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ABSTRACT

Naive Bayes (NB) continues to be one of the top 10 data mining algorithms. How-
ever, due to its assumption of attribute conditional independence, NB encounters
significant challenges in addressing attribute-class correlations, attribute-attribute
correlations, instance-class correlations, instance-instance correlations, and so on.
In the last few decades, a large number of improved algorithms have been pro-
posed, but none of them simultaneously addresses all these correlations. To bridge
this gap, this paper proposes a novel algorithm called multiple correlation encoder-
based naive Bayes (MCENB). In MCENB, we first design a multiple correlation
encoder to generate new attributes, where multiple correlations are simultaneously
captured and optimized. Specifically, the newly generated attributes are highly
correlated with the class, yet uncorrelated with each other. Instances consisting
of new attribute values are highly correlated with those in the same class. Subse-
quently, we augment original attributes by concatenating them with new attributes.
Finally, we weight each augmented attribute to alleviate the attribute redundancy
and then build NB on the weighted attributes. The experiments across numerous
datasets show that MCENB significantly outperforms its benchmark competitors.

1 INTRODUCTION

Bayesian network classifiers (BNCs) (Pearl, 1989; Friedman et al., 1997; Tang et al., 2016; Zhang
et al., 2020) have received much attention in the supervised classification due to their obvious ad-
vantages, such as the explicit interpretability and the powerful expression ability. In a supervised
classification task containing m attribute variables, an instance x can be represented as an attribute
value vector < a1, a2, ..., aj , ..., am >, where aj is the value of x on the j-th attribute Aj . Let C
represent the class variable and c represent the value that C takes, BNCs use Eq. (1) to classify x:

ĉ(x) = arg max
c∈C

P (c)P (a1, a2, ..., aj , ..., am|c), (1)

where ĉ(x) is the class label of x predicted by BNCs and P (c) is the prior probability of c. Among
numerous BNCs, naive Bayes (NB) (Settouti et al., 2016; Domingos & Pazzani, 1996) requires an
assumption that all attributes are independent given the class, simplifying the probability estimation
of P (a1, a2, ..., aj , ..., am|c). According to the assumption, NB uses Eq. (2) to classify x:

ĉ(x) = arg max
c∈C

P (c)

m∏
j=1

P (aj |c), (2)

where P (aj |c) is the conditional probability of aj given c.

Although NB has continued to be one of the top 10 algorithms in data mining (Wu et al., 2008),
it is obvious that the assumption of attribute conditional independence is rarely true since various
correlations in the real world result in complex dependencies among attributes. To address these cor-
relations, including attribute-class correlations, attribute-attribute correlations, instance-class corre-
lations, instance-instance correlations, and so on, numerous improved algorithms of NB have been
proposed. They can be broadly divided into four categories: structure-oriented, probability-oriented,
attribute-oriented and instance-oriented algorithms.

Existing improved algorithms have demonstrated significant effectiveness, however, most of them
focus on a single correlation, and none of them address all these correlations simultaneously. To
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bridge this gap, this paper proposes a novel algorithm called multiple correlation encoder-based
naive Bayes (MCENB). In MCENB, we first design a multiple correlation encoder to generate new
attributes, where multiple correlations are simultaneously captured and optimized. Specifically, the
newly generated attributes are highly correlated with the class, yet uncorrelated with each other.
Instances consisting of new attribute values are highly correlated with those in the same class. Sub-
sequently, we augment original attributes by concatenating them with new attributes. Finally, we
weight each augmented attribute to alleviate the attribute redundancy and then build NB on the
weighted attributes. In summary, the main contributions of this paper can be highlighted as:

• We argue that multiple correlations should be simultaneously optimized to improve NB.
Attributes should be highly correlated with the class, yet uncorrelated with each other, and
instances in the same class should be highly correlated with each other.

• We design a new multiple correlation encoder (MCE), which can capture multiple correla-
tions and then optimize these correlations to generate new attributes with higher identifica-
tion abilities compared to original attributes.

• We propose a novel algorithm called multiple correlations encoder-based naive Bayes
(MCENB), which uses the original attributes and the new attributes and thus provides a
more comprehensive attribute representation for improving NB.

The rest of this paper is organized as: Section 2 conducts a survey on improved algorithms of NB.
Section 3 provides a description of our proposed MCENB. Section 4 conducts experiments on real-
world and synthetic datasets. Section 5 concludes this paper and discusses the future work.

