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Abstract
This paper introduces INTERVENOR (IN-001
TERactiVE chaiN Of Repair), a system de-002
signed to emulate the interactive code repair003
processes observed in humans, encompass-004
ing both code diagnosis and code repair. IN-005
TERVENOR prompts Large Language Mod-006
els (LLMs) to play distinct roles during the007
code repair process, functioning as both a Code008
Learner and a Code Teacher. Specifically,009
the Code Learner is tasked with adhering to010
instructions to generate or repair code, while011
the Code Teacher is responsible for crafting012
a Chain-of-Repair (CoR) to serve as guidance013
for the Code Learner. During generating the014
CoR, the Code Learner needs to check the015
generated codes from Code Learner and re-016
assess how to address code bugs based on er-017
ror feedback received from compilers. Experi-018
mental results demonstrate that INTERVENOR019
surpasses baseline models, exhibiting improve-020
ments of approximately 18% and 4.3% over021
GPT-3.5 in code generation and code transla-022
tion tasks, respectively. Our further analyses023
show that CoR is effective to illuminate the rea-024
sons behind bugs and outline solution plans in025
natural language. With the feedback of code026
compilers, INTERVENOR can accurately iden-027
tify syntax errors and assertion errors and pro-028
vide precise instructions to repair codes. All029
data and codes will be released via GitHub.030

1 Introduction031

Large Language Models (LLMs), such as Chat-032

GPT (OpenAI, 2022), have shown remarkable per-033

formance on code related tasks (OpenAI, 2023;034

Roziere et al., 2023; Wang et al., 2023b). This has035

significantly enhanced the efficiency and produc-036

tivity in coding and software development (Qian037

et al., 2023a). Current approaches for code-based038

models involve pretraining language models on039

code corpora (Muennighoff et al., 2023; Luo et al.,040

2023; Li et al., 2023b; Zheng et al., 2023) and em-041

ploying Chain-of-Thought (CoT) to prompt the042
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Figure 1: The Illustration of INTERVENOR. There are
two agents in INTERVENOR, the teacher and student,
who collaborate to repair the code. The error messages
are utilized as a kind of INTERVENOR to alleviate
the Degeneration-of-Thought (DoT) problem.

coding proficiency of LLMs (Wei et al., 2022; 043

Huang et al., 2023; Li et al., 2023a). However, 044

compelling LLMs to directly generate entirely cor- 045

rect code proves to be exceptionally challenging, 046

even for proficient programmers in real-world sce- 047

narios (Chen et al., 2023b). 048

Recently, researchers focus on improving the 049

code generation ability of LLMs through Self- 050

Repair techniques (Olausson et al., 2023; Chen 051

et al., 2023b). These methods leverage LLMs 052

themselves to execute and repair codes, thereby 053

enhancing the quality of generated code. Moreover, 054

multi-agent collaborative coding approaches (Qian 055

et al., 2023a; Dong et al., 2023) have also proven 056

their effectiveness in handling difficult code tasks 057

by prompting LLMs to play different roles, such 058

as developers and testers. However, lots of bugs 059

are difficult to find due to the cognitive iner- 060

tia (McGuire, 1960)–overlooking the buggy codes 061

that may not conform to their pre-existing coding 062

thinking of LLMs. These agent-based code re- 063

finement methods (Dong et al., 2023; Qian et al., 064
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2023a) heavily rely on the self-evaluation capa-065

bilities of LLMs, potentially encountering the066

Degeneration-of-Thought (DoT) problem (Liang067

et al., 2023; Shinn et al., 2023).068

This paper proposes INTERactiVE chaiN Of069

Repair (INTERVENOR) to alleviate the DoT prob-070

lem in code repair. The approach incorporates feed-071

back from code compilers to enhance the code re-072

pair process. Following Dong et al. (2023), we de-073

velop two agents, namely, Code Learner and Code074

Teacher, to collaboratively repair codes interac-075

tively. As illustrated in Figure 1, the Code Learner076

is tasked with generating/repairing codes based on077

provided instructions. To craft specific code repair078

instructions to guide the Code Learner (Kaddour079

et al., 2023; Wang et al., 2023a), the Code Teacher080

generates the Chain-of-Repair (CoR) to illustrate081

the bug repair solutions for the Code Learner. In-082

stead of Self-Debug (Chen et al., 2023b), Code083

Teacher incorporates the bug report from compil-084

ers to rethink the reasons of code errors and gen-085

erate planning on how to repair the bugs. This086

interactive code repair process will continue until087

the code learner successfully fixes all code errors088

or reaches the predetermined maximum number of089

repair attempts.090

Experimental results demonstrate the effective-091

ness of INTERVENOR by outperforming previous092

baseline models. Notably, INTERVENOR also093

achieves about 18% and 4.3% improvements over094

GPT-3.5 (OpenAI, 2022) in code generation and095

code translation tasks, showing its ability to im-096

prove the quality of generated codes through itera-097

tive code repair. Besides, we also build the CodeEr-098

ror dataset for evaluating the code repair ability of099

INTERVENOR by collecting the buggy code snip-100

pets from GPT-3.5 and real-world user-submitted101

codes. INTERVENOR further validates its efficacy102

by demonstrating a twofold increase in the number103

of successfully repaired codes.104

Our further analyses illustrate that INTER-105

VENOR is effective in leveraging the bug messages106

from code compilers, recognizing the reasons for107

code errors, and providing correction planning in108

natural language. Thanks to our CoR mechanism,109

INTERVENOR avoids thinking by LLMs them-110

selves and can accurately diagnose the buggy codes111

and correct the assertion errors and name/syntax112

errors even in more difficult code generation scenar-113

ios. Our CoR mechanism enables LLMs to avoid114

designing complex code generation/repair prompts115

and achieve the best performance via only three-116

turn code repair. It also shows the potential to 117

leverage the feedback from environments or rule 118

systems to evolve LLMs (Olausson et al., 2023). 119

2 Related Work 120

Code generation tasks (Chen et al., 2021; Austin 121

et al., 2021; Zheng et al., 2023) aim to generate 122

correct and executable code based on the given nat- 123

ural language description, which has drawn lots of 124

attention from researchers. LLMs such as Chat- 125

GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023) 126

have shown strong effectiveness in generating code 127

of high quality. To enhance the coding ability of 128

LLMs, existing work focuses on code-specific pre- 129

training and performs exceptionally well in code 130

generation tasks (Roziere et al., 2023; Li et al., 131

2023b; Luo et al., 2023; Wang et al., 2023b). 132

Recently, some models focus on utilizing 133

prompting techniques to enhance the coding capa- 134

bilities of LLMs. CodeCoT (Huang et al., 2023) is 135

inspired by Chain-of-Thought (Wei et al., 2022) 136

and prompts the quality of generated codes us- 137

ing Code-CoT and Self-exam methods. LLMs are 138

asked to craft the code and design a set of test cases 139

to polish the codes. Structured Chain-of-Thought 140

(SCoT) (Li et al., 2023a) further considers the pro- 141

gram structure, such as sequences, branches, and 142

loops, and prompts LLMs to generate intermedi- 143

ate reasoning steps with program structures. Nev- 144

ertheless, forcing LLMs to directly generate the 145

completely correct codes is challenging in the code 146

generation task (Chen et al., 2023b). 147

To generate more accurate code, existing efforts 148

primarily concentrate on Self-Refine (Olausson 149

et al., 2023) and Self-Repair (Chen et al., 2023b) 150

techniques. The Self-Refine models aspire to im- 151

prove the quality of generated code by decoding 152

multiple samples and subsequently selecting the 153

most suitable one based on specific criteria. One 154

strategy to formulate customized criteria involves 155

executing the generated code and selecting the op- 156

timal one based on the resulting execution out- 157

comes (Ni et al., 2023; Zhang et al., 2023b; Shi 158

et al., 2022; Li et al., 2022). Another approach is 159

to rerank multiple code solutions to determine the 160

final code (Shi et al., 2022; Zhang et al., 2023b; 161

Chen et al., 2023a; Inala et al., 2022). However, 162

these methods necessitate significant computing re- 163

sources for generating code candidates, rendering 164

them inefficient (Zhang et al., 2023a). 165

Another research avenue involves employing an 166
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def decimal_to_binary(decimal): 

binary = ‘’
while decimal > 0: 

binary = str(decimal % 2) + 

binary 

decimal = decimal // 2

return 'db' + binary + 'db'

Code Check

Generate the Chain-of-Repair (CoR)

def decimal_to_binary(decimal):

if decimal == 0: 

return "db0db"

binary = ‘’
while decimal > 0: 

binary = str(decimal % 2) + binary 

decimal = decimal // 2

return 'db' + binary + 'db'

Code Generation

Compiler

Code Repair

The code needs to be modified to handle the case where 
the input decimal is 0. Currently, the code only works for 
positive decimal numbers. To fix this, we can add an if 
statement at the beginning of the function to check if the 
input decimal is 0. If it is, we can simply return "db0db" as 
the output. This will ensure that the test case for decimal 
0 will pass. 

