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Abstract

Music large language models (LLMs) have shown impressive capabilities in gen-
erating long-term, high-quality music trained on raw audio or token sequences.
However, the underlying mechanisms largely remain unexplored. Do these mod-
els generate music by simply relying on shallow contextual dependencies, or do
they learn symbolic concepts, such as pitch and chord, similar to how the human
mind processes music? To address this question, we conducted a pilot study to
investigate and manipulate the hidden states of MERT and MusicGen, two state-
of-the-art Transformer-based music LLMs. Experiments show that these models
indeed acquire the concept of pitch and chord root, with a notable improvement in
representational strength in deeper layers. Additionally, we see a strong preference
for retaining pitch content over its stylistic counterpart, instrument timbre, and a
similar relationship is observed between chord root note and chord quality. These
observations offer valuable insights into the inner workings of music LLMs.

1 Introduction

In recent years, Transformer-based large language models (LLMs) have demonstrated remarkable
capabilities in generating and understanding music [1, 2, 3, 4]. Despite their impressive achievements,
the intrinsic mechanisms of music LLMs—how they represent music internally—remain largely
unexplored. Do these models process music using only shallow contextual dependencies, or do they
internalize symbolic musical concepts such as pitch and chord, akin to human cognitive processes?
To a more extreme extent, are they bypassing human perception and learning different yet useful
representations that are even unfathomable to humans?

To address this, we investigate and manipulate the hidden states of two state-of-the-art Transformer-
based music LLMs, MERT [4] and MusicGen [3], and assess their reliance on conceptual understand-
ings that resemble symbolic music notions that humans often rely on. We choose two Transformers
working under different architecture to ensure the experiment results are more comprehensive and
less biased. Specifically, we examine whether and where each model acquires the concepts of (1)
pitch and timbre of single notes and (2) root and quality of chords. Rather than assessing the models’
performance on more complex MIR tasks, we deliberately focused on these fundamental concepts
to evaluate the models’ capacity for abstract, hierarchical conceptualization. Among the musical
concepts, pitch and chord root are the content, which we define to be the more fine-grained details
and discrete music information; while timbre and chord quality are the style, which we define to
be the more high-leveled and integrated, thus more abstract music information. The definition of
content and style can also be understood in other art forms. Looking at the Starry Night by Van Gogh,
one might comment that for a single brush stroke, the content is the color blue and the style is oil
paint; while for the whole painting, the content is the color scheme of blue and yellow and style is

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: An illustration of probing method based on frozen LLMs. We trained probes starting from
the layer 0 (input into the transformer), up until the last layer of the transformer (12 layers for MERT
and 24, 48 for MusicGen-small and MusicGen-medium/melody). The graph applies to both the
architectures of MERT and MusicGen in terms of probe training, except for the regions bounded by
dashed-line boxes which only applies to MusicGen models.

post-impressionism. We propose to investigate if the music LLMs acquire the concepts of content
and style differently.

Experiments suggest that these models acquire hierarchical concepts resembling those that humans
might use, though the learning patterns between content and style differ significantly. Both MERT
and MusicGen achieve high accuracy in recognizing pitch and chord root, with probing accuracy
exceeding 0.9, and a clear improvement in representational strength in deeper layers. This indicates
that Transformers are effective content learners, and symbolic concepts like pitch and chord root
serve as valuable representations for audio prediction in these models.

Second, we see a strong correlation between the representational strength of pitch and chord root,
which aligns well with the symbolic music notions in music theory — chord root is a more abstract
symbol built on the concept of pitches.

Lastly, the representational strength of pitch is significantly stronger than that of timbre, with timbre
probing accuracy dropping in deeper layers.

In summary, our contributions are:

• As far as we know, this is the first in-depth interpretability study of music LLMs using
probing and intervention methodology.

• We observe that music LLMs learn pitch and chord root concepts, with representational
strength improving in deeper layers. The correlation between pitch and chord root suggests
a hierarchical symbolic representation of music.

• We see a strong preference for retaining pitch content over its stylistic counterpart, instrument
timbre, and a similar relationship is observed between chord root note and chord quality.

2 Methodology

In this section, we elaborate on the probes targeting music concepts and intervention details.

2.1 Probing

Probing is an approach that uses features extracted from different layers to train classifiers for pre-
dicting the original classes [5]. The LLMs under our probing investigation are MusicGen (MusicGen-
small, MusicGen-medium, MusicGen-melody) and MERT (MERT-v1-95M).
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We use classifier probes to detect music concepts from the hidden states of large language models,
focusing on pitch, timbre, chord root, and chord quality. For each music concept, we design two
simple probes: a linear probe and a two-layer perceptron (MLP) probe.