2 RELATED WORK

To address various correlations, numerous improved algorithms of NB have been proposed, which
can be broadly divided into four categories: structure-oriented, probability-oriented, attribute-
oriented and instance-oriented algorithms. Structure-oriented algorithms (Friedman et al., 1997;
Webb et al., 2005; Jiang et al., 2009; Qiu et al., 2015) extend the network structure of NB to cap-
ture attribute-attribute correlations. They add directed edges among attribute vertices to represent
attribute dependencies and calculate the conditional probabilities of attributes given both the class
vertex and their parent vertices. Probability-oriented algorithms (Hindi, 2014; Diab & Hindi, 2017;
Hindi et al., 2020; Zhang & Jiang, 2022) suggest that it is rough to represent attribute-class correla-
tions by the conditional probabilities estimated by NB. Therefore, they claim to iteratively fine tune
the conditional probabilities to obtain a more effective correlation representation. Attribute-oriented
algorithms include three strategies: attribute generation, attribute selection and attribute weighting.
Attribute generation (Ou et al., 2022; He et al., 2023) maps original attributes to another attribute
space to reduce attribute-attribute correlations. Attribute selection (Chen et al., 2014; 2020) evalu-
ates attribute-class correlations to remove attributes uncorrelated with the class. Attribute weighting
(Zaidi et al., 2013; Jiang et al., 2019) evaluates attribute-class correlations and possibly attribute-
attribute correlations to assign different weights for different attributes. Similar to attribute-oriented
algorithms, instance-oriented algorithms also include three strategies: instance generation, instance
selection and instance weighting. Specifically, instance generation (Jiang & Zhang, 2005; Jiang
et al., 2008; Li et al., 2025) models instance-instance correlations to generate new instances. In-
stance selection (Langley & Sage, 2013; Wang et al., 2015) evaluates instance-class correlations to
remove redundant and noisy instances in each class. Instance weighting (Jiang et al., 2012; 2014)
evaluates instance-class correlations to assign different weights for different instances.

Based on the above discussion, we summarize the correlations addressed in different improved al-
gorithms in Table 1. Existing improved algorithms focus on attribute-class correlations, attribute-
attribute correlations, instance-class correlations and instance-instance correlations, but most ad-
dress one of these correlations. To address the above four correlations simultaneously, this paper
proposes a novel algorithm called multiple correlation encoder-based naive Bayes (MCENB).

3 MCENB

In this paper, we first design a new multiple correlation encoder (MCE), which can generate new
attributes by capturing and optimizing multiple correlations. Based on the MCE, MCENB leverages
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Table 1: Comparisons of correlations addressed in different improved algorithms of NB.

Algorithm attribute-class attribute-attribute instance-class instance-instance
structure-oriented algorithms - - -
probability-oriented algorithms - - -
attribute-oriented algorithms - -
instance-oriented algorithms - -
our proposed MCENB
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m2
km

m

m2
m m

CLL
Gradient
Descent
Search

Concatenate

Original Attributes
Augmented Attributes Weight Vector

Input Generate

Build

Encoder of MCE

m2
m m

m2
km

m
m2

m m

11a

ma1

11a

ma1

21a

ma2

1na

mna

11z

mz1

21z

mz2

1nz

mnz

11a

ma1

21a

ma2

1na

mna

11z

mz1

21z

mz2

1nz

mnz

1w

mw

mw2

Optimize

Attribute Weighted GNB

C

1A mA mA2

1w
mw mw2

Calculate

New Attributes

Figure 1: Framework of MCENB.

attribute generation, attribute augmentation and attribute weighting to improve NB. The framework
of MCENB is illustrated in Figure 1. From Figure 1, we can see that MCENB is a two-stage
algorithm. In the first stage, we generate new attributes by inputting original attributes to the encoder
of MCE and then augment original attributes by concatenating them with new attributes. In the
second stage, we optimize the weight vector by using the gradient descent search to maximize the
conditional log-likelihood (CLL) and finally build attribute weighted Gaussian naive Bayes (GNB)
on the augmented attributes.

3.1 ATTRIBUTE GENERATION AND AUGMENTATION

Given a training set with n instances, m attributes and k classes, it can be represented as D = {X , c},
where X is the set of n original attribute value vectors, c is the class label vector. The i-th attribute
value vector in X is xi, the j-th attribute value of xi is aij and the class label of xi is ci. For the
given D, we design MCE to generate a set of embedding vectors and treat them as new attribute
value vectors. The structure of MCE is illustrated in Figure 2. From Figure 2, we can see that
MCE consists of an encoder q(z|x) and a decoder p(x|z,v), where z is the embedding vector
generated by q(z|x) and v is the one-hot class vector. q(z|x) and p(x|z,v) are both set to consist
of three layers of neurons, with the number of neurons in each layer are m, 2m, m and m+k, 2m,
m, respectively. During the training process of MCE, original attribute value vectors are processed
sequentially. Taking xi as an example, it is first input to q(z|x) to generate an embedding vector
zi=< zi1, zi2, ..., zij , ..., zim >, where zij is the j-th value of zi. Subsequently, to introduce the
supervised information into the structure, ci is transformed into a one-hot class vector vi and then
vi is concatenated with zi. Finally, the concatenated vector is input to p(x|z,v) to generate a
reconstructed attribute value vector x̂i, where âij is the j-th reconstructed attribute value of x̂i.
Motivated by variational inference (Zhang et al., 2019), MCE is trained by maximizing the evidence
lower bound (ELBO), which can be formulated as Eq. (3):

