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Abstract

Entity tracking is essential for complex rea-001
soning. To perform in-context entity tracking,002
language models (LMs) must bind an entity to003
its attribute (e.g., bind a container to its content)004
to recall attribute for a given entity. For exam-005
ple, given a context mentioning “The coffee is006
in Box Z, the stone is in Box M, the map is in007
Box H”, to infer “Box Z contains the coffee”008
later, LMs must bind “Box Z” to “coffee”. To009
explain the binding behaviour of LMs, Feng010
and Steinhardt (2023) introduce a Binding ID011
mechanism and state that LMs use a abstract012
concept called Binding ID (BI) to internally013
mark entity-attribute pairs. However, they have014
not directly captured the BI information from015
entity activations. In this work, we provide a016
novel view of the Binding ID mechanism by017
localizing the BI information. Specifically, we018
discover that there exists a low-rank subspace019
in the hidden state (or activation) of LMs, that020
primarily encodes BIs. To identify this sub-021
space, we choose principle component analysis022
as our first attempt and it is empirically proven023
to be effective. Moreover, we also discover that024
when editing representations along directions025
in the subspace, LMs tend to bind a given entity026
to other attributes accordingly. For example, by027
patching activations along the BI encoding di-028
rection we can make the LM to infer “Box Z029
contains the stone” and “Box Z contains the030
map”.031

1 Introduction032

The ability of a model to track and maintain in-033

formation associated with an entity in a context is034

essential for complex reasoning (Karttunen, 1976;035

Heim, 1983; Nieuwland and Van Berkum, 2006;036

Barzilay and Lapata, 2008; Kamp et al., 2010).037

To recall attribute information in the context, the038

model must bind entities to their attributes(Feng039

and Steinhardt, 2023). For example, given Sam-040

ple 1 and 2, a model must bind the entities (e.g.,041

“Box Z”, “Box M”, “Box H”, “Alex”, “John” and042

“Carl”) to their attributes (e.g., “coffee”, “stone”, 043

“map”, “bean”, “pie” and “fruit”) respectively so as 044

to accurately recall such as what is in “Box Z” or 045

what is sold by “Alex” without confusion. Binding 046

has also been studied as a fundamental problem 047

in Psychology (Treisman, 1996). To uncover how 048

Language Models (LMs) realize binding in term of 049

internal representation, Feng and Steinhardt (2023) 050

introduce a Binding ID mechanism and state that 051

LMs apply a abstract concept called Binding ID 052

(BI) to bind and mark Entity-Attribute (EA) pairs 053

(e.g., “Box Z” and “coffee”, as shown in Sample 1, 054

where BI is denoted as a numbered square). They 055

also claim that the BI is represented as a vector 056

to be added on the representation (or activation) 057

of a EA pair so that the common vector is used 058

as a key clue to search attribute for a given entity. 059

However, they have not directly captured BI from 060

the activations. 061

(1) Context: The coffeeÜ

0 is in Box ZÜ

0 , the 062

stoneÜ

1 is in Box MÜ

1 , the mapÜ

2 is in Box 063

HÜ

2 . 064

Query: Box ZÜ

0 contains the 065

(2) Context: The beanÜ

0 is sold by Person 066

AlexÜ

0 , the pieÜ

1 is sold by Person JohnÜ

1 , 067

the fruitÜ2 is sold by Person CarlÜ2 . 068

Query: Person AlexÜ

0 sells the 069

Since binding is the foundational skill that un- 070

derlies entity tracking (Feng and Steinhardt, 2023), 071

in this work, we take the entity tracking task (Kim 072

and Schuster, 2023; Prakash et al., 2024) as a 073

benchmark to evaluate the LM’s binding behaviour. 074

Based on the analysis of internal representation on 075

this task, we localize BI information from the ac- 076

tiviations and provide a novel view of the Binding 077

ID mechanism. Specifically, we discover that LMs 078

encode (or store) BI information into a low-rank 079

subspace (called BI subspace hereafter), where BI 080

is encoded according to the order of appearance 081
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Figure 1: Our main finding on Binding ID (BI) subspace intervention. Patching entity (e.g., "Z") representations
along BI direction in activation space yields corresponding changes in model output.

(i.e.,from left to right). To identify the BI subspace,082

we take Principle Component Analysis (PCA) as083

our first attempt 1 to capture the subspace represent-084

ing the BI information, and it is empirically proven085

be effective. Therefore, our findings confirm and086

extend prior understanding of BI in LMs.087

Going beyond the prior work on BI mecha-088

nism (Feng and Steinhardt, 2023), we show that by089

causally intervening along the BI encoding Princi-090

ple Component (PC), LMs swap the binding and091

infer a new attribute for a given entity accordingly.092

That is, we find a consistent causal relationship093

between the BI subspace intervention and the in-094

ferred attributes by LMs. For example, as shown in095

Figue 1, by patching activations along a direction096

(i.e., PC1), we can make the LMs to infer "Box Z097

contains the stone" and "Box Z contains the map"098

instead of "Box Z contains the coffee".099

Overall, our findings suggest that LMs encodes100

Binding IDs into a subspace of entity activations101

in a way that the direction reflects the appearance102

order (or reversed order) of a EA pair in a given con-103

text. Moreover, the discovered BI subspace plays a104

crucial role in the in-context binding computation.105

In addition, we find that BI subspace not only exists106

in the Pretrained large LMs such as Llama2 (Tou-107

vron et al., 2023) and Llama3 (AI@Meta, 2024),108

but also in the code fine-tuned LM such Float-109

7B (Prakash et al., 2024).110

1Besids PCA, we also attempt partial least squares re-
gression for capturing BI subspace. Since they achieve sim-
ilar regression score, we adopt PCA for simplicity. See Ap-
pendix (§A.1) for details.

