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Abstract

We initiate the work towards a comprehensive picture of the worst average-case
satisfaction of voting axioms in semi-random models, to provide a finer and more
realistic foundation for comparing voting rules. We adopt the semi-random model
and formulation in [54], where an adversary chooses arbitrarily correlated “ground
truth” preferences for the agents, on top of which random noises are added. We
focus on characterizing the semi-random satisfaction of two well-studied voting
axioms: Condorcet criterion and participation. We prove that for any fixed num-
ber of alternatives, when the number of voters n is sufficiently large, the semi-
random satisfaction of the Condorcet criterion under a wide range of voting rules
is 1, 1−exp(−Θ(n)), Θ(n−0.5), exp(−Θ(n)), or being Θ(1) and 1−Θ(1) at the
same time; and the semi-random satisfaction of participation is 1−Θ(n−0.5). Our
results address open questions by Berg and Lepelley [3] in 1994, and also confirm
the following high-level message: the Condorcet criterion is a bigger concern than
participation under realistic models.

1 Introduction

The “widespread presence of impossibility results” [48] is one of the most fundamental and signif-
icant challenges in social choice theory. These impossibility results often assert that no “perfect”
voting rule exists for three or more alternatives [1, 28, 45]. Nevertheless, an (imperfect) voting rule
must be designed and used in practice for agents to make a collective decision. In the social choice
literature, the dominant paradigm of doing so has been the axiomatic approach, i.e., voting rules
are designed, evaluated, and compared to each other w.r.t. their satisfaction of desirable normative
properties, known as (voting) axioms.

Most definitions of dissatisfaction of voting axioms are based on worst-case analysis. For example,
a voting rule r does not satisfy CONDORCET CRITERION (CC for short), if there exists a collection
of votes, called a profile, where the Condorcet winner exists but is not chosen by r as a winner. The
Condorcet winner is the alternative who beats all other alternatives in their head-to-head competi-
tions. As another example, a voting rule r does not satisfy PARTICIPATION (PAR for short), if there
exists a profile and a voter who has incentive to abstain from voting. An instance of dissatisfaction
of PAR is also known as the no-show paradox [19]. Unfortunately, when the number of alternatives
m is at least four, no irresolute voting rule satisfies CC and PAR simultaneously [39].

While the classical worst-case analysis of (dis)satisfaction of axioms can be desirable in high-stakes
applications such as political elections, it is often too coarse to serve as practical criteria for compar-
ing different voting rules in more frequent, low-stakes applications of social choice, such as business
decision-making [5], crowdsourcing [34], informational retrieval [33], meta-search engines [14],
recommender systems [51], etc. A decision maker who desires both axioms would find it hard to
choose between a voting rule that satisfies CC but not PAR, such as Copeland, and a voting rule that
satisfies PAR but not CC, such as plurality. A finer and more quantitative measure of satisfaction of
axioms is therefore called for.
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One natural and classical approach is to measure the likelihood of satisfaction of axioms under a
probabilistic model of agents’ preferences, in particular the independent and identically distributed
(i.i.d.) uniform distribution over all rankings, known as Impartial Culture (IC) in social choice.
This line of research was initiated and established by Gehrlein and Fishburn in a series of work in
the 1970’s [24, 26, 25], and has become a “new sub-domain of the theory of social choice” [13].
Some classical results were summarized in the 2011 book by Gehrlein and Lepelley [27], and recent
progresses can be found in the 2021 book edited by Diss and Merlin [13].

While this line of work is highly significant and interesting from a theoretical point of view, its
practical implications may not be as strong, because most previous work focused on a few specific
distributions, especially IC, which has been widely criticized to be unrealistic (see, e.g., [42, p. 30],
[23, p. 104], and [30]). Indeed, conclusions drawn under any specific distribution may not hold in
practice, as “all models are wrong” [9]. Technically, characterizing the likelihood of satisfaction
of CC and of PAR are already highly challenging w.r.t. IC, and despite that Berg and Lepelley [3]
explicitly posed them as open questions in 1994, not much is known beyond a few voting rules.
Therefore, the following question largely remains open.

How likely are voting axioms satisfied under realistic models?

The importance of successfully answering this question is two-fold. First, it tells us whether the
worst-case violation of an axiom is a significant concern in practice. Second, it provides a finer and
more quantitative foundation for comparing voting rules.