LELBO = Eq(z|x)[log p(x|z,v)]−KL(Z||p(Z)), (3)

where Eq(z|x)[log p(x|z,v)] is the expectation of the log-likelihood about original attribute value
vectors and reconstructed attribute value vectors, KL(Z||p(Z)) is the Kullback-Leibler divergence
between the set of embedding vectors Z and the variational prior p(Z). We treat the i-th embedding
vector zi in Z as the i-th new attribute value vector, i.e., the i-th new instance. Meanwhile, we define
the j-th new attributes as Bj , and p(Z) requires that each new attribute follows a standard Gaussian
distribution given the class.

Based on the structure of MCE, we further improve the identification abilities of new attributes by
capturing and optimizing multiple correlations from two perspectives, which are illustrated in Fig-
ure 3. From Figure 3, we can see that attribute-class correlations and attribute-attribute correlations

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026m2
km

m
m2

m m

m2
km

m
m2

m m

Encoder Decoder
Original
Attribute

Value Vector Class Vector

Reconstructed
Instance

Embedding
Vector

1ia

mia 1/0

1/0

1a

ma

1iz

miz
1ˆia

miâ
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can be optimized from the attribute perspective, as well as instance-class correlations and instance-
instance correlations from the instance perspective. With these two perspectives, we introduce two
new correlation objective functions: the attribute correlation function LA and the instance correla-
tion function LI . In this paper, the correlation ρ(α;β) between two vectors α and β is captured by
the Pearson coefficient (Cohen & Israel, 2009). The sign of the Pearson coefficient is neglected, as
it is uncorrelated with our analysis. Therefore, ρ(α;β) can be formulated as Eq. (4):

ρ(α;β) =
|
∑l

l′=1 (αl′ − µα) (βl′ − µβ) |√∑l
l′=1 (αl′ − µα)

2
√∑l

l′=1 (βl′ − µβ)
2
, (4)

where l is the length of α and β, αl′ and βl′ are the l′-th element values of α and β, respectively,
µα and µβ are the means of element values in α and β, respectively.

Attribute perspective. Let bj=< z1j , z2j , ..., zij , ..., znj > represent the vector consisting of the
attribute values taken by Bj in all new instances, the attribute-class correlation between bj and c
is represented as ρ(bj ; c). Similarly, the attribute-attribute correlation between bj and bu is rep-
resented as ρ(bj ; bu). To align with the assumption of attribute conditional independence, new
attributes should be highly correlated with the class yet uncorrelated with each other. Therefore,
we calculate the average attribute-class correlation ρ̄bc and the average attribute-attribute correla-
tion ρ̄bb of new attributes, and then enhance the difference between ρ̄bc and ρ̄bb by maximizing the
attribute correlation function LA, which is formulated as Eq. (5):

LA = ρ̄bc − ρ̄bb =
1

m

m∑
j=1

ρ (bj ; c)−
1

m(m− 1)

m∑
j=1

m∑
u=1∧u ̸=j

ρ (bj ; bu) . (5)

Instance perspective. The instance-instance correlation between zi and zv is ρ(zi; zv). Since
the class label of each instance is a scalar rather than a vector, instance-class correlations can not
be explicitly measured by the Pearson coefficient. In this context, we indirectly optimize instance-
class correlations through instance-instance correlations. Specifically, new instances in the same
class should be highly correlated with each other to tightly aggregate together, thereby enhancing
the correlation between each instance and its class. Following the concept of contrastive learning
(Khosla et al., 2020), we enhance the ratio between the average instance-instance correlation of
instances in each class and the average instance-instance correlation of all instances. This goal is
achieved by maximizing the instance correlation function LI , which can be formulated as Eq. (6):

LI =
1

k

k∑
c=1

rc =
1

k

k∑
c=1

1
nc(nc−1)

∑nc

i=1

∑nc

v=1∧v ̸=i ρ(zi; zv)

1
n(n−1)

∑n
i=1

∑n
v=1∧v ̸=i ρ(zi; zv)

, (6)

where rc is the instance-instance correlation ratio corresponding to the c-th class, and nc is the
number of instances in the c-th class.

