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Abstract. The target duration of a synthesized human motion is a critical attribute that
requires modeling control over the motion dynamics and style. Speeding up an action per-
formance is not merely fast-forwarding it. However, state-of-the-art techniques for human
behavior synthesis have limited control over the target sequence length.
We introduce the problem of generating length-aware 3D human motion sequences from
textual descriptors, and we propose a novel model to synthesize motions of variable target
lengths, which we dub “Length-Aware Latent Diffusion” (LADiff ). LADiff consists of two
new modules: 1) a length-aware variational auto-encoder to learn motion representations
with length-dependent latent codes; 2) a length-conforming latent diffusion model to generate
motions with a richness of details that increases with the required target sequence length.
LADiff significantly improves over the state-of-the-art across most of the existing motion
synthesis metrics on the two established benchmarks of HumanML3D and KIT-ML.
The code is available at https://github.com/AlessioSam/LADiff.
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1 Introduction

Synthesizing human behavior is essential for creating immersive virtual worlds, whether designed
for our leisure or to train robots to interact with real people safely and on a large scale [20]. SOTA
techniques for generating human behavior condition the generation on textual inputs. However, they
have limited control over influential attributes, such as the desired sequence length. For example,
suppose we want to generate a short kick motion. It is not enough to sub-sample a lengthy kick
sequence. Instead, we should consider shorter duration and faster dynamics while respecting the
laws of physics.

Leading approaches in 3D human motion generation cannot control the synthesized motion’s
length or consider the target sequence’s variable length as a stylizing attribute. GPT-based ap-
proaches [10,21,29] are an example of the former, which predict auto-regressively. They can hardly
constrain the output length, even when conditioned on the target length. Other leading techniques
are based on diffusion models (DDPM) [8] and latent representations [23]. One such approach is
MLD [3], where both the Variational Autoencoder (VAE) [11] representation is agnostic of the
desired size of the output sequence and the diffusion-based synthesis does not account for mecha-
nisms which affect the output sequence style, depending on the desired length. MotionDiffuse [30]
is the sole to add a length control over sampling the noise distribution in the denoising stage of the

* Authors contributed equally.

https://orcid.org/0000-0002-1432-7499
https://orcid.org/0009-0008-4332-9179
https://orcid.org/0000-0003-1963-3548
https://orcid.org/0000-0003-1875-7813
https://github.com/AlessioSam/LADiff


2 A. Sampieri et al.

Input text: 

“A person moves backwards, sits down, then stands back up.”
Latent Space

200

Motion length

0

Fig. 1: A pictorial illustration of the proposed LADiff generative model. The green latent space, learned via
VAE, is subdivided into subspaces that activate progressively for longer target human motion sequences,
i.e., the shortest sequence latent vectors lie on the 1D line, those for longer sequences lie on planes, cubes, or
higher dimensions. Correspondingly, during the sequence generation via a latent DDPM, longer sequences
learn attention patterns made up of more subspaces, i.e., more columns in the rectangles of latent-to-frame
attention vectors. See Secs. 1 and 5 for more details. As a result shorter sequences depict faster actions,
adopting the styles of motion that take the fewest frames. Longer sequences accommodate more frames
with the longer version of the actions in terms of dynamics and style. We provide videos associated with
the images in the paper in the additional materials.

diffusion process. However, it only adds ad-hoc mechanisms for ensuring smoothness across actions
of multi-activity generations (e.g., “synthesize a character which walks and sits”).

Our proposal, “Length-Aware Latent Diffusion” (LADiff ), introduces novel length-aware models
both for the latent representation and for the diffusion-based synthesis to exploit the length of the
target sequence as a given input. We argue that the VAE latent embedding space should encode
longer sequences with larger capacity because the longer motions require more details to generate.
Therefore, in LADiff, we organize the latent representation space into subspaces, which activate
progressively with the increasing target sequence length. As depicted in Fig. 1, shortest sequences
only lie in one subspace (on the 1D green line). Instead, longer sequences have higher-dimensional
latents, which activate more subspaces (the green plane, then the green cubic latent space).

To cope with latent vectors of different sizes, we introduce a novel latent-length-adaptive diffu-
sion model, which we use in LADiff to synthesize the motions. At training time, the diffusion model
attends to a latent vector of varying dimensionality. In Fig. 1, next to each generated sequence,
the yellow-to-blue columns represent the attention of each latent to each frame. We use masking
(blanked columns) for the unattended latents. During inference, longer sequences activate more
subspaces, thus higher-dimensional latent each specializing in a chunk of frames of the extended
sequence. See also the discussion in Sec. 5.

