
LSR-Adapt: Ultra-Efficient Parameter Tuning with Matrix Low
Separation Rank Kernel Adaptation

Anonymous ACL submission

Abstract

Imposing an effective structural assumption001
on neural network weight matrices has been002
the major paradigm for designing Parameter-003
Efficient Fine-Tuning (PEFT) systems for004
adapting modern large pre-trained models to005
various downstream tasks. However, low rank006
based adaptation has become increasingly chal-007
lenging due to the sheer scale of modern large008
language models. In this paper, we propose009
an effective kernelization to further reduce the010
number of parameters required for adaptation011
tasks. Specifically, from the classical idea012
in numerical analysis regarding matrix Low-013
Separation-Rank (LSR) representations, we de-014
velop a kernel using this representation for the015
low rank adapter matrices of the linear layers016
from large networks, named the Low Sepa-017
ration Rank Adaptation (LSR-Adapt) kernel.018
With the ultra-efficient kernel representation of019
the low rank adapter matrices, we manage to020
achieve state-of-the-art performance with even021
higher accuracy with almost half the number022
of parameters as compared to conventional low023
rank based methods. This structural assump-024
tion also opens the door to further GPU-side025
optimizations due to the highly parallelizable026
nature of Kronecker computations.027

1 Introduction028

Effectively designing structural assumptions is the029

key to the parameter-efficient approximation of030

network weight matrices. Low-Rank Adaptation031

(LoRA) (Hu et al., 2021) has been the pioneering032

method in PEFT that assumes a low-rank structure033

of the network weight matrices. However, despite034

its earlier successes, with an increasing number of035

parameters of modern day large language models,036

such simple structural assumption simply cannot037

effectively reduce the number of parameters into038

a manageable size with decent accuracy. To ad-039

dress this issue, various other structural assump-040

tions have been proposed over the years (Dettmers041

et al., 2023; Liu et al., 2024; Edalati et al., 2022; 042

He et al., 2023; Xu et al., 2023). Most of these 043

methods, however, despite the effectiveness, lack 044

solid theoretical reasoning of their structure de- 045

sign choices, and thus do not offer fine-grained 046

control on the model performance. In this work, 047

we provide a PEFT kernel based on the separable 048

representation of matrices derived from the ideas 049

in high dimensional numerical analysis to further 050

decompose the factor matrices in various PEFT 051

methods, coined as the Low Separation Rank Adap- 052

tation (LSR-Adapt) kernel, which not only yields 053

higher fine-tuning accuracy with even less trainable 054

parameters, but also provides a solid theoretical 055

foundation of this structural assumption for more 056

control over the fine-tuning process. 057

In summary, the major contributions of this pa- 058

per are as follows. 059

1. Developing a structural assumption for PEFT 060

based on a separable representation of ma- 061

trices, which can be used as a kernel to fur- 062

ther decompose the factor matrices of various 063

PEFT methods, such as LoRA family methods 064

(Hu et al., 2021; Dettmers et al., 2023). 065

2. Providing a theoretical analysis of the struc- 066

ture choice to give more insight for fine-tuning 067

performance control. 068

3. Experimental evaluations of our method as 069

compared to other state-of-the-art PEFT meth- 070

ods against GLUE and SuperGLUE bench- 071

marks (Wang, 2018; Wang et al., 2019). 072

4. Discussions on how this kernel structured 073