Considering the ELBO and two correlation objective functions, we finally maximize L to train MCE,
which can be formulated as Eq. (7):

L = LELBO + LA + LI , (7)
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based on L, we update the parameters W of MCE over P iterations by Eq. (8):

Wp+1 = Wp − η
∂L
∂W

, (8)

where Wp represents the parameters in the p-th iteration and η represents the learning rate. When p
= 1, Wp represents randomly initialized parameters.

Finally, we use the MCE trained after P iterations to generate new attributes. Since MCE optimizes
multiple correlations from the attribute and the instance perspectives simultaneously, new attributes
exhibit higher identification abilities compared to original attributes. To enhance the identification
abilities of original attributes and provide a more comprehensive attribute representation, we aug-
ment original attributes by concatenating them with new attributes. For each instance, we define zij
as the (m + j)-th attribute value of xi. The length of zi is the same as that of xi, it is evident that
each instance can obtain m new attributes, with the final length expanding to 2m.

3.2 ATTRIBUTE WEIGHTING

Since new attributes are generated from original attributes, attribute augmentation may potentially
cause the attribute redundancy. In this subsection, to alleviate the impact of attribute redundancy,
we assign different weights for different augmented attributes. Besides, to align with the numerical
attributes generated by MCE, we employ GNB to predict the class label, which is a variant of NB
specifically adapted to numerical attributes. Based on the weighted attributes, we build attribute
weighted GNB and use Eq. (9) to predict the class label:

ĉ(x) = arg max
c∈C

P (c)

2m∏
j=1

P (aj |c)wj , (9)

where wj is the weight of Aj . P (c) and P (aj |c) are estimated by Eq. (10) and Eq. (11), respectively:

P (c) =

∑n
i=1 I(ci, c) + 1

n+ k
, (10)

P (aj |c) =
1√

2πσcj

exp

(
− (aj − µcj)

2

2σ2
cj

)
, (11)

where I(·) is a binary function, which takes the value 1 if its two parameters are identical and 0
otherwise. µcj and σcj are the mean and standard deviation of Aj given c, respectively.

After building the attribute weighted GNB, we assign different weights for different augmented
attributes. Initially, each weight in the weight vector w is assigned a random value between 0
and 1. Subsequently, these weights are optimized by the gradient descent search. The objective
function of optimization is defined to maximize the CLL of the attribute weighted GNB, which can
be formulated as Eq. (12):

CLL(w) = log P̂ (C|D,w) =

n∑
i=1

log P̂ (ci|xi,w), (12)

where P̂ (ci|xi,w) is the posterior probability of ci estimated by the attribute weighted GNB given
xi and w, which is formulated as Eq. (13):

P̂ (ci|xi,w) =
φ(ci|xi,w)
k∑

c=1
φ(c|xi,w)

, (13)

where φ(c|xi,w) is the product of P (c) and each P (aj |c)wj of xi, which is formulated as Eq. (14):

φ(c|xi,w) = P (c)

2m∏
j=1

P (aj |c)wj . (14)
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The gradient of φ(c|xi,w) with respect to wj can be formulated as Eq. (15):

∂

∂wj
φ(c|xi,w) =

P (c)

2m∏
j′=1∧j′ ̸=j

P (aj′ |c)wj′

 ∂

∂wj
P (aj |c)wj

=

P (c)

2m∏
j′=1∧j′ ̸=j

P (aj′ |c)wj′

P (aj |c)wj logP (aj |c)

=φ(c|xi,w) logP (aj |c).

(15)

Then, the gradient of CLL(w) with respect to wj can be formulated as Eq. (16):

∂

∂wj
CLL(w) =

∂

∂wj

n∑
i=1

(
logφ(ci|xi,w)− log

(
k∑

c=1

φ(c|xi,w)

))

=
n∑

i=1

logP (aj |ci)−

k∑
c=1

φ(c|xi,w) logP (aj |c)

k∑
c=1

φ(c|xi,w)


=

n∑
i=1

(
logP (aj |c)−

k∑
c=1

P̂ (c|xi,w) logP (aj |c)

)
.

(16)

In summary, the entire learning algorithm for our MCENB can be partitioned into training (MCENB-
training) and classification (MCENB-classification) algorithms. These two algorithms and their time
complexity analyses are provided in Appendix A and Appendix B, respectively.

4 EXPERIMENTS AND RESULTS

The purpose of this section is to validate the effectiveness and rationality of our proposed MCENB.
We first compare the classification accuracy of MCENB with its seven competitors and conduct two
groups of ablation studies on 24 real-world datasets. Then, we observe the identification abilities of
new attributes and the correlation optimization process on a synthetic dataset.