2 Finding Low-rank Subspace for 111

Binding ID 112

In this section we describe our Principle Compo- 113

nent Analysis (PCA) based method to locate the BI 114

subspace in activations of LMs. Firstly we extract 115

entity activation from LMs as shown in Figure 1. 116

Given a LM (e.g., Llama2), and a collection of 117

texts which describe a set of EA pairs for a relation 118

such as Sentence 1 for relation “is_in”, we extract 119

the activation of entity token (e.g., “Z”) in query 120

(denoted as xi) from certain layer 2 and construct 121

a activation matrix Mr P Rnˆd for a relation r, 122

where n denotes the number of entities and d de- 123

notes the dimension of the activation. The row i of 124

Mr is the activation of an entity token (i.e., xi). 125

PCA has been applied for identifying various 126

subspace (or direction) such as the subspace encod- 127

ing language bias (Yang et al., 2021), truth value 128

of assertions (Marks and Tegmark, 2023) and sen- 129

timent (Tigges et al., 2023). Inspired by these stud- 130

ies, we choose PCA as our first attempt to localize 131

BI subspace. We hypothesize that in a activation 132

subspace, entities with the same BI tend to cluster 133

together (w.r.t the ones with different BIs), even 134

though these entities have different semantic mean- 135

ing, and the BIs are encoded as directions (or a PC) 136

in the subspace. For convenience, we number BIs 137

in left-to-right order, and the leftmost BI“ 0. 138

To capture the subspace, or BI direction, we 139

leverage PCA, which identifies the principle direc- 140

2See Appendix (§A.2) for the layer selection.
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Figure 2: Layer-wise BI subspace visualization on
Llama2-7B.

tions of a space. Specifically, the PCA of a activa-141

tion matrix is Mr “ UrΣrV
T
r , where the columns142

of Vr P Rdˆd are principle directions of Mr. We143

takes first c columns of Vr as the BI direction, de-144

noted as Br P Rdˆc.145

3 BI Subspace Visualization146

We adopt a subset of the entity tracking147

dataset (Kim and Schuster, 2023; Prakash et al.,148

2024), which contains n “ 1000 samples, to create149

layer-wise activation matrix M l
r. We then uses the150

M l
r to extract the layer-wise BI subspace projec-151

tion matrix Bl
r P Rdˆ2 to visualize the activation.152

Figure 2 shows the embedding visualization on153

Llama2-7B, where each point represents the acti-154

vation of an entity projected via the Bl
r, and the155

colors represent BIs. From which, we can observe156

that middle layers, such as layer 8, have a clearly157

visible direction along which BI increases (or de-158

creases), while the others have tangled distribution.159

We also observe similar property of distribution on160

Llama3-8B and Float-7B (§A.3). This indicates161

that LMs use the middle layers to encode BI infor-162

mation. We call this dimension that represents the163

order of BI as BI Principle Component (BI-PC).164

In the following section, we apply causal interven-165

tion on the BI-PC to analyze how BI-PC affect the166

model output. 167

4 Causal Interventions on Binding ID 168

Subspace 169

By projecting the activation matrix Mr into the 170

BI subspace, we have found a correlative evidence 171

for the existence of the direction (i.e., BI-PC) that 172

encodes Binding IDs. However, it is possible that 173

the BI information is encoded in the BI subspace 174

but has no effect on model output. 175

In order to test if Binding IDs are not only en- 176

coded in the BI subspace, but that these representa- 177

tions can be steered so as to swap the binding and 178

change LM’s output. We now perform interven- 179

tions to establish the causality. That is, we want to 180

find out if making BI swapping interventions leads 181

to a change in model output. 182

4.1 Activation Patching 183

Since LM computation graph could be viewed as 184

causal graph (Meng et al., 2022; McGrath et al., 185

2023), we intervene on model activations via ac- 186

tivation patching (Vig et al., 2020; Wang et al., 187

2022; Zhang and Nanda, 2023; Heinzerling and 188

Inui, 2024; Engels et al., 2024), and observe the 189

effect on model output. Unlike the common acti- 190

vation patching setup in which one replaces acti- 191

vations resulting from an original input with acti- 192

vations from a corrupted one, we create patches 193

by editing activations along a particular direction 194

(i.e., along BI-PC), similar to the activation editing 195

method of (Matsumoto et al., 2023; Heinzerling 196

and Inui, 2024; Engels et al., 2024). Although au- 197

tomatic methods for localizing model circuits of 198

interest have been proposed (Conmy et al., 2023; 199

Kramár et al., 2024), for simplicity we perform 200

a coarse layer-wise search based on the effect of 201

activation patching in a development set, as shown 202

in Appendix (§A.2), and use the found setting for 203

all experiments. 204

4.2 Setting 205

Dataset To explore the internal representation 206

that enables binding, we adopt the entity tracking 207

dataset (Kim and Schuster, 2023; Prakash et al., 208

2024). The dataset contains English sentence de- 209

scribing a set of objects located in a set of boxes 210

with difference labels, and the task is to infer what 211

is inside a given box. For instance, when a LM is 212

presented with “The coffee is in Box Z, the stone 213

is in Box M, the map is in Box H, ... Box Z con- 214

tains the”, it should infer the next token as “coffee”. 215
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Answer for # Step

Context Query 1 2 3 4 5 6

The coffee is in Box Z, the stone is in Box M,
the map is in Box H, the coat is in Box L,
the string is in Box T, the watch is in Box E,
the meat is in Box F.