LADiff is the first to bridge the noise gap between VAEs, used for the latent representation
learning, and DDPMs, adopted in the generation phase. VAEs learn to encode and decode clean
motions in the first stage of representation learning. By contrast, DDPMs generate latent vectors
via denoising, and their output may carry residual noise and a certain degree of stochasticity,
which does not match the clean latent expected by the VAEs’ decoder. To cope with the intrinsic
DDPMs residual noise, we propose denoising VAEs [9] to learn from perturbed input signals, en-
hancing the model’s robustness against latent vector perturbations and boosting the final decoding
performances.
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We test LADiff on two prominent and widely used datasets, HumanML3D [6] and KIT-ML [19],
where it surpasses the performance of current leading techniques across multiple metrics. Specif-
ically, the model leverages a smaller subspace to generate shorter motion sequences, and despite
this limitation, it achieves better or comparable scores compared to the SOTA. This success is
attributed to utilizing all training sequences to learn the latent features within that subspace. On
the contrary, for longer sequences, the model learns to correspond contiguous frames to specialized
subspaces to synthesize longer sequences. Thanks to the additional capacity and this specialization,
LADiff generates convincing and realistic sequences. See the in-depth analysis of Sec. 5 and Fig. 6b.

We summarize our key contributions as follows:

– Introduction of a VAEs that generates a length-aware latent space;
– Introduction of a length-aware DDPM and increased synergy between representation and syn-

thesis with the introduction of DVAE for motion;
– An in-depth analysis of length-aware latents and related motion dynamics, and a comprehensive

evaluation of LADiff on the HumanML3D and KIT-ML datasets, where it sets a new SOTA.

2 Related Work

In recent years, text-conditioned human motion synthesis has emerged as a prominent area of
research. Learning a latent representation and the conditional generation are building blocks of this
task, which we discuss as related work here.

Latent representation learning. Sequence representation is a challenging and widespread
task for representing human motion [2]. This encoding can occur in either a discrete or continuous
space.
Regarding discrete representation, T2M-GPT [29] employs Vector Quantized Variational Autoen-
coders (VQ-VAE) [16] to build a motion “vocabulary” with codebooks for motion generation. Mo-
tionGPT [10] exploits VQ-VAE, combining text and motion vocabularies, jointly learning language
and motion before generating sequences. Similarly, AttT2M [32] utilizes word-level and sentence-
level features to learn the cross-modal relationship between text and motion. M2DM [12] applies
an orthogonal regularization that encourages diversity and increased usage of codebook entries to
improve performance.
Considering continuous latent representation, Variational Autoencoders (VAE) [11] are the SOTA
due to their ease of training [7, 17]. TEMOS [18] introduces a Transformer-based VAE model [26]
that leverages a sequence-level latent vector to generate text-conditioned motions. MLD [3] employs
a VAE to learn latent representations of motion sequences. HumanML3D [6] uses a temporal VAE
to enhance the quality of fixed-size latent representations and incorporates an MLP for predicting
sequence length from textual descriptions.

Our approach builds upon the success of VAE for its representation performance and ease of
training. However, we organize its latent space in different subspaces to encode sequences of different
lengths. No prior work, neither continuous nor discrete, designs latent representations that are aware
of target lengths.

Generation. In this fast-evolving field, first approaches such as TEMOS [18] directly used
VAEs to generate motion based on textual conditioning, where the number of positional encodings
established during generation determines the duration of these motions. There are two leading
generation strategies: Generative Pre-trained Transformers (GPT) [21], and Denoising Diffusion
Probabilistic Models (DDPM) [8]. The first, represented by approaches such as MotionGPT [29]
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and T2M-GPT [10] leverages GPT architectures for autoregressive generation, where the occurrence
of a specific token marks the generation’s end. MDM [25] is the archetype of the latter family of
models, where that apply DDPM directly to raw motion data to capture the motion-text relationship
for a determined number of tokens. MotionDiffuse [30] adds smoothing to body parts and frames
during noise sampling, which can be resource-intensive. Leveraging latent DDPM [23], MLD [3]
achieves SOTA performances. It presents a two-step approach wherein they initially use VAEs to
learn a compact and low-dimensional motion latent space, followed by a diffusion process in this
space. M2DM [12] mixes GPT and DDPM approaches by using the latter to synthesize motions
starting from a discrete latent space built using a token priority mechanism and a transformer-
based decoder. We build upon the success of MLD [3]. Still, we organize the latent space into
subspaces dedicated to motions of different lengths, adapting the conditional DDPM generation to
the variability of the target length to have a time-dependent style and dynamics.
Retrieveal Augmented Generation [13, 31] has shown significant performance improvements when
conditioning motion generation on a sample retrieved from the entire training set. However, this
approach requires storing and searching through a large database. We demonstrate how the length-
aware generation of LADiff can also be conditioned on the same retrieved sample.