computation can be parallelized using GPU, 074

which can be interesting for further research 075

in high-performance computing (Jangda and 076

Yadav, 2024). 077

1



2 Related Works078

Numerous attempts have been done regarding079

Parameter-Efficient Fine-Tuning to adapt mod-080

ern large language models to various applications.081

LoRA (Hu et al., 2021) has been one of the first082

major attempts in imposing efficient structural as-083

sumption on the neural network weight matrices of084

large models, subsequent research based on LoRA085

involves utilizing lower-precision quantization to086

harness the advantages of efficient calculations on087

lower-precision numbers offered by contemporary088

tensor core-based GPUs (Dettmers et al., 2023),089

and other form of weight decompositions with bet-090

ter semantic understanding of the weight matrices091

(Liu et al., 2024). Further more, Kronecker product092

based factorizations of the weight matrices have093

also been studied to further reduce the parameter094

counts (Edalati et al., 2022; He et al., 2023), and095

He et al. provides a mixture of low-rank and Kro-096

necker factorization to achieve parameter-efficient097

tuning for vision models.098

3 Preliminaries099

To develop an efficient kernel to supercharge100

parameter-efficient tuning using separated repre-101

sentation of factor matrices, we first recall the102

generic definition of the separated representation103

in high-dimensional numerical analysis (Beylkin104

and Mohlenkamp, 2005),105

Definition 3.1 (The Separated Representation).106

Given an equation in r dimensions (r independent107

variables), we can try to approximate its solution f108

by the following separation of variables,109

f(x1, · · · , xr)110

=
s∑

k=1

λk · g
(1)
k (x1) · · · g(r)k (xr) +O(ϵ) (1)111

which is called a separated representation, where112

O(ϵ) is the desired asymptotic error proportional113

to ϵ, {g(i)k (xi)} is the factor function for the r-114

dimensional variable x = {x1, · · · , xr} at each115

dimension i ∈ {1, · · · , r} and λk is a scaling116

factor for the k-th summation term where k ∈117

{1, 2, · · · , s}, and s is called the separation rank.118

This formulation effectively allows one to ap-119

proximate a high-dimensional function f with a lin-120

ear complexity of O(r). Using this idea, we define121

the separated representation of matrices, by think-122

ing an matrix M ∈ Rm1×m2 of dimension / rank123

r ≤ m2 (may not be full rank) as a discrete repre- 124

sentation of an r-dimensional linear operator M on 125

a rectangular domain of indices (i, j) ∈ Rm1×m2 , 126

i.e., the matrix entries Mi,j = M(i, j), we can 127

effectively extend the separated representation for 128

r-dimensional functions to matrices. 129

Definition 3.2 (The Matrix Separated Representa- 130

tion). For a given approximation error ϵ, we can 131

represent the matrix M ∈ Rm1×m2 as, 132

M =
s∑

k=1

λkM
(1)
k ⊗ · · · ⊗M

(r)
k +O(ϵ) (2) 133

with scalars λ1 ≥ · · · ≥ λr > 0, the integer s the 134

matrix separation rank, and the factor matrix M
(i)
k 135

is of dimension m
(i)
k,1 × m

(i)
k,2 and

∏r
i=1m

(i)
k,1 = 136

m1,
∏r

i=1m
(i)
k,2 = m2 for all k = 1, 2, · · · , s. In 137

practice, we would like this separation rank term 138

to be low for a parameter-efficient approximation, 139

which leads to the matrix Low Separation Rank 140

(LSR) structure. 141

The operator “⊗” in the definition above denotes 142

the Kronecker product. Specifically, for two ma- 143

trices U ∈ Ru1×u2 ,V ∈ Rv1×v2 , their Kronecker 144

product, denoted as U⊗V ∈ R(u1v1)×(u2v2), takes 145

the format, 146

U ⊗ V =


U1,1U U1,2V · · · U1,u2V
U2,1U U2,2V · · · U2,u2V

...
...

. . .
...