AssertionError: Error Line - assert 
decimal_to_binary(0) == "db0db"

Task: You will be given a number in decimal form and your task is to convert it to binary format. 
The function should return a string, with each character representing a binary number. Each 
character in the string will be ‘0’ or ‘1‘. There will be an extra couple of characters ‘db’ at the 
beginning and at the end of the string to help with the format.

Bug Fixing

A B

CA

Figure 2: Illustration of Our Interactive Chain-of-Repair Model (INTERVENOR ).

iterative code repair approach to enhance the qual-167

ity of generated code (Zhang et al., 2023a; Welleck168

et al., 2023; Madaan et al., 2023; Shinn et al., 2023).169

Self-Debug (Chen et al., 2023b) utilizes explana-170

tions generated by LLMs to rectify self-generated171

code, while Self-Repair (Olausson et al., 2023) in-172

corporates human-provided feedback for improve-173

ment. Self-Edit (Zhang et al., 2023a) employs error174

messages to refine generated code, but it necessi-175

tates the training of an additional fault-aware editor176

to generate a new program. Instead of directly inte-177

grating feedback for code repair, INTERVENOR178

designs an additional agent to reflect the reasons179

for coder errors and generate the Chain-of-Repair180

(CoR). This CoR is then employed to instruct the181

other agent in code repair through natural language.182

Moreover, the work (Dong et al., 2023; Qian183

et al., 2023a) also designs a multi-agent collabo-184

rative approach to simulate the software develop-185

ment process and improve the efficiency of code186

generation. Nevertheless, these methods are highly187

dependent on the self-evaluation ability of LLMs188

and may face the Degeneration-of-Thought (DoT)189

problem (Liang et al., 2023; Shinn et al., 2023).190

Unlike them, INTERVENOR focuses on the bug-191

fixing process and proposes a simple but effective192

solution, which utilizes external tools, such as the193

Python interpreter, to execute the code (Xu et al.,194

2023; Qian et al., 2023b) and use the accurate bug195

report to facilitate the agent collaboration during196

interactive code repair. 197

3 Methodology 198

In this section, we introduce INTERVENOR, 199

which conducts an interactive program repair pro- 200

cess using LLM collaboration. We first describe 201

the preliminary of code repair (Sec. 3.1) and then 202

introduce our interactive Chain-of-Repair (CoR) 203

mechanism (Sec. 3.2). 204

3.1 Preliminary of Code Repair 205

The code repair models mainly focus on Self- 206

Repair (Olausson et al., 2023; Chen et al., 2023b). 207

These models usually consist of three steps, in- 208

cluding code generation, code execution, and code 209

explanation. Self-Repair aims to use LLM itself 210

to conduct the self-debug and self-execution pro- 211

cesses and then iteratively repair codes. Never- 212

theless, programmers usually fail to recognize the 213

code errors because of cognitive inertia (McGuire, 214

1960), making the code execution more difficult by 215

LLM itself. 216

Different from these self-repair models, IN- 217

TERVENOR follows previous work (Zhang et al., 218

2023a; Wang et al., 2022) to incorporate the feed- 219

back from compilers to prompt the code generation 220

ability of LLMs. Instead of directly feeding the 221

code bug message to LLMs, we design the interac- 222

tive chain of repair mechanism, which builds two 223

agents to rethink and repair the code errors. The 224
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compiler serves as an INTERVENOR to avoid the225

Degeneration-of-Thought (DoT) problem during226

the interactive repair process.227

3.2 Interactive Chain-of-Repair (CoR)228

As shown in Figure 2, given the code genera-229

tion tasks, INTERVENOR aims to mimic the hu-230

man bug-repairing behavior by iteratively acquiring231

feedback from compilers, then generating bug rea-232

sons and solving plans in natural language, and233

finally fixing the program. Specifically, INTER-234

VENOR employs two LLM based agents to play235

different roles in code repair (Sec. 3.2.1). Then we236

conduct an interactive code repair process using237

the agents (Sec. 3.2.2).238

3.2.1 Agent Building239

INTERVENOR involves the integration of two240

agents, Code Learner and Code Teacher, who241

work interactively to repair the generated codes.242

The role of the Code Learner follows the instruc-243

tions to conduct code generation/repair, guided by244

the Code Teacher. The primary focus of the Code245

Teacher is to rethink and elucidate code errors for246

students. Additional details about agent construc-247

tion can be found in Appendix A.5.248

Code Learner. The Code Learner follows in-249

structions and engages in two coding tasks, includ-250

ing initial code generation and code repair.251

In the initial code generation phase, the Code252

Learner endeavors to generate the initial version253

of code according to the requirements of the given254

coding task. Subsequently, the agent’s role is mod-255

ified for code repair. We trigger the code repair256

proficiency of LLMs using the instruction “You are257

a student assistant with excellent code repair capa-258

bilities”. Besides, Code Learner incorporates the259

Chain-of-Repair (CoR) as an instruction to guide260

the code repair.261

Code Teacher. The Code Teacher conducts262

the CoR results during interactive code repair. It263

aims to generate the code error explanation and264

give bug-fixing planning for Code Learner.265

Specifically, we use the prompt–“You are an ex-266

perienced and insightful programming instructor”–267

to instruct LLMs to function as proficient code268

debuggers and serve to activate their bug-tracing269

and code-diagnosis abilities. Code Teacher inte-270

grates feedback from code compilers to produce271

extensive repair suggestions and guidance. This272

assists Code Learner in gaining a deeper under-273

standing and effectively addressing errors within274

Benchmark Language Problems #Tests
HumanEval Python 164 7.8
MBPP Python 500 3.1

HumanEval-X
C++ 164 7.8
Java 164 7.8
JavaScript 164 7.8

CodeError Python 4,463 9.0

Table 1: Data Statistics. #Tests represents the average
number of test cases.

their code. 275

3.2.2 Interactive Code Repair Workflow 276

INTERVENOR conducts an interactive code- 277

repair process, facilitating the collaboration among 278

agents and the code compiler. 279

In the initial step (Step A0, where 0 signifies 280

the initial turn), we prompt the Code Learner to 281

generate code for the given task. Subsequently, the 282

Code Learner executes the generated code using 283

the code compiler to assess its correctness (Step 284

B). Following this, the Code Teacher generates 285

code repair instructions (CoR) based on the bug re- 286

port and the associated buggy code (Step C). These 287

instructions elucidate the reason of the bug, such 288

as “modified to handle the case where the input 289

decimal is 0”, and include code correction plan- 290

ning, for example, “we can simply return db0db”. 291

Such instructions are informative and enhance the 292

guidance for the Code Learner. Ultimately, the 293

Code Learner follows the chain-of-repair (CoR) 294

to rectify the code and subsequently resubmits the 295

corrected version to the compiler for execution in 296

the subsequent turn ((Step Ai), where i ≥ 1 de- 297

notes the code repair process). The Ai, B, and C 298

steps are iterated sequentially until either the code 299

meets the compiler’s estimation or the maximum 300

turn limit is reached. 301

4 Experimental Methodology 302

In this section, we describe the datasets, evaluation 303

metrics, baselines, and implementation details. 304

Dataset. We evaluate the code generation and 305

translation effectiveness on three datasets, includ- 306

ing HumanEval, MBPP and HumanEval-X. Besides, 307

we build a new benchmark CodeError to further 308

test the code repair ability of LLMs. All data statis- 309

tics are shown in Table 1. 310

HumanEval (Chen et al., 2021) serves as a bench- 311

mark for evaluating the functional correctness of 312

synthesized programs generated from docstrings. 313

It comprises 164 hand-written Python program- 314
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ming problems, which consist of function signa-315