3 Methodology

In this Section, we introduce the length-aware VAE for learning length-aware latent representations
and latent diffusion process. Also, here we detail the proposed Denoising VAE to add robustness
during synthesis. Next, we describe background concepts on the latent space, generation, and con-
ditioning.

Encoder

Denoiser

Decoder

Latent Space

TEXT

LENGTH

MOTION

%
Perturbation

Latent Noise

MOTION

Reconstruction phase

Generation phase

T denoising step

Fig. 2: Overview of our proposed Length-Aware Latent Diffusion (LADiff ). During the reconstruction phase
(orange arrows), the Encoder, aided by the Decoder, learns to represent sequences of varying lengths into
a latent space composed of subspaces, which activate progressively for longer sequences. In the Generation
stage (blue arrows), the Denoiser learns to create latent vectors aligned to the textual input, which map to
correct subspaces specified by input sequence length. The actual motion results from decoding the latent
vectors of the Denoiser. For this purpose, the Decoder is made resilient to noise in the Reconstruction stage
by learning to reconstruct sequences affected by noise
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Problem formalization. The objective of motion synthesis is to generate a motion X based on
textual input w. We define motion as a sequence of poses X = [X1, .., XF ] ∈ RF×V , where F are
the number of frames and V the parameters of the pose vector. Following literature [3, 6, 10, 29],
our pose vector V contains pose, velocity and rotation. We also define the textual description as a
vector w ∈ R1×D. In this work, we also provide as input the target sequence length f∗ ∈ R.

3.1 Background

Our approach is based on the current best practice in motion synthesis, where motions are generated
using DDPM [3,12,25,30], often with VAEs trained for reconstruction tasks. In this context, textual
inputs condition the synthesis. First, the model reconstructs the input motion sequence, crafting a
meaningful latent space. Then, the model generates the output motion guided by textual input.

Latent representation learning. VAE approaches consist of an encoder-decoder generative architec-
ture learned to minimize a reconstruction error. In this framework, latent representations Z are
the lower-dimensional embeddings produced as output by the encoder network parametrized by
ϕ from the input data X. Following VAE literature [11], qϕ(z|x) approximates the true posterior
distribution of the latent space with multivariate Gaussian with a diagonal covariance structure:

qϕ(z|x) = N (z|µϕ(x), σ2
ϕ(x)I), (1)

where µϕ(·) and σ2
ϕ(·), are outputs of the encoder. We sample from the approximate posterior

z(i) ∼ qϕ(z|x(i)) using:
z(i) = µ(i) + σ(i)2 ⊙ ρ, (2)

where z(i) ∈ R1×D is the latent vector, ρ ∼ N (0,I) is additional noise, ⊙ represent pairwise multi-
plication and x(i) is a sample from the dataset X. The decoder pθ(x|z) is a network parametrized
by θ that maps the sampled values back to the input space. The parameters of the networks are
obtained by optimizing the ELBO objective as described in [11].

Generation. Latent DDPM have a different approximated posterior g(zt|zt−1), denoted diffusion
process, which gradually gradually converts latent representations z0 = z into random noise zT in
T timesteps:

g(zt|zt−1) = N (zt;
√
ᾱtzt−1, (1− ᾱt)I) , (3)

where ᾱt is a scaling factor specific to timestep t. Then, the reverse process dubbed denoising
gradually refines the noised vector to a suitable latent representation z0. Following [3, 4, 8, 23, 24],
we use the notation {zt}Tt=0 to denote the sequence of noised latent vectors, with zt−1 = ϵψ(zt, t)
representing the denoising operation at time step t with ϵψ being a denoising autoencoder trained
to predict the denoised variant of its input.