4.1 EXPERIMENTS ON 24 REAL-WORLD DATASETS

From the real-world datasets published by the KEEL dataset repository,1 we use the whole 24
datasets only containing numerical attributes, which represent a wide range of domains and data
characteristics. The detailed descriptions of these datasets are provided in Appendix C. In our ex-
periments, attributes are normalized by the min-max method (Patro & Sahu, 2015).2 We compare the
classification accuracy of MCENB with its seven competitors on these datasets by running 10 sepa-
rate hold-out validations, in which each dataset is split into a training set and a test set by stratified
sampling. The proportions of the training set and the test set are 80% and 20%, respectively.

Classification performance. To verify the classification performance of our proposed MCENB,
we compare it with GNB and its six state-of-the-art competitors, including attribute grouping-based
naive Bayesian classifier (AG-NBC) (He et al., 2023), auto-encoding naive Bayesian classifier (AE-
NBC) (Ou et al., 2022), weighting attributes to alleviate naive Bayes’ independence assumption
(WANBIA) (Zaidi et al., 2013), correlation-based feature weighting filter for naive Bayes (CFWNB)
(Jiang et al., 2019), instance correlation graph-based niave Bayes (ICGNB) (Li et al., 2025) and dis-
criminatively weighted naive Bayes (DWNB) (Jiang et al., 2012). Among all competitors, GNB is

1https://sci2s.ugr.es/keel/category.php?cat=clas
2Some other normalization methods, such as the z-score method, can not limit the range of attribute values,

which will lead to the computational overflow of LELBO .
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Table 2: Classification accuracy (%) comparisons for MCENB versus its competitors.

Dataset MCENB AG-NBC AE-NBC WANBIA CFWNB ICGNB DWNB GNB
appendicitis 88.64±7.40 84.55±5.45 84.55±8.67 88.18±7.66 90.00±6.03 88.18±6.17 90.00±6.03 86.36±6.10
balance 89.76±1.75 91.04±1.78 87.44±5.20 90.24±2.84 88.32±3.87 86.32±2.74 91.36±2.23 90.24±2.84
banana 64.81±1.37 84.35±4.53 60.48±1.17 62.00±0.91 59.74±1.48 62.90±1.11 61.46±0.96 62.00±0.91
cleveland 58.33±4.41 53.83±4.09 56.50±7.94 58.00±4.27 54.83±4.86 54.83±4.37 55.50±7.19 52.17±8.95
ecoli 79.71±5.09 68.38±5.47 74.12±4.42 79.12±6.06 60.59±11.96 77.65±5.76 62.65±6.52 60.74±6.61
glass 61.16±7.86 59.07±6.91 54.88±9.93 59.07±7.15 51.63±11.34 58.37±8.02 47.67±9.14 47.21±9.70
iris 96.00±3.27 90.67±4.16 95.00±4.53 96.00±3.27 95.33±3.71 96.33±3.14 96.33±3.14 95.33±3.71
led7digit-01 73.80±1.89 69.20±3.76 71.30±2.83 70.40±5.90 64.20±9.11 72.30±3.61 61.10±15.00 63.40±12.11
magic 77.17±0.67 75.74±2.09 76.52±0.48 77.08±0.56 74.89±0.44 80.39±0.50 79.46±0.52 72.66±0.64
movement libras 68.89±3.84 70.83±4.35 76.53±5.47 63.06±4.90 62.22±4.76 58.21±5.23 62.50±5.27 61.94±5.63
phoneme 77.04±1.40 77.03±1.51 76.57±2.74 75.91±1.40 76.85±1.58 76.73±1.59 77.74±1.45 75.97±1.65
pima 75.65±2.83 73.38±3.17 72.21±3.14 75.52±2.69 75.00±2.97 75.97±1.86 75.91±2.94 74.61±3.45
ring 97.89±0.24 93.03±1.52 97.84±0.37 97.90±0.20 97.95±0.30 97.95±0.25 97.89±0.28 97.92±0.28
segment 89.46±1.14 87.97±1.32 82.49±1.04 88.79±1.27 14.39±1.54 89.76±1.13 85.87±1.12 79.42±1.48
sonar 83.33±5.32 74.76±8.86 66.67±6.39 78.33±5.05 68.10±5.02 72.14±4.40 78.33±4.70 66.67±5.11
spambase 92.97±0.98 87.59±1.40 86.78±0.96 90.26±1.14 83.73±1.25 91.04±1.13 83.42±2.28 82.08±1.25
texture 91.84±0.88 95.35±0.75 94.46±0.64 84.47±1.00 78.35±1.38 91.62±0.83 78.38±1.21 77.45±1.39
titanic 77.51±1.23 74.44±1.97 76.76±0.99 77.64±1.21 76.98±0.89 77.64±1.21 78.07±1.32 76.98±0.89
twonorm 97.72±0.26 96.20±0.93 96.92±0.78 97.72±0.27 97.71±0.29 97.64±0.28 97.76±0.32 97.70±0.28
wdbc 96.93±1.32 93.86±2.69 87.72±2.15 96.40±1.54 93.95±1.90 97.02±1.53 95.79±1.56 92.98±2.29
wine 97.78±1.11 98.06±2.50 93.89±2.72 97.50±1.50 96.94±1.94 97.50±1.50 96.67±2.42 97.50±1.50
winequality-red 59.56±2.11 58.84±3.23 52.06±3.08 58.44±1.78 58.53±1.48 58.97±2.00 55.50±2.47 54.72±2.56
winequality-white 53.19±1.06 50.97±2.06 45.62±2.56 52.21±1.51 49.27±1.16 52.41±0.92 47.69±1.58 44.38±1.61
yeast 56.90±3.10 51.01±4.60 42.93±7.67 54.28±3.20 18.86±4.12 55.59±3.84 15.69±2.49 14.92±3.24
(W / T / L) 19/0/5 22/0/2 19/2/3 22/0/2 17/0/7 15/0/9 22/0/2
Average 79.42 77.51 75.43 77.86 73.10 77.81 73.86 71.89

