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Abstract

Cell tracking is a key computational task in live-cell microscopy, but fully
automated analysis of high-throughput imaging requires reliable and, thus,
uncertainty-aware data analysis tools, as the amount of data recorded within a
single experiment exceeds what humans are able to overlook. We here propose
and benchmark various methods to reason about and quantify uncertainty in lin-
ear assignment-based cell tracking algorithms. Our methods take inspiration from
statistics and machine learning, leveraging two perspectives on the cell tracking
problem explored throughout this work: Considering it as a Bayesian inference
problem and as a classification problem. Our methods admit a framework-like
character in that they equip any frame-to-frame tracking method with uncertainty
quantification. We demonstrate this by applying it to various existing track-
ing algorithms including the recently presented Transformer-based trackers. We
demonstrate empirically that our methods yield useful and well-calibrated track-
ing uncertainties.

1 Introduction

Uncertainty-aware cell tracking is a key requirement for fully automated data analysis of high
throughput live-cell microscopy (LCM) data, where images often contain hundreds or thousands of
almost indistinguishably looking, moving, growing and dividing cells and where temporal resolution
of the time-lapses is limited by biological and technical considerations such as phototoxicity (Tin-
evez et al., 2012) or camera movement speed in multi-colony setups (Seiffarth et al., 2025). LCM
enables researchers to analyze cellular behavior beyond the population level, revealing dynamics,
development and multi-species interactions (Blobaum et al., 2024; Fante et al., 2024; Burmeister
etal., 2021). The recent advances in computer vision, mainly driven by the success of deep learning
and ever-improving computational resources, form a substantial pillar of modern LCM analyses, as
the amount of data collected in a single experiment exceeds what humans are able to overlook (Kasa-
hara et al., 2023; Seiffarth et al., 2025; Witting et al., 2025). The strong reliance on computational
tools demands for high reliability and trustworthiness, which is improved by uncertainty-aware anal-
yses aiming to reliably estimate the confidence in their own predictions. While over-confidence in
deep neural networks encountering distribution shifts is a commonly known issue in the deep learn-
ing community (Guo et al., 2017; Kristiadi et al., 2020), uncertainty estimation as a remedy has — so
far — attracted only little attention in cell tracking.

In this work, we strive to make cell tracking more reliable by complementing it with uncertainty
estimation. To this end, we explore two perspectives on the tracking problem, considering it as a
Bayesian inference and as a classification problem. Our Bayesian perspective gives rise to the cell
tracking posterior, motivating sampling and approximate sampling methods for uncertainty quan-
tification, which however come at increased computational costs. The classification perspective
provides less costly, nevertheless useful alternatives to quantify uncertainty. Moreover, the classi-
fication perspective also provides tools to evaluate and calibrate uncertainty estimates using known
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Figure 1: Schematic presentation of our Bayesian perspective and inference method for uncertainty-
aware cell tracking. a depicts the detections X'y, X'y of two consecutive frames. b The set of biolog-
ically feasible assignments .4* forms a subset within the set of all possible many-to-many assign-
ments. ¢ Sorting assignment solutions by their posterior density we approximate the full posterior
by a set of the K most plausible solutions.

techniques such as temperature scaling (Guo et al., 2017). Notably, the methods under consideration
are applicable to the large family of linear assignment-based tracking methods, which are embedded
naturally within our framework.

2 Probabilistic Cell Tracking

Cell Tracking as Bayesian Inference In the case of multiple cells zq,...,z,, € X and
y, ..., 2, € Xy, we aim to find an assignment A € P(X; x Xy), such that every mother cell
is represented at most twice and every daughter cell is represented at most once. We denote the
subset of all assignments that adhere to those constraints as A* C P(X; x Xy ), the biologically
feasible assignments (cf. Figure 1b). The common approach to solve for a single assignment is to
optimize the joint likelihood of observing cells X'y given X; and an assignment A, i.e.