Conditioning. Following literature [1, 3, 5], we incorporate textual input for conditional synthesis,
enhancing the overall control and expressiveness of the generated motion sequences. The objective
is to align textual and motion representations:

L = Eϵ∼N (0,I),t,w[∥ϵ− ϵψ(zt,t,γ(w))∥22] , (4)

where we add the textual input encoded via CLIP-ViT-L-14 [22] γ(w).
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3.2 Length-Aware VAE

We propose a novel Length-Aware VAE which extends the VAE framework by organizing the latent
space to characterize the motion’s length constraint. We decompose the entire latent space into K
subspaces. Therefore, the complete latent space has dimension RK×D, and the smallest dimensional
subspace is 1 × D-dimensional. On the latter live the latent vectors associated with the shortest
sequences. As the motion length grows, we stepwise unlock bigger subspaces following the activation
rate k = ⌈ fr ⌉, where k is the number of activated subspaces, f represents the number of frames, and
r is the number of frames assigned to each subspace. This results in latent vector dimensionality that
grows with the sequence length f , exploiting k subspaces of the latent space, each encoding exactly
r frames. In Fig. 1, we visualize the shortest motions on a 1-dimensional subspace represented
by a line. The 2-dimensional plane represents middle-sized sequences and comprises the previous
subspace. Finally, the most extended sequences exploit the entire 3-dimensional space enclosing
the previous subspaces. We train the encoder-decoder Length-Aware VAE by passing the motion
sequence X through the encoder, obtaining the desired k means (µ) and variances (σ2):

qϕ(z|x) = N (z|µ1(x), σ
2
1(x)I, . . . , µk(x), σ

2
k(x)I) (5)

Then we sample k values according to the activated subspaces to build our latent representation
z ∈ Rk×D though concatenation:

z(i) = [µ
(i)
1 + σ

(i)2
1 ⊙ ρ1, . . . ,µ

(i)
k + σ

(i)2
k ⊙ ρk] . (6)

Finally, we use the decoder to reconstruct the input sequence X. The transformer-based decoder
handles the varying dimensional space by using the attention mechanism. The training of the
encoder and decoder represents the first stage of our training pipeline. From these procedures arises
a structured latent space with subspaces specialized on sequences of different lengths. The first
subspace, dedicated to the shortest sequences, has the smallest dimensional space. However, it is
active and trained for every sequence in the dataset. The last subspaces are engaged only for longer
sequences with two main consequences: first, longer sequences have a higher capacity space, and
second, they specialize over a subset of the entire data distribution containing longer sequences.

3.3 Length-Aware Latent Diffusion

We present the core concept of our Length-Aware Latent Diffusion process: the dynamic adaptation
of latent dimensions for generating motion sequences. Specifically, each latent zt resides in Rk×D,
with k ∈ {1, . . . ,K}. During sampling (or at inference time), we initialize zT using our activation
rate k and the desired motion length f∗:

zT = N (0, I) ∈ R⌈ f∗
r ⌉×D (7)

The VAE’s decoder receives the denoised vector z0 ∈ Rk×D together with the desired motion
length f∗ for the final synthesis. The transformer decoder uses attention to account for the generated
latents of variable length. As a byproduct of our adaptive latent vectors, the inference time is
reduced, since the decoder uses fewer terms in the attention mechanisms.The length-aware latent
diffusion denoiser is trained in a second stage, during which the encoder and decoder are kept frozen.
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3.4 Denoising VAE

We train VAE and latent-DDPM in cascaded stages. However, they assume distinct characteristics
of the latent vectors. We train VAEs to reconstruct clean inputs as faithfully as possible. Conversely,
the latent DDPMs generate latent vectors from pure Gaussian noise. These generated latent vectors
may contain residual noise, which poses challenges for the VAE decoder, trained to reconstruct clean
inputs and then frozen.

To establish a more coherent connection between these two phases, we propose employ Denoising
VAE (DVAE) [9] to perturb features of the input sequence to create a robust latent space. We
randomly sample a percentage of frames from the input sequence and perturb them with controlled
Gaussian noise ϵ ∼ N (0,1). Therefore, we introduce an augmentation strategy to align the latent
variable distribution from the two phases.

3.5 Implementation Details

The framework comprises three major blocks: the encoder E , decoder D and denoiser ϵθ. While
E and D constitute the reconstruction phase (24M parameters), the denoiser (9M parameters)
together with the frozen decoder D form the generation phase. Each block consists of 9 layers and
4 heads, with an embedding dimension of D = 256. Both the encoder and decoder are constructed
using standard transformer layers. The denoiser ϵθ incorporates classical self-attention over the
latent vector and linear cross-attention between latent vector and textual input, adopting also the
Stylization block from [30]. We use a batch size of 64 for the first phase and 128 for the second. The
learning rate is set to 10−4, and the optimizer used is AdamW [15]. During training, we performed
1000 diffusion steps. At inference, we use only 20 diffusion steps. We used 8 Tesla V100 GPUs,
conducting 3k epochs for both phases.