Uu1,1U Uu1,2V · · · Uu1,u2V

 147

To gain a fine-grained control for the accuracy of 148

the approximation, Beylkin and Mohlenkamp pro- 149

posed to use a condition number for the separated 150

representation. 151

Definition 3.3 (Condition Number of A Separated 152

Representation). The condition number of (3) is 153

the ratio 154

γ =

(∑s
k=1 λ

2
k

)1/2
∥M∥F

(3) 155

where ∥ · ∥F denotes the Frobenius norm. 156

In a numerical computing system, we do not 157

want γ to be too large, a good rule of thumb to set 158

the condition number would be to make it satisfy 159

(Beylkin and Mohlenkamp, 2005), 160

γµ∥M∥F ≤ ϵ (4) 161

where µ is the machine round-off, for instance, in 162

a 16-bit precision machine, the round-off number 163

2



is µ = 2−11 ≈ 4.88 × 10−4. With this condition164

number, we can gain a fine-grained control over165

desired accuracy and dimensions of the factor ma-166

trices constrained by the numerical precision used167

during the finetuning process.168

4 Our Approach169

To develop an even more parameter efficient tuning170

mechanism, we are looking at a more parameter-171

efficient representation of the weight update ma-172

trix ∆W ∈ Rw1×w2 for the weight matrix W ∈173

Rw1×w2 of the target network layer ℓ,174

W = W +∆W , (5)175

while a naive approach to adopt the matrix separa-176

ble representation is to simply do,177

∆W ≈
s∑

k=1

λkW
(1)
k ⊗ · · · ⊗W

(r)
k (6)178

where r = rank(∆W ), while we can follow the179

common hypothesis in LoRA (Hu et al., 2021)180

where the weight update matrix is approximately181

low rank and use a rather small r, chaining even182

r > 3 Kronecker products can still be computation-183

ally expensive. Hence, we choose to take the low184

rank adapter matrices from LoRA,185

∆W ≈ AB (7)186

for187

W ′ = W + α∆W , (8)188

where A ∈ Rw1×r and B ∈ Rr×w2 are the factor189

matrices, α is a scalar controlling the impact of190

the weight update matrix during adaptation, and191

structure the factor matrices A, B with their matrix192

low-separation rank representations, i.e., the LSR-193

Adapt Kernel. Note that since r is already a small194

value from the LoRA assumption, we can simply195

use two Kronecker factor matrices at each sum-196

mation term of the LSR-Adapt kernel to achieve a197

decent reduction of parameter counts as compared198

to original LoRA,199

A ≈
sA∑
k=1

λA
k A

(1)
k ⊗A

(2)
k (9)200

B ≈
sB∑
k=1

λB
k B

(1)
k ⊗B

(2)
k , (10)201

where sA and sB are respective separation ranks202

for factor matrices A and B, which for simpli-203

fied evaluation we set sA = sB = s, λA
k and λB

k204

are the corresponding scalar factors at summation 205

term k = 1, 2, · · · , s, which we will drop in the 206

actual implementation and merge them into the α 207

factor of the final low-rank factorization, the small 208

Kronecker factor matrices take the shape A
(i)
k ∈ 209

Ra
(i)
k,1×a

(i)
k,2 for i = {1, 2} and B

(j)
k ∈ Rb

(j)
k,1×b

(j)
k,2 210

for j = {1, 2}, where, 211

a
(1)
k,1 × a

(2)
k,1 = w1, a

(1)
k,2 × a

(2)
k,2 = r 212

b
(1)
k,1 × b

(2)
k,1 = r, b

(1)
k,2 × b

(2)
k,2 = w2, (11) 213

in practice we simply set a(1)k,2 = b
(1)
k,1 = r(1) and 214

a
(2)
k,2 = b

(2)
k,1 = r(2) such that r(1) × r(2) = r. Thus 215

the weight update matrix takes the format, 216

∆W ≈ 217(
s∑

k=1

A
(1)
k ⊗A

(2)
k

)
×

(
s∑

k=1

B
(1)
k ⊗B

(2)
k

)
(12)

218

for 219

W ′ = W + α∆W 220

≈ W + α

(
s∑

k=1

A
(1)
k ⊗A

(2)
k

)
× 221(

s∑
k=1

B
(1)
k ⊗B

(2)
k

)
. (13) 222

A simple diagram of this adaptation mechanism is 223

shown in Figure 1. Note that this is much more 224

parameter-efficient as compared to the original low- 225

rank factorization. Take a 768 × 768 network 226

weight matrix for instance, if we set r = 8, we 227

are looking at 2 × 768 × 8 = 12, 288 parame- 228

ters, with an even higher rank r = 16, and assume 229

balanced dimensions for the small kernel weight 230

matrices, say, A
(1)
k ∈ R32×4,A

(2)
k ∈ R24×4, 231

B
(1)
k ∈ R32×4,B

(2)
k ∈ R24×4, and separation rank 232

s = 16, we can achieve a much lower parameter 233

count 2×(32×4+24×4)×16 = 5, 632 while still 234

maintaining a higher accuracy as we have found in 235

fine-tuning experiments. 236

One can also show that this Kronecker-product 237

based structure is amenable to parallel computa- 238

tion on modern power GPUs (Golub and Van Loan, 239

2013; Jangda and Yadav, 2024). This enables po- 240

tential development of custom CUDA kernels to 241

further improve the training runtime, which is left 242

to the future work. 243

3



Figure 1: Overview of the working mechanism of LSR-Adapt kernel.