Box Z
contains
the

stone map map string watch meat

The letter is in Box Q, the boot is in Box C,
the fan is in Box N, the crown is in Box R,
the guitar is in Box E, the bag is in Box D,
the watch is in Box K.

Box Q
contains
the

boot fan crown guitar watch watch

The cross is in Box Z, the ice is in Box D,
the ring is in Box F, the plane is in Box Q,
the clock is in Box X, the paper is in Box I,
the engine is in Box K.

Box Z
contains
the

ice ring ring clock paper engine

Table 1: Attributes inferred by Llama2-7B as a result of directed activation patching along BI-PC in the BI subspace
on the dataset of “r: is_in”, where color denotes the BI.

Template

1
The a0 is sold by person e0, ..., the ai is ...,
a7 is sold by person e7. Person ei is selling the

2
The a0 is applied by person e0, ..., the ai is ...,
a7 is applied by person e7. Person ei applies the

3
The a0 is moved by person e0, ..., the ai is ...,
a7 is moved by person e7. Person ei moved the

4
The a0 is brought by person e0, ..., the ai is ...,
a7 is moved by person e7. Person ei brings the

5
The a0 is pushed by person e0, ..., the ai is ...,
a7 is pushed by person e7. Person ei pushes the

Table 2: Templates of Dataset.

Each sample involves 7 AE pairs. To evaluate the216

binding in various context, we also apply the tem-217

plates shown in Table 2 to generate other 5 datasets218

with different relation, where ai and ei denotes the219

attribute and entity, and they are sampled from a220

fixed pool of 224 one-token objects (e.g., “dog”,221

“corn” and “cookie”) and 523 of one-token names222

(e.g., “Alex”, “Juli” and “Dan”) respectively. We223

sample n “ 1000 context from each dataset to run224

the following analysis.225

Metrics We apply two evaluation metrics. The226

logit difference metric introduced in Wang et al.227

(2022), which calculates difference in logits be-228

tween original and intervened answers, as well as229

the "logit flip" accuracy metric (Geiger et al., 2022),230

which represents the proportion of cases where we231

alter the model output after a causal intervention.232

4.3 Results: Direct Editing BI Subspace 233

We hypothesize that LMs encode BI information 234

into a low-rank BI subspace. Therefore, we wonder 235

if a LM changes the binding behavior, when adding 236

a particular value v (called step hereafter) along the 237

BI-PC mentioned in Section (§2). For example, if 238

we add one unit of v on the activation of e0, the 239

LM will reset its BI as 1 and bind attribute a1 to 240

entity so that infers the a1 as the attribute of e0 241

instead of the original a0. Similarly, adding two 242

units of v will make the LM infer a2 for e0, and 243

so on. We intervene via the Equation 1, where x0,l 244

is the original activation of e0 (i.e., the leftmost 245

entity) in layer l, x˚
0,l is the intervened activation, 246

Br is the BI subspace projection matrix mentioned 247

in Section (§2), α is a hyper-parameter to scale the 248

effect of intervention and β (0 ď β ď 6) denotes 249

the number of steps. 250

x˚
0,l “ x0,l ` αBT

r pBrx0,l ` βvq (1) 251

Table 1 lists several examples under the BI 252

subspace intervention on the entity tracking 253

dataset (Kim and Schuster, 2023; Prakash et al., 254

2024). We also list the examples from other 255

datasets in Appendix (§A.5). We can see that 256

when adding 1 step along BI-PC, the model se- 257

lects “stone” for entity “Z” instead of its original 258

attribute “coffee”. Similarly, when the step is dou- 259

bled, the model will select attribute “map” for the 260

entity, and so on. Although the attribute selection 261

does not strictly follow the number of steps, this 262

indicates, to some extent, that changing the value 263

along BI-PC can induce the swap of attribute. 264
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Figure 3: Logit Difference (LD) for BI-PC based intervention across datasets on Llama2-7B, where x axis denotes
the number of intervention steps on e0, y axis does the LD, BI_i represents each target attribute and the light yellow
bottom line indicates the LD of original attribute (i.e., a0). Here, l “ 8, v “ 2.5, and α “ 3.0.