4 Results

We evaluate the reconstruction and generation capabilities of LADiff quantitatively and qualita-
tively. The analysis comprehends an ablation study of the proposed model components.

4.1 Datasets and Metrics

For this task, we evaluate our model on two large and established datasets, namely HumanML3D
and KIT-ML. Both datasets utilize the SMPL [14] representation with 22 and 21 joints respectively.
HumanML3D [6] with 14.6k motion sequences, each associated with three textual descriptions,
provides an extensive range of movements, from martial arts to everyday actions. KIT-ML [19]
instead consists of 3.9k motions with a total of 6.2k textual descriptions. Following [3, 29, 30], we
use motions of the same lengths as HumanML3D.
Metrics. We evaluate the generated motion sequences employing all commonly adopted metrics.
R-precision and MM-Dist. In the context of the text-to-motion task, [6] offers motion and text
feature extractors designed to generate geometrically consistent features for paired text-motion
combinations and vice versa. In this feature space, we assess motion-retrieval precision (R-precision)
by mixing the generated motion with 31 mismatched motions. We then calculate the text-motion
top-1/2/3 matching accuracy. Additionally, we measure Multi-modal Distance (MM-Dist), which



8 A. Sampieri et al.

Table 1: HumanML3D results for motion synthesis (above) and RAG (below).

R Precision ↑Methods Top 1 Top 2 Top 3 FID ↓ MM-Dist ↓ Diversity → MModality ↑

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
MotionDiffuse [30] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [25] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

MLD [3] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

T2M-GPT [29] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

MotionGPT [10] 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 9.528±.071 2.008±.084

Fg-T2M [28] 0.492±.002 0.683±.003 0.783±.002 0.243±.019 3.109±.007 9.278±.072 1.614±.049

M2DM [12] 0.497±.003 0.682±.002 0.763±.003 0.352±.005 3.134±.010 9.926±.073 3.587±.072

AttT2M [32] 0.499±.006 0.690±.002 0.786±.002 0.112±.006 3.038±.007 9.700±.090 2.452±.051

Ours(r=32) 0.493±.002 0.686±.002 0.784±.001 0.110±.004 3.077±.010 9.622±.071 2.095±.076

Ours(r=48) 0.503±.002 0.696±.003 0.792±.002 0.182±.004 3.054±.008 9.795±.076 2.115±.063

ReMoDiffuse [31] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.081±.075 1.795±.028

Ours(r=48) RAG 0.494±.002 0.691±.003 0.786±.001 0.054±.002 3.112±.008 9.517±.077 2.453±.074

quantifies the distance between the generated motions and the associated text. The L2-loss is
employed to determine both R-Precision and MM-Dist.
FID. We assess Motion Quality using the Frechet Inception Distance (FID) metric, which measures
the similarity between the distributions of generated and real motions. It is computed by measuring
the L2-loss of the latent representations obtained through the feature extractor.
Diversity and MModality. We utilize Diversity and MultiModality (MModality) metrics to gauge
the range of motion variations across the entire dataset and the diversity of generated motions for
each specific text input. To evaluate diversity, we randomly divide the data into {x1, . . . , xXd

} and
{x′

1, . . . , x
′
Xd

}, two equal-sized subsets each containing motion feature vectors.
To assess MultiModality, we randomly select a set of text descriptions from the entire collection, with
a total of Td descriptions. Following this, we randomly sample two equal-sized subsets, Xd, from all
the motions generated by the t-th text descriptions. These subsets contain motion feature vectors:
{xt,1, . . . , xt,Xd

} and {x′
t,1, . . . , x

′
t,Xd

}, respectively. Diversity and MModality are then defined as
the average L2-loss between corresponding samples.
Baselines. We compare our proposed LADiff with the current state-of-the-art techniques for mo-
tion synthesis. MotionDiffuse [30] and MDM [25] are DDPM-based models that approach the task
by directly processing raw poses. MLD [3] is a two-stage process that uses VAE for encoding the
input sequence and a latent diffusion model for conditional generation. T2M-GPT [29] and Mo-
tionGPT [10] utilize GPT as the generation mechanism, leveraging VQ-VAE for motion encoding
into a codebook. Fg-T2M [28] combines linguistics-structure and context-aware progressive reason-
ing through graph attention network [27]. M2DM [12] encodes the sequence using a codebook and
implements a generation process through a discrete diffusion model. AttT2M [32] exploits a TCN
that decodes the features learned through local and global attention between the sequence and text.
ReMoDiffuse [31] generates human motion from text using RAG [13], it retrieves relevant motion
samples from a training set (assumed to be available at inference), and then uses a transformer to
fuse them with the text input and generate motion sequences. We denote with “Real” the metrics
obtained with the ground-truth motion.