Aop := argmax P(Xy | Xy, A) = arg max Z —w(mi,m;-) — mw, — nwy (D
AcA* Ac A* (x;,2")EA
k2] J

where m and n are the numbers of appearing and disappearing cells, —w, and —wy are the re-
spective log probabilities of the events, and w(x;, x;) is some chosen cost function. Considering
that the structure of the solution A € A*, i.e. its biological feasibility, is known a priori with-
out the need for any actual observations, the formulation from Equation (1) lends itself nicely to a
Bayesian interpretation with Ay being the maximum a posteriori (MAP) estimate of the posterior
distribution of assignments

P(A| Xy, Xy) c P(Xy | Xy, A)P(A) 2)
where we choose the uniform distribution over valid assignments A* as prior distribution, P(A4) :=

1{aeaxy/| A*|. Given this cell tracking posterior distribution, we obtain the predictive distribution
of the event that x; is the mother of x;

Py i=P((z;,2)) € A | X0, Xp) = Y Ve, ayeay P(A | X1, Xi) 3)

AcA*
as the weighted frequency of z; being the mother of x; among all possible solutions. We estimate
Equation (3) by means of the self-normalized importance-weighted estimator (Tokdar and Kass,

2010)

]P(Xt/ ‘ Xt? Ak) P(Ak)
S P(Xy | X, Al P(A)

for k = 1,..., K and where we now assumed Ai,..., Ax to be the top-K best solutions. We
sketch this method in Figure Ic and refer to it as AS * in the results. As an alternative approach,
we consider perturbation of of input features like the detected masks or positions. We propose two
approaches: FP =, which averages the costs over the perturbed features, and FP+A =, which solves
the assignment problem for each pair of perturbed input features and approximates the predictive
posterior Eq. (3) as the frequency at which an event {(z;, x;) € A} is contained in the resulting
assignment solutions.

K
Pisz]l{(zi’x;)eAk}-ph with weight  py, == 4)
k=1
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Figure 2: (a) Mean ECE and standard error thereof across datasets at decreasing temporal resolution.
(b) Mean accuracy improvement when only considering the most certain tracking predictions, using
either the edge-wise confidence (cf. Eq. (5)) or entropy (cf. Eq. (6)) as uncertainty estimate.

Cell Tracking as Classification Task Cell tracking can be viewed as a multi-class classification
problem by considering the problem of choosing the right mother for each individual daughter. That
is, for your favorite daughter a:; € Xy, the classes are just the mothers X; from the preceding
frame. The class — or rather mother — probabilities are obtained by performing daughter-wise soft-
max normalization of the predicted costs

eXp{—w(mi, m;)}
er){t exp{_w(xa CU;)} .

We can interpret the softmax probabilities F;|; from Equation (5) as confidence scores, enabling
their usage for uncertainty estimation. This approach is also compatible to the Bayesian approaches
from Section 2 by simply column-normalizing the edge probabilities P;; from Equation (4) as F;; =
P;; />, Pxj - Moreover, the classification view enables to estimate and improve calibration using
temperature scaling (TS =) as in Guo et al. (2017). The latter however is only applicable if annotated
tracking data is available. Finally, as an alternative measure of uncertainty we can also consider the
daughter-wise entropy H; of the conditional distribution P ;

Pyj =P((z;,2}) € A2, Xy, Xp) = )

3 Results

In our experiments we investigate the calibration of tracking algorithms by Ruzaeva et al. (2022,
Activity), Crocker and Grier (1996, Distance), Fukai and Kawaguchi (2023, Overlap) & Gallusser
and Weigert (2025, Transformer). We consider 2D+t datasets from the Cell Tracking Challenge
(Maska et al., 2014, 2023) and a large-scale microbial time-lapse microscopy sequence (Seiffarth
etal.,2025). Our results show that these tracking algorithms are not per se well-calibrated (cf. SM =,
FP =, FP+A = & AS -~ in Fig. 2a), but calibration is achievable using TS, if annotated tracking data
is available (cf. SM+TS =, FP+TS =, FP+A+TS = & AS+TS = in Fig. 2a). Further, we consider the
accuracy improvement achievable by sorting out the most uncertain tracking decisions and present
results in Fig. 2b. This setting reflects a possible real-world scenario where a human annotator is
guided by the uncertainty estimate to manually correct the automated tracking result. We notice that
using our proposed daughter-wise entropy approach for quantifying uncertainty, even the vanilla
tracking algorithms can produce ’'useful’ uncertainties, i.e. uncertainties that positively correlate
with model performance. However, in particular our approximate Bayesian methods FP+A = &
AS ~ show higher improvements in accuracy and are less reliant on temperature scaling and, thus,
annotated tracking data. This comes at the price of increased computational costs of those methods.
Overall, we also observe that using the entropy-based uncertainty estimation (cf. Eq. (6)) is more
reliable in this setting.
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