Table 3: Wilcoxon tests for MCENB versus its competitors.

Algorithm MCENB AG-NBC AE-NBC WANBIA CFWNB ICGNB DWNB GNB
MCENB - ◦ ◦ ◦ ◦ ◦ ◦ ◦
AG-NBC • - • ◦ ◦
AE-NBC • - • • ◦
WANBIA • ◦ - ◦ ◦ ◦
CFWNB • • • - • ◦
ICGNB • ◦ ◦ - ◦
DWNB • • - ◦
GNB • • • • • • • -

the baseline. AG-NBC and AE-NBC address attribute-attribute correlations through attribute gen-
eration. WANBIA addresses attribute-class correlations through attribute weighting. CFWNB ad-
dresses both attribute-class correlations and attribute-attribute correlations through attribute weight-
ing. ICGNB addresses instance-instance correlations through instance generation. DWNB addresses
instance-class correlations through instance weighting. For algorithms focusing on nominal at-
tributes (WANBIA, CFWNB and DWNB), we replace NB in them with GNB. In MCENB, the
number of iterations P is set to 200 and the learning rate η is set to 0.01. The parameters of com-
petitors are consistent with those in the original papers.

Table 2 shows the detailed classification accuracy (%) of each algorithm on each dataset. In Table 2,
the highest classification accuracy on each dataset is bolded. The Win / Tie / Lose (W / T / L) values
and the averages (arithmetic mean) are summarized at the bottom of the table. The Win/ Tie/ Lose
values imply that MCENB wins on W datasets, ties on T datasets, and loses on L datasets compared
to its competitor. Based on the classification accuracy results in Table 2, we employ the Wilcoxon
signed-ranks test (Demsar, 2006) to conduct a comprehensive comparison of each pair of algorithms,
and the comparison results are summarized in Table 3. In Table 3, symbol • indicates that the
algorithm in the column outperforms the one in the corresponding row, and symbol ◦ signifies the
opposite. The lower-diagonal significance level is α = 0.05, while the upper-diagonal level is α =
0.1. Observing these results, the conclusion is evident that MCENB significantly outperforms all
the other competitors. Specific conclusions are summarized as:

(1) Compared to AG-NBC, AE-NBC, WANBIA and CFWNB, MCENB is better on 19, 22, 19, 22
datasets and only worse on 5, 2, 3, 2 datasets, respectively. MCENB wins the competitors addressing
the correlations from the attribute perspective. This verifies the effectiveness of optimizing the
correlations from the instance perspective.

(2) Compared to ICGNB and DWNB, MCENB is better on 17, 15 datasets and worse on 7, 9
datasets. MCENB wins the competitors addressing the correlations from the instance perspective.
This verifies the effectiveness of optimizing the correlations from the attribute perspective.
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Figure 4: Average classification accuracy (%) of
MCENB, MCENB-noA and MCENB-noW.
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Figure 5: Average classification accuracy (%) of
MCENB, MCENB-noLA and MCENB-noLI .

(3) Compared to GNB, MCENB is better on 22 datasets and worse on 2 datasets. This indicates that
MCENB is effective in enhancing the performance of GNB, and our proposed MCE is powerful.