We believe that the semi-random models [15], originally investigated by Blum [7] and [8] and in-
cludes the models employed in the celebrated smoothed analysis proposed by Spielman and Teng
[49], provides a promising framework for addressing the question. In this paper, we adopt the semi-
random model by Xia [54], which models the satisfaction of a per-profile voting axiom X by a
function X(r, P ) ∈ {0, 1}, where r is a voting rule and P is a profile, such that r satisfies X if
minP X(r, P ) = 1. Let Π denote a set of distributions over all rankings over the m alternatives
(denoted by L(A)), which represents the “ground truth” preferences for a single agent that the ad-
versary can choose from. Let n denote the number of agents. Because a higher value of X(r, P ) is
more desirable to the decision maker, the adversary aims at minimizing expected X(r, P ) by choos-
ing ~π ∈ Πn—the profile P is generated from ~π. The semi-random satisfaction of X under r with n
agents, denoted by X̃min

Π (r, n), is defined as follows [54]:

X̃min
Π (r, n) , inf~π∈Πn PrP∼~πX(r, P ) (1)

Notice that agents’ ground truth preferences can be arbitrarily correlated, while the noises are inde-
pendent, which is a standard assumption in the literature and in practice [54].

Example 1 (Semi-Random CC under plurality). Let X = CC and r = Plu denote the ir-
resolute plurality rule, which chooses all alternatives that are ranked at the top most often as
the (co-)winners. Suppose there are three alternatives, denoted by A = {1, 2, 3}, and suppose
Π = {π1, π2}, where π1 and π2 are distributions shown in Table 1.

Then, we have C̃C
min

Π (Plu, n) =
inf~π∈{π1,π2}n PrP∼~π CC(Plu, P ). When
n = 2, the adversary has four choices of ~π, i.e.,
{(π1, π1), (π1, π2), (π2, π1), (π2, π2)}.

123 132 231 321 213 312

π1 1/4 1/4 1/8 1/8 1/8 1/8
π2 1/8 1/8 3/8 1/8 1/8 1/8

Table 1: Π in Example 1.

Each ~π leads to a distribution over the set of all profiles of two agents, i.e., L(A)2. We have

C̃C
min

Π (Plu, 2) = 1, because CC is satisfied at all profiles of two agents. As we will see later in

Example 3, for all sufficiently large n, C̃C
min

Π (Plu, n) = exp(−Θ(n)).

1.1 Our Contributions

We initiate the work towards a comprehensive picture of semi-random satisfaction of voting axioms
under commonly-studied voting rules, by focusing on CC and PAR in this paper due to their impor-
tance, popularity, and incompatibility [39]. Recall that m is the number of alternatives and n is the
number of agents. Our technical contributions are two-fold.
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First, semi-random satisfaction of CC (Theorem 1 and 2). We prove that, under mild assump-
tions, for any fixed m ≥ 3 and any sufficiently large n, the semi-random satisfaction of CC under
a wide range of voting rules is 1, 1 − exp(−Θ(n)), Θ(n−0.5), exp(−Θ(n)), or being Θ(1) and
1 −Θ(1) at the same time (denoted by Θ(1) ∧ (1−Θ(1))). The 1 − exp(−Θ(n)) case is positive
news, because it states that CC is satisfied almost surely when n is large, regardless of the adver-
sary’s choice. The remaining three cases are negative news, because they state that the adversary
can make CC to be violated with non-negligible probability, no matter how large n is.

Second, semi-random satisfaction of PAR (Theorems 3, 4, 5, 6). We prove that, under mild
assumptions, for any fixed m ≥ 3 and any sufficiently large n, the semi-random satisfaction of PAR
under a wide range of voting rules is 1−Θ(n−0.5). These are positive news, because they state that
PAR is satisfied almost surely for large n, regardless of the adversary’s choice. While this message
may not be surprising at a high level, as the probability for a single agent to change the winner
vanishes as n → ∞, the theorems are useful and non-trivial, as they provide asymptotically tight
rates.

In particular, straightforward corollaries of our theorems to IC address open questions posed by Berg
and Lepelley [3] in 1994, and also provides a mathematical justification of two common beliefs
related to PAR: first, IC exaggerates the likelihood for paradoxes to happen, and second, the dissat-
isfaction of PAR is not a significant concern in practice [31], especially when it is compared to our
results on semi-random CC. Table 2 summarizes corollaries of our results under some commonly-
studied voting rules w.r.t. IC as well as the satisfaction of CC and PAR on Preflib data [35], where
Θ(1) ∧ (1−Θ(1)) means that there exists constants 0 < α < β ≤ 1 that do not depend on n, such
that the likelihood is in [α, β].

Table 2: Satisfaction of CC and PAR w.r.t. IC and w.r.t. 315 Preflib profiles of linear orders under elections
category. Experimental results are presented in Appendix G.

Axiom Plu. Borda Veto STV Black MM Sch. RP Copeland0.5

Theory CC Θ(1) ∧ (1−Θ(1)) always satisfied
PAR always satisfied 1−Θ

(
n−0.5

)
Preflib CC 96.8% 92.4% 74.2% 99.7% 100% 100% 100% 100% 100%

PAR 100% 100% 100% 99.7% 99.4% 100% 100% 100% 99.7%

Table 2 provides a more quantitative way of comparing voting rules. Suppose the decision maker
puts 50% weight (or any fixed non-zero ratio) on both CC and PAR, and assume that the preferences
are generated from IC. Then, when n is sufficiently large, the last five voting rules in the table (that
satisfy CC) outperform the first five voting rules in the table (the first four satisfies PAR).

