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Abstract

We attribute grokking, the phenomenon where generalization is much delayed
after memorization, to compression. We define linear mapping number (LMN) to
measure network complexity, which is a generalized version of linear region number
for ReLU networks. LMN can nicely characterize neural network compression
before generalization. Although L2 norm has been popular to characterize model
complexity, we argue in favor of LMN for a number of reasons: (1) LMN can
be naturally interpreted as information/computation, while L2 cannot. (2) In the
compression phase, LMN has nice linear relations with test losses, while L2 is
correlated with test losses in a complicated nonlinear way. (3) LMN also reveals an
intriguing phenomenon of the XOR network switching between two generalization
solutions, while L2 does not. Besides explaning grokking, we argue that LMN is a
promising candidate as the neural network version of the Kolmogorov complexity,
since it explicitly considers local or conditioned linear computations aligned with
the nature of modern artificial neural networks.

1 Introduction

Grokking, the phenomenon where generalization happens long after memorization [1], is challeng-
ing our understanding of deep learning. Although there have been a few seemingly independent
explanations of grokking [2–12], many of them share a similar high-level idea which is "grokking is
compression": There exist a generalization solution and a memorization solution; the memorization
solution is easier to be learned so learned at first, but the generalization solution is more efficient
so emerges later. Although various measures have been proposed to characterize the process of
"compression", e.g., L2 [4], Fourier gap [6], network efficiency [11], neither of these measures admits
a natural interpretation as information/computation complexity (most are, at best, proxies).

We propose a metric called linear mapping number (LMN), which measures the complexity of a
network (or a subnetwork). In brief, LMN is a generalized version of the linear region number for
ReLU networks. ReLU networks are known to represent piecewise linear functions; they partition
input space into regions on which the network is a local linear mapping; different regions have
different linear mappings, as shown Figure 1. Geometrically, one can think of ReLU networks as
origami, i.e., folding flat input space (Figure 1 left) into complicated shapes (Figure 1 middle), and
the number of linear regions measures the network complexity. LMN generalizes the concept of
linear region number to networks with smooth activations.

We argue that LMN is a better metric than L2, which has been used to measure network complexity
in deep learning, especially for grokking [4]. A conceptual example is linear networks, which can
only represent linear mappings even when they are deep. For linear networks, LMN always gives 1,
but L2 can be arbitrary hence not very informative. Moreover, LMN can be naturally interpreted as
information: if one wants to compress a network into (input-dependent) linear mappings, then the
compressed information is basically LMN times the size of one linear mapping.
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Figure 1: Linear mapping number (LMN) is a generalized version of linear region number for ReLU
networks. A ReLU network partitions input space into piece-wise linear regions. If two points lie in
the same linear region or different linear regions, the line connecting them in the input space (left)
will remain linear (green) or turn into non-linear curves (red and blue) in the output space (middle).
We can construct a linear connectivity matrix (right) to characterize whether two points lie on the
same linear region, which is applicable to networks with any activations. Based on the Von Neumann
entropy of the matrix, we can estimate the number of linear mappings (details in Section 2).

We use LMN to characterize the compression process of grokking on three algorithmic tasks: modular
additon, permutation group S4 and multi-digit XOR. After memorization and before generalization,
the LMN decreases steadily, and has a strong linear relation with test loss. By contrast, L2 is
correlated with test losses in a complicated nonlinear way. For modular addition and permutation,
the LMN starts to level off after grokking, as expected. For multi-digit XOR, LMN displays an
unexpected double-descent after grokking. This reveals something intriguing about the XOR case,
which has two (rather than one) generalization solutions which are almost degenerate, so the network
jumps between these two solutions.

This paper is organized as follows: In Section 2, we define linear mapping number (LMN). In
Section 3, we use LMN to explain grokking, showing that it is related to L2 but also better than L2 in
serveral senses. We discuss related works in Section 4.

2 Linear Mapping Number (LMN)

The linear mapping number (LMN) is a generalization of the linear region number for ReLU networks.
For simplicity, let us first consider ReLU networks. A ReLU network partitions input space into linear
regions, where in each region the ReLU network behaves like a linear mapping locally, although
different linear regions correspond to different linear mappings (see Figure 1). The number of linear
regions has been proposed to measure network complexity for ReLU networks [13, 14].