Besides the qualitative analysis, we also conduct265

quantitative analysis for the causality between the266

BI subspace based activation patching and the bind-267

ing behaviour of the LM. We plot mean-aggregated268

effect of directed activation patching across mul-269

tiple datasets in Figure 3. Figure 3 indicates how270

the Logit Difference (LD) of each attribute changes271

as the step increases. We can observe that as the272

number of steps increases, LD of the original at-273

tribute decreases. In contrast, LD of other attributes274

gradually increase until a certain point and then275

gradually decrease. Given a candidate attribute,276

its peak point generally corresponds the number277

of steps that equals to its BI. For instance, when278

adding 3 steps, the points of BI_3 (i.e., attributes of279

BI“ 3) on step“ 3 achieve the highest LD score.280

This indicates that by adjusting the value along281

the BI-PC, we can increase the probability of the282

corresponding attribute, thereby swap the answer.283

Similarly, Figure 4 illustrates the relation be-284

tween the number of steps and the logit flip, which285

gauges the percentage of the predicted attributes286

under an intervention. Figure 4 shows that as the287

step increases, the proportion bar becomes darker,288

it means that the model promotes the proportion289

of the corresponding following attribute in its in-290

ference. For instance, when adding 3 step on the291

subspace, the a3 (i.e., BI_3) becomes the major of292

the answers. This proves that the discovered sub- 293

space stores BI information, and the subspace will 294

causally affect the computation of Binding in a LM. 295

See Appendix (§A.8) for the results on Llama3-8B. 296

4.4 Results: Activation Steering on BI 297

Subspace 298

Inspired by the research on Activation Steering 299

(AS) (Turner et al., 2023), we apply an AS method 300

to verify the importance of the BI subspace on 301

LM’s binding behaviour. Specifically, we use the 302

following Equation 2 to extract a subspace steering 303

vector s0Ñbi, which is proposed to swap BI from 0 304

to bi, where n is the number of target entities, xi
bi,l 305

represents the activation of entity ei from layer l, 306

and its BI is bi. We intervene via Equation 3 and as- 307

sume that by adding s0Ñbi to the original activation 308

x0,l, we can increase the LD and the proportion of 309

the attribute abi. Figure 5 shows the results on the 310

entity tracking dataset (Kim and Schuster, 2023; 311

Prakash et al., 2024). (Appendix (§A.6) shows the 312

results on other datasets) These results indicate that 313

AS can achieve the similar tendency as the direct 314

value intervention mentioned in Section (§4.3). For 315

instance, adding s0Ñ3, which is used to swap BI 316

form 0 to 3, can increase the LD of a3 and its pro- 317

portion in the predicted answers. The consistent 318

tendency with the results of the direct subspace 319
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Figure 4: Logit flip for BI-PC based intervention across datasets on Llama2-7B, where x axis denotes the number of
intervention steps on e0, y axis does the proportion of each inferred attribute in model output.

0 2 4 6

−4

−2

0

2

0 2 4 6

−4

−2

0

2

0 2 4 6

−4

−2

0

2

0 2 4 6

−4

−2

0

2

0 2 4 6

−4

−2

0

2

0 2 4 6

−4

−2

0

2

Steering Step Steering Step Steering Step

A
ve

ra
ge

 L
og

it 
D

iff
er

en
ce

A
ve

ra
ge

 L
og

it 
D

iff
er

en
ce

BI_1 BI_2 BI_3

BI_4 BI_5 BI_6

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

BI_6 BI_5 BI_4 BI_3 BI_2 BI_1 BI_0
Steering Step

La
be

l P
ro

po
rti

on

Figure 5: Logit Difference and Logit Flip for activation
steering on the entity tracking dataset (i.e., r: is_in),
where x axis represents the intervention of s0Ñbi.

editing, shown Figure 3 and Figure 4, further il-320

lustrates that the discovered subspace contains the321

BI information, and more importantly, it plays an322

important role when the model performs in-context323

binding computation.324

s0Ñbi “
1

n

n
ÿ

i“1

pBrx
i
bi,l ´ Brx

i
0,lq (2)325

x˚
0,l “ x0,l ` αBT

r s0Ñbi (3)326

4.5 Binding Subspace and Position327

In this section, we discuss the relationship between328

the BI subspace and Positional Information (PI).329

As mentioned in Section (§4.3), the discovered330

subspace stores the BI information, therefore di-331

rect intervention on it can swap the answer of LM.332

Input (original)

C1 ap00 r ep10 , ap21 r ep31 , ap42 r ep52 . ep31 r´1 ?

C2 ap00 r ep10 , ap21 r ep31 , ap42 r ep52 . ep52 r´1 ?

Input (with pseudo)

C 1
1 ap0˚0 r e

p1
˚0, a

p2
˚0 r e

p3
˚0, a

p4
1 r ep51 . ep51 r´1 ?

C 1
2 ap0˚0 r e

p1
˚0, a

p2
1 r ep31 , ap42 r ep52 . ep52 r´1 ?

Table 3: Simplified expression of original inputs and the
one modified with pseudo relation, which is proposed to
equalize PI for PCA analysis, where ap10 r ep20 represents
a relation such as “the apple is in Box C”, and ep20
denotes an entity with BI of 0 and PI of p2, ep52 r´1 ?
denotes the query on entity e1, such as “Box C contains
the”.