Beyond CC and PAR. Theorems 1–6 are proved by (non-trivial) applications of a categorization
lemma (Lemma 1), which characterizes semi-random satisfaction of a large class of axioms that
can be represented by unions of finitely many polyhedra, including CC and PAR. We believe that
Lemma 1 is a promising tool for analyzing other axioms in future work.

1.2 Related Work and Discussions

The Condorcet criterion (CC) was proposed by Condorcet in 1785 [11], has been one of the
most classical and well-studied axioms, and has “nearly universal acceptance” [44, p. 46]. CC is
satisfied by many commonly-studied voting rules, except positional scoring rules [18] and multi-
round-score-based elimination rules, such as STV. Most previous work focused on characterizing
the Condorcet efficiency, which is the probability for the Condorcet winner to win conditioned on
its existence [17, 16, 43, 25, 40]. Beyond positional scoring rules, the study was mostly based on
computer simulations, see, e.g., [20, 21, 37, 41].

The participation axiom (PAR) was motivated by the no-show paradox [19] and was proved to
be incompatible with CC for every m ≥ 4 [39]. The likelihood of PAR under commonly studied
voting rules w.r.t. IC was posed as an open question by Berg and Lepelley [3] in 1994, and has
been investigated in a series of works including [32, 31, 52], see [27, Chapter 4.2.2]. In particular,
Lepelley and Merlin [31] analyzed the likelihood of various no-show paradoxes for three alternatives
under scoring runoff rules, which includes STV, w.r.t. IC and other distributions, and “strongly
believe that the no-show paradox is not an important flaw of the scoring run-off voting systems”.
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Our work vs. previous work on CC and PAR. Our results address open questions by Berg and
Lepelley [3] about the likelihood of satisfaction of CC and PAR in two dimensions: first, we conduct
semi-random analysis, which extends i.i.d. models and is believed to be significantly more general
and realistic. Second, our results cover a wide range of voting rules whose likelihood of satisfaction
under CC or PAR even w.r.t. IC were not mathematically characterized before, including CC under
STV, and PAR under maximin, Copeland, ranked pairs, Schulze, and Black’s rule. While all results
in this paper assume that the number of alternatives m is fixed, they are already more general than
many previous work that focused on m = 3.

Semi-random analysis. There is a large body of literature on the applications of semi-random
analysis, especially smoothed analysis, to computational problems [50]. Its main idea, i.e., the worst
average-case analysis, has been proposed and investigated in other disciplines as well. For example,
it is the central idea in frequentist statistics (as in the frequentist expected loss and minimax decision
rules [4]) and is also closely related to the min of means criteria in decision theory [29].

Recently, Baumeister et al. [2] and Xia [54] independently proposed to conduct smoothed analysis
in social choice. We adopt the framework in the latter work, though our motivation and goal are
quite different. We aim at providing a comprehensive picture of semi-random satisfaction of voting
axioms, while [54] focused on analyzing semi-random likelihood of Condorcet’s voting paradox
and an impossibility on anonymity and neutrality. On the technical level, while Lemma 1 is a
straightforward corollary of [55, Theorem 2], applications of results like Lemma 1 can be highly
non-trivial and problem dependent as commented in [55], which is the case of this paper. We believe
that Lemma 1’s main merit is conceptual, as it provides a general categorization of semi-random
satisfaction of a large class of per-profile axioms beyond CC and PAR for future work.

2 Preliminaries

For any q ∈ N, we let [q] = {1, . . . , q}. Let A = [m] denote the set of m ≥ 3 alternatives. Let
L(A) denote the set of all linear orders over A. Let n ∈ N denote the number of agents (voters).
Each agent uses a linear order R ∈ L(A) to represent his or her preferences, called a vote, where
a �R b means that the agent prefers alternative a to alternative b. The vector of n agents’ votes,
denoted by P , is called a (preference) profile, sometimes called an n-profile. The set of n-profiles
for all n ∈ N is denoted by L(A)∗ =

⋃∞
n=1 L(A)n. A fractional profile is a profile P coupled with

a possibly non-integer and/or negative weight vector ~ωP = (ωR : R ∈ P ) ∈ Rn for the votes in P .
It follows that a non-fractional profile is a fractional profile with uniform weight, namely ~ωP = ~1.
Sometimes the weight vector is omitted when it is clear from the context or when ~ωP = ~1.