Length-Aware Motion Synthesis via Latent Diffusion 9

Table 2: KIT-ML results for motion synthesis (above) and RAG (below).

R Precision ↑Methods Top 1 Top 2 Top 3 FID ↓ MM-Dist ↓ Diversity → MModality ↑

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
MotionDiffuse [30] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

MDM [25] 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

MLD [3] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

T2M-GPT [29] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

MotionGPT [10] 0.366±.005 0.558±.004 0.680±.005 0.510±.016 3.527±.021 10.35±.084 2.328±.117

Fg-T2M [28] 0.418±.005 0.626±.006 0.745±.004 0.571±.047 3.114±.015 10.93±.083 1.019±.029

M2DM [12] 0.416±.004 0.628±.004 0.743±.004 0.515±.029 3.015±.017 11.41±.097 3.325±.037

AttT2M [32] 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 10.96±.123 2.281±.047

Ours(r=48) 0.429±.007 0.647±.004 0.773±.004 0.470±.016 2.831±.020 11.30±.108 1.243±.057

ReMoDiffuse [31] 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.0.12 10.80±.105 1.239±.028

Ours(r=48) RAG 0.415±.006 0.632±.007 0.758±.005 0.386±.003 2.978±.020 11.20±.008 1.732±.066

4.2 Quantitative Results

We validate our model on the HumanML3D and KIT-ML datasets. Following [6], we calculate the
results based on 20 generations and report the average with a 95% confidence interval.

Generation. Table 1 shows the results obtained on the HumanML3D dataset. Our model outper-
forms the current state-of-the-art techniques in all R-Precision scores and FID while maintaining
a comparable Matching Score. In the bottom part of the table, we report the SOTA retrieval aug-
mented [31], compare to LADiff, augmented with retrieval. Both techniques additionally assume
access to the entire training set. LADiff enhances the FID by 47%, exhibiting superior Diversity
and MModality.

The performance exceeds the top models even on the KIT-ML dataset (Table 2). LADiff out-
perform the current best techniques of 4.2% in Matching Score and 2.2% in R-Precision Top3. In
the bottom part of the table, our method outperform [31] in Diversity and MModality.

LADiff demonstrates consistent performance across different datasets in several metrics, in-
cluding R precision, Matching score, and FID. These results and the R-precision, more specifically,
demonstrate that LADiff can generate novel test motions from text that are most similar to the
real ones.

4.3 Qualitative Results

First we show qualitatively the results obtained from LADiff and then we demonstrate how our
model adapts to different lengths.
Comparisons. From Fig. 3 we note that LADiff is the only framework to consider the desired
length and to adapt to it, in terms of style and dynamics. GPT-based approaches have no control
over the length of the output sequence. MLD can generate sequences of a desired length but lacks
adaptation to the target length. See, for example, the second row, where it seems that MLD mainly
fits the target length by subsampling without adapting style and dynamics. Our model is capable of
rich and realistic behavior, respecting the textual conditioning and the target length (e.g., a perfect
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“a person walks in a complete circle and then sits down.”

“the man walks back and forth putting something on a shelf.”

“someone is pushed backwards, but manages to regain his balance.”

84 frames

200

0

Ours T2M-GPT MotionGPTMLD
170 frames 84 frames 170 frames

† †

Fig. 3: Qualitative comparison of text-based human motion generations. multiple target lengths are pro-
vided to techniques that allow to set the length input. See Section 4.3 for discussion.

circle, realistic balance regain, correct shelf height). In the second row we see that our “man" runs
to complete the circle when the number of frames is insufficient and walks when feasible.
Variable target lengths. In Fig. 4, we challenge our model to generate motions for the same
textual input but with varying target lengths. At the top, the figure shows the attention maps of
the decoder transformer, attending from 1 latent, in the case of querying a 48-frame motion, to 5
latents, for generating motions of 200 frames. Note how, starting from the case of 2 latents, each
latent takes responsibility for different contiguous frames in the generated motion. Qualitatively,
querying longer target lengths allows LADiff to arrange for richer and more careful generated
motions.

