Reward Dropout, we conducted performance experi-
ments on five RLM benchmark datasets, aiming to control the generation of text with specific at-
tributes. Each dataset covers different attributes of sentences including sentiment (negative, posi-
tive), politeness (polite, non-polite), toxicity (toxic, non-toxic), emotion (anger, disgust, fear, hap-
piness, sadness, surprise), and topic (world, sports, business, sci/tech). For the sentiment, toxicity,
emotion, and topic datasets, we collected publicly accessible sources such as Yelp (Zhang et al.,
2015), Jigsaw (Dataset, 2017), DailyDialog (Li et al., 2017a), and AG News (Zhang et al., 2015), re-
spectively. The politeness dataset was downloaded from the GitHub repository released by Madaan
et al. (2020).1

Models & Algorithms. To build the behavior LM βθ̄, we used OpenAI GPT-2 (Radford et al.,
2019), the pre-trained LLM released by HuggingFace transformers library.2 The target LM πθ were
initialized to the parameters of βθ̄, and the target parameters θ were updated by fine-tuning them w.r.t
the rewards predicted by a pre-trained reward model Rϕ. For update algorithms, we utilized three
policy-based RL algorithms: deterministic policy gradient (DPG) (Silver et al., 2014), stochastic
policy gradient (SPG) (Williams, 1992; Sutton et al., 1999), and top-k policy gradient (KPG). They
were all implemented in an off-policy gradient fashion (Degris et al., 2012; Liu et al., 2020b) (see
Algorithm 1). In the LM context, we can implement DPG and SPG with greedy decoding and
stochastic decoding, respectively. Similarly, the KPG was implemented based on top-k decoding
strategy, expecting an intermediate performance between DPG and SPG. See Appendix C.1 for
more information on how to implement DPG, SPG, and KPG in the LM context.

Random Dropout and Dropout Rate To clarify what we are dropping out affects the perfor-
mance of Reward Dropout, we introduced a random Reward Dropout inspired by Srivastava et al.
(2014). Random Dropout randomly sets some rewards to zero according to the dropout rate. In

1https://github.com/tag-and-generate/politeness-dataset
2https://huggingface.co/gpt2
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DatasetDecoding
(Policy Gradient) Reward Dropout γ sentiment politeness toxicity emotion topic

greedy
(DPG) no dropout – 0.506 0.602 0.505 0.023 0.277

random 0.80 0.512 0.641 0.513 0.024 0.298
0.90 0.513 0.652 0.513 0.026 0.302
0.95 0.514 0.663 0.512 0.024 0.304

quantile 0.80 0.735 0.715 0.521 0.049 0.496
0.90 0.780 0.834 0.529 0.062 0.609
0.95 0.778 0.883 0.562 0.067 0.688

stochastic
(SPG) no dropout – 0.660 0.896 0.706 0.103 0.489

random 0.80 0.652 0.891 0.719 0.096 0.500
0.90 0.662 0.894 0.700 0.110 0.494
0.95 0.654 0.903 0.707 0.089 0.492

quantile 0.80 0.821 0.933 0.741 0.141 0.607
0.90 0.852 0.950 0.759 0.166 0.712
0.95 0.854 0.971 0.785 0.192 0.777

top-k
(KPG) no dropout – 0.677 0.864 0.671 0.089 0.500

random 0.80 0.669 0.877 0.665 0.089 0.497
0.90 0.672 0.876 0.704 0.093 0.493
0.95 0.668 0.875 0.687 0.088 0.493

quantile 0.80 0.833 0.892 0.703 0.111 0.617
0.90 0.861 0.930 0.722 0.129 0.711
0.95 0.858 0.963 0.741 0.145 0.770

Table 1: The numbers in the table denote the average rewards at the end of training. The underlined,
red-colored, and bolded numbers represent the highest performance cases across the dropout, de-
coding, and dataset options, respectively. Note that γ is the dropout rate.

Dataset Control attribute Generated text

sentiment negative The chicken-crap, which is the worst thing I’ve ever seen.

positive The chicken is so delicious, it’s a big one.

topic world The issue focused on the fact that Iran is not a state
of war, and it has been unable to defend its people.

sci/tech The issue focused on the development of a
new system for computing and networking is

that it takes more than two seconds to develop.

Table 2: Above texts were generated by the target LM trained with stochastic decoding and quantile
dropout (γ = 0.95). The underlined phrase refers to a given prefix, and the red-colored words
highlight controlled parts. More examples are provided in Appendix F

addition, to evaluate how performance changes with the dropout rate, we introduced γ as a hy-
perparameter that denotes the percentage of zero rewards per training batch. Three dropout rates
γ ∈ {0.80, 0.90, 0.95} were tested.

Implementation Details In order for the behavior LM to generate a sentence, we need to provide
the behavior LM with an initial state to start the generation process. To do this, we provided the
behavior LM with a prefix that is an incomplete sentence as an initial state. Refer to Appendix C for
implementation details (e.g., pseudo algorithm, hyperparameters, initialization setting, etc.).