Given the hidden state sequence {xl
1,x

l
2, ...,x

l
T } for a T -frame audio feature input and layer index l,

we firstly transform the sequence of hidden states into a global representation hl using a normalization
layer f : hl = f(

∑T
t=1 x

l
t/T ) ∈ Rd.

For each concept, we train separate probes for hidden states across different model layers, and
different concept c, as illustrated in Figure 1. The output activation ŷl

c ∈ Rnc of the probe pl,cθ (either
linear or MLP) is given by:

ŷl
c =

{
W l,chl if pl,cθ is linear,
W l,c

2 δ1(W
l,c
1 hl) if pl,cθ is MLP.

(1)

Here, l is the layer index, nc is the classification category of concept c, and W l,c ∈ Rnc×d,
W l,c

1 ∈ R512×d, and W l,c
2 ∈ Rnc×512 are learnable matrices. δ1 denotes the ReLU activation

function. Let yc be the ground truth for the given feature input. We optimize plθ,c using cross-entropy

loss: Ll,c = CE(δ2(ŷl
c), yc),, where δ2 is the softmax function.

Additionally, we train probes on randomly initialized networks for both models to serve as baselines.
This allows us to assess the inherent difficulty of the tasks and better understand what the Transformer
models are specifically learning.

2.2 Intervention

While probing is an effective way to test whether the hidden states are informative enough to classify
the correct label, intervention techniques further examine the causal power of hidden states by testing
whether intentionally changing the hidden states (along the gradient of the probing classifiers) would
yield expected, altered outputs. Intuitively, intervention is a more difficult task compared to probing,
as sometimes learning partial information is good enough for accurate classification, but generating
an expected output requires a more complete representation.

Before the intervention, we pre-train all the probes and freeze their weights. Let α denotes the scaling
factor for intervention. For a given music concept c and layer index l, we update the hidden state at
t-th frame xl

t to x̂l
t through gradient descent at each intervention step as follows:

x̂l
t ← xl

t − α
∂Ll,c

∂xl
t

. (2)

To assess the representational strength of each layer, we perform interventions by modifying only the
hidden state of the targeted layer in each experiment. We halt intervention when Ll,c consistently
achieves low levels and converges. Following intervention, we feed the modified hidden states into the
MusicGen model to generate interpretable output predictions. Note that we only intervene MusicGen,
as MERT does not directly generates audio.

3 Experiments

3.1 Pitch and timbre dataset

We used two datasets: NSynth [6] and a manually-synthesized dataset. NSynth contains over 300,000
4-second musical notes with annotations like pitch and instrument family. To manage its size, we
used 25% of the training set while keeping the test set intact. For MERT and MusicGen-small, we
utilized NSynth due to its 128 pitch classes and 11 timbre classes, making pitch classification more
challenging than timbre, providing a clear test of our hypothesis that music LLMs learn content more
effectively than style.

For MusicGen-medium and MusicGen-melody, we used a smaller synthetic dataset of 2,257 1-second
audio clips, each representing a single note across 37 soundfonts and covering pitches from C2 to C7.
This was necessary to handle the computational load of these larger models, which have 48 layers.
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Figure 2: Accuracies of linear and non-linear probes on 4 tasks with (a) MERT, (b) MusicGen-small,
(c) MusicGen-medium and (d) MusicGen-melody.

3.2 Chord dataset

We created a synthetic chord dataset with 13,542 audio clips, each featuring a chord with root notes
from C2 to C7. Chords are either Major or Minor triads in root position or inversions. This dataset is
used for Chord Recognition (ChordR) and Chord Quality (ChordQ) tasks.

Intervention experiments were conducted on MusicGen-small using 150 single-note clips and 300
chord clips from the synthetic datasets. The goal was to evaluate whether manipulating hidden states
could shift the pitch or root note to a target result, tested with rule-based MIR algorithms through
madmom[7]..

4 Results and Analysis

4.1 Overall results

Figure 2 shows both linear and non-linear probing accuracy of pitch, timbre, chord root, and chord
quality on four different models. Pitch and timbre are a pair of content and style, while chord root and
quality can be regarded as another pair of content and style built on the concept of pitch. We also plot
the two kinds of baselines: (1) random weights (in hollow circles), which means the probing accuracy
is obtained when the LLM’s weights are set to be random, and (2) random guess (in triangles).

Overall, we see that for all tasks and all models, the accuracy of both linear and non-linear probes is
higher than the baselines. Based on these observations, our interpretation is that music LLMs indeed
acquire pitch, timbre, chord root, and quality chord concepts.
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4.2 Transformers are active content learner

Figure 3: Probing and intervention results on
MusicGen-small with 12 pitch classes and 12
chord root classes.

Figure 4: Comparison of linear probing per-
formance on pitch and chord root tasks. The
left panel shows results from MERT, while the
right panel displays results from MusicGen-
small.