4.4 Ablation Study

Table 3 displays ablation studies for the main components of our model, including the number of
frames represented by each latent subspace r, which determines the activation rate k, the use of
DVAE (% Noised), and the adoption of the Length-Aware framework (LA).
Activation rate. The rate influences the maximum number K of available latent subspaces. Values
of 48 for r and 5 for K yield the best results and strike a good balance between precision and
diversity.
Amount of noise in the DVAE. Noise is a trade-off between metrics evaluating the movement’s
precision and the generation process’s diversity. The perturbation in DVAE acts on the input
sequence, but we explored its application directly on the latent space. The latter approach has a
higher impact on the output since the “filtering” was entirely charged to the decoder.
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“a person walks in a curve, looks around, then continues walking.”

“a person has to crawl under an obstacle to continue.”

“a person stepping over something.”

48 frames 84 frames 170 frames 200 frames130 frames

200

0

Fig. 4: (Rows) Generation of motions with the same textual input and varying queried target lengths,
alongside (Top) the corresponding decoder transformer attention maps where y−axis represents the target
motion length. Darker colors indicate higher attention scores for each subspace of the latent vector, repre-
sented in chunks along the x−axis. See Sec 4.4 for the discussion.

Length-awareness Finally, we showcase the positive impact of our length-aware framework on
the results. By comparing it with a model that encodes motion using a fixed dimensionality K ×D
(Ours w/o LA), we observe an improvement of 1.6% in R-Precision Top 3 and 2.6% in Matching
Score. In other words, constraining the model to use a variable latent vector dimensionality for
varying target lengths improves most of its capability to generate motions closest to the real ones.

5 In-Depth Analysis

This section investigates LADiff’s latent space, showcase the activation of length-dependent latent
subspaces, and assess the efficiency of the proposed technique.
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Table 3: Ablation study examining the number of frames per latent r, the incorporation of DVAE with
a specific noise percentage (% Noised) both at the input and latent level and the implementation of the
Length-Aware framework (LA).

Methods LA r Noise (%) R Prec. Top 3 ↑ FID ↓ MM-Dist ↓ Diversity →
Real — — — 0.797±.002 0.002±.000 2.974±.008 9.503±.065

SOTA — — — 0.786±.002 0.112±.006 3.038±.007 9.528±.071

✓ 16 0.778±.001 0.250±.007 3.129±.008 9.620±.083

✓ 32 0.784±.001 0.110±.004 3.077±.010 9.622±.071

✓ 48 0.792±.002 0.182±.004 3.054±.008 9.795±.076

✓ 64 0.780±.002 0.238±.007 3.114±.009 9.760±.093
Ours

✓ all

33

0.741±.001 0.445±0.10 3.375±.009 9.556±.080

✓ 0 0.788±.002 0.222±.005 3.062±.009 9.739±.095

✓ 33 0.792±.002 0.182±.004 3.054±.008 9.795±.076Ours
✓

48
50 0.787±.002 0.196±.006 3.081±.008 9.764±.087

OursDVAE latent ✓ 0.735±.002 0.207±.004 3.389±.012 9.497±.070

OursDVAE input ✓
48 33 0.792±.002 0.182±.004 3.054±.008 9.795±.076

Ours w/o LA 0.776±.001 0.179±.005 3.137±.011 9.848±.064

Ours ✓
48 33 0.792±.002 0.182±.004 3.054±.008 9.795±.076

Latent Representation. Fig. 6a illustrates the 3D t-SNE reduced dimensionality manifold of the
latent space. Each dimension corresponds to a subspace. We generate ten sequences of 30, 96, and
144 frames per action. To estimate the X coordinate, we take the elements of z associated with the
first subspace from each motion and use t-SNE to extract one dimension. Then, we extract from z
the elements associated with the first two subspaces and pad with zeros those without the second
to compute with t-SNE the Y component. We use a similar approach to extract the Z compo-
nent. Short actions generated using a single latent organize themself along a straight line (X-axis).
“Medium” actions unlock the second latent/dimension with Y ̸= 0, allowing a displacement of the
points along the Y-axis. Finally, the longest motions are free to position in the three-dimensional
space, with their orthogonal projection residing in the previous subspace but being free to roam
along the third dimension. LADiff organizes actions in the latent space by separating the action
types along the first subspace and then by clustering the lengths on the available subspaces.