Evaluation The performance of Reward Dropout was evaluated in three ways. First, we compared
the average rewards of target LM at the end of training (see Table 1). This summarizes the expected
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rewards achieved at the Pareto optimal state. Second, we visualized the reward growth of the target
LM over training epochs. This describes the Pareto improvement effect (see Appendix E) driven
by Reward Dropouts. Third, the controlled texts were evaluated by humans to ensure if they are
reliable. For fairness, we grouped the evaluators to represent as different genders and races as
possible (see Appendix G). Lastly, we tested if the larger behavior LM, the weaker the effect of
Reward Dropout. The first and second evaluations were conducted with different dropout, decoding,
and hyperparameter settings, while the third and last evaluation was conducted with the best setting.

6 RESULTS
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Figure 2: Sentiment Control - Negative

Table 1 shows the results for our first evalua-
tion: Reward Dropout improves the control per-
formance for all decodings and datasets. In par-
ticular, it is likely that the higher γ (i.e., the
more dropout), the better performance. Also,
we can observe that the quantile dropout is
much more effective than the random dropout,
which is evidence that reward manipulation
leads to Pareto improvement. Table 2 presents
some examples of generated text that was con-
trolled to have a specific sentiment or topic.
These examples show that stochastic decoding
with quantile dropout successfully controls the
target LM to generate text as intended.

Figure 2 is a case result related to the second evaluation, showing that the average reward of the target
LM increases throughout training. This suggests that quantile dropout is undoubtedly effective. We
provide the full results in Appendix E due to page limit. To summarize the full results, 1) greedy
decoding is the worst decoding strategy while stochastic decoding is the best one, 2) random dropout
improves control performance better than no dropout at least with greedy decoding, and 3) there is
no outstanding trend of reward growth in the emotion dataset. The last point is probably due to the
unbalanced labels and lack of samples in the emotion dataset (see Appendix D), which also explains
the small figures at emotion column in Table 1.

The third evaluation was conducted through a survey. We prepared 55 items designed to ask three
types of questions: 1) distinguish between real and generated text, 2) select the more human-like
text, and 3) label appropriate control attributes (i.e., control codes) to the generated text. Due to
the page limit, we provide the survey form and results in Appendix G. The survey results show that
respondents confused real texts and generated texts, and believed that generated text is more human-
like. At the same time, it showed that the control performance met humans’ reliability standards. In
conclusion, training a target LM with stochastic decoding and quantile dropout can produce reliable
texts with human-level control.

Figure 3 illustrates how the parameter size of LLMs affects the performance of Reward Dropout.
We compared four models in total, with the models and parameter sizes as follows:

• OpenAI GPT2 (117 million parameters)
• Meta OPT (350 million (Zhang et al., 2022b))
• Meta XGLM (564 million (Lin et al., 2021))
• MIT GPT2 (774 million)

This shows that the effect of Reward Dropouts is always valid regardless of the parameter size.
Reward Dropout always outperformed the non-dropout case (q=0.0). The effect between dropout
rates was almost consistent. In 7 out of the 8 cases, higher dropout rates led to better performance.
The only exception was XGLM with the Topic - Sci/Tech dataset, where the effect between dropout
rates was reversed. Also, we can see that the parameter size of the LLM has a positive impact on
the RLM optimization, in particular, the larger the model capacity, the higher the average reward.
The exception was once again XGLM, and one possible explanation for this is that XGLM was pre-
trained on a multilingual translation dataset. Given that our experiment was conducted with English
sentences only, the large number of languages the model had to learn with its limited parameter

8
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(a) Topic Control - Sport

q=0.0 q=0.8 q=0.9 q=0.95

(b) Topic Control - Sci/Tech

q=0.0 q=0.8 q=0.9 q=0.95

Figure 3: Comparing the effect of Reward Dropout using different LLMs

capacity resulted in poorer quality sentence generation, which may have contributed to the poor
performance. We believe further analysis is needed in this regard.

7 LIMITATIONS & CONCLUDING REMARKS

In this study, we (1) laid a theoretical foundation for RLMs from a bi-objective perspective, (2)
presented theoretical and empirical evidence that optimizing RLM is indeed a Pareto optimization
problem, (3) proposed a simple yet powerful method named Reward Dropout that guarantees to
improve the bi-objective optimization of RLMs, and (4) demonstrated the effect of Reward Dropout
is consistent across five benchmark datasets and four benchmark LLMs. Not only is Reward Dropout
theoretically sound and easy to implement, but its effects were validated powerful as expected.

Meanwhile, among the different approaches to developing controllable language models (CLMs),
Reward Dropout is only applicable to the RLM class. RLMs have the obvious limitation of high
training-time complexity and the need to build and train separate models for each control attribute.
However, despite the high training-time complexity of RLM, there is a large body of RLM literature.
This is because, under the RL framework, controllability is always guaranteed through the policy
improvement theorem. This implies that the decision to use RLMs is a matter of choosing between
training efficiency and guaranteed controllability.