(4) The average classification accuracy of MCENB (79.42%) is higher than those of AG-NBC
(77.51%), AE-NBC (75.43%), WANBIA (77.86%), CFWNB (73.10%), ICGNB (77.81%), DWNB
(73.86%) and GNB (71.89%), respectively. This suggests that MCENB performs better than existing
state-of-the-art competitors.

(5) According to the Wilcoxon signed-ranks test results presented in Table 3, MCENB significantly
outperforms all existing state-of-the-art competitors whether α = 0.05 or α = 0.1, which strongly
validates the classification performance of MCENB.

Ablation studies. To validate the necessity of each stage in MCENB and each correlation objective
function in MCE, we perform two groups of ablation studies by comparing MCENB with its ablation
variants. The first group of variants are MCENB-noA and MCENB-noW. MCENB-noA removes
the stage of attribute generation and augmentation while retaining attribute weighting. MCENB-
noW removes the stage of attribute weighting while retaining attribute generation and augmentation.
The second group of variants are MCENB-noLA and MCENB-noLI . MCENB-noLA removes the
correlation function LA while retaining LI , and MCENB-noLI removes the correlation function
LI while retaining LA. Figures 4 and 5 show the average classification accuracy (%) of MCENB
and these variants. Observing the results of MCENB, MCENB-noA and MCENB-noW in Figure
4, we summarize the conclusions as: (1) The accuracy of MCENB is higher than that of MCENB-
noA, which confirms that enhancing the identification abilities of the original attributes through
attribute generation and augmentation is necessary. (2) The accuracy of MCENB is higher than
that of MCENB-noW, which confirms that alleviating the attribute redundancy through attribute
weighting is necessary. Observing the results of MCENB, MCENB-noLA and MCENB-noLI in
Figure 5, we summarize the conclusions as: (1) The accuracy of MCENB is higher than that of
MCENB-noLA, which confirms that optimizing the correlations from the attribute perspective is
necessary. (2) The accuracy of MCENB is higher than that of MCENB-noLI , which confirms that
optimizing the correlations from the instance perspective is necessary.

4.2 EXPERIMENTS ON A SYNTHETIC DATASET

To observe the identification abilities of new attributes and the correlation optimization process, we
design another group of experiments on a synthetic dataset, which contains 2 classes, 100 instances
and 50 attributes. The synthetic process initially creates Gaussian clusters around the vertices of a
40-dimensional hypercube and assigns an equal number of clusters to each class. By sampling from
these clusters, instances containing 40 informative attributes can be obtained. Then, 10 redundant
attributes are generated by random linear combinations of these informative attributes.

Identification abilities. To observe the identification abilities of new attributes generated by MCE,
we compare the class distributions of original attributes and new attributes. We employ the t-SNE
algorithm (van der Maaten & Hinton, 2008) to map the dataset to a two-dimensional space, provid-
ing clear observations of the class distributions. Figure 6 shows the class distributions of original
attributes and new attributes, where scatters with a circle are test instances and the rest are training
instances. In Figure 6a, we can see that the class distribution of original attributes is confusing, and
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Figure 6: Class distributions of the synthetic dataset.
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Figure 7: Correlation changes during the MCE training process.

there is no class boundary between the two classes. In Figure 6b, we can see that the class distri-
bution of new attributes is significantly more distinguishable compared to that of original attributes.
Besides, most test instances are aggregated together with the training instances in the same class,
while only a few test instances are in the class boundary. This facilitates predicting the class of
each instance accurately. In summary, the class distributions in Figure 6 indicate that new attributes
exhibit higher identification abilities compared to original attributes.

Correlation optimization. To observe how correlations are optimized, we show the correlation
changes during the MCE training process in Figure 7. From the attribute perspective, Figure 7a
shows the changes of ρ̄bc and ρ̄bb. At the beginning, ρ̄bb is higher than ρ̄bc, but ρ̄bc exceeds it
after only 2 iterations. As ρ̄bc increases while ρ̄bb decreases, the difference between them gradually
grows, eventually stabilizing at approximately 0.2, which represents a significant rise compared to
the initial state. This suggests that new attributes exhibit higher attribute-class correlations and lower
attribute-attribute correlations compared to original attributes. From the instance perspective, Figure
7b shows the changes of r1 and r2, which are the instance-instance correlation ratios corresponding
to two classes, respectively. At the beginning, they are approximately 1.0 and 1.05, respectively. Af-
ter the training process, they both increase to approximately 1.35. This suggests that new attributes
exhibit higher instance-instance correlations in the same class compared to original attributes. The
correlation changes in Figure 7 indicate that multiple correlations about new attributes are optimized
from both the attribute and the instance perspectives.