tures, docstrings, bodies, and multiple unit tests.316

MBPP (Austin et al., 2021) is a benchmark that in-317

cludes 974 introductory-level Python programming318

problems. Each problem comprises a problem319

statement, a code solution, and three automated320

test cases, and the task IDs that range from 11 to321

510 are used for evaluation. HumanEval-X (Zheng322

et al., 2023) is used to assess a model’s multi-323

programming language generation and translation324

capability. It consists of 820 human-crafted data325

instances, covering C++, Java, JavaScript, and Go.326

Then we build the CodeError benchmark to fur-327

ther evaluate the code repair effectiveness of IN-328

TERVENOR. The CodeError benchmark contains329

a total of 4,463 examples, evenly distributed across330

more than six different error types. It includes331

basic programming problems, data analysis prob-332

lems, and programming competition problems. For333

each example, there are 9 test cases on average to334

evaluate the code’s correctness. More details of335

CodeError are shown in Appendix A.3.336

Evaluation Metrics. We use Pass@k (Chen337

et al., 2021) to evaluate the effectiveness of differ-338

ent models on both code generation task and code339

translation task, which is the same as the previous340

work (Chen et al., 2021; Zheng et al., 2023; Li et al.,341

2023a; Chen et al., 2023a; Nijkamp et al., 2023).342

Baselines. We first compare INTERVENOR343

with several code-oriented large language344

pretrained models, such as Incoder (Fried345

et al., 2023), CodeGen (Nijkamp et al., 2023),346

CodeGeeX (Zheng et al., 2023), CodeT5 (Wang347

et al., 2023b), StarCoder (Li et al., 2023b),348

WizardCoder (Luo et al., 2023), and Llama based349

models (Touvron et al., 2023; Roziere et al., 2023).350

These models are pretrained on large-scale code351

corpora, demonstrating strong code generation352

capabilities. Additionally, we also compare353

INTERVENOR with some closed-source and354

high-performance large language models, e.g.355

Claude (Anthropic, 2023), GPT-3.5 (OpenAI,356

2022), and GPT-4 (OpenAI, 2023), which show357

strong emergent abilities, especially for the code358

generation tasks. In our experiments, GPT-3.5359

is our main baseline model. Besides, we also360

compare Self-Debug (Chen et al., 2023b) and361

the multi-agent collaborative method, Self-362

Collaboration (Dong et al., 2023) to show the code363

repair ability of INTERVENOR.364

Implementation Details. In our experiments,365

we use GPT-3.5 as the foundation model to build366

different agents in our INTERVENOR model. We 367

set the temperature to 0.2 and the maximum gener- 368

ation length to 512 tokens. The maximum number 369

of interactive code repairs is set to 5. Addition- 370

ally, we also use CodeLlama-7B/13B to implement 371

the agents, Code Learner and Code Teacher, of 372

our INTERVENOR model to explore the impact of 373

using different LLMs. 374

5 Evaluation Results 375

In this section, we evaluate the overall performance 376

of INTERVENOR. Then we conduct ablation stud- 377

ies and also show the effectiveness of Interactive 378

CoR in different testing scenarios. Finally, case 379

studies are presented. 380

5.1 Overall Performance 381

The overall performance of INTERVENOR in code 382

generation and translation tasks is shown in Table 2. 383

Overall, INTERVENOR outperforms all base- 384

lines in all tasks by achieving more than 1% im- 385

provements, showing its effectiveness. Compared 386

to our main baseline model GPT-3.5, INTER- 387

VENOR achieved about 18% and 4.3% improve- 388

ments in code generation and code translation tasks, 389

respectively. It illustrates that INTERVENOR has 390

the ability to prompt the coding ability of LLMs 391

by mimicking the human code repair behavior– 392

iteratively judging, rethinking, and repairing. No- 393

tably, INTERVENOR also surpasses Self-Debug 394

and Self-Collaboration models, demonstrating its 395

ability to successfully intervene in the code genera- 396

tion/translation process and guide LLMs to better 397

repair the codes using our chain of repair mecha- 398

nism. All these experimental results highlight the 399

generalization ability of INTERVENOR in improv- 400

ing LLMs’ coding ability in different languages. 401

5.2 Ablation Studies 402

The ablation studies are conducted to show the 403

effectiveness of the interactive CoR mechanism. 404

Firstly, we evaluate the code generation abil- 405

ity of LLMs using different code generation/repair 406

prompting methods. As shown in Table 3, we com- 407

pare CoT (Kojima et al., 2022), Few-Shot (Chen 408

et al., 2021), and Few-Shot CoT (Wei et al., 2022) 409

models in experiments, which prompt LLMs to 410

better generate codes. These models try to gener- 411

ate natural language as the chain of coding thought 412

(CoT) or provide some instances to demonstrate the 413

coding task (Few-Shot). Then we compare differ- 414

ent methods to generate the code repair instruction, 415
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Model
Code Generation Code Translation

HumanEval MBPP HumanEval-X Target Language
Python Python C++ Java JS Python C++ Java JS

InCoder (Fried et al., 2023) 15.2 19.4 9.5 9.1 13.0 - - - -
CodeGen (Nijkamp et al., 2023) 18.3 20.9 18.1 14.9 18.4 40.7 37.6 35.4 51.8
CodeGeeX (Zheng et al., 2023) 22.9 24.4 17.1 20.0 17.6 68.5 43.6 56.8 45.2
CodeT5+ (Wang et al., 2023b) 30.9 - - - - - - - -
InstructCodeT5+ (Wang et al., 2023b) 35.0 - - - - - - - -
PaLM-Coder (Chowdhery et al., 2023) 35.9 47.0 - - - - - - -
StarCoder (Li et al., 2023b) 40.8 49.5 - - - - - - -
WizardCoder (Luo et al., 2023) 57.3 51.8 - - - - - - -
LLama2 (Touvron et al., 2023) 30.5 45.4 - - - - - - -
CodeLLama (Roziere et al., 2023) 62.2 61.2 - - - - - - -
PanGu-Coder2 (Shen et al., 2023) 61.6 - - - - - - - -
Claude (Anthropic, 2023) 47.6 - - - - - - - -
GPT-4 (OpenAI, 2023) 67.0 - - - - - - - -
Self-Debug (Chen et al., 2023b) 73.8 - - - - - - - -
Self-Collaboration (Dong et al., 2023) 74.4 68.2 - - - - - - -
GPT-3.5 (OpenAI, 2022) 60.3 39.8 52.4 50.6 54.3 84.3 71.5 81.7 84.6
INTERVENOR 75.6 69.8 67.1 68.3 67.1 89.8 75.6 85.4 88.3

Table 2: Overall Performance of Different Models. We evaluate model effectiveness on code generation and code
translation (HumanEval-X dataset) tasks using the Pass@1 evaluation metric. The baseline results are borrowed
from corresponding papers. More evaluation results on the code translation task are shown in Appendix A.2.

Code Repair Prompt Methods HumanEval MBPP HumanEval-X CodeError Avg.Python Python C++ Java JS Python

No Repair

Zero-Shot 60.3 39.8 52.4 50.6 54.3 - -
Zero-Shot CoT 51.8 35.2 48.2 45.7 45.4 - -
Few-Shot 62.2 45.4 53.1 62.2 43.3 - -
Few-Shot CoT 60.4 45.4 48.2 63.4 57.9 - -

Single Turn

Zero-Shot 62.2 41.6 54.3 65.2 60.4 4.9 48.1
Few-Shot 65.2 40.6 57.9 65.2 62.8 9.8 50.3
CoT 66.5 48.8 56.7 62.2 60.4 10.3 50.8
Self-Refine 65.2 48.8 57.3 64.0 60.4 5.2 50.2
Error Msgs 67.1 51.8 57.3 59.8 62.8 9.8 51.4
INTERVENOR (CoR) 69.5 51.0 59.8 65.2 60.4 15.9 53.6

Multi-Turns INTERVENOR (CoR) 75.6 69.8 67.1 68.3 67.1 21.7 61.6

Table 3: Ablation Studies. We compare different prompting techniques to evaluate the effectiveness of our Chain-of-
Repair (CoR) mechanism. All models are built based on GPT-3.5 and evaluated with Pass@1.

including Self-Refine (Madaan et al., 2023), Er-416

ror Msgs, and Chain-of-Repair (CoR). Self-Refine417

asks the LLMs to rethink the errors by themselves,418

while Error Msgs and CoR incorporate the code419

error messages from compilers. Msgs directly uses420

error messages to guide the code repair process.421

The experimental results show that code repair422

is more effective than directly prompting LLMs to423

generate codes. Even though we conduct differ-424

ent Few-shot and CoT methods to directly prompt425

LLMs, we only achieve 3.5% improvements, which426

shows that it is difficult for LLMs to generate cor-427

rect codes without repairing. On the contrary, the428

code repair methods improve the quality of gener-429

ated codes by achieving more than 9.7% improve-430

ments with only single-turn repair. Both Error431

Msgs and CoR thrive on the feedback from code432

compilers and achieve more than 1.2% improve-433

ments than Self-Refine, demonstrating that compil-434

ers can provide valuable signals to help LLMs bet- 435

ter recognize the code bugs. Notably, CoR achieves 436

the best performance among all code repair mod- 437

els, illustrating its effectiveness in guiding LLMs 438

for code repair. CoR uses the error messages from 439

code compilers to prompt LLMs, aiming to rethink 440

the reasons for making errors and generate the in- 441

structions for repairing. 442

Then, as shown in Table 4, we investigate the 443

impact of using different LLMs to build Code 444

Learner and Code Teacher. When we use the 445

identical LLM to build the Code Learner, the per- 446

formance of INTERVENOR is improved with the 447

enhanced capabilities of the Code Teacher, under- 448

scoring the efficacy of our CoR mechanism. This 449

indicates that stronger models can conduct a more 450

in-depth analysis of erroneous code and provide 451

more accurate suggestions for code repair. Simi- 452

larly, by keeping the same LLM to build the Code 453

6



Code Learner Code Teacher HumanEval MBPP HumanExal-X CodeError
Python Python C++ Java JS Python