At this point, we believe that the value of Reward Dropout comes into play again, because it is a
technique that guarantees to improve the optimization of the RLM, which in turn improves training
efficiency. Beyond its training efficiency, Reward Dropout can be applied to any model, algorithm,
or neural network structure that deals with problems of reward maximization, or problems that can
be formalized as a reinforcement learning framework. Therefore, we believe that Reward Dropout
can make a significant contribution to the field of artificial intelligence research and development.
For reproducibility, we release our code at https://github.com/anonymous-user01.
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A DERIVATIONS

A.1 DERIVATION OF EQUATION (6)

From a probabilistic inference perspective, the off-policy RL can be addressed as a problem of
minimizing the following Kullback-Leibler Divergence (KLD) (Kappen et al., 2012; Levine, 2018):

KL
[
π(τ)

∣∣∣∣β(τ)eR(τ)
]
=
∑
τ

π(τ) ln
π(τ)

β(τ)eR(τ)
= − E

τ∼π
[R(τ) + lnβ(τ)]−H [π] . (8)

Here, R(τ) is the reward function defined by the control objective, which is set to increase the
reward signal exponentially. From RL perspectives, minimizing Eq (8) can be converted into a
maximization problem,

argmax
π

E
τ∼π

[R(τ) + lnβ(τ)] +H [π] s.t.
∑
τ

π(τ) = 1 ,

where
∑

π(τ) = 1 is the constraint that the total probability of the sampled trajectories must be 1,
and, by the Lagrangian method, the objective function is written as

L(π) = E
τ∼π

[R(τ) + lnβ(τ)] +H [π] + λ

(∑
τ

π(τ)− 1

)
. (9)

By optimizing Eq (9), the optimal policy π∗ is given such that both the reward and the likelihood of
behavior policy are maximized w.r.t. a sampled trajectory from target policy τ ∼ π(τ),

π∗(τ) = β(τ)eR(τ) × e−(1−λ) =
β(τ)eR(τ)

e1−λ
=

β(τ)eR(τ)∑
τ β(τ)e

R(τ)
. (10)

Note that e1−λ is a normalization constant (partition function) defined by the probability condition∑
τ π(τ) = 1. This implies that if the Lagrange multiplier is equal to 1, i.e., λ = 1, the optimal target

policy π∗(τ) follows β(τ)eR(τ) because π∗(τ) = β(τ)eR(τ)/e0 = β(τ)eR(τ), and the trajectory
sampling τ ∼ π(τ) is determined by β(τ)eR(τ).

B PROOFS

B.1 PROOF OF THEOREM 4.1

Theorem 4.1 If
∑

τ π(τ) = 1 and π(τ) = β(τ)eR(τ) hold, then Eτ∼π[R(τ)] ≤ KL
[
π(τ)

∣∣∣∣β(τ)]
holds.

Proof. Given
∑

τ π(τ) = 1 and π(τ) = β(τ)eR(τ), it is obvious that
∑

τ π(τ) =
∑

τ β(τ)e
R(τ) =

1 holds. Then, we can obtain the non-negativity of KL
[
π(τ)||β(τ)eR(τ)

]
.

KL
[
π(τ)||β(τ)eR(τ)

]
=
∑
τ

π(τ) ln
π(τ)

β(τ)eR(τ)
= −

∑
τ

π(τ) ln
β(τ)eR(τ)

π(τ)

≥ − ln
∑
τ

π(τ)
β(τ)eR(τ)

π(τ)
(∵ Jensen Inequality)

= − ln
∑
τ

β(τ)eR(τ) = 0

(
∵
∑
τ

β(τ)eR(τ) = 1

)

As a result, KL
[
π(τ)||β(τ)eR(τ)

]
≥ 0 holds, which leads to Eτ∼π [R(τ)] ≤ KL [π(τ)||β(τ)], or

equivalently, Eτ∼π [lnβ(τ)] ≤ Eτ∼π

[
π(τ)||eR(τ)

]
.
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B.2 PROOF OF THEOREM 4.2

Theorem 4.2 If Eτ∼π[R(τ)] ≤ KL
[
π(τ)

∣∣∣∣β(τ)] holds, then ∀τ∗ ∼ π∗, R(τ) = − lnβ(τ)
holds.

Proof. Suppose the reward upper bound is given by Eτ∼π [R(τ)] ≤ KL [π(τ)||β(τ)]. Then, we can
expand the upper bound by −Eτ∼π [lnβ(τ)] as below.

E
τ∼π

[R(τ)] ≤ KL [π(τ)||β(τ)] = − E
τ∼π

[lnβ(τ)]−H[π]︸︷︷︸
≥0

≤ − E
τ∼π

[lnβ(τ)]

This implies KL [π(τ)||β(τ)] = −Eτ∼π [lnβ(τ)] holds iff H[π] = 0. At the optimal points τ∗ ∼
π∗, trivially H[π] goes to zero because the target policy converges to a specific distribution without
uncertainty, which yields the maximal expected reward, i.e., Eτ∗∼π∗ [R(τ)] = maxEτ∼π [R(τ)].
As a result, the following identity is obtained:

E
τ∗∼π∗

[R(τ)] = − E
τ∗∼π∗

[lnβ(τ)] , (11)

implying ∀τ∗ ∼ π∗, R(τ) = − lnβ(τ) holds.

Proof. Here we provide another way of proving Theorem 4.2. This is more intuitive and simpler
way. Let us take a partial derivative of KL [π(τ)||β(τ)eτ ] w.r.t π(τ) and set it to zero.