However, one counter hypothesis is that the sub- 333

space is not used for storing BI information but the 334

PI of attributes, thus the direct intervention merely 335

change the PI so that swap the answer. Regarding 336

the relationship between BI and PI, Feng and Stein- 337

hardt (2023) found that even when PI of attributes 338

is swapped, the model still makes correct predic- 339

tions, thus confirming the independence between 340

BI and PI. Based on this finding, we go one step 341

further and illustrate the independence between the 342

BI subspace and PI. To prove the independence, 343

we create two datasets, one is by extending the 344

original dataset with pseudo relation, as shown in 345
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Input (original)

ap00 r ep10 , ap21 r ep31 , ap42 r ep52 . ep10 r´1 ?

Input (with interjection)

ap00 r ep10 , jp2 j jp3 ...jpi api`1
1 r epi`1

1 ... ep10 r´1 ?

Table 4: Simplified expression of original input and the
one modified with a sequence of interjections, where
jp3 denotes an interjection j, such as “ah”, with position
of p3, which is also the position of ep31 in the original
input.

Table 3, and the other is by adding a sequence of346

interjection, as listed in Table 4.347

In Table 3, ap0˚0 r e
p1
˚0 refers to a pseudo relation,348

which is a fixed expression, such as “the PC is in349

Box Z”, applied to adjust the PI while keeping the350

BI. For instance, in Table 3, adding one or two351

ap0˚0 r e
p1
˚0 before a1 r e1 (i.e., C 1

2 and C 1
1) does not352

affect the BI of e1 but its PI, because e1 is still the353

second unique entity from the left (i.e., BI“ 1), but354

its PI is p3 and p5 respectively. Using the pseudo355

relation, we create the data in a manner that the356

target entity (e.g., ep51 and ep52 ) to extract activation357

have the same PI, such as C 1
1 and C 1

2 in Table 3.358

We apply the method mentioned in Section (§2)359

on the set of activations t
ÝÑ
ep51 ,

ÝÑ
ep52 , ...u, where

ÝÑ
ep51360

denotes the activation of e1 in ep51 r´1 ?, so as361

to capture the BI difference and exclude the PI362

difference, because they share the same PI (i.e.,363

P5) but different BI (i.e., 1, 2, ...). Then we com-364

pare its BI subspace with the original one (e.g.,365

t
ÝÑ
ep21 ,

ÝÑ
ep52 , ...u) to analyze how the distribution of BI366

subspace changes after removing the PI variance.367

Figure 6 visualizes the BI subspace distribution,368

where the light colored points denote the original369

distribution, and the dark ones are from the new370

one with equalized PI. We can observe that after371

removing the PI difference, the distribution is still372

similar to the original one that there is a clearly373

visible direction along which BI increases. This374

illustrates that our PCA based method can capture375

BI information, that is, along the direction of BI-376

PC, and it does not causally depend on PI. See377

Appendix (§A.4) for our further analysis on how378

the context of binding affects the distribution.379

Another dataset is created by adding a sequence380

of interjections after the first attribute entity pair,381

as illustrated in Table 4. Since there is no BI in-382

formation in the interjection (e.g., jp3), adding it383

only changes the PI of its following entities and384

BI_1(Ori)
BI_1(Pse)

BI_2(Ori)
BI_2(Pse)

BI_3(Ori)
BI_3(Pse)

BI_4(Ori)
BI_4(Pse)

BI_5(Ori)
BI_5(Pse)

BI_6(Ori)
BI_6(Pse)

BI_7(Ori)
BI_7(Pse)

r: is_in r: sell r: apply

r: move r: bring r: push

Figure 6: Embedding visualization for activation with
equalized PI, where “Ori” denotes the distribution of
original dataset, while “Pse” denotes the distribution of
the new dataset with pseudo relation.
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Figure 7: Logit Difference and Logit Flip for activation
patching on the dataset of “r: is_in” with interjections.
Appendix (§A.9) shows the results on other dataset with
the same interjection based modification.

attributes. We set the number of interjections as 385

that its last PI is larger than the last PI of its origi- 386

nal input (e.g., pi ą p5 in Table 4). Based on this 387

dataset, we conduct the same intervention on its 388

BI subspace, as mentioned in Section (§4.3). The 389

counter argument is that the subspace only captures 390

PI, and the intervening step only changes the PI 391

information. Specifically, adding one unit of v on 392
ÝÑ
ep10 can change its PI from p1 to p3, which is the 393

PI of e1, and its attribute is a1, as shown in Table 4, 394

thereby the LM swaps the answer from a0 to a1. 395

If it is true, then the same intervention will not 396

change the answer on the new dataset, because fol- 397

lowing the counter argument, after adding one unit 398

of v on
ÝÑ
ep10 , its PI becomes p3, and p3 is the PI of 399

jp3. The LM thus would not select a1 as its answer. 400

However, the results on Figure 7 shows that the 401

subspace intervention on the new dataset achieves 402

similar results as the original one, as shown in Fig- 403

ure 3 and Figure 4, proving the counter argument 404

wrong and indicating the independence between BI 405

subspace and PI. 406
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Figure 8: Logit Difference and Logit Flip for activation
patching on the entity tracking dataset (i.e., r: is_in) on
Float-7B. See Appendix (§A.7) for the results on other
datasets.