For any (fractional) profile P , let Hist(P ) ∈ Rm!
≥0 denote the anonymized profile of P , also called

the histogram of P , which contains the total weight of every linear order in L(A) according to P .
An irresolute voting rule r : L(A)∗ → (2A \ {∅}) maps a profile to a non-empty set of winners in
A. A resolute voting rule r is a special irresolute voting rule that always chooses a single alternative
as the (unique) winner. We say that a voting rule r is a refinement of another voting rule r, if for
every profile P , r(P ) ⊆ r(P ).

(Un)weighted majority graphs and (weak) Condorcet winners. For any (fractional) profile P
and any pair of alternatives a, b, let P [a � b] denote the total weight of votes in P where a is
preferred to b. Let WMG(P ) denote the weighted majority graph of P , whose vertices are A and
whose weight on edge a → b is wP (a, b) = P [a � b] − P [b � a]. Let UMG(P ) denote the
unweighted majority graph, which is the unweighted directed graph that is obtained from WMG(P )
by keeping the edges with strictly positive weights. Sometimes a distribution π over L(A) is viewed
as a fractional profile, where for each R ∈ L(A) the weight on R is π(R). In such cases, we let
WMG(π) denote the weighted majority graph of the fractional profile represented by π.

The Condorcet winner of a profile P is the alternative that only has outgoing edges in UMG(P ). A
weak Condorcet winner is an alternative that does not have incoming edges in UMG(P ). Let CW(P )
and WCW(P ) denote the set of Condorcet winners and weak Condorcet winners in P , respectively.
Notice that CW(P ) ⊆ WCW(P ) and |CW(P )| ≤ 1. The domain of CW(·) and WCW(·) can be
naturally extended to all weighted or unweighted directed graphs.

For example, a distribution π̂, WMG(π̂), and UMG(π̂) for m = 3 are illustrated in Figure 1.
We have CW(π̂) = ∅ and WCW(π̂) = {1, 2}. As another example, let πuni denote the uniform
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distribution over L(A). Then, the weight on every edge in WMG(πuni) is 0 and UMG(πuni) does
not contain any edge.

π̂ =

{
1 � 2 � 3 w.p. 1/4
2 � 1 � 3 w.p. 1/4
every other ranking w.p. 1/8

=⇒WMG(π̂) =

1

3

2

!
"

!
" =⇒ UMG(π̂) =

1

3

2

Figure 1: π̂, WMG(π̂) (only positive edges are shown), and UMG(π̂).

Due to the space constraint, we focus on presenting semi-random CC on positional scoring rules and
multi-round score-based elimination (MRSE) rules rules in the main text, whose irresolute versions
are defined below. Their resolute versions can be obtained by applying a tie-breaking mechanism on
the co-winners. See Section A for definitions of other rules studied in Section 3 for PAR.

Integer positional scoring rules. An (integer) positional scoring rule r~s is characterized by an
integer scoring vector ~s = (s1, . . . , sm) ∈ Zm with s1 ≥ s2 ≥ · · · ≥ sm and s1 > sm. For any
alternative a and any linear order R ∈ L(A), we let ~s(R, a) = si, where i is the rank of a in R.
Given a profile P with weights ~ωP , the positional scoring rule r~s chooses all alternatives a with
maximum

∑
R∈P ωR · ~s(R, a). For example, plurality uses the scoring vector (1, 0, . . . , 0), Borda

uses the scoring vector (m− 1,m− 2, . . . , 0), and veto uses the scoring vector (1, . . . , 1, 0).

Multi-round score-based elimination (MRSE) rules. An irresolute MRSE rule r for m alterna-
tives is defined by a vector of m − 1 rules (r2, . . . , rm), where for every 2 ≤ i ≤ m, ri is a
positional scoring rule over i alternatives that outputs a total preorder over them in the decreasing
order of their scores. Given a profile P , r(P ) is selected in m− 1 rounds. For each 1 ≤ i ≤ m− 1,
in round i, a loser (an alternative with the lowest score) under rm+1−i is eliminated. We use the
parallel-universes tie-breaking (PUT) [12] to select winners—an alternative a is a winner if there is
a way to break ties among the losers in each round, so that a is the remaining alternative after m− 1
rounds. If an MRSE rule r only uses integer position scoring rules, then it is called an int-MRSE
rule. Commonly studied int-MRSE rules include STV, which uses plurality in each round, Coombs,
which uses veto in each round, and Baldwin’s rule, which uses Borda in each round.

Example 2 (Irresolute STV). Figure 2 illustrates the execution of irresolute STV,

denoted by STV, under
πuni (the uniform dis-
tribution) and π̂ (the
distribution in Figure 1),
where each node rep-
resents the (tied) losers
of the corresponding
round, and each edge
represents the loser to
be eliminated. We have
STV(πuni) = {1, 2, 3}
and STV(π̂) = {1, 2}.