While the linear region number is only defined for networks with ReLU activations, our proposed
linear mapping number is defined for networks with any activations, including smooth ones. However,
ReLU networks point to a route for how to define LMN generally. As illustrated in Figure 1, if
two samples lie in the same or different linear regions, a straight line connecting them in input
space (Figure 1 left) will remain linear or become non-linear in output space (Figure 1 middle).
This inspires us to measure "linear connectivity" between two samples: The more linear the output
line is, the larger the linear connectivity is. For a network f : Rd1 → Rd2 , and two input samples
x(i),x(j) ∈ Rd1 , i, j ∈ [N ], we denote the linear connectivity of them as Lij ∈ R. We interpolate
linearly between x(i) and x(j) in input space:

x(i,j)(λ) = x(i) + λ(x(j) − x(i)), λ ∈ [0, 1], (1)

which corresponds to the output curve y(i,j)(λ) = f(x(i,j)(λ)) ∈ Rd2 . The kth dimension y
(i,j)
k (λ)

is simply a scalar function of λ, so we can evaluate its linearity by doing linear regression and
calculating r2 (the square of the Pearson correlation coefficient). We define Lij as the average of r2
over dimensions k, i.e.,

Lij ≡
1

d2

d2∑
k=1

r2(y
(i,j)
k (λ), λ). (2)
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Note that Lij ∈ [0, 1]. The r2 is measured using uniform points on λ ∈ [0, 1] 2. When y(i,j)(λ)

is a straight line, Lij = 1; when y(i,j)(λ) resembles a symmetric parabola, Lij = 0. We define
self-connectivity Lii ≡ 1. In summary, larger Lij means that the network behaves more like a linear
mapping for sample i and j (i.e., two samples need only one shared linear mapping), while smaller
Lij means the network behaves non-linearly in-between sample i and j. We can stack Lij into a
matrix L such that Lij = Lij , and call L the linear connectivity matrix (Figure 1 right).

If we say linearly connected samples belong to the same linear mapping, then the problem of counting
linear mappings boils down to the problem of clustering: given the sample similarity matrix L, how
many clusters are there? Since the number of clusters is a discrete quantity and determining it may be
non-robust or hyper-parameter dependent, we use a soft estimator leveraging the eigenvalue structure
of the similarity matrix inspired by Von Neumann entropy [15]. Define λi (i = 1, · · · , N) as the
eigenvalues of L. Note that L is symmetric (Lij = Lji) hence all eiganvalues are real. L is almost
semi-positive definite, i.e., all eigenvalues large in magnitude are positive, but there might be a
few small negative eigenvalues (see Appendix B), which we take their absolute values. We define
normalized eigenvalues λ̃i = |λi|/(

∑N
j=1 |λj |). Then we treat the normalized eigenvalue vector

(λ̃1, λ̃2, · · · , λ̃N ) as a probability distribution. We define the nonlinear complexity of the distribution
(measured in bits) as

SNL ≡ −
∑
i

λ̃ilog2λ̃i (3)

and define the number of linear mappings LMN as LMN ≡ 2SNL . Note that given a data set x(i), the
quantity SNL defines a measure of the nonlinear complexity of any function, regardless of whether it
is defined as a neural network or not, and that SNL = 0 for any linear or affine function.

To get some intuition of the definition above, let us consider a case where there are c clusters
with each cluster having the equal size N/c, and samples are perfectly linearly connected to other
samples within the cluster. In this case, L is a block-diagonal matrix with c blocks (c = 3 illustrated
in Figure 1 right), each block being an all-one matrix. The normalized eigenvalue vector is then
λ̃i = 1/c (1 ≤ i ≤ c) and λ̃i = 0 (c < i ≤ N), whose entropy is S = log(c), resulting in LMN = c,
as expected. Note that LMN does not only apply to the whole network, but also to any sub-network.
In particular, LMN between an intermediate layer and the output layer is of interest.

3 Using LMN to explain grokking

In this Section, we show that LMN is able to characterize the compression process of network
complexity before grokking. LMN steadily decreases between memorization and generalization.

Experiment setup We train three-layer fully-connected networks with SiLU activations [16] to
perform algorithmic tasks, including {addition modulo 31, permutation composition on S4, 5-
digit bitwise XOR}. The neural network parameters (including embeddings) are trained with the
AdamW optimizer (learning rate 10−3, weight decay 0.2) on cross-entropy loss for 20000 steps. The
embedding dimension is 32, the hidden dimension is 100, and the output dimension is {31, 24, 32}.
An 80-20 train-test split is performed on all possible inputs.

Results LMN is measured between the first hidden layer and the output logit layer 3. In Figure 2,
we plotted the LMN and losses during the training course for the three tasks. We denote the period
before training accuracy reaches 100% (overfitting point) the memorizing phase, the period after
that but before testing accuracy reaches 100% (generalizing point) the generalizing phase, and the
remaining period finalizing phase. We see that the LMN decreases during the generalizing phase,
revealing the "hidden" compression process of the network. Furthermore, the LMN is more linearly
correlated than the test loss comparing to the L2 norm of the model parameters.

An intriguing phenomenon in XOR In the 5-digit bitwise XOR task, we discovered a previously
undescribed phenomenon: the LMN formed a double-descent-like shape during the finalizing phase;

2In practice, we use 21 uniformly spaced points on λ ∈ [0, 1], i.e., λ = 0.0, 0.05, 0.1, · · · , 0.95, 1.0. The
r2 between variable x and y is r2(x, y) = (⟨xy⟩ − ⟨x⟩⟨y⟩)2/(⟨x2⟩ − ⟨x⟩2)(⟨y2⟩ − ⟨y⟩2), where ⟨·⟩ means
averging over samples.