4.6 Results on Fine-Tuned LM407

Kramár et al. (2024); Kim et al. (2024) claim that408

the code fine-tuned LM, such as Float-7B (Prakash409

et al., 2024) outperforms the pretrained LM on410

the entity tracking task (Kim and Schuster, 2023;411

Prakash et al., 2024). Since the code fine-tuned412

LM performs well on the entity tracking task that413

requires the BI subspace based computation, we414

hypothesize that BI subspace also exists in the code415

fine-tuned LM and the intervention along BI-PC416

will causally affect the model output. To prove the417

hypothesis, we conduct the intervention on Float-418

7B and show results in Figure 8. We found that419

the BI subspace based intervention on Float-7B420

achieves the similar results as on Llama2-7B, indi-421

cating that the BI subspace not only exists in the422

pretrained LM but also in the fine-tuned one. In ad-423

dition, adding the same step value (i.e., v) on Float-424

7B will achieve higher LD value than Llama2-7B,425

indicating that the code fine-tuned LM is more sen-426

sitive to the BI subspace based intervention. For427

instance, the maximum LD of a4 in the former is428

around 10, and it is 2 times larger than the one in429

the latter, which is around 5. This might partially430

explains why the code fine-tuned LM performs bet-431

ter than the original one, because code fine-tuning432

might enhance the function of BI subspace so that433

it is more sensitive on the intervention and more434

effective on the in-context entity tracking task.435

5 Related Work436

Linear Representation Recent research found437

that sequence models trained only on next to-438

ken prediction linearly represent various seman-439

tic concepts including Othello board positions (Li440

et al., 2022; Nanda et al., 2023), the truth value441

of assertions (Marks and Tegmark, 2023), senti-442

ment (Tigges et al., 2023), and numeric values443

such as elevation, population, birth year, and death444

year (Gurnee and Tegmark, 2023; Heinzerling and 445

Inui, 2024). Continuing this line of research, in 446

this work, we discover that LMs such as Llama- 447

2 can also linearly encode BI, because there is a 448

linear direction that primarily encodes BI in the 449

activations. 450

Knowledge Localization Many works aim to 451

localize and edit factual relations (e.g., “capital of”) 452

that LMs learn from pretraining and are stored into 453

model weights (Geva et al., 2020; Dai et al., 2021; 454

Meng et al., 2022; Geva et al., 2023; Hernandez 455

et al., 2023). Different from this line of research, 456

this work studies in-context representations of re- 457

lations and analyzes how they are stored in model 458

activations. 459

Mechanistic Interpretability Notable progress 460

has been made in uncovering circuits performing 461

various tasks within LMs (Elhage et al., 2021; 462

Wang et al., 2022; Wu et al., 2024). Recently, 463

Prakash et al. (2024) identify the circuit for en- 464

tity tracking task. Feng and Steinhardt (2023) in- 465

troduce a Binding ID Mechanism for explaining 466

the binding problem, state that LMs use the ab- 467

stract concept BI to internally mark entity-attribute 468

pairs. However, they does not directly capture BI 469

information from activations. Therefore, they have 470

not answered how LMs store the BI information 471

into entity activations, how to localize the BI infor- 472

mation and whether the localized BI information 473

causally affect the model binding behaviour. 474

6 Conclusion and Future Work 475

In this work, we study the in-context binding, a fun- 476

damental skill underlying many complex reasoning 477

and natural language understanding tasks. We pro- 478

vide a novel view of the Binding ID mechanism 479

introduced by Feng and Steinhardt (2023). We dis- 480

cover that there exists a low-rank subspace in the 481

hidden state (or activation) of LMs, that primarily 482

encodes BIs. What is more, we also discover that 483

when editing representations along BI-PC in the 484

subspace, LMs tend to bind a given entity to other 485

attributes accordingly. Our future work includes: 486

1. the analysis of BI subspace in the setting of 487

multiple predicates instead of the single one (e.g., 488

“r: is_in”); 2. the study of interaction between 489

in-context binding and factual knowledge learned 490

from pretraining; 3. BI subspace based mechanistic 491

analysis. 492
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Limitation493

The limitations of our research include the follow-494

ing points. Firstly, we only analyze BI subspace495

on the attribute prediction task, but not on the en-496

tity inference task (i.e., given an attribute to infer497

its entity). Secondly, we lack the analysis on how498

predicate (or relation) affect the BI subspace, and499

how the results of BI-subspace based intervention500

differ with the type of predicate. Thirdly, although501

we use a publicly available entity tracking dataset,502

it is still a synthesized dataset. Therefore, for un-503

covering how LMs bind and track entity in reality,504

it is necessary to analyze the BI subspace on a real505

world dataset. The last but not lest, we only ana-506

lyze binding from the perspective of representation507

and localize BI subspace. However, we have not508

answered what is the mechanism that generates the509

subspace and what is the circuit that utilizes the510

subspace for binding.511

Ethical Statement512

The existing dataset (Kim and Schuster, 2023;513

Prakash et al., 2024) and LMs (i.e., Llama2-7B,514

Float-7B and Llama3-8B) are applied according515

to their intended research purpose. The synthetic516

datasets we adopted in this work are automatically517

created by strictly following the rule (or pattern)518

of the existing dataset, where the entities and at-519

tributes are sampled from a pool of wide variety of520

one-token names and concepts. Therefore, there is521

no ethical concern on human annotation bias and522

semantic biases. The datasets and code will be pub-523

licly available to ensure the reproducibility of our524

experiments.525
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A Appendix 688

A.1 Partial least squares regression and PCA 689

Besides PCA, a commonly used unsupervised Dimension Reduction (DR) method, we also attempt Partial 690

Least Squares regression (PLS) (Wold et al., 2001), a supervised DR method. PLS extracts a set of ordered 691

latent variables that maximizes the co-variability between the features (e.g., activations) and the scores to 692

be predicted (e.g., BI). We perform PCA and PLS on a development set and compare their regression cures 693

in Figure 9. We can observe that both the first PCA component and the first PLS direction contain almost 694

all information about BI of target entity, because their regression score is close to one. The consistency 695

indicates that PCA is an effective method to capture BI.