Method GLUE SuperGLUE AverageMRPC SST-2 CoLA RTE CB COPA WSC BoolQ
LoRA 74.51 94.43 83.32 68.23 76.79 57.39 63.46 75.41 74.19
KronA 76.57 94.12 82.59 67.92 79.23 56.48 63.46 74.97 74.42
KAdaptation 77.68 93.81 83.16 68.73 78.63 57.94 63.46 75.22 74.69
LSR-Adapt 80.88 94.27 83.41 68.95 82.14 60.32 63.46 75.72 76.14

Table 1: Performance comparison of different adaptation methods on GLUE and SuperGLUE benchmark tasks.
The best results for each task are bolded.

5 Experiments244

For our experiments 1, we test our kernel for PEFT245

against both GLUE (Wang, 2018) and SuperGLUE246

benchmarks (Wang et al., 2019) with RoBERTa247

model (Liu, 2019), the results are summarized in248

Table 1. We train our model along with other249

baseline models using Hugging Face’s Trainer250

framework with the default learning rate scheduler251

provided by the Transformers library, which is a252

linear scheduler with warmup (Wolf et al., 2020).253

The model is optimized with a batch size of 256254

for training and 64 for evaluation. For GLUE255

benchmark experiments, we train all the models256

for 20 epochs and for the more challenging Su-257

perGLUE benchmark experiments, we train all258

the models for 50 epochs to get a more faithful259

comparison. Regarding the model hyperparam-260

eter set up, we set the LoRA rank as 8 for all261

of our fine-tuning experiments, which leads to a262

parameter count of 2 × 768 × 8 = 12, 288 for263

the attention layer of dimension 768 × 768 with264

α = 32. For our LSR-Kernel experiments, we265

1For detailed experimental setups and implementations,
please feel free to check out our GitHub Repository: https:
//anonymous.4open.science/r/lsr-adapt-7707.

set r = 4 and A
(1)
k ∈ R32×2,A

(2)
k ∈ R24×2, 266

B
(1)
k ∈ R32×2,B

(2)
k ∈ R24×2, and separation rank 267

s = 16, we can achieve a much lower parameter 268

count 2× (32×2+24×2)×16 = 3, 584. All the 269

other baseline methods follow the optimal settings 270

given in the original papers (Edalati et al., 2022; He 271

et al., 2023). From the results in Table 1, we can 272

see that our method still maintains a high perfor- 273

mance for the PEFT benchmark tasks with almost 274

25% of the LoRA parameters. 275

6 Conclusion and Future Works 276

In this paper, we have demonstrated the effective- 277

ness of adopting the separable representations in 278

PEFT tasks. Specifically, we have shown that by 279

restructuring the LoRA factor matrices using ma- 280

trix low separation rank representations, we can not 281

only drastically reduce the number of trainable pa- 282

rameters, but also provide more robust fine-tuning 283

accuracy. However, in this study, we did not fully 284

utilize the favorable computational attributes of 285

Kronecker products. This could enhance the effi- 286

ciency of computation during training, and we plan 287

to explore this in future research. 288

4

https://anonymous.4open.science/r/lsr-adapt-7707
https://anonymous.4open.science/r/lsr-adapt-7707


7 Limitations289

As discussed in the main paper, this work does290

not exploit the amenable computation properties of291

Kronecker products on modern tensor-core based292

GPUs, which might lead to further memory effi-293

ciency and faster training runtime, and potential294

robustness to low-precision training.295

References296

Gregory Beylkin and Martin J Mohlenkamp. 2005. Al-297
gorithms for numerical analysis in high dimensions.298
SIAM Journal on Scientific Computing, 26(6):2133–299
2159.300