CodeLlama-7B

N/A 32.3 34.4 30.3 29.8 33.5 -
CodeLlama-7B 32.9 35.1 31.0 31.0 34.1 4.6
CodeLlama-13B 33.5 35.3 32.2 31.5 35.5 4.9
GPT-3.5 36.6 38.4 33.5 32.3 40.4 8.6

CodeLlama-13B

N/A 39.6 36.4 36.6 33.5 39.6 -
CodeLlama-7B 40.0 37.1 37.1 34.5 40.4 8.8
CodeLlama-13B 42.1 37.7 38.6 36.6 42.8 9.4
GPT-3.5 43.6 40.4 42.2 37.5 46.1 12.6

GPT-3.5

N/A 60.3 39.8 52.4 50.6 54.3 -
CodeLlama-7B 65.2 42.8 55.4 55.1 56.1 11.8
CodeLlama-13B 66.5 46.1 56.1 58.9 58.9 13.6
GPT-3.5 69.5 51.0 59.8 65.2 60.4 15.9

Table 4: Model Performance of Different Code Learner and Code Teacher Model Pairings. We only conduct one
turn code repair in experiments. “N/A” represents the initial output of Code Learner without any intervention from
the Code Teacher for code repair, it reflects the initial generation results of Code Learner.
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Figure 3: The Impact of Different Code Repair Turns.
HumanEval, MBPP, and HumanEval-X (HEX) are used
to evaluate our INTERVENOR model.

Teacher, a stronger Code Learner also conducts454

better code repair results. This indicates that a more455

powerful Code Learner has a stronger instruction-456

following ability to better comprehend the CoR457

provided by the Code Teacher.458

5.3 Effectiveness of INTERVENOR in459

Different Testing Scenarios460

In this subsection, we delve deeper into exploring461

the effectiveness of INTERVENOR in two test-462

ing scenarios: 1) validating the impact of different463

code repair turns, and 2) evaluating the code repair464

effectiveness on different code error types.465

As shown in Figure 3, the code generation per-466

formance is significantly improved during the it-467

eratively repairing. After three turns, the INTER-468

VENOR achieves almost the best performance on469

HumanEval and HumanEval-X datasets, showing470

the efficiency of our interactive chain-of-repair471

mechanism. For a more difficult dataset MBPP, IN-472
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Figure 4: Code Repair Performance on the CodeError
Dataset. We repair the error codes with one single turn.
The codes are divided into two groups to evaluate the
code repair effectiveness, including Assertion Errors
and Others (AttributeError, NameError, RecursionError,
SyntacError and TypeError).

TERVENOR achieves 30% improvements and still 473

has some room to achieve further improvements, 474

demonstrating its advantages in dealing with more 475

difficult and realistic coding tasks. 476

Then we show the code repair effectiveness on 477

different error types in Figure 4. We use differ- 478

ent prompt methods to stimulate LLMs to repair 479

code errors and show their effectiveness on differ- 480

ent types of code errors. Overall, INTERVENOR 481

doubles the number of corrected code examples of 482

baseline models, showing its effectiveness in repair- 483

ing code errors. On the one hand, INTERVENOR 484

significantly outperforms other methods on the As- 485

sertionError repairing task. It illustrates that IN- 486

TERVENOR can provide more precise guidance 487

and identify errors with the help of the bug report 488

derived from the failed testing case. On the other 489

hand, INTERVENOR also shows a strong ability 490

to correct other code errors. Our Chain-of-Repair 491
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def derivative(xs: list): 

if len(xs) == 1: 

return [0]

else: 

return [xs[i] * i for i in

range(1, len(xs))]

Instruction:  One possible modification method is to use the `all()` function to 
check if all keys are either in lower case or upper case. This function takes an 
iterable as an argument and returns `True` if all elements in the iterable are `True`, 
otherwise it returns `False`. We can use this function to check if all keys are in 
lower case or upper case by passing a generator expression that checks if each key 
is either in lower case or upper case. 

Instruction: The error message indicates that the code is trying to call the islower() 
method on an integer object, which is not possible. This is because the code is 
trying to check if the keys in the dictionary are all lowercase strings, but one of the 
keys is an integer. To fix this, we can modify the code to first check if the key is a 
string before calling the islower() method. This can be done using the isinstance() 
function, which checks if an object is an instance of a specific class.  

ErrorType: AttributeError
ErrorMessage: AttributeError: 'int' object has no attribute 'islower'

Buggy Code

INTERVENOR

if all(key.islower() for key in keys):

return True

elif all(key.isupper() for key in keys):

return True

def check_dict_case(dict): 

if len(dict) == 0:

return False

else:

keys = list(dict.keys())

if keys[0].islower(): 

for key in keys:

if not key.islower(): 

return False

return True

else: 

for key in keys:

if not key.isupper(): 

return False

return True

if isinstance(keys[0], str) and keys[0].islower(): 

for key in keys:

if not isinstance(key, str) or not key.islower(): 

return False

return True

Task: Given a dictionary, return True if all keys are strings 
in lower case or all keys are strings in upper case, else 
return False. The function should return False is the 
given dictionary is empty. 

Self-Refine

Bug Fixing

Bug Fixing

Task: xs represent coefficients of a polynomial. xs[0] + xs[1] 
* x + xs[2] * x^2 + .... Return derivative of this polynomial 
in the same form.
derivative([3, 1, 2, 4, 5]) should return [1, 4, 12, 20]
derivative([1, 2, 3]) should return [2, 6]

Buggy Code

INTERVENOR

Self-Refine

ErrorType: AssertionError
ErrorMessage: AssertionError: Assertion failed for assert derivative 
([1]) == []

Instruction:The error message indicates that the function is not handling the case 
where the input list has only one element correctly. From the error message, we 
can know that the issue lies in the condition where the length of the input list is 1. 
The current implementation returns [0] when the input list contains only one 
element, but the expected result is an empty list. To fix this, we need to modify the 
corresponding return statement.

if len(xs) == 1: 

return []

Bug Fixing

Instruction: The code seems to be correct, but there are some edge cases that are 
not handled properly. For example, if the input list is empty or contains only one 
element, the function will return an incorrect result. To fix this, we can add a check 
at the beginning of the function to handle these edge cases. 

if len(xs) == 0: 

return [] 

elif len(xs) == 1: 

return [0]

Bug Fixing

check_dict_case({"a":"apple", "b":"banana"}) should return True.
check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) 
should return False. 

Figure 5: Case Studies. We provide two cases that showcase the effectiveness of the Chain-of-Repair (CoR)
generated by INTERVENOR when fixing AttributeError and AssertionError, respectively.