∂KL
[
π(τ)||β(τ)eR(τ)

]
∂π(τ)

= lnπ(τ) + 1− lnβ(τ)−R(τ)
set
= 0 . (12)

The above equation describes an implicit function of π(τ), β(τ), and R(τ), which implies the
optimal state of target policy, π∗(τ). Now, we can arrange this in the form of an explicit function
whose R(τ) is the dependent variable and the others are independent variables. Then, the result
shows that R(τ) is negative logarithmic to β(τ),

R(τ) = lnπ(τ) + 1− lnβ(τ) =⇒ R(τ) = − lnβ(τ) , (13)

where lnπ(τ) and +1 can be ignored because they are irrelevant to interpreting the relationship
between R(τ) and β(τ). We know that Eq (13) was derived from Eq (12) and thus implies an
optimal state of target policy by itself. In other words, Eq (13) describes the condition under which
Pareto optimality is achieved, and that condition is that R(τ) and β(τ) must be negatively related
for all τ .

B.3 PROOF OF THEOREM 4.3

Theorem 4.3 For π(τ) ̸= β(τ)eR(τ) to hold, Eτ∼π[R(τ)] > KL
[
π(τ)

∣∣∣∣β(τ)], or equivalently Eq
(14), must hold.

E
τ∼π

[R(τ)] + E
τ∼π

[lnβ(τ)] > 0 (14)

Proof. By Theorem 4.1, we know that π(τ) = β(τ)eR(τ) is a necessary condition for the reward
upper bound to hold (p → q). By Definition 3.2, we also know that π(τ) ̸= β(τ)eR(τ) indicates
the Pareto improvement. As a corollary, if the negation of the reward upper bound yields π(τ) ̸=
β(τ)eR(τ) (¬q → ¬p), then we can assume that negation leads to the Pareto improvement.

Suppose the reward upper bound is given by Eτ∼π[R(τ)] ≤ KL
[
π(τ)

∣∣∣∣β(τ)]. We can rewrite it in
the form of inequality as below:

0 ≥ E
τ∼π

[R(τ)]− KL
[
π(τ)

∣∣∣∣β(τ)] = E
τ∼π

[R(τ)]− E
τ∼π

[lnπ(τ)]︸ ︷︷ ︸
= − H[π] ≤ 0

+ E
τ∼π

[lnβ(τ)]

≥ E
τ∼π

[R(τ)] + E
τ∼π

[lnβ(τ)] (15)

The above inequality shows that Eτ∼π [R(τ)] + Eτ∼π [lnβ(τ)] cannot be larger than zero as long
as Eτ∼π[R(τ)] ≤ KL

[
π(τ)

∣∣∣∣β(τ)] holds. But assume Eτ∼π [R(τ)] + Eτ∼π [lnβ(τ)] is larger than
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zero, i.e, Eτ∼π [R(τ)] + Eτ∼π [lnβ(τ)] > 0, which is equivalent to the negation of Eq (15). Then,
we can see that a contradiction arises in the necessary condition π(τ) = β(τ)eR(τ) as follows:

π(τ) = β(τ)eR(τ) =⇒ lnπ(τ) = R(τ) + lnβ(τ) (Logarithm on both sides.)
=⇒ E

τ∼π
[lnπ(τ)]︸ ︷︷ ︸

= −H[π]≤0

= E
τ∼π

[R(τ)] + E
τ∼π

[lnβ(τ)]︸ ︷︷ ︸
is assumed to be >0

(Expectation on both sides.)

=⇒ −H [π] ̸= E
τ∼π

[R(τ)] + E
τ∼π

[lnβ(τ)] (Equality does not hold.)

where −H [π] ≤ 0 and Eτ∼π [R(τ)] + Eτ∼π [lnβ(τ)] > 0 conflict. This contradiction means
π(τ) ̸= β(τ)eR(τ). Since π(τ) ̸= β(τ)eR(τ) indicates the Pareto improvement, we can conclude
that Eτ∼π [R(τ)] + Eτ∼π [lnβ(τ)] > 0 guarantees policy improvement.

C IMPLEMENTATION DETAILS

C.1 OFF-POLICY DPG, SPG, AND KPG IN THE LM CONTEXT

Off-policy policy gradient is an off-policy extension of the policy gradient method (Sutton & Barto,
2018; Sutton et al., 1999), and began to attract attention from Degris et al. (2012). Since then,
further studies have been established to improve training efficiency (Lillicrap et al., 2015; Silver
et al., 2014), correct the distribution mismatch between the behavior and target policies (Islam et al.,
2019; Liu et al., 2020b), or address the sub-optimality issue of the behavior policy (Imani et al.,
2018).

According to Silver et al. (2014), we can implement the off-policy DPG as below:

∇θJβθ̄
(πθ) ≈

∑
s∈S

ρβθ̄ (s)∇θπθ(a|s)Qπθ (s, a)ds = Es∼ρβ
θ̄

[
∇θπθ(s)∇aQ

πθ (s, a)|a=πθ(s)

]
(16)

where ρβθ̄ (s) is the state visitation history of the behavior policy βθ̄, and Qπθ (s, a) is the state-
action value function. In the LM context, we can define the t-th action as the t-th token and the t-th
state as the partial sentence observed up to the t-th token. On the other hand, since a sentence has
meaning as a whole, we cannot define the reward of the t-th token, but only the reward of the entire
sentence. That is, the off-policy policy gradient cannot be established without integrating the state s
and action a in the LM context. Therefore, we can rewrite the off-policy DPG, or Eq (16) w.r.t τ as
follows:

∇θJβθ̄
(πθ) = Eτ∼βθ̄

[∇θπθ(τ)Rϕ(τ)] s.t. τ = argmax
τ

βθ̄(τ) . (17)