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and301
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning302
of quantized llms. Preprint, arXiv:2305.14314.303

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-304
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.305
2022. Krona: Parameter efficient tuning with kro-306
necker adapter. arXiv preprint arXiv:2212.10650.307

G.H. Golub and C.F. Van Loan. 2013. Matrix Compu-308
tations. Johns Hopkins Studies in the Mathematical309
Sciences. Johns Hopkins University Press.310

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei311
Yang, and Xin Eric Wang. 2023. Parameter-efficient312
model adaptation for vision transformers. In Proceed-313
ings of the AAAI Conference on Artificial Intelligence,314
volume 37, pages 817–825.315

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan316
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,317
and Weizhu Chen. 2021. Lora: Low-rank adap-318
tation of large language models. arXiv preprint319
arXiv:2106.09685.320

Abhinav Jangda and Mohit Yadav. 2024. Fast kronecker321
matrix-matrix multiplication on gpus. In Proceed-322
ings of the 29th ACM SIGPLAN Annual Symposium323
on Principles and Practice of Parallel Programming,324
pages 390–403.325

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo326
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting327
Cheng, and Min-Hung Chen. 2024. Dora:328
Weight-decomposed low-rank adaptation. Preprint,329
arXiv:2402.09353.330

Yinhan Liu. 2019. Roberta: A robustly opti-331
mized bert pretraining approach. arXiv preprint332
arXiv:1907.11692, 364.333

Alex Wang. 2018. Glue: A multi-task benchmark and334
analysis platform for natural language understanding.335
arXiv preprint arXiv:1804.07461.336

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 337
preet Singh, Julian Michael, Felix Hill, Omer Levy, 338
and Samuel Bowman. 2019. Superglue: A stick- 339
ier benchmark for general-purpose language under- 340
standing systems. Advances in neural information 341
processing systems, 32. 342

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 343
Chaumond, Clement Delangue, Anthony Moi, Pier- 344
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 345
and Jamie Brew. 2020. Transformers: State-of-the- 346
art natural language processing. In Proceedings of 347
the 2020 Conference on Empirical Methods in Nat- 348
ural Language Processing: System Demonstrations, 349
pages 38–45, Online. Association for Computational 350
Linguistics. 351

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui 352
Tao, and Fu Lee Wang. 2023. Parameter-efficient 353
fine-tuning methods for pretrained language models: 354
A critical review and assessment. arXiv preprint 355
arXiv:2312.12148. 356

A Appendix 357

A.1 Basic Properties of Kronecker Products 358

In this section we review some basic properties of 359

the Kronecker products, which can be helpful in 360

the case that we treat some matrix A as a block 361

matrix whose the entries are all scalar multiplies 362

of the same matrix (Golub and Van Loan, 2013). 363

Denote A ∈ Rm×n where m = m1m2, n = n1n2, 364

then the matrix A is a Kronecker product means 365

that there exist two Kronecker factor matrices B ∈ 366

Rm1×n1 and C ∈ Rm2×n2 such that, 367

A = B ⊗C. (14) 368

Some of the important Kronecker product prop- 369

erties include, 370

Transpose: (B ⊗C)⊤ = B⊤ ⊗C⊤ 371

Product: (B ⊗C)(D ⊗E) = BD ⊗CE 372

Associativity: B ⊗ (C ⊗D) = (B ⊗C)⊗D. 373

As for multiple Kronecker products, say A = 374

B ⊗ C ⊗ D, one can regard it as a block ma- 375

trix whose entries are block matrices. Specifically, 376

for (i, j)-th block of A, the value Bi,jCk,lD is its 377

(k, l)-th block. 378

A.2 Understanding the Matrix Low 379

Separation Rank Representation 380

Here we provide a mathematical analysis on why 381

a matrix low-separation rank representation is an 382

effective approximation mechanism for matrices. 383

Suppose we have a matrix A ∈ Rm×n with 384

5

https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://books.google.com/books?id=5U-l8U3P-VUC
https://books.google.com/books?id=5U-l8U3P-VUC
https://books.google.com/books?id=5U-l8U3P-VUC
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