(CoR) method also thrives on the error messages of492

the compiler, breaks the cognitive inertia of LLMs,493

and identifies the specific code error for repairing.494

All these phenomena show that the quality of code495

execution feedback is critical in repairing codes.496

5.4 Case Studies497

Finally, we show two cases in Figure 5 to demon-498

strate the effectiveness of INTERVENOR. We com-499

pare INTERVENOR with Self-Refine (Madaan500

et al., 2023), which prompts LLMs themselves to501

execute codes, recognize bugs, and repair codes.502

Overall, the feedback from compilers indeed503

helps to improve the accuracy of repaired code504

by providing more valuable instructions. In the505

first case, Self-Refine fails to fix the AttributeError506

and adds the “all()” function in codes. On the con-507

trary, INTERVENOR successfully fixes the code,508

showing its effectiveness. It accurately analyzes509

the reason of bugs “call the islower() method on510

an integer object, which is not possible” and also511

provides a solution by suggesting to “check if the 512

key is a string before calling the islower() method”. 513

In the second case, the instruction provided by Self- 514

Refine thinks the code seems to be correct and does 515

not offer definite solutions, showing the cognitive 516

inertia in debug–It is hard to debug the code written 517

by ourselves. INTERVENOR shows its effective- 518

ness in directly generating the reason for the bug: 519

“the function is not handling the case where the 520

input list has only one element correctly”. More 521

cases are shown in Appendix A.4. 522

6 Conclusion 523

This paper proposes INTERVENOR, which re- 524

gards the feedback of compilers as the INTER- 525

VENOR to facilitate the agent collaboration of 526

code error diagnose and repair. Our experiments 527

show that INTERVENOR outperforms previous 528

code generation/repair models by generating accu- 529

rate code repair solutions and instructions. 530
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Limitations531

The effectiveness of INTERVENOR heavily de-532

pends on the capabilities of the foundation model,533

necessitating its proficiency in code error analysis534

and repair. The efficacy of INTERVENOR may535

be constrained when using less proficient LLMs536

to build the agents. Furthermore, in cases where537

codes exhibit solely logical errors, the compiler538

relies on test cases to furnish feedback. The qual-539

ity and coverage of test cases are crucial in this540

scenario. Inadequate or poorly designed test cases541

may not be sufficient to detect or help rectify these542

logical errors effectively. Hence, the efficacy of IN-543

TERVENOR is intricately linked to the robustness544

and comprehensiveness of the test cases.545

Ethics Statement546

In conducting this research and presenting the find-547

ings in this paper, we have upheld rigorous ethical548

standards throughout the entirety of the process.549

Our experiments are conducted on commonly used550

datasets from previous works. Additionally, for our551

newly constructed dataset, we have also reached552

out to relevant platforms, and they have granted us553

permission to use the data for scientific research554

purposes. Besides, the code submitted to the At-555

coder website has undergone stringent ethical re-556

view, with very few instances where ethical con-557

cerns arise. Furthermore, despite the risk of large558

language models (LLMs) generating toxic data, by559

providing clear role-playing instructions and only560

allowing LLMs to complete code-related tasks, we561

believe the model’s output will not produce harmful562

content.563
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Bug Fixing

Large Language Models (LLMs)

Task: Given a dictionary, return True if all keys are strings in lower case or all keys are strings 

in upper case, else return False. The function should return False is the given dictionary is 
empty.

def check_dict_case(dict): 

if len(dict) == 0:

return False

else:

keys = list(dict.keys())

if keys[0].islower(): 

for key in keys:

if not key.islower(): 

return False

return True

else: 

for key in keys:

if not key.isupper(): 

return False

return True

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
AttributeError: 'int' object has no attribute 
'islower' 

---------------------------------------------------

AttributeError Traceback

Cell In[1], line 6

if len(dict) == 0:

return False

else:

keys = list(dict.keys())

if keys[0].islower(): 

for key in keys:

if not key.islower(): 

return False

return True

if isinstance(keys[0], str) and keys[0].islower(): 

Prompt

Test

Correct/wrong?

Input           Output      Expected

…              …             …

{"a":"apple", 
"b":"banana"} True

Buggy Code Error Messages

---->

Figure 6: An Example of the CodeError Dataset. The CodeError benchmark asks LLMs to fix buggy codes and then
evaluate whether the fixed code meets the requirements specified in the task description and passes all test cases.
During the process of code repair, LLMs can utilize error messages to repair codes.

A Appendix804

A.1 License805

For all datasets in our experiments, HumanEval806

uses the MIT License, MBPP uses the CC-BY-807

4.0 License, and HumanEval-X uses the Apache808

License 2.0. All of these licenses allow their data809

for academic use.810

A.2 Code Translation Results811

As shown in Table 5, we present more detailed812

evaluation results on the code translation task.813

In general, INTERVENOR shows the best per-814

formance across all twelve cross-language code815

translation tasks, demonstrating its ability to un-816

derstand and translate codes. Compared with GPT-817

3.5, INTERVENOR improves its performance on818

all code translation tasks, especially on the tasks819

that translate other languages into Python. This820

indicates that INTERVENOR is more effective in821

generating an effective code repair chain according822

to the bug reports from the Python interpreter. Such823

a phenomenon aligns with human intuition during824

the debugging process, namely that bugs in Python825

code are more easily resolved.826

A.3 More Details of the CodeError827

Benchmark828

In our experiments, we build the CodeError bench-829

mark to evaluate the code repair capabilities of830

LLMs, which facilitates the research on the code831

repair task. The CodeError dataset is collected832

from basic programming problems, data analysis833

problems, and programming competition problems.834

In this section, we show more detailed data infor- 835

mation about the CodeError benchmark. 836

Source Model Target
Python C++ Java JS

Python

CodeGen - 35.9 29.3 43.4
CodeGeeX - 34.2 42.0 34.8
GPT-3.5 - 62.8 70.7 82.3
INTERVENOR - 67.7 75.1 87.8

C++

CodeGen 33.8 - 43.2 54.5
CodeGeeX 62.8 - 71.7 50.8
GPT-3.5 81.1 - 89.6 82.3
INTERVENOR 90.2 - 92.1 86.1

Java

CodeGen 52.7 41.4 - 57.7
CodeGeeX 75.0 49.7 - 50.0
GPT-3.5 89.6 75.6 - 89.1
INTERVENOR 92.1 79.3 - 90.9

JS

CodeGen 35.5 35.4 33.8 -
CodeGeeX 67.7 46.9 56.6 -
GPT-3.5 82.3 76.2 84.8 -
INTERVENOR 87.2 79.9 89.1 -

Table 5: Code Translation Performance on Humaneval-
X. We evaluate the code translation effectiveness among
different program languages, including Python, C++,
Java, and JavaScript (JS). We report the results of IN-
TERVENOR, which only repairs codes with a single
turn. All evaluation results are evaluated with Pass@1.

CodeError Examples. As shown in Figure 6, 837

each example in CodeError consists of a pro- 838

gramming task description, a buggy code snip- 839

pet, error messages, and test cases to evaluate 840

the code correctness of the repaired codes. If the 841

fixed/generated code meets the requirements speci- 842

fied in the task description and passes all test cases, 843

it proves that the repaired code is correct. Dur- 844

ing the process of code repair, LLMs need to fix 845

the buggy code and are also able to use the error 846

messages from the buggy code for assistance. We 847

provide more examples that are sampled from the 848
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Dataset Language Size Avg.TC Error Type Error Msg Category
DeepFix (Yasunaga and Liang, 2021) C 6,971 ✗ CE Only ✗ Basic
Review4Repair (Huq et al., 2022) Java 2,961 ✗ All ✗ Basic
Bug2Fix (Lu et al., 2021) Java 5,835 ✗ All ✗ Basic
Github-Python (Yasunaga and Liang, 2021) Python 15k ✗ CE Only ✗ Basic
FixEval (Haque et al., 2023) Java/Python 43k/243k 25.0 All ✗ Competition

CodeError (Ours) Python 4,463 9.0 All ✓
Basic

Data Analysis
Competition

Table 6: A Comparison between CodeError and Other Code Repair Benchmarks. Size only represents the size
of the test set. Avg.TC indicates the average number of test cases per problem. CE indicates compilation errors
(e.g., SyntaxError). Error Msg indicates whether the buggy code contains detailed error information, such as the
line of incorrect code, the reasons for the error, etc. Category represents the scope covered by the buggy code, and
CodeError covers basic programming problems, data analysis problems, and programming competition problems.

Basic Comp DA Total/Avg.
Problem 326 3,888 249 4,463
AssertionError 236 2,949 52 3,237
NameError 22 62 32 116
TypeError 39 91 53 183
IndexError 1 92 8 101
ValueError 2 229 44 275
SyntaxError 11 375 4 390
Other Errors 15 90 57 162
Avg. Problem Words 10 47 140 49
Avg. Buggy Code 21 34 2 31
Avg. Test Cases 4 10 1.6 9

Table 7: Data Statistics of CodeError. We calculate the
average word count per problem, the average number
of lines in buggy code, and the average number of test
cases per problem. Basic, Comp, and DA represent ba-
sic programming problems, programming competition
problems, and data analysis problems, respectively.

basic programming problems, programming com-849

petition problems, and data analysis problems in850

Figure 7, Figure 8, and Figure 9, respectively.851

Data Collection. CodeError is collected from852

various coding problems, making the dataset di-853

verse and reliable.854

To ensure the diversity of CodeError, we col-855

lect basic programming problems, data analysis856

problems, and programming competition problems857

from HumanEval, MBPP, DS-1000, APPS, and the858

programming contest site AtCoder. We conduct859

code generation experiments using GPT-3.5 on the860

first four datasets, preserving the generated codes861

that contain errors. For the programming contest862

site AtCoder, we crawl real-world user-submitted863

buggy codes to ensure the reliability of CodeError.864

The diverse data sources allow us to build a com-865

prehensive and robust dataset to estimate the code866

repair ability of LLMs.867

Data Statistics. The data statistics of CodeError868

are shown in Table 7.869

The CodeError benchmark contains a total of870

4,463 examples, evenly distributed across more871

AssertionError is an exception that is raised when an
assert statement fails. In this paper, an AssertionError
indicates that the code can run correctly but fails to pass
certain test cases, suggesting the presence of potential logic
errors that require further investigation and resolution.