Figure 9: Regression curves for PLS and PCA.

696
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A.2 Layer-wise Intervention697

To determine how well BI subspace from different layers of a LM causally affects the model output, we698

perform layer-wise BI-PC based intervention mentioned in Section (§4.3) on our development set. In699

Figure 10, we can observe that BI subspace from middle layers (i.e., from layer7 to layer15, especially700

layer8) significantly affect the computation of binding, and interestingly, these layers also overlap with701

the ones that clearly encode BI information, as shown in Figure 2. Based on such analysis, we select the702

layer to perform activation patching.703
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Figure 10: Average Logit Difference (LD) and logit flip for layer-wise BI-PC based intervention on Llama2-7B,
where x axis denotes the layer, the colored zone indicates the layers that are sensitive to the intervention, and the
vertical line represents the most sensitive one (i.e., Layer 8), Y axis denotes the average LD and the proportion of
inferred attributes (excluding the original one) in Figure 10a and Figure 10b respectively.
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A.3 Layer-wise Embedding Visualization on Llama3-8B and Float-7B 704
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Figure 11: Layer-wise BI subspace visualization on Llama3-8B and Float-7B.

A.4 Layer-wise Embedding Visualization after Masking Binding Information 705

The counter argument is that the captured subspace only represents the positional information. To test the 706

claim, we attempt to mask the context around the entities and attributes with random two-letter tokens 707

(e.g., “td”) so as to ablate the binding information and keep the positional information. For instance, we 708

convert “the document is in Box Q , the bus is in Box F, . . . ” as “pl document td cy wa Q br fl bus ti 709

eq fs F . . . ” so that there is no relational information in the latter. Figure 12 compares the BI subspace 710

distribution between with and without binding information. We can observe that ablation of binding 711

information tangles the distribution so that there is no clear clustering for each BI (e.g., by comparing 712

layer14). This indicates that our discovered subspace encodes binding information.

BI_1 BI_2 BI_3 BI_4 BI_5 BI_6 BI_7

layer7 layer8 layer9 layer10

layer11 layer12 layer13 layer14

(a) w/ Binding Information

BI_1 BI_2 BI_3 BI_4 BI_5 BI_6 BI_7

layer7 layer8 layer9 layer10

layer11 layer12 layer13 layer14

(b) w/o Binding Information

Figure 12: Layer-wise BI subspace visualization for w/ and w/o binding information on Llama2-7B.
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A.5 Case Study on Llama2-7B714

Answer for # Step

Context Query 1 2 3 4 5 6

The bugis sold by person Esta,
the spawn is sold by person Fritz,
the wine is sold by person Inga,
the paste is sold by person Ward,
the poison is sold by person Albert,
the crow is sold by person Davis,
the nest is sold by person Val .

Person Esta
is selling the

spawn wine paste poison crow nest

The virus is sold by person Anna,
the fur is sold by person Earl,
the pill is sold by person Flor,
the bean is sold by person Roy,
the spawn is sold by person Kam,
the farm is sold by person Young,
the sheep is sold by person Billy.

Person Anna
is selling the

fur pill spawn spawn farm sheep

The root is sold by person Carl,
the mouse is sold by person Marco,
the fruit is sold by person Luke,
the bug is sold by person Paul,
the grass is sold by person Inga,
the pie is sold by person Pok,
the cookie is sold by person George.

Person Carl
is selling the

mouse fruit bug grass cookie cookie

Table 5: Attributes inferred by Llama2-7B as a result of directed activation patching along BI-PC in the BI subspace
on the dataset of “r: sell”, where color denotes the BI.

Answer for # Step

Context Query 1 2 3 4 5 6

The carbon is applied by person Wei,
the liquid is applied by person Season,
the bath is applied by person Robert,
the fog is applied by person Daniel,
the heavy is applied by person Roma,
the motor is applied by person Ara,
the pool is applied by person Jorge

Person Wei
applies the

liquid bath fog motor motor pool

The rain is applied by person Kurt,
the gauge is applied by person Jon,
the dust is applied by person Newton,
the jet is applied by person Dan,
the floor is applied by person Alfred,
the low is applied by person Mike,
the basket is applied by person April

Person Kurt
applies the

gauge dust jet floor basket basket

The lamp is applied by person Angel,
the bucket is applied by person Carl,
the canvas is applied by person Bert,
the cargo is applied by person Otto,
the plain is applied by person Johnny,
the floor is applied by person John,
the heavy is applied by person Era.