rank(A) = r, we would like to show that it ad-385

mits the following approximation,386

A =

s∑
k=1

λkA
(1)
k ⊗ · · · ⊗A

(r)
k +O(ϵ), (15)387

with a separation rank s and A
(i)
k ∈ Rmi×ni , where388 ∏r

i=1mi = m,
∏r

i=1 ni = n. We start from the389

fact that rank(A) = r, and thus there exist vectors390

u1, · · · ,ur ∈ Rm and v1, · · · ,vr ∈ Rn such that,391

A =
r∑

k=1

ukv
⊤
k . (16)392

Then for each rank-1 matrix ukv
⊤
k ∈ Rm×n, we393

can do the reshaping,394

uk = u
(1)
k ⊗ · · · ⊗ u

(r)
k , (17)395

vk = v
(1)
k ⊗ · · · ⊗ v

(r)
k , (18)396

(19)397

where each vector u(i)
k ∈ Rmi ,v

(i)
k ∈ Rni . Thus398

from the basic Kronecker properties mentioned in399

A.1 we have,400

ukv
⊤
k =

(
⊗r

i=1u
(i)
k

)(
⊗r

i=1v
(i)
k

)⊤
401

=
(
⊗r

i=1u
(i)
k

)(
⊗r

i=1

(
v
(i)
k

)⊤)
402

=
r⊗

i=1

(
u
(i)
k

(
v
(i)
k

)⊤)
. (20)403

To see why the last equality in the above derivations404

works, consider the simpler example where we405

wish to compute406 (
u(1) ⊗ u(2) ⊗ u(3)

)(
v(1) ⊗ v(2) ⊗ v(3)

)
,407

if we define the substitutions U = u(1) ⊗u(2) and408

V = v(1) ⊗ v(2), with the Kronecker properties in409

A.1 we have the above equation becomes,410 (
U ⊗ u(3)

)(
V ⊗ v(3)

)
= (UV )⊗

(
u(3)v(3)

)
411

where412

UV =
(
u(1) ⊗ u(2)

)(
v(1) ⊗ v(2)

)
413

=
(
u(1)v(1)

)
⊗
(
u(2)v(2)

)
. (21)414

Then we substitute this back, yielding 415(
u(1) ⊗ u(2) ⊗ u(3)

)(
v(1) ⊗ v(2) ⊗ v(3)

)
416

=
(
u(1)v(1)

)
⊗
(
u(2)v(2)

)
⊗
(
u(3)v(3)

)
.

(22)

417

Or in simplified notations, 418

(
⊗3

i=1u
(i)
)(

⊗3
i=1v

(i)
)
=

3⊗
i=1

(
u(i)v(i)

)
.

(23) 419

Then if we define, 420

A
(i)
k ≜ u

(i)
k

(
v
(i)
k

)⊤
∈ Rmi×ni , (24) 421

we essentially have 422

ukv
⊤
k = A

(1)
k ⊗ · · · ⊗A

(r)
k . (25) 423

To make the computations more controllable, we 424

can set all the factor matrices A
(i)
k to be of unit 425

norm (e.g., Frobenius norm or operator norm) and 426

factor out a scalar factor λk, 427

ukv
⊤
k = λkA

(1)
k ⊗ · · · ⊗A

(r)
k . (26) 428

Then we have the form 429

A = ukv
⊤
k 430

=

r∑
k=1

λkA
(1)
k ⊗ · · · ⊗A

(r)
k , (27) 431

however, in practice, A might not be low rank and 432

attaining the actual r can be expensive, hence if we 433

instead set the approximate rank r ≤ rank(A), we 434

have the following approximation 435

A =
s∑

k=1

λkA
(1)
k ⊗ · · · ⊗A

(r)
k +O(ϵ), (28) 436

where integer s ≥ r is the separation rank and ϵ is 437

the approximation error. 438

6


	Introduction
	Related Works
	Preliminaries
	Our Approach
	Experiments
	Conclusion and Future Works
	Limitations
	Appendix
	Basic Properties of Kronecker Products
	Understanding the Matrix Low Separation Rank Representation