5 CONCLUSION AND FEATURE WORK

To obtain highly identifiable attributes, we design a new multiple correlation encoder (MCE) to
generate new attributes by capturing and optimizing multiple correlations. Based on it, we propose
a novel algorithm called multiple correlation encoder-based naive Bayes (MCENB). Comprehensive
experiments demonstrate its effectiveness and rationality on both real-world and synthetic datasets.
However, MCENB only considers the absolute value not the sign of the Pearson coefficient, failing
to consider the negative correlation. Exploring how to leverage the negative correlation is the main
direction for future work.
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REPRODUCIBILITY STATEMENT

We submit the code and datasets as supplementary materials, and the details of dataset preprocessing
and algorithm implementation are provided in the main text. Once our paper is accepted, we will
make the code and datasets publicly available on GitHub.
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Appendix A Training algorithm of MCENB

Algorithm 1 MCENB-training(D, P , η)
Input: D = {X , c} - the training set, P - the number of iterations, η - the learning rate.
Output: w - the weight vector, q(z|x) - the encoder of MCE.
1: Initialize the parameters of MCE as W1;
2: for p = 1 to P do
3: for i = 1 to n do
4: Generate the i-th embedding vector zi by q(z|x) with Wp;
5: Transform the class label of ci into the one-hot class vector vi and concatenate zi with it;
6: Generate the reconstructed attribute value vector x̂i by p(x|z,v) with Wp;
7: end for
8: Calculate the value of the objective function L by Eqs. (3)-(7);
9: Update the parameters of MCE with η by Eq. (8);

10: end for
11: for i = 1 to n do
12: Generate the embedding vector zi by q(z|x) with WP+1;
13: Concatenate xi with zi;
14: end for
15: for c = 1 to k do
16: Estimate the prior probability P (c) by Eq. (10);
17: for j = 1 to 2m do
18: Estimate the conditional probability P (aj |c) by Eq. (11);
19: end for
20: end for
21: Assign random values between 0 and 1 to weights in the weight vector w;
22: Optimize the initialized weight vector w by Eqs. (12)-(16);
23: return w, q(z|x).

In Algorithm 1, line 1 initializes the parameters in MCE with a time complexity of O(m + k).
Lines 2-10 train an MCE with a time complexity of O(P (nm(m + k)) + n2mk). Lines 11-14
generate new attributes and augment original attributes with a time complexity of O(nm2). Lines
15-20 train a GNB with a time complexity of O(knm). Lines 21-22 weight augmented attributes
with a time complexity of O(β(m)), where β(m) has a linear relationship with m. Due to n usually
being greater than m and m usually being greater than k, considering only the highest-order terms,
the overall time complexity of Algorithm 1 is O(Pn2mk).

Appendix B Classification algorithm of MCENB

Algorithm 2 MCENB-classification(x, w, q(z|x))
Input: x - a test instance, w - the weight vector, q(z|x) - the encoder of MCE.
Output: ĉ(x) - the predicted class label of x.
1: Generate the embedding vector z by q(z|x);
2: Concatenate x with z;
3: for c = 1 to k do
4: Estimate the prior probability P (c) by Eq. (10);
5: for j = 1 to 2m do
6: Estimate the conditional probability P (aj |c) by Eq. (11);
7: end for
8: end for
9: Predict the class label ĉ(x) of x by Eq. (9);

10: return ĉ(x).

In Algorithm 2, lines 1-2 generate new attributes and augment original attributes with a time com-
plexity of O(m2). Lines 3-8 estimate P (c) and each P (aj |c) with a time complexity of O(km).
Line 9 predicts ĉ(x) with a time complexity of O(m). Considering only the highest-order terms, the
overall time complexity of Algorithm 2 is O(m2).
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Appendix C Descriptions of 24 real-world datasets used in experiments

Dataset #Attributes #Classes #Instances

appendicitis 7 2 106
balance 4 3 625
banana 2 2 5300
cleveland 13 5 297
ecoli 7 8 336
glass 9 7 214
iris 4 3 150
led7digit-01 7 10 500
magic 10 2 19020
movement libras 90 15 360
phoneme 5 2 5404
pima 8 2 768
ring 20 2 7400
segement 19 7 2310
sonar 60 2 208
spambase 57 2 4597
texture 40 11 5500
titanic 3 2 2201
twonorm 20 2 7400
wdbc 30 2 569
wine 13 3 178
winequality-red 11 11 1599
winequality-write 11 11 4898
yeast 8 10 1484

This table provides detailed descriptions of datasets used in our experiments, where #Attributes is
the number of attributes, #Classes is the number of classes and #Instances is the number of instances.
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