{2, 3}

Winner {3}

{1, 2, 3}
1 2

2

{2}

3

{1, 3}

{3}

1

{1}

3

{1, 2}

{2}

1

{1}

2

3

{3}
3

{1, 2}

{2}

1

{1}

2

πuni !𝜋Profile

Round 1 (#𝑟%)

Round 2 (#𝑟&)

Figure 2: STV under πuni and π̂ (defined in Figure 1).

Axioms of voting. We focus on per-profile axioms [54] in this paper. A per-profile axiom is defined
as a function X that maps a voting rule r and a profile P to {0, 1}, where 0 (respectively 1) means
that r dissatisfies/violates (respectively, satisfies) the axiom at P . Then, the classical (worst-case)
satisfaction of the axiom under r is defined to be minP∈L(A)∗ X(r, P ).

For example, a (resolute or irresolute) rule r satisfies CC, if minP∈L(A)∗ CC(r, P ) = 1, where
CC(r, P ) = 1 if and only if either (1) there is no Condorcet winner under P , or (2) the Condorcet
winner is a co-winner of P under r. A resolute rule r satisfies PAR, if minP∈L(A)∗ PAR(r, P ) = 1,
where PAR(r, P ) = 1 if and only if no voter has incentive to abstain from voting. Formally, let
P = (R1, . . . , Rn), then [PAR(r, P ) = 1]⇐⇒

[
∀j ≤ n, r(P ) �Rj r(P −Rj)

]
, where P − Rj is

the (n− 1)-profile that is obtained from P by removing the j-th vote. For any pair of alternatives a
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and b, we write {a} �Rj {b} if and only if agent j, whose preferences are Rj , prefers a to b. See
Appendix B for a list of 13 well-studied per-profile axioms and one non-per-profile axiom.

Semi-random satisfaction of axioms. Given a per-profile axiom X , a set Π of distributions over
L(A), a voting rule r, and n ∈ N, the semi-random satisfaction of X under r with n agents,
denoted by X̃min

Π (r, n), is defined in Equation (1) in the Introduction. We note that the “min” in the
superscript means that the adversary aims at minimizing the satisfaction of X . Formally, Π is part
of the single-agent preference model defined as follows.

Definition 1 (Single-Agent Preference Model [54]). A single-agent preference model is denoted
byM = (Θ,L(A),Π), where Θ is the parameter space, L(A) is the sample space, and Π consists
of distributions indexed by Θ.M is strictly positive if there exists ε > 0 such that the probability of
any linear order under any distribution in Π is at least ε. M is closed if Π (which is a subset of the
probability simplex in Rm!) is a closed set in Rm!.

Example 1 illustrates a strictly positive and closed single-agent preference model for m = 3, where
Π = {π1, π2} and ε = 1/8. Other examples can be found in [54, Example 2 in the appendix].

3 The Semi-random Satisfaction of CC and PAR

Semi-random CC under Integer Positional Scoring Rules. To present the results, we first define
almost Condorcet winners (ACW) of a profile P , which are the two alternatives (whenever they exist)
that are tied in the UMG and beat all other alternatives in head-to-head competitions.

Definition 2 (Almost Condorcet Winners). For any unweighted directed graph G over A, a pair
of alternatives a, b are almost Condorcet winners (ACWs), denoted by ACW(G), if (1) a and b are
tied in G, and (2) for any other alternative c /∈ {a, b}, G has a → c and b → c. For any profile P ,
let ACW(P ) = ACW(UMG(P )).

For example, 1 and 2 are ACWs of π̂ (as a fractional profile) in Figure 1. By definition, for any
profile P , |ACW(P )| is either 0 or 2, and when it is 2, WCW(P ) = ACW(P ).

We now present a full characterization of semi-random CC under integer positional scoring rules.
Let CH(Π) denote the convex hull of Π.

Theorem 1 (Semi-random CC: Integer Positional Scoring Rules). For any fixed m ≥ 3, let
M = (Θ,L(A),Π) be a strictly positive and closed single-agent preference model, let r~s be an
irresolute integer positional scoring rule, and let r~s be a refinement of r~s. For any n ≥ 8m + 49
with 2 | n,

C̃C
min

Π (r~s, n) =


1− exp(−Θ(n)) if ∀π ∈ CH(Π), |WCW(π)| × |r~s(π) ∪WCW(π)| ≤ 1

Θ(n−0.5) if
{

(1) ∀π ∈ CH(Π),CW(π) ∩ (A \ r~s(π)) = ∅ and
(2) ∃π ∈ CH(Π) s.t. |ACW(π) ∩ (A \ r~s(π))| = 2

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CW(π) ∩ (A \ r~s(π)) 6= ∅
Θ(1) ∧ (1−Θ(1)) otherwise