Note that s and a were integrated into τ , meaning that we considered the entire trajectory τ instead
of intermediate actions and states, and excluded the intervention of the target policy πθ within the
trajectory.3 As a result, 1) the state-action value function Qπθ (s, a) was replaced by the reward
model Rϕ(τ), 2) the action derivative∇a was removed, 3) the state visitation history of the behavior
policy s ∼ ρβθ̄ was replaced the behavior trajectory τ ∼ βθ̄(τ), and lastly, 4) the deterministic target
policy a = πθ(s) was removed, and the argmax constraint τ = argmaxτ βθ̄(τ) was introduced
instead. Given argmaxτ βθ̄(τ) represents greedy decoding, Eq (17) implies that we can implement
the off-policy DPG by running the greedy decoding strategy. In other words, we can also implement
the off-policy SPG and KPG simply by removing the argmax constraint from Eq (17) and running
the appropriate decoding strategies (e.g., stochastic/top-k decoding).

C.2 PREFIX INITIALIZATION

For the behavior LM to generate trajectories, an initial state must be provided so that the behavior
LM can begin its generative process. Each trajectory represents a respective text sentence, and
therefore every trajectory must be initialized with a different initial state. In light of this, we fed
the behavior LM with sequences that were initialized with prefixes. Specifically, the first p words
of each text, x1:p, were given as the initial state of the trajectory from which the behavior LM starts
decoding (generative) process.

3If the intermediate actions at and states st are not considered but only the trajectory τ , then we need to
remove πθ’s influence on τ (e.g., Qπθ (s, a) and a = πθ(s)) because τ should be determined only by βθ̄ in an
off-policy setup.

16



Under review as a conference paper at ICLR 2024

C.3 HYPERPARAMETERS

To fine-tune the target LM, we set the batch size, training epoch, learning rate α, prefix length p,
and total generation length T to 256, 20, 5e-04, 2, and 15, respectively. Note that for computational
efficiency, we randomly sampled around 50k samples from each dataset rather than using the full
samples.

C.4 PSEUDO ALGORITHM

Algorithm 1 Off-policy policy gradient with reward dropout

1: Input: sequence data x, label data y, prefix length p, total length T , learning rate α, dropout ∈
{random, quantile}, dropout rate γ ∈ [0, 1)

2: Load pre-trained LLM as a behavior policy β(·) with parameter θ̄
3: Initialize target policy π(·) with parameter θ = θ̄
4: Load pre-trained classifier as a reward model R(·) with parameter ϕ and fine-tune it on labels y
5: for epoch do
6: τ ∼ βθ̄(x̂p+1:T |x1:p) ▷ generate trajectories from the prefix of p length
7: r̂ = Rϕ(τ) ▷ calculate rewards of generated trajectories
8: if dropout = random then
9: r̂dropout = Random Dropout(r̂, γ) ▷ dropout γ% of rewards by random per batch

10: else if dropout = quantile then
11: r̂dropout = Quantile Dropout(r̂, γ) ▷ dropout bottom γ% of rewards per batch
12: else
13: r̂dropout ← r̂ ▷ no dropout
14: end if
15: ∇θJβθ̄

(πθ) = Eτ∼βθ̄
[∇θπθ(τ)× r̂dropout] ▷ calculate gradients of the target policy

16: θnew ← θ + α∇θJβθ̄
(πθ) ▷ update parameters of the target policy

17: end for
18: return optimal target policy parameters θ∗

D DATASET SUMMARY

Dataset sentiment
(Zhang et al., 2015)

politeness
(Madaan et al., 2020)

toxicity
(Dataset, 2017)

emotion
(Li et al., 2017a)

topic
(Zhang et al., 2015)

Data size
(# of samples) 560,000 1,121,980 159,571 76,052 120,000

# of labels
(# of codes) 2 10 (2) 2 7 (6) 4

Per label 0 280,000 78,843 144,277 62,357 30,000
label label 1 280,000 120,104 15,294 691 30,000
size label 2 123,942 247 30,000

label 3 95,333 123 30,000
label 4 83,860 10,253
label 5 82,429 877
label 6 88,274 1,504
label 7 100,103
label 8 129,603
label 9 219,489

Table 3: (Descriptive Statistics) The table shows the total number of samples, labels, and samples
per label for each dataset. Note that the numbers in parentheses indicate the number of labels we
used in training. For example, we dichotomized the 10 politeness labels by relabeling labels 0 to
8 as “non-polite”, and we removed label 0 which denotes “no emotion” from the emotion dataset.
Note that the gray cell highlights the severe imbalance in emotion labels.
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E VISUALIZATION OF REWARD GROWTH

(a) Sentiment Control - Negative

(b) Sentiment Control - Positive

Figure 4: Sentiment Dataset

(a) Politeness Control - Non-polite

(b) Politeness Control - Polite

Figure 5: Politeness Dataset
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(a) Toxicity Control - Non-Toxic

(b) Toxicity Control - Toxic

Figure 6: Toxicity Dataset
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(a) Emotion Control - Anger

(b) Emotion Control - Disgust

(c) Emotion Control - Fear

(d) Emotion Control - Happiness

(e) Emotion Control - Sadness

(f) Emotion Control - Surprise

Figure 7: Emotion Dataset
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(a) Topic Control - World

(b) Topic Control - Sport

(c) Topic Control - Business

(d) Topic Control - Sci/Tech

Figure 8: Topic Dataset
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F GENERATED TEXT WITH INTENDED ATTRIBUTES

Dataset Control attribute Generated text

sentiment negative The painting of the World, by Paul Thomas Woodford.