Person Angel
applies the

bucket canvas cargo plain floor heavy

Table 6: Attributes inferred by Llama2-7B as a result of directed activation patching along BI-PC in the BI subspace
on the dataset of “r: apply”, where color denotes the BI.
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Answer for # Step

Context Query 1 2 3 4 5 6

The lip is moved by person Mack,
the tract is moved by person Sommer,
the pen is moved by person Son,
the tip is moved by person August,
the bat is moved by person Monte,
the socket is moved by person Marco,
the hook is moved by person Paul.

Person Mack
moved the

tract pen tip bat hook hook

The mask is moved by person Jules,
the timer is moved by person Ward,
the bullet is moved by person Ana,
the eye is moved by person Val,
the button is moved by person Andy,
the lock is moved by person Arnold,
the colon is moved by person Betty.

Person Jules
moved the

timer bullet button lock lock colon

The mask is moved by person Cole,
the neck is moved by person Donald,
the pad is moved by person Beth,
the cone is moved by person Jorge,
the tail is moved by person Lou,
the thread is moved by person Alfred,
the toe is moved by person Edward.

Person Cole
moved the

neck pad cone tail toe toe

Table 7: Attributes inferred by Llama2-7B as a result of directed activation patching along BI-PC in the BI subspace
on the dataset of “r: move”, where color denotes the BI.

Answer for # Step

Context Query 1 2 3 4 5 6

The creature is brought by person Tam,
the guitar is brought by person Frank,
the dress is brought by person Stuart,
the block is brought by person Victor,
the brain is brought by person David,
the coffee is brought by person Mack,
the radio is brought by person Roger.

Person Tam
brings the

guitar dress block brain coffee radio

The boat is brought by person Luke,
the pipe is brought by person Clara,
the pot is brought by person Han,
the bill is brought by person Chi,
the milk is brought by person Scott,
the card is brought by person Henry,
the brick is brought by person Morris

Person Luke
brings the

pipe pot bill card brick brick

The fan is brought by person Van,
the note is brought by person Clara,
the block is brought by person Alex,
the newspaper is brought by person Peg,
the crown is brought by person Jan,
the car is brought by person Pok,
the magnet is brought by person Golden.

Person Van
brings the

note block crown car magnet magnet

Table 8: Attributes inferred by Llama2-7B as a result of directed activation patching along BI-PC in the BI subspace
on the dataset of “r: bring”, where color denotes the BI.
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Answer for # Step

Context Query 1 2 3 4 5 6

The load is pushed by person Mike,
the atom is pushed by person Mira,
the tin is pushed by person Juli,
the stud is pushed by person Sam,
the sedan is pushed by person Pia,
the bath is pushed by person Leo,
the growth is pushed by person Pat.

Person Mike
pushes the

atom tin stud bath growth growth

The mud is pushed by person Thomas,
the heavy is pushed by person Ralph,
the tile is pushed by person Pierre,
the import is pushed by person Perry,
the arm is pushed by person Robert,
the lung is pushed by person Kurt,
the cabin is pushed by person Ernest.

Person Thomas
pushes the

heavy tile import arm cabin cabin

The bed is pushed by person Fran,
the lever is pushed by person Lan,
the cord is pushed by person Paris,
the vent is pushed by person Gene,
the thumb is pushed by person Marie,
the mouth is pushed by person Asia,
the ear is pushed by person Lang.

Person Fran
pushes the

lever cord vent thumb thumb ear

Table 9: Attributes inferred by Llama2-7B as a result of directed activation patching along BI-PC in the BI subspace
on the dataset of “r: push”, where color denotes the BI.
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A.6 Activation Steering on Llama2-7B 715
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Figure 13: Logit Difference (LD) for BI subspace based activation steering across datasets on Llama2-7B, where x
axis represents the intervention of s0Ñbi on the activation of e0. Here, l “ 8 and α “ 1.25.
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Figure 14: Logit flip for BI subspace based activation steering across datasets on Llama2-7B, where x axis represents
the intervention of s0Ñbi on the activation of e0.
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A.7 Activation Patching on Float-7B716
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Figure 15: Logit Difference (LD) for BI-PC based intervention across datasets on Float-7B, where x axis denotes
the number of intervention steps on e0, y axis does the LD, BI_i represents each target attribute and the light yellow
bottom line indicates the LD of original attribute (i.e., a0). Here, l “ 10, v “ 2.55, and α “ 5.0.
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Figure 16: Logit flip for BI-PC based intervention across datasets on Float-7B, where x axis denotes the number of
intervention steps on e0, y axis does the proportion of each inferred attribute in model output.
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A.8 Activation Patching on Llama3-8B 717
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Figure 17: Logit Difference (LD) for BI-PC based intervention across datasets on Llama3-8B, where x axis denotes
the number of intervention steps on e0, y axis does the LD, BI_i represents each target attribute and the blue line
indicates the LD of original attribute (i.e., a0). Here, l “ 10, v “ 0.65, and α “ 2.0.
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Figure 18: Logit flip for BI-PC based intervention across datasets on Llama3-8B, where x axis denotes the number
of intervention steps on e0, y axis does the proportion of each inferred attribute in model output.
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A.9 Activation Patching on the New Dataset with Interjections718
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Figure 19: Logit Difference for activation patching on the dataset with interjections. Here, l “ 8, v “ 2.5, and
α “ 3.0.
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Figure 20: Logit Flip for activation patching on the dataset with interjections.
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