For any n ≥ 8m+ 49 with 2 - n,

C̃C
min

Π (r~s, n) =


1− exp(−Θ(n)) same as the 2 | n case

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t.
{

(1) CW(π) ∩ (A \ r~s(π)) 6= ∅ or
(2) |ACW(π) ∩ (A \ r~s(π))| = 2

Θ(1) ∧ (1−Θ(1)) otherwise

Generality. We believe that Theorem 1 is quite general, as it can be applied to any refinement of any
irresolute integer positional scoring rule (i.e., using any tie-breaking mechanism) w.r.t. any Π that
satisfies mild conditions. The power of Theorem 1 is that it converts complicated probabilistic argu-
ments about semi-random CC to deterministic arguments about properties of (fractional) profiles in
CH(Π), i.e., r~s(π), CW(π), ACW(π), and WCW(π), which are much easier to check. In particular,
Theorem 1 can be easily applied to i.i.d. distributions (including IC) as shown in Example 3 below.

Intuitive explanations of the conditions. While the conditions for the cases in Theorem 1 may
appear technical, they have intuitive explanations. Take the 2 | n case for example. The 1 −
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exp(−Θ(n)) case happens if every π ∈ CH(Π) is a “robust” instance of CC satisfaction, in
the sense that after any infinitely small perturbation ~δ ∈ Rm! is introduced to π, ~π + ~δ is still an
instance of CC satisfaction. For the Θ(n−0.5) case, condition (1) states that every π ∈ CH(Π) is
an instance of CC satisfaction, and condition (2) requires that some π ∈ CH(Π) corresponds to a
“non-robust” instance of CC satisfaction, in the sense that after a small perturbation ~η is added to π,
CC is violated at π + ~η. The exp(−Θ(n)) case happens if there exists a “robust” instance of CC
dissatisfaction π ∈ CH(Π), in the sense that after any small perturbation is introduced to π, it is still
an instance of CC dissatisfaction. Otherwise, the Θ(1) ∧ (1−Θ(1)) case holds.

Odd vs. even n. The 2 - n case has similar explanations. The main difference is that when 2 - n,
the UMG of any n-profile must be a complete graph. Therefore, when ACW(π) 6= ∅, with high
probability an alternative in ACW(π) is the Condorcet winner in the randomly-generated n-profile.
Then, the Θ(n−0.5) case in 2 | n becomes part of the exp(−Θ(n)) case in 2 - n.

Example 3 (Applications of Theorem 1 to plurality). In the setting of Example 1, we apply The-
orem 1 to any sufficiently large n with 2 | n and any refinement of irresolute plurality, denoted by
Plu, for the following sets of distributions.

• Π = {π1, π2}. We have C̃C
min

Π (Plu, n) = exp(−Θ(n)), because let π′ = 3π1+π2

4 , we have
CW(π′) = WCW(π′) = {2}, ACW(π′) = ∅, and Plu(π′) = {1}.
•ΠIC = {πuni}, i.e., semi-random CC becomes likelihood of CC w.r.t. IC. We have C̃C

min

ΠIC
(Plu, n) =

Θ(1) ∧ (1−Θ(1)), because CW(πuni) = ∅, WCW(πuni) = {1, 2, 3}, and ACW(πuni) = ∅.

Semi-random CC under int-MRSE Rules. Semi-random CC under an MRSE rule r depends on
whether the positional scoring rules it uses satisfy the CONDORCET LOSER (CL) criterion, which
requires that the Condorcet loser, whenever it exists, never wins. The Condorcet loser is the alter-
native that loses to all head-to-head competitions. For any voting rule r, we write CL(r) = 1 if and
only if r satisfies CONDORCET LOSER.

To present the result, we first define parallel universes under an MRSE rule r at ~x ∈ Rm!, denoted by
PUr(~x), to be the set of all elimination orders in the execution of r at ~x. Then, for any alternative a,
let the possible losing rounds, denoted by LRr(~x, a) ⊆ [m−1], be the set of all rounds in the parallel
universes where a drops out. The formal definitions and an example can be found in Definition 26
and Example 12 in Appendix E.3, respectively.

We are now ready to present the 2 | n case of our characterization of semi-random CC under MRSE
rules. The full version can be found in Appendix E.3.