As shown in Figure 2 , content-related tasks, such as pitch and chord root prediction, consistently
outperform style-related tasks, like timbre and chord quality prediction. The accuracy for content-
related tasks tends to be higher at corresponding transformer layers compared to style-related tasks.
Additionally, the representational strength of content-related concepts increases steadily in deeper
transformer layers, whereas style-related concepts show no such consistent growth.

Figure 3 further illustrates the intervention accuracy for pitch and chord root, both as 12-class
classification tasks, alongside probing accuracy. Intervention accuracy also improves in deeper layers,
likely because probing requires only partial information from shallower layers, while intervention
demands more complete content extraction, which occurs in the deeper layers.

Thus, we conclude that music LLMs are active content learners, progressively extracting more
complete symbolic music information in deeper layers.

4.3 Comparison between pitch and chord root

We can also compare the results horizontally, looking at how music LLMs learn the concept of content
across different abstraction hierarchy. In our case, pitch in single note is the less abstract musical
concept while chord root in chord is the more abstract musical concept. In Figure 4, we can see that
MERT comprehends the less abstract content (pitch) with a better capacity while MusicGen-small
performs equally good at absorbing musical content at different hierarchy, both in single note and in
chord.

5 Conclusion

In our work, we applied probing and intervention method to Music LLMs. Our experiments showed
that (1) Transformers are particularly effective at learning content-related concepts, especially in
deeper layers, where they consistently outperform their ability to learn style-related concepts.(2)
The consistent relationship between pitch and chord show that chord root is a more abstract concept
derived from pitches. Several potential avenues for future research emerge from our work. A natural
extension would be to expand our probing beyond individual notes and chords to include sequential
concepts, such as musical scales. Another promising direction would be to investigate more complex
concepts embedded within the models, such as the key of a song. Moreover, it will be interesting
if we can monitor and intervene the continuation generated by music LLMs, it can further aid the
music generation process and opens up intriguing avenues for refining these models to enhance their
interpretive depth and accuracy.
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Appendices

A Related Works

We review two realms of related works: 1) music large language models (LLMs), especially audio-
based LLMs, and 2) existing works on understanding LLMs of other domains.

A.1 Music LLMs

The introduction of Jukebox [1] by OpenAI laid the foundation for audio-based LLMs, showcasing the
ability to model complex musical structures from raw audio. Its hierarchical Transformer architecture,
which is facilitated with lyrics condition, highlighted the model’s adeptness at discerning complex
audio patterns. Building on this, MusicLM [2] improved audio generation with text conditioning,
enhancing control and diversity. More recently, MERT [4] and MusicGen [3] achieved state-of-the-art
results in music understanding and generation, respectively, using single-Transformer architectures.
In this study, we explore the interpretability of these models, focusing on MERT and MusicGen.

A.2 Probing and Intervene

Probing and intervention techniques have become essential for understanding the internal workings
of LLMs and gaining finer control over their outputs [5, 8, 9]. Probing analyzes the representations
learned across model layers to uncover how information is processed, while intervention involves
manipulating internal states to assess their causal influence on decision-making [10]. For example,
JukeMIR [11] probed Jukebox and found that the middle layers’ hidden states were the most effective
for downstream tasks. Similarly, a study on a GPT variant fine-tuned for Othello revealed that the
model developed non-linear internal representations of board states without explicitly learning the
game’s rules [12]. Investigations into models like Llama-2 [13] further explore whether LLMs grasp
broader world concepts, such as space and time, beyond merely memorizing data [14].

B Feature Selection

We use hidden states after every layer of the transformers as the probe features xl
t where t ∈ Z+ is the

timestep and the parameterization of l depends on the probed model. For MusicGen-small, l ∈ [0..24]
indexes the 24 decoder layers, with l = 0 representing the input embeddings derived from discrete
EnCodec tokens before entering the MusicGen transformer decoder. Similarly, for MusicGen-melody
and MusicGen-medium, l ∈ [0..48] indexes the 48 decoder layers, where l = 0 also denotes the
input embeddings from EnCodec tokens. For MERT, l ∈ [0..12], with l ∈ [1..12] indexing the 12
encoder layers and l = 0 representing the input embeddings before the MERT encoder, following
the 1D-convolution feature extractor. For all models, when using transformer features, we use the
hidden states after the layer normalization of the feed-forward sub-layer as the probe features. Those
selected features then serve as the input to our learnable probes.

C Limitation

Our experimental conclusions are specifically limited to the pitch, timbre, chord root, and chord
quality concepts explored in this study. Additionally, the datasets used were restricted to NSynth
and our own synthesized data. As such, we cannot guarantee that our findings will generalize to
other musical concepts or datasets, or to settings outside those tested here. Future work is needed to
evaluate the applicability of these conclusions in a broader range of musical contexts and with diverse
data sources.
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