The chicken-crap, which is the worst thing I’ve ever seen.

The country’s leaders have been accused of being using ”toxic”

positive The painting is a beautiful, unique and unique col-
lection of antique pieces from the British period.

The chicken is so delicious, it’s a big one.

The country is so amazing, I’m going to do it!”

politeness non-polite I do not know that the same thing happened to Mr.

polite I do not know if you would like to see more of the new music.

toxicity non-toxic What is the most important thing that I’ve written?

toxic What the hell is wrong with that?

emotion anger When I hear that news, it’s not like you’re going to do this.

disgust When I hear that news, my wife’s head was spinning.

fear When I hear that news, it’s a shame.

happiness When I hear that news, it’s a lot of fun.

sadness When I hear that news, it’s a bit of an odd feeling.

surprise When I hear that news, it’s a little bit strange.

topic world The issue focused on the fact that Iran is not a state
of war, and it has been unable to defend its people.

sport The issue focused on the defense, which is a
big part of what we have seen in recent years.

business The issue focused on the economy, but it also includes a number
of other factors that have contributed to growth in GDP growth.

sci/tech The issue focused on the development of a
new system for computing and networking is

that it takes more than two seconds to develop.

Table 4: (Examples of Controlled Text) The table shows examples of generated text that was
controlled to have a specific attribute. During generation, the target LM was executed using top-
k decoding (k = 10) and temperature sampling (temperature = 0.3). Note that underlined texts
indicate the initialized prefixes. Some of the prefixes (e.g., ”The painting”, ”The chicken”, ”The
country”, and ”The issue focused on”) are borrowed from existing literature (Dathathri et al., 2019),
while the others are our own curation.
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G HUMAN EVALUATION

Survey Design. We planned a survey for human evaluation as shown in Figure 9. The survey was
designed to include three types of questions. The first type includes questions that require partic-
ipants to distinguish between real text and AI-generated text. This type was designed to measure
how acceptable the generated texts are to humans. Similarly, the second type requires participants
to distinguish if a text is real or generated. The only difference is that participants contrast real and
generated texts (but which one is real is unknown to participants), then selects one that is likely to
be written by a human. This type was designed to measure human-likeness of the generated text.
Lastly, the third type requires participants to label appropriate control attributes (control codes) to
the generated texts. This type was designed to test whether the improvement in control performance
quantified in Table 1 and Appendix E meets human standards.

(a) Survey Question Type 1 (b) Survey Question Type 2

(c) Survey Question Type 3-1 (Sentiment Labeling) (d) Survey Question Type 3-2 (Politeness Labeling)

(e) Survey Question Type 3-3 (Topic Labeling)

Figure 9: (Survey Form.) A total of 55 items were presented to participants where each item
is categorized into one of three question types. As of the third type, we experimented only with
sentiment, politeness, and topic datasets.
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Survey Analysis. The percentage of correct answers by question type is summarized in the fig-
ure below. According to this figure, less than half of the respondents who answered Type 1 and 2
questions correctly. Considering that Type 1 and 2 questions ask participants if they can distinguish
between real and generated texts, this result suggests that the controllable language model with re-
ward dropout can generate reliable sentences. Meanwhile, more than half of the respondents replied
with the correct answer on Type 3 question. Especially, over 70% of the respondents correctly la-
beled the sentiment and topic-control texts. This means that the performance improvements driven
by reward dropouts reached human standards to some extent. Taking these all together, we can con-
clude that a target LM trained with SPG and reward dropout is able to generate reliable sentences
while achieving a control performance in line with human standards. This implies that target LMs
are unlikely to sacrifice likelihood objectives for reward improvements, i.e., it is likely to maximize
the likelihood and reward objectives simultaneously.

Figure 10: (Survey Result.) The survey was conducted with a total of 17 respondents. The respon-
dent group was organized to include as diverse ethnicities (i.e., White, Hispanic, Mixed, East and
Central Asian), genders (i.e., male and female), and ages (i.e., from 20 to 58) as possible.
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H ADDITIONAL THEORETICAL ANALYSIS

In Pareto optimization, it is common that objectives are introduced as deterministic functions. How-
ever, in the context of RLM, a likelihood objective is represented by the behavior LM, and several
pre-trained LMs can optionally be used; that is, different behavior policies (different likelihood
objectives) can be considered. Accordingly, it would be useful to analyze how changes in behav-
ior policy affect the optimal policy. To this end, we analyze two types of behavior policies here:
high-informative behavior policy and ill-defined behavior policy, whose properties are described by
Propositions H.1 and H.2, respectively:

Proposition H.1 (Auxiliary Condition). If Eτ∗∼π∗ [R(τ)] = −Eτ∗∼π∗ [lnβ(τ)] holds, then
Eτ∗∼π∗ [R(τ)] = H [β(τ)] holds proportionally.

Proposition H.2 (Violation Condition). If Eτ∼π [R(τ)] ≤ KL [π(τ)||β(τ)] and ∀τ ∼ π, β(τ) = 0
hold, then the optimal policy π∗(τ) becomes a uniform policy.