Theorem 2 (Semi-random CC: int-MRSE rules, 2 | n). For any fixed m ≥ 3, let M =
(Θ,L(A),Π) be a strictly positive and closed single-agent preference model, let r = (r2, . . . , rm)
be an int-MRSE rule and let r be a refinement of r. For any n ∈ N with 2 | n, we have

C̃C
min

Π (r, n) =



1 if ∀2 ≤ i ≤ m,CL(ri) = 1

1− exp(−Θ(n)) if


(1) ∃2 ≤ i ≤ m s.t. CL(ri) = 0 and
(2) ∀π ∈ CH(Π),∀a ∈ WCW(π),∀i∗ ∈ LRr(π, a),

we have CL(rm+1−i∗) = 1

Θ(n−0.5) if
{

(1) ∀π ∈ CH(Π),CW(π) ∩ (A \ r(π)) = ∅ and
(2) ∃π ∈ CH(Π) s.t. |ACW(π) ∩ (A \ r(π))| = 2

exp(−Θ(n)) if ∃π ∈ CH(Π) s.t. CW(π) ∩ (A \ r(π)) 6= ∅
Θ(1) ∧ (1−Θ(1)) otherwise

The most interesting cases are the 1 case and the 1 − exp(−Θ(n)) case. The 1 case happens when
all positional scoring rules used in r satisfy CONDORCET LOSER. In this case, if the Condorcet
winner exists, then it cannot be a loser in any round, which means that it is the unique winner under
r. The 1 − exp(−Θ(n)) case happens when (1) the 1 case does not happen, and (2) for every
distribution π ∈ CH(Π), every weak Condorcet winner a, and every possible losing round i∗ for
a, the positional scoring rule used in round i∗, i.e. rm+1−i∗ , must satisfy CONDORCET LOSER. (2)
guarantees that when a small permutation is added to π, if a weak Condorcet winner a becomes the
Condorcet winner, then it will be the unique winner under r. See Example 13 in Appendix E.3 for
an application of Theorem 2 to STV.
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Like Theorem 1, Theorem 2 can also be easily applied to i.i.d. distributions,which corresponds to
ΠIC = {πuni}.
Corrollary 1 (Likelihood of CC under int-MRSE rules w.r.t. IC). For any fixed m ≥ 3, any
refinement r of any int-MRSE rule r, and any n ∈ N,

PrP∼(πuni)n(CC(r, P ) = 1) =

{
1 if ∀2 ≤ i ≤ m,CL(ri) = 1
Θ(1) ∧ (1−Θ(1)) otherwise

Proof sketches for Theorem 1 and 2. In light of various multivariate central limit theorems (CLTs),
when n is large, the profile is approximately n · π∗ for π∗ = (

∑n
j=1 πj)/n ∈ CH(Π) with high

probability. Despite this high-level intuition, the conditions of the cases are quite differently from
semi-random CC by definition. To see this, note that (i) the adversary may not be able to set
any agent’s ground truth preferences to be π∗ ∈ CH(Π), because π∗ may not be in Π as shown
in Example 3, and (ii) in the definition of semi-random CC, agent j’s vote is a random variable
distributed as πj , instead of the fractional vote πj . Standard CLTs can probably be applied to prove
the 1− exp(−Θ(n)) case and the Θ(1) ∧ (1−Θ(1)) case, but they are too coarse for other cases.

To address this challenge, we model the satisfaction of CC by the union of multiple polyhedra C as
exemplified in Section 4. This converts the semi-random CC problem to a PMV-in-C problem [55]
(Definition 3 below). Then, we refine [55, Theorem 2] to prove a categorization lemma (Lemma 1),
and apply it to obtain Lemma 2 that characterizes semi-random CC for a large class of voting rules
called generalized irresolute scoring rules (GISRs) [22, 53] (Definition 7 in Appendix D.1). Finally,
we apply Lemma 2 to integer positional scoring rules and int-MRSE rules to obtain Theorem 1 and
Theorem 2. The full proof can be found in Appendix E.2 and E.3, respectively. 2

The semi-random satisfaction of PAR. Due to the space constraint, we briefly introduce our charac-
terizations of semi-random PAR under commonly-studied voting rules defined in Appendix A, which
belong to a large class of voting rules called generalized scoring rules (GSRs) [56] (Definition 7 in
Appendix D.1). Formal statements and proofs of the theorems can be found in Appendix F.2–F.5.

Theorems 3, 4, 5, 6 (Semi-random PAR under commonly-studied rules). For any fixed m ≥ 4,
any GSR r that is a refinement of maximin, STV, Schulze, ranked pairs, Copeland, any int-MRSE, or
any Condocetified positional scoring rule (such as Black’s rule), and any strictly positive and closed

Π over L(A) with πuni ∈ CH(Π), there exists N ∈ N such that for every n ≥ N , P̃AR
min

Π (r, n) =
1−Θ( 1√

n
).

In fact, if πuni 6∈ CH(Π), then semi-random PAR converges to 1 at a faster rate, which is more
positive news, as shown in Lemma 3 (Appendix F.1).

4 Beyond CC and PAR: The Categorization Lemma

In this section, we present a general lemma that characterizes semi-random satisfaction of per-profile
axioms that can be represented by unions of polyhedra, including CC and PAR. To develop intuition,
we start with an example of modeling CC under irresolute plurality as the union of the following
two types of polyhedra in Rm!.