3The first hidden layer is the most meaningful one for a three-layer network. The results for the embedding
layer and the second hidden layer are shown in Appendix A.
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Figure 2: Train & test accuracy, LMN (linear mapping number) after the first layer and L2 norm
of model parameters during the training processes. The three rows correspond to three different
algorithmic tasks. Top: Modular addition. Middle: S4 group operation. Bottom: Bitwise XOR.

the LMN increases briefly after generalization before decreasing again. We believe the phenomenon
is due to two possible solutions for handling individual bits: we could create mapping for all the
four possible pairs (0, 0), (0, 1), (1, 0), (1, 1), or reduce the number of pairs to three by symmetry
(handling (0, 1) and (1, 0) identically). While the latter is more efficient in terms of internal represen-
tations, the former could produce better results earlier in the finalizing phases, as the model might be
unable to handle symmetries perfectly. In the period where the LMN increases after generalizing, the
model could be handling asymmetries in the model: adding separate treatments for (0, 1) and (1, 0)
pairs, and only favoring the more symmetric treatment after that. Evidence for the explanation is that
the two turning points of the LMN are 15 and 20, which happen to be 5× 3 and 5× 4 (there are 5
digits in total; for each digit, either memorize 3 samples or 4 samples). Mechanistic investigation of
this phenomenon is left for future study.

4 Related Works and Discussions

Grokking is the phenomenon where generalization happens long after overfitting [1]. There are some
attempts to understand grokking by studying toy models [2, 9], defining measures to characterize the
dynamics [3, 4, 6, 11, 10], and linking to double descent [7] and optimization [8]. This work studies
grokking from computation/information complexity.

Complexity measures for deep learning To understand why deep learning generalizes, a number
of complexity measures are proposed [17–19]. From the perspective of information (the minimal
number of linear mappings required to simulate the network), linear region number is used to measure
complexity of ReLU networks [13, 14], and our work extends it to linear mapping number which
accommodates general networks with any activation.

Compression and deep learning The theory of information bottleneck [20] suggests a compression
phase followed by a fitting phase, although the compression story is sensitive to technical details [21].
Recently the success of language models is also attributed to compression [22]. We agree that the
perspectives of information and compression are very likely the key to unlock generalization puzzles
of deep learning, and our proposed LMN might be a useful metric in this regard. We would like to
test the usability of LMN on a broad range of tasks and architectures in the future.
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[12] Bojan Žunkovič and Enej Ilievski. Grokking phase transitions in learning local rules with
gradient descent. arXiv preprint arXiv:2210.15435, 2022.

[13] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. Advances in neural information processing systems, 27,
2014.

[14] Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pages 2596–2604. PMLR, 2019.

[15] John Von Neumann. Mathematische grundlagen der quantenmechanik, volume 38. Springer-
Verlag, 2013.

[16] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

[17] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

5



[18] Silviu-Marian Udrescu and Max Tegmark. Symbolic pregression: Discovering physical laws
from distorted video. Physical Review E, 103(4):043307, 2021.

[19] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning,
pages 2847–2854. PMLR, 2017.

[20] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

[21] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky,
Brendan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep
learning. In International Conference on Learning Representations, 2018.

[22] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023.

[23] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416,
2007.

6



Appendix
A LMN for all layers

In Figure 2, we plotted LMN for the first hidden layer. Note that LMN can be defined for any layer,
including the embedding layer and the second hidden layer. For modular addition, we show the
evolution of LMN for all layers in Figure 3. It is clear that only the first hidden layer is sensitive to
the hidden progress of the network after memorization and before generalization. The embedding
layer and the second hidden layer are less meaningful. The embeddings are not processed by network
yet, so they are not related to outputs in a meaningful way. The second layer, on the other hand, is
highly correlated with the output logits, hence basically synchronizes with the training curve.

Figure 3: Evolution of LMN for all layers. Only the first hidden layer is meaningful to characterize
the hidden progress before grokking, while the LMN of the embedding layer and the second hidden
layer plateau quickly after memorization.

B Linear connectivity matrix and eigenvalue distribution

In the main paper, we defined linear connectivity matrix L in Eq. (2). Here in Figure 4, we visualize
it and show its eigenvalues for three snapshots in training (for modular addition): at initialization
(step 0), memorization (step 200) and generalization (step 7600). Comparing generalization to
memorization, off-diagonal elements of L are on average larger for generalization, meaning that
samples are more linearly connected, hence the network is simpler for generalization. At initialization,
linear connectivity is also strong, due to the simplicity inductive bias at initialization (the network is
close to be a linear network at initialization).
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Figure 4: The evolution of the linear connectivity matrix (left) and its eigenvalues (right) at initializa-
tion (top), right after memorization (middle) and right after generalization (bottom). For display, we
rearranged the input axes of the linear connectivity matrices into 10 clusters via spectral clustering
(e.g. [23]).
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