Subspace specialization. Fig. 5 illustrates what happens when we activate only a subset of the
subspaces to generate a motion that is long and that requires the entire latent space. From left to
right, we activate the subspaces one by one. Each latent vector is accountable for almost precisely
r contiguous frames. We observe a gradual transition between these blocks, possibly to connect
different actions and movements and guarantee a smooth generation. When only the first or two
latents are used (left-most two examples), the generated motion is focused on the action of sitting
in the second row. The third latent subspace introduces the walking part; the motion is complete
but has substantial jitter and unnatural movements. The fourth and fifth latent subspaces fill the
gap between the initial and final movements, generating smooth transition and realistic behavior.
The two text conditionings A person walks slowly forward, picks something up, places it down,
depicted in the third row, and The person waits and then starts jumping forward in the fourth row
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# Subspaces 

employed

“A person walks 

slowly forward, 

picks something up, 

places it down.’’

Latents 

Activation

1 2 3 4 5

200

0

“The person waits 

and then starts 

jumping forward.”

“A man walks 

forward and then 

sits.”

Fig. 5: The first row shows the decoder’s attention map on the length-aware, denoised latent vectors. Then
we depict the generated motion obtained using only the activated latent subspaces selected in red. See Sec 5
for the detailed description.

corroborate our analysis as we observe the first two subspaces attending to the final part of the
action (e.g., “picks something up, places it down” or “jumping forward”). The third contributes to
generating the initial frames. The fourth and fifth fill the gaps, harmonizing these two parts.
The different responsibility of subspaces for different lengths ensures that longer sequences add new
styles and dynamics.
Performance and Inference time across lengths. In Figure 6b, we illustrate our model’s in-
fluence on inference time and R-Precision Top 3 across different generated motion lengths (5-bins)
of the HumanML3D dataset. We compare against the models T2M-GPT [29] and MLD [3], top
performers for which the code is available. Compared to T2M-GPT, LADiff outperforms precision
scores (red curves) in every generated motion length (up to 4%) except for the shortest sequences
where T2M-GPT prevails by a short margin. However, LADiff is considerably faster (blue curves)
in every setting. Compared to MLD, LADiff has superior precision performance (up to 10%) with
comparable inference times.

Length-aware motion dynamics. We question the correspondence between the length of the
generated motions and the statistics of the motion dynamics, specifically considering velocity and
acceleration of the body joints. In Table 4, we report these statistics for all the qualitatives pre-
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(a) Length-aware latent space. (b) Time/performances trade-off.

Fig. 6: Length aware in-depth analysis. Zoom in for details.

sented in the main paper and the supplementary material. For MLD, the averages of acceleration
and velocity remain unchanged as the generated length varies. By contrast, for LADiff the statistics
increase by 44.4% and 17.3%, respectively, when the motion is shorter. We confirm therefore that
LADiff produces different motion styles for different lengths. In Table 5, we repeat the analysis
on the same analysis on a controlled set of atomic actions (“A man sits”, “A man walks”, and “A
man throws”). Each action has peculiar velocities and acceleration, but the relative changes with
motions are similar.

Limitations. LADiff assumes a linear correlation between motion lengths and the number of ex-
ploited subspaces. While functional and performant, we advocate for future research on this aspect.

Table 4: Comparison of dynamics on
input text.

Avg. Vel. (m/s) Avg. Acc. (m/s2) Max Acc. (m/s2)
84 170 84 170 84 170

MLD 0.39 0.39 0.06 0.05 0.31 0.33
LADiff 0.61 0.52 0.13 0.09 0.61 0.55

Table 5: Comparison of dynamics on atomic actions
with LADiff.

Avg. Vel. (m/s) Avg. Acc. (m/s2) Max Acc. (m/s2)
Actions 48 84 170 48 84 170 48 84 170

Sit 0.27 0.17 0.10 0.05 0.04 0.02 0.16 0.16 0.14
Walk 1.31 1.01 0.72 0.11 0.09 0.06 0.19 0.18 0.14
Throw 0.16 0.15 0.13 0.04 0.04 0.03 0.14 0.15 0.13
Mean 0.58 0.44 0.31 0.06 0.05 0.03 0.16 0.16 0.14

6 Conclusion

We have presented Length-Aware Latent Diffusion (LADiff ), a novel approach for generating mo-
tion sequences guided by textual descriptions with dynamics and style conditioned by the target
motion length. To do so, LADiff leverages a customized latent space with subspaces representing
sequences of different lengths. Addressing length awareness may be a first step in coding control
mechanisms for the generated sequence attributes.
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