Proposition H.1 describes an auxiliary condition that leads to a further Pareto improvement: the
higher the entropy of the behavior policy, the higher the maximal expected reward. Since entropy
means information, it trivially states that “a highly informative behavior policy increases the maxi-
mal level of expected reward.” That is, Proposition H.1 refers to a condition that improves the Pareto
optimality itself, which is different from Theorem 4.3 that refers to a condition for an improved
solution under the given Pareto optimality. The proof is provided in Appendix H.1.

On the other hand, Proposition H.2 implies that “if the behavior policy is ill-defined, the optimal
state of the target policy collapses into a completely random state.” When we say a behavior policy
is ill-defined, it means that the optimal policy does not exist with that behavior policy. In other
words, if a behavior policy violates Eq (6) under a certain condition, that condition is a violation
condition and yields an ill-defined behavior policy. In Appendix H.2, we prove that the violation
condition is given by ∀τ ∼ π, β(τ) = 0, in which case the optimal policy will be a uniform policy.

H.1 PROOF OF PROPOSITION H.1

Proposition I.1 If Eτ∗∼π∗ [R(τ)] = −Eτ∗∼π∗ [lnβ(τ)] holds, then Eτ∗∼π∗ [R(τ)] = H [β(τ)]
holds proportionally.

Proof. Suppose the Pareto optimality is given by Eτ∗∼π∗ [R(τ)] = −Eτ∗∼π∗ [lnβ(τ)]. At the
optimal points τ∗ ∼ π∗, trivially, π∗(τ) = β(τ)eR(τ) holds and R(τ) has maximal values for all
τ . Let k be the maximal value of R(τ). Then, we can replace π∗(τ) by β(τ)ek and arrange the
right-hand side of Eq (11) by

− E
τ∗∼π∗

[lnβ(τ)] = − E
τ∼β

[
ek lnβ(τ)

]
= αH [β(τ)] ∝ H [β(τ)] ,

where α = ek is a proportionality constant (e.g., if k = 1 then ek ≈ 2.718.) and can be ignored. As
a result, Eτ∗∼π∗ [R(τ)] = H [β(τ)] holds proportionally.

H.2 PROOF OF PROPOSITION H.2

Proposition I.2 If Eτ∼π [R(τ)] ≤ KL [π(τ)||β(τ)] and ∀τ ∼ π, β(τ) = 0 hold, then the optimal
policy π∗(τ) becomes a uniform policy.

Proof. Let a target policy have a positive range π(τ) ∈ (0, 1], or equivalently, 0 < π(τ) ≤ 1. This
condition is stricter but reasonable since we are only dealing with sampled (feasible) trajectories
τ ∼ π, and the sampled trajectories represent non-zero probabilities. Next, let us consider the
optimal state π(τ) = β(τ)eR(τ). Considering the optimal state is required not only because it is a
necessary condition for the reward upper bound Eτ∼π[R(τ)] ≤ KL

[
π(τ)

∣∣∣∣β(τ)], but also because
it states the existence of an optimal solution.

Considering π(τ) ∈ (0, 1] and π(τ) = β(τ)eR(τ) together, the domain of target policy τ ∈ Tπ
is defined by which β(τ)eR(τ) ∈ (0, 1] is satisfied. This implies that the behavior policy β(τ)
and the reward objective R(τ) are well-defined only in that domain, having a support set given by
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{∃τ ∈ Tπ | 0 < β(τ)eR(τ) ≤ 1}. Conversely, out of that domain, e.g., β(τ)eR(τ) = 0,4 a support
set is given by {∀τ ∈ Tπ | β(τ)eR(τ) = 0}, implying that either β(τ) or R(τ) is ill-defined. Since
eR(τ) is positive for all R(τ) ∈ [0, 1], trivially β(τ)eR(τ) = 0 holds if and only if β(τ) is zero for
all τ , i.e., ∀τ, β(τ) = 0.

Now, suppose Eτ∼π [R(τ)] ≤ KL [π(τ)||β(τ)] and ∀τ ∼ π, β(τ) = 0 holds. Then, the reward
changes to the entropic reward, and the reward upper bound disappears as − lnβ(τ) → +∞ at
β(τ) = 0.

E
τ∼π

[R(τ)] ≤ − E
τ∼π

[lnβ(τ)]−H[π]︸ ︷︷ ︸
= Reward Upper Bound

⇐⇒ E
τ∼π

[R(τ)] +H[π]︸ ︷︷ ︸
= Entropic Reward

≤ − E
τ∼π

[lnβ(τ)]︸ ︷︷ ︸
= +∞ s.t. β(τ) = 0

As a result, the bounded reward maximization turns into an unbounded entropic reward maximiza-
tion, and thus the optimal policy becomes a uniform policy as it has the highest entropy.

H.3 BEHAVIOR POLICY IN 10-TURN POSITIONING GAME

In the 10-turn position game, we implemented the behavior policy (a policy of the behavior agent)
based on the truncated normal distribution according to Burkardt (2014). Note that a support set of
the normal distribution is defined on a real-value domain, but the action space (and thus position
space) must be an integer domain. Accordingly, we integerized it by rounding up if the sampled
action is greater than the average and rounding down if it is less. For example, assume µ and σ
of the behavior policy are 3 and 0.5, respectively, and suppose one sampled action by the behavior
policy is 3.71. In this case, we round up 3.71 by 4, and thus the next visiting state is set to 4.
Similarly, if a sampled action is 3.12, then the next visiting state is set to 3.