• CNCW represents that there is no Condorcet winner, which is the union of polyhedraHG, where G
is an unweighted graph overA that does not have a Condorcet winner, as exemplified in Example 4.

• CCWW represents that the Condorcet winner exists and also wins the plurality election, which is
the union of polyhedraHa for every a ∈ A, that represents a being the Condorcet winner as well as
a Plu co-winner, as exemplified in Example 5.
Example 4 (HG). Let m = 3 and let xabc denote the number of [a � b � c] votes in a profile. The
following figure shows G (left) andHG (right).

G =

1

2 3

⇐⇒
(x213 + x231 + x321)− (x123 + x132 + x312) ≤ −1 (2)
(x123 + x132 + x213)− (x231 + x321 + x312) ≤ −1 (3)
(x132 + x312 + x321)− (x123 + x213 + x231) ≤ 0 (4)
(x123 + x213 + x231)− (x132 + x312 + x321) ≤ 0 (5)
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Among the four inequalities, (2) represents the 1 → 2 edge in G, (3) represents the 3 → 1 edge in
G, and (4) and (5) represent the tie between 2 and 3 in G.
Example 5 (Ha). Let m = 3. H1 is the polyhedron represented by the following four inequalities:

(x213 + x231 + x321)− (x123 + x132 + x312) ≤ −1

(x231 + x321 + x312)− (x123 + x132 + x213) ≤ −1

}
1 is the Condorcet winner

(x213 + x231)− (x123 + x132) ≤ 0

(x321 + x312)− (x123 + x132) ≤ 0

}
1 is a Plu co-winner

It is not hard to see that Plu satisfies CC at a profile P if and only if Hist(P ) is in C = CNCW∪CCWW,
where CNCW =

⋃
G:CW(G)=∅HG and CCWW =

⋃
a∈AHa. An example of PAR under Copeland can

be found in Appendix C.1. In general, the satisfaction of a wide range of axioms can be represented
by unions of finitely many polyhedra. Then, the semi-random satisfaction problem reduces to the
lower bound of the following PMV-in-C problem.
Definition 3 (The PMV-in-C problem [55]). Given q, I ∈ N, C =

⋃
i≤I Hi, where ∀i ≤ I ,

Hi ⊆ Rq is a polyhedron, and a set Π of distributions over [q], we are interested in

the upper bound sup~π∈Πn Pr( ~X~π ∈ C), and the lower bound inf~π∈Πn Pr( ~X~π ∈ C),

where ~X~π is the (n, q)-Poisson multinomial variable (PMV) that corresponds to the histogram of n
independent random variables distributed as ~π.

See Example 7 in Appendix C.2 for an example of PMV. The following lemma provides an asymp-
totic characterization on the lower bound of the PMV-in-C problem.
Lemma 1 (Categorization lemma, simplified). For any PMV-in-C problem and any n ∈ N,
inf~π∈Πn Pr( ~X~π ∈ C) is 0, exp(−Θ(n)), poly−1(n), Θ(1) ∧ (1 − Θ(1)), 1 − poly−1(n),
1− exp(−Θ(n)), or 1.

The full version of Lemma 1 (Appendix C.2) also characterizes the condition for each case, the
degree of polynomial, and sup~π∈Πn Pr( ~X~π ∈ C). Lemma 1’s main merit is conceptual, as it catego-
rizes the semi-random likelihood into seven cases for quantitative comparisons, summarized in the
increasing order in the table below, which are 0, very unlikely (VU), unlikely (U), medium (M), likely
(L), very likely (VL), and 1. The first three cases (0, VU, U) are negative news, where the adversary
can set the ground truth so that the axiom is almost surely violated in large elections (n → ∞).
The last three cases (L, VL, and 1) are positive news, because the axiom is satisfied almost surely
in large elections, regardless of the adversary’s choice. The M case can be interpreted positively or
negatively, depending on the context.

Name 0 VU U M L VL 1
Lem. 1 0 exp(−Θ(n)) poly−1(n) Θ(1) ∧ (1−Θ(1)) 1− poly−1(n) 1− exp(−Θ(n)) 1

5 Future work

There are many open questions for future work. While we believe that the assumptions (of strict
positiveness and closedness) on Π are mild, it is an important and interesting open question to extend
the analysis to variable ε’s, and perhaps establish bounds that explicitly depend on ε. What are the
semi-random CC and semi-random PAR for voting rules not sdudied in this paper, such as Bucklin?
What is the semi-random satisfaction of PAR when a group of agents can simultaneously abstain
from voting [31]? More generally, we believe that drawing a comprehensive picture of semi-random
satisfactions of other voting axioms and/or paradoxes, such as those described in Appendix B, is an
important, promising, and challenging mission, and the categorization lemma (Lemma 1) can be a
useful conceptual and technical tool to start with.
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