NameError is an exception that is raised when a local or
global name is not found. This error occurs when you try
to access a variable or a function that is not defined or is
not in the current scope.

TypeError is an exception that is raised when an operation
or function is applied to an object of an inappropriate type.
This typically occurs when you try to perform an operation
that is not supported for the type of data you are working
with.

IndexError is an exception that is raised when you try to
access an index that does not exist in a list, tuple, or any
other sequence. This typically happens when you attempt
to access an index that is outside the range of the sequence.

ValueError is an exception that is raised when a built-in
operation or function receives an argument that has the
right type but an inappropriate value. Essentially, this error
occurs when a function receives an argument of the correct
type, but the value of the argument is not appropriate for
the operation.

SyntaxError is an exception that is raised when there is
an error in the syntax of your code. This can happen due
to various reasons, such as missing parentheses, invalid
keywords, or incorrect indentation.

Table 8: Common Code Errors and Their Descriptions.

than six different error types. These errors range 872

from simple syntax errors to complex logic errors. 873

And we provide detailed descriptions for common 874

error types in Table 8. The predominant error 875

type is the AssertionError (Logic Error). This phe- 876

nomenon is quite normal in the real-world coding 877

scenario since the current integrated development 878

environment (IDE) can assist developers in avoid- 879

ing simple errors such as SyntaxError and NameEr- 880

ror but may not help to identify logic errors within 881

the code. For each example, there are 9 test cases 882
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on average to evaluate the correctness of the re-883

paired codes.884

Dataset Comparison. Finally, we compare the885

CodeError dataset with other code repair bench-886

marks. The differences are shown in Table 6.887

Similar to FixEval (Haque et al., 2023), we uti-888

lize test cases to assess the functional correctness of889

the repaired code. Additionally, in comparison to890

other benchmarks (Yasunaga and Liang, 2021; Huq891

et al., 2022; Lu et al., 2021; Haque et al., 2023), we892

have two notable features:893

• We provide detailed error information for erro-894

neous codes, including error code localization,895

the cause of the error, error type, and more.896

• CodeError covers a variety of problem types,897

including basic programming problems, data898

analysis problems, and programming compe-899

tition problems, enabling a more comprehen-900

sive benchmark to evaluate the code repair901

capabilities of LLMs.902

A.4 Additional Case Studies903

In this subsection, we sample some cases from904

CodeError to demonstrate the effectiveness of the905

Chain-of-Repair (CoR) mechanism.906

As shown in Figure 10, in the first case, there is907

a simple NameError in the buggy code, which indi-908

cates that ‘hashlib’ is not defined. We can see that909

the INTERVENOR recognizes hashlib as a Python910

package and provides a solution: “import the ‘hash-911

lib’ module at the beginning of the code”. In the912

second case, the error in the code is more subtle,913

involving an operation that should check the data914

structures of ‘int’ and ‘list’. The CoR explicitly915

states that this is a “valid operation” and provides916

a solution: “check if the current element in the list917

is a list or not before adding it to the sum”. With918

the help of accurate instruction, INTERVENOR919

successfully repairs the code.920

Additionally, in Figure 11, we demonstrate that921

INTERVENOR can effectively address boundary922

issues, which are often quite tricky. INTER-923

VENOR accurately identifies the code error in the924

loop condition and suggests a modification method:925

“modify the loop to iterate up to n − 1 instead of926

n”. In Figure 12, we demonstrate that INTER-927

VENOR can fix multiple error types in the code928

by iteratively repairing. Over two iterations, IN-929

TERVENOR identifies and accurately modifies the930

ValueError and TypeError in the code.931

All these cases demonstrate the effectiveness of 932

the Chain-of-Repair (CoR) mechanism and high- 933

light the effectiveness of CoR in identifying errors 934

and providing appropriate solutions for code repair. 935

A.5 Prompts for Agent Building 936

In this subsection, we show the prompts used in 937

our experiments. 938

We first show the role-playing instructions used 939

by Code Learner and Code Teacher in Figure 13. 940

We utilize specific instructions to ensure that the 941

Code Teacher and Code Learner within INTER- 942

VENOR play the correct roles and carry out code 943

inspection and code repair. 944

Then, we present the prompts used in code gen- 945

eration and code repair. From Figures 14 to 15, 946

we show the Zero-Shot, Zero-Shot CoT, Few-Shot, 947

and Few-Shot CoT prompts for code generation 948

tasks. From Figures 16 to 19, we show the prompts 949

used in some code repair baseline models, includ- 950

ing Zero-Shot, Few-Shot, CoT, Self-Refine, and 951

Error Msgs. Self-Refine asks the LLMs to rethink 952

the errors by themselves, while Error Msgs incor- 953

porate the code error messages from compilers and 954

directly use them to guide the code repair process. 955
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Task: Implement a function that takes an non-negative integer and returns an array of the first 
n integers that are prime numbers and less than n. 

def count_up_to(n): 

"""Implement a function that takes an non-

negative integer and returns an array of the 

first n integers that are prime numbers and less 

than n. 

for example: 

count_up_to(5) => [2,3] 

count_up_to(11) => [2,3,5,7] 

count_up_to(0) => [] 

count_up_to(20) => [2,3,5,7,11,13,17,19] 

count_up_to(1) => [] 

count_up_to(18) => [2,3,5,7,11,13,17] """

if n <= 1: 

return []

primes = []

for i in range(2, n): 

if is_prime(i): 

primes.append(i)

return primes

Buggy Code

----------------------------

----------------------------

----------------------------

NameError Traceback (most 

recent call last)

Cell In[], line 17, in

count_up_to(n)

15 primes = []

16 for i in range(2, n): 

--->17 if is_prime(i): 

18 primes.append(i)

19 return primes 

NameError: name 'is_prime'

is not defined

Error Messages

Figure 7: An Example from the Basic Programming Problems.
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Task: Vasya has a string $s$ of length $n$ consisting only of digits 0 and 

1. Also he has an array $a$ of length $n$. 
Vasya performs the following operation until the string becomes empty: 
choose some consecutive substring of equal characters, erase it from the 
string and glue together the remaining parts (any of them can be empty). 
For example, if he erases substring 111 from string 111110 he will get the 
string 110. Vasya gets $a_x$ points for erasing substring of length $x$.
Vasya wants to maximize his total points, so help him with this! 

-----Input-----

The first line contains one integer $n$ ($1 \le n \le 100$) — the length of 
string $s$.
The second line contains string $s$, consisting only of digits 0 and 1.
The third line contains $n$ integers $a_1, a_2, \dots a_n$ ($1 \le a_i \le 
10^9$), where $a_i$ is the number of points for erasing the substring of 
length $i$.

-----Output-----

Print one integer — the maximum total points Vasya can get.

-----Examples-----

Input
7
1101001
3 4 9 100 1 2 3
Output
109

Input
5
10101
3 10 15 15 15
Output
23

-----Note-----

In the first example the optimal sequence of erasings is: 1101001 
$\rightarrow$ 111001 $\rightarrow$ 11101 $\rightarrow$ 1111 
$\rightarrow$ $\varnothing$.

In the second example the optimal sequence of erasings is: 10101 
$\rightarrow$ 1001 $\rightarrow$ 11 $\rightarrow$ $\varnothing$.

n = int(input())

s = input()

a = list(map(int,

input().split()))

max_points = 0

for i in range(n): 

if s[i] == s[i+1]: 

max_points += a[i]

else: 

max_points += a[i+1]

print(max_points)

Buggy Code

Error Messages

-----------------------------

-----------------------------

-----------------------------

NameError Traceback (most 

recent call last)

6 max_points = 0

7 for i in range(n): 

--->8 if s[i] == s[i+1]: 

9 max_points += a[i]

10 else: 

11 max_points += a[i+1]

IndexError: string index out 

of range

"input": “
7

1101001

3 4 9 100 1 2 3",

"output": "",

"expected": "109"

Failed Test Case

Figure 8: An Example from the Programming Competition Problems. The error information includes the line of
code where the error occurs and the test case that failed.
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Task: I have a data frame like below 

A_Name B_Detail Value_B Value_C Value_D ......
0   AA      X1        1.2      0.5       -1.3    ......
1   BB      Y1        0.76     -0.7      0.8     ......
2   CC      Z1        0.7      -1.3      2.5     ......
……
This is just a sample of data frame, I can have n number of columns like (Value_A, Value_B, Value_C, ........... Value_N)
Now i want to filter all rows where absolute value of all columns (Value_A, Value_B, Value_C, ....) is less than 1.
If you have limited number of columns, you can filter the data by simply putting 'and' condition on columns in dataframe, 
but I am not able to figure out what to do in this case. 
I don't know what would be number of such columns, the only thing I know that such columns would be prefixed with 
'Value'.
In above case output should be like 

A_Name B_Detail Value_B Value_C Value_D ......
1   BB      Y1        0.76     -0.7      0.8     ......
3   DD      L1        0.9      -0.5      0.4     ......
5   FF      N1        0.7      -0.8      0.9     ......