H.4 EMPIRICAL VALIDATION OF PROPOSITIONS

This section provides an empirical analysis that demonstrates all theoretical results presented in
the previous section. To this end, we devised a simulation experiment called a 10-turn positioning
game. The goal of this experiment is to confirm the theoretical results and analyze them in the RLM
context.

10-turn Positioning Game. Figure 11a describes the 10-turn positioning game. In this game,
an agent changes its position over 10 turns. Each turn is indexed by t = 1, ..., 10. Two agents
participate in this game: the behavior agent and the target agent. Each agent selects one of 10
actions at ∈ [1, 2, ..., 10] in each t-th turn and moves to a corresponding position i ∈ [1, 2, ..., 10].
The history of an agent’s position is a trajectory τ . The behavior agent changes its positions based
on a normal distribution policy, at ∼ N (µ, σ2) for t = 1, ..., 10 and collects rewards if the occupied
position is rewarded.5The target agent observes a trajectory of the behavior agent and learns from it
in an off-policy manner. For simplicity, we set a reward distribution to have an exponential shape
only at i ∈ [6, 10]. Note that agent’s state st is defined as a vector, which describes a cumulative
visit frequency to each position, ∀t, st = [s1, · · · , si, · · · , s10], and ∀i, si ∈ Z10

0 ; here, si ∈ Z10
0

indicates that the value of si is defined by integer numbers between 0 and 10. The state vector is
initialized to a random position at the first turn.

Simulation Results & Interpretations. Figure 11b shows the simulation results. A total of 5000
trajectories were simulated (N = 5000) where each trajectory has a length of 10 (L = 10) and re-
ward values were normalized by the softmax function. The rewards were distributed to each position
in ascending order from smallest to largest. That is, the largest reward is 1.0 at position 10, implying
the expected reward of the target agent, i.e., Eτ∼π [R(τ)] = 1

N×L

∑N
n=1

∑L
t=1 R(snt , a

n
t ) ≜ r̃, can

be up to 1.0 at maximum.

The first and second columns in Figure 11b demonstrate Propositions H.1 and H.2, respectively.
The first column shows that the more uniform the behavior agent’s policy, the higher the target
agent’s expected reward (Cases 0, 1 and 2). This result is consistent with Proposition H.1. On the

4We do not consider β(τ)eR(τ) > 1 for the out-of-domain because there are infinitely many combinations
of β(τ) ∈ [0, 1] and R(τ) ∈ [0, 1] that satisfy β(τ)eR(τ) > 1.

5Refer to Appendix H.3 for the details.
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(a) Concept Illustration: The horizontal
bar shows available positions and actions
together. Red positions indicate a reward
zone. Blue/green agents refer to behav-
ior/target agents, respectively. Note that 10
turns (steps) make up a single trajectory.
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(b) Results: The blue and green bars represent the behavior/target
agents’ visit frequency to corresponding positions. The red bar
indicates a reward distribution defined over i ∈ [6, 10]. r̃ is the
expected reward achieved by a target agent. (1) In cases 0-4, π
converges to only a few actions that maximize reward. (2) In case
5, π(τ) collapses into a uniform policy because β(τ) is ill-defined.

Figure 11: (10-turn Positioning Game.) Concepts and Results
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Figure 12: (Reward Manipulation & Pareto Improvement.) The behavior and target agents’
policies are represented by the blue and green bars, respectively. The behavior policy was set to
a normal distribution whose parameters are µ = 5.0 and σ = 5.0, and each manipulated reward
distribution was defined over full positions i ∈ [1, 10] and set to a beta distribution for different
shape parameters alpha and beta. Other conditions were set the same as before (e.g., N = 5000,
L = 10).

other hand, the second column shows that the farther the behavior agent’s policy is defined from the
reward distribution, the less reward the target agent collects (Cases 3 and 4). Furthermore, if the
behavior agent’s policy is ill-defined (i.e., if the behavior agent cannot enter the reward zone, or the
behavior agent samples no actions between 6 and 10.), then the target agent receives no rewards from
the behavior agent. As a result, the target agent’s policy converges to a uniform policy, maximizing
entropic rewards (Case 5). This result is consistent with Proposition H.2.

We can also interpret Figure 11b from the RLM perspective. The first column highlights that target
LMs will be better controlled if behavior LMs can cover as large a token space (a dictionary) as
possible. This is because the large token space is more likely to create opportunities for exploring
higher-reward sentences. Therefore, it is recommended to use large language models (LLMs) when
building RLMs. The second column emphasizes the importance of preparing the training dataset
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correctly. For example, let us say we need to control the target LM so that sentences are generated
with negative sentiment. If the behavior LM is pre-trained on a dataset consisting only of positive
sentences (i.e., the behavior policy is ill-defined), then the behavior LM cannot provide negative
candidate sentences. Consequently, the target LM cannot experience any rewards and therefore
never be controlled.
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H.5 NON-NORMAL BEHAVIOR POLICY

In this subsection, we provide additional results when a behavior policy is non-normal.

Figure 13: Additional results with non-normal behavioral policies and different reward distributions.
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