A:
<code>
import pandas as pd

df = pd.DataFrame({'A_Name': ['AA', 'BB', 'CC', 'DD', 'EE', 'FF', 'GG'],
'B_Detail': ['X1', 'Y1', 'Z1', 'L1', 'M1', 'N1', 'K1'],
'Value_B': [1.2, 0.76, 0.7, 0.9, 1.3, 0.7, -2.4],
'Value_C': [0.5, -0.7, -1.3, -0.5, 1.8, -0.8, -1.9],
'Value_D': [-1.3, 0.8, 2.5, 0.4, -1.3, 0.9, 2.1]})

</code>
df = ... # put solution in this variable
BEGIN SOLUTION
<code>

df = df[(df.abs() < 1).all(axis=1)]Buggy Code

Traceback (most recent call last): 

File "program.py", line 13, in <module>

df = df.loc[(df.abs() > 1).any(axis=1)]

File "<hidden path>/lib/python3.8/site-

packages/pandas/core/generic.py", line 9773, in abs

return np.abs(self) # type: ignore[return-value]

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/generic.py", line 2032, in __array_ufunc__ 

return arraylike.array_ufunc(self, ufunc, method, *inputs, **kwargs)

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/arraylike.py", line 372, in array_ufunc 

result = mgr.apply(getattr(ufunc, method))

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/internals/managers.py", line 325, in apply 

applied = b.apply(f, **kwargs)

File "<hidden path> /lib/python3.8/site-

packages/pandas/core/internals/blocks.py", line 381, in apply 

result = func(self.values, **kwargs)

TypeError: bad operand type for abs(): 'str

Error Messages

Figure 9: An Example from the Data Analysis Problem. We use the completion mode in DS-1000.
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NameError

def string_to_md5(text):  

if text == ‘’: 

return None

else: 

return hashlib.md5(text.encode('utf-8')).hexdigest()

---Buggy Code

---Error Message

The error message indicates that the 'hashlib' module is not imported. To fix this, we can 
import the 'hashlib' module at the beginning of the code using the 'import' keyword.
---

NameError: name 'hashlib' is not defined 

---Chain of Repair

Corrected Code
def string_to_md5(text):  

import hashlib

if text == ‘’: 

return None

else: 

return hashlib.md5(text.encode('utf-8')).hexdigest()

def recursive_list_sum(data_list): 

if len(data_list) == 1: 

return data_list[0]

else: 

if isinstance(data_list, list): 

sum = 0

for element in data_list: 

if isinstance(element, list): 

sum += recursive_list_sum(element)

else: 

sum += element return sum

else: 

return data_list

---Buggy Code

---Error Message

The error message indicates that the function is trying to add an integer and a list, which 
is not a valid operation. To fix this, we can check if the current element in the list is a list or 
not before adding it to the sum. If it is a list, we can recursively call the function on that list 
and add the result to the sum. If it is not a list, we can simply add it to the sum. This way, we 
can handle both cases where the input is a list or an integer.
---

TypeError: unsupported operand type(s) for +: 'int' and 'list’
---Chain of Repair

Corrected Code

TypeError

def recursive_list_sum(data_list): 

if len(data_list) == 1: 

return data_list[0]

else: 

if isinstance(data_list, list): 

return data_list[0] + recursive_list_sum(data_list[1:])

else: 

return data_list

Bug Fixing

Bug Fixing

---Task
Write a function of recursion list sum.

---Task
Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return 
None.

Figure 10: Case Studies. We present two cases from CodeError. The Chain-of-Repair clearly identifies the
NameError and TypeError in the buggy code and provides the correct modification methods, which are highlighted
in red.
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Handling Edge Cases---Task
Title: Minimum Difference Subarray
Given an integer array nums, write a function min_diff_subarray that returns a subarray such 
that the absolute difference sum between its elements is minimized. In other words, find a 
subarray such that the sum of the absolute differences between its elements is minimal.

-----Input-----
nums: An integer array where 1 <= len(nums) <= 10^5, and -10^4 <= nums[i] <= 10^4.

-----Output-----
Return a list containing integers, representing the found minimum difference subarray.

Example Input:
nums = [1, 4, 7, 2, 9, 10, 12]
result = min_diff_subarray(nums)
print(result)

Example Output:
[9, 10, 12]

In this example, the subarray [9, 10, 12] has the minimum sum of absolute differences 
between its elements.

---Error Message                                                            ---

---Buggy Code                                                                 ---Chain of Repair

Corrected Code

def min_diff_subarray(nums): 

n = len(nums)

if n == 0: 

return []

min_diff = float('inf’)

result = []

for i in range(n): 

current_diff = abs(nums[i] -

nums[i + 1])

if current_diff < min_diff: 

min_diff = current_diff 

result = [nums[i], nums[i + 

1]]

return result 

# Example call

nums = [1, 4, 7, 2, 9, 10, 12]

result = min_diff_subarray(nums)

print(result)

IndexError Traceback (most recent call last)

Cell In[1], line 19

17 # Example call

18 nums = [1, 4, 7, 2, 9, 10, 12]

--->19 result = min_diff_subarray(nums)

20 print(result)

Cell In[1], line 10, in

min_diff_subarray(nums)

7 result = []

9 for i in range(n): 

--->10 current_diff = abs(nums[i] - nums[i + 

1])

11 if current_diff < min_diff: 

12 min_diff = current_diff 

IndexError: list index out of range

The error message indicates an 
"IndexError: list index out of range" at line 
10 of the min_diff_subarray function. This 
error occurs when the loop variable i 
reaches the last index of the array, and 
nums[i + 1] attempts to access an index 
beyond the bounds of the array.
To fix this issue, you can adjust the loop 
range to ensure that the loop doesn't 
iterate up to the last index. You can 
modify the loop to iterate up to n - 1 
instead of n. 

def min_diff_subarray(nums): 

n = len(nums)

if n == 0: 

return []

min_diff = float('inf’)

result = []

for i in range(n - 1): 

current_diff = abs(nums[i] -

nums[i + 1])

if current_diff < min_diff: 

min_diff = current_diff 

result = [nums[i], nums[i + 

1]]

return result 

# Example call

nums = [1, 4, 7, 2, 9, 10, 12]

result = min_diff_subarray(nums)

print(result)

Bug Fixing

Figure 11: Handling Boundary Issues.
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Handling Multiple Bugs---Task
Suppose you have a DataFrame containing student information, including names, student 
IDs, subjects, and grades. 

1) Select all student information with grades above 90 in all subjects.
2) For each subject, calculate the average grade and append the results to the original 

DataFrame.

---Error Message                                                            ---

---Buggy Code                                                                 ---Chain of Repair

Corrected Code

The error is occurring due to the incorrect 
use of the logical operator & in the code. 
To fix this error, you should use 

parentheses to clarify the order of 

operations. This modification ensures 

that the conditions are properly 

grouped, resolving the ambiguity 

mentioned in the error message.

Bug Fixing

import pandas as pd 

data = {

‘Name‘: . . ., 'StudentID’: . . .,

'Subject’: . . ., 'Grade’: . . .}

df = pd.DataFrame(data)

selected_students = df[df['Grade'] > 90 & 

df['Grade'] < 100]

print(selected_students)

average_scores =

df.groupby('Subject')['Grade'].mean()

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

--------------------------------------------

--------------------------------------------

ValueError Traceback (most recent call last)

<hidden path>/lib/python3.8/site-

packages/pandas/core/generic.py in ?(self)

1535 @final 1536 def __nonzero__(self): 

-> 1537 raise ValueError(

1538 f"The truth value of a 

{type(self).__name__} is ambiguous. "

1539 "Use a.empty, a.bool(), a.item(), 

a.any() or a.all()."

1540 )

ValueError: The truth value of a Series is

ambiguous. Use a.empty, a.bool(), a.item(),

a.any() or a.all().

import pandas as pd 

data = {

'Name': ['John', 'Alice', 'Bob', 'Eva',

'David’],

'StudentID': [101, 102, 103, 104, 105],

'Subject': ['Math', 'English', 'Math',

'Physics', 'English’],

'Grade': [92, 85, 95, 88, 91] }

df = pd.DataFrame(data)

selected_students = df[( df['Grade'] > 90 )

& ( df['Grade'] < 100)]

print(selected_students)

average_scores =

df.groupby('Subject')['Grade'].mean()

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

Turn 1

Turn 2

Based on the error message, it appears 
that the merge() function does not 
support the inplace parameter. To 
address this issue, you can modify the 
code by removing the inplace=True 
parameter from the merge() function.

Bug Fixing, remove inplace parameter

import pandas as pd 

data = . . .

df = pd.DataFrame(data)

selected_students = df[( df['Grade'] > 90 )

& ( df['Grade'] < 100)]

print(selected_students)

average_scores =

df.groupby('Subject')['Grade'].mean()

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

. . .

df.merge(average_scores, left_on='Subject',

right_index=True, how='left', suffixes=('',

'_Average'), inplace=True)

. . .

TypeError: merge() got an unexpected keyword

argument 'inplace'

---Error Message                                                            --- Corrected Code

---Buggy Code                                                                 ---Chain of Repair

Figure 12: Handling Multiple Bugs.
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Code Teacher

You are an experienced and insightful programming instructor, and you need to identify the 

bugs in the given code based on the error messages.

- buggy code:

{buggy code}

When testing the above code, errors occurred: {error_message}, some test cases did not pass! 

Please check the implementation of the function and provide a method for modification based 

on the error message. No need to provide the modified code.

Modification method:

You are a student assistant with excellent code repair capabilities. You can attempt to fix 

the bugs in the above code based on the provided error information and the method for 

modification. Please make sure to carefully check every potentially problematic area and make 

appropriate adjustments and corrections.

- buggy code:

{buggy code}

When testing the above code, errors occurred: {error_message} , some test cases did not pass! 

Please check the implementation of the function and fix the code based on the modification 

method.

- modification method:

{modification method}

Correct the code: Code Learner

INTERVENOR

Figure 13: Role Instructions in INTERVENOR. Within INTERVENOR, there are two LLM-based agents Code
Teacher and Code Learner. We utilize specific instructions to ensure that they play the correct roles and carry out
the intended tasks.
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Zero-Shot 

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

"""

Zero-Shot CoT

Code Generation

Few-Shot

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

Let's write the code step by step.

"""

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

. . .

"""

{canonical_solution}

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

""" Input to this function is a string containing multiple groups of nested parentheses. 

Your goal is to

separate those group into separate strings and return the list of those.

Separate groups are balanced (each open brace is properly closed) and not nested within 

each other

Ignore any spaces in the input string.

. . .

"""

{canonical_solution}

def truncate_number(number: float) -> float:

""" Given a positive floating point number, it can be decomposed into

and integer part (largest integer smaller than given number) and decimals

(leftover part always smaller than 1).

. . . 

"""

{canonical_solution}

{task description}

Figure 14: Zero-Shot, Zero-Shot CoT, and Few-Shot Prompts for Code Generation Tasks.
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Few-Shot CoT

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

Let's complete the following code step by step.

"""

# Step 1: Create a variable to store the result

result = False

# Step 2: Loop through the list of numbers

for i in range(len(numbers)):

# Step 3: Check if the current number is within the threshold of any other number in 

the list

for j in range(i+1, len(numbers)):

if abs(numbers[i] - numbers[j]) <= threshold:

# Step 4: If the condition is met, set the result to True and break out of 

the loop

result = True

break

# Step 5: If the result is already True, break out of the loop

if result:

break

# Step 6: Return the result

return result

from typing import List

def rescale_to_unit(numbers: List[float]) -> List[float]:

""" Given list of numbers (of at least two elements), apply a linear transform to that 

list,

such that the smallest number will become 0 and the largest will become 1

>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])

[0.0, 0.25, 0.5, 0.75, 1.0]

Let's complete the following code step by step.

"""

# Step 1: Find the smallest and largest numbers in the list

smallest = min(numbers)

largest = max(numbers)

# Step 2: Calculate the difference between the largest and smallest numbers

difference = largest - smallest

# Step 3: Create a new list to store the rescaled numbers

rescaled_numbers = []

# Step 4: Loop through each number in the original list

for number in numbers:

# Step 5: Apply the linear transform to each number

rescaled_number = (number - smallest) / difference

# Step 6: Add the rescaled number to the new list

rescaled_numbers.append(rescaled_number)

# Step 7: Return the new list

return rescaled_numbers

def strlen(string: str) -> int:

""" Return length of given string

>>> strlen('')

0

>>> strlen('abc')

3

Let's complete the following code step by step.

"""

# 1. Initialize a variable to store the length of the string

length = 0

# 2. Use a for loop to iterate through each character in the string

for char in string:

# 3. Increment the length variable by 1 for each character

length += 1

# 4. Return the length variable

return length

{task description}

Code Generation

Figure 15: Few-Shot CoT Prompts for Code Generation Tasks.
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Zero-Shot 

You are a master at debugging code. Please correct the following buggy code.

-buggy code:

{buggy_code}

-correct code:

{task_description}

Few-Shot

You are a master at debugging code. Please correct the following buggy code.

-buggy code:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx == idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

-correct code:

from typing import List

def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):

if idx != idx2:

distance = abs(elem - elem2)

if distance < threshold:

return True

return False

. . .

-buggy code:

{buggy_code}

-correct code:

{task_description}

Code Repair

Figure 16: Zero-Shot and Few-Shot Prompts for Code Repair.
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Few-Shot CoT

You are a master at debugging code. Please correct the following buggy code.

<buggy_code>

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

"""Input to this function is a string containing multiple groups of nested parentheses. 

Your goal is to separate those group into separate strings and return the list of those. 

Separate groups are balanced (each open brace is properly closed) and not nested within each 

other.Ignore any spaces in the input string.

"""

result = []

current_string = []

current_depth = 0

for c in paren_string:

if c == ')':

current_depth += 1

current_string.append(c)

elif c == '(':

current_depth -= 1

current_string.append(c)

if current_depth == 0:

result.append(''.join(current_string))

current_string.clear()

return result

</buggy_code>

<repair_method>

The error in the original separate_paren_groups function lies in the handling of parentheses. 

The function incorrectly increments current_depth when encountering a closing parenthesis and 

decrements it when encountering an opening parenthesis. This leads to an incorrect count of 

the depth of parentheses.To fix the issue, we should increment current_depth when an opening 

parenthesis is encountered and decrement it when a closing parenthesis is encountered. This 

ensures that the depth is properly tracked, and we append characters to current_string based 

on the correct conditions.

</repair_method>

<correct_code>

from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:

"""Input to this function is a string containing multiple groups of nested parentheses. 

Your goal is to separate those group into separate strings and return the list of those. 

Separate groups are balanced (each open brace is properly closed) and not nested within each 

other.Ignore any spaces in the input string.

"""

result = []

current_string = []

current_depth = 0

for c in paren_string:

if c == '(':

current_depth += 1

current_string.append(c)

elif c == ')':

current_depth -= 1

current_string.append(c)

if current_depth == 0:

result.append(''.join(current_string))

current_string.clear()

return result

</correct_code>

<buggy_code>

{buggy_code}

</buggy_code>

<repair_method>

Code Repair

Figure 17: Few-Shot CoT Prompts for Code Repair.
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{buggy_code}

The above code may contain errors.

Please check the implementation of the function and provide a method for modification based 

on your knowledge. No need to provide the modified code.

Modification method： Repair Method Generation

Self-Refine

{buggy_code}

The above code contains errors.

Please check the implementation of the function and fix the code based on the modification 

method.

modification method:{motification_method}

Correct the code: Code Repair

Figure 18: Prompts Used in Self-Refine Model. The instructions for generating code repair plannings and code
repair are shown.

You are an student assistant with excellent code repair capabilities. You can attempt to fix 

the bugs in the code based on the error messages. Please make sure to carefully check every 

potentially problematic area and make appropriate adjustments and corrections.

- buggy code:

{buggy code}

When testing the above code, errors occurred: {error_message} , some test cases did not pass! 

Please check the implementation of the function and fix the code based on your knowledge.

Correct the code:

Error Msgs

Figure 19: Prompts Used in Error Msgs Model. It conduct code repair by directly using the code error messages.
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