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Abstract

Cell tracking is a key computational task in live-cell microscopy, but fully1

automated analysis of high-throughput imaging requires reliable and, thus,2

uncertainty-aware data analysis tools, as the amount of data recorded within a3

single experiment exceeds what humans are able to overlook. We here propose4

and benchmark various methods to reason about and quantify uncertainty in lin-5

ear assignment-based cell tracking algorithms. Our methods take inspiration from6

statistics and machine learning, leveraging two perspectives on the cell tracking7

problem explored throughout this work: Considering it as a Bayesian inference8

problem and as a classification problem. Our methods admit a framework-like9

character in that they equip any frame-to-frame tracking method with uncertainty10

quantification. We demonstrate this by applying it to various existing track-11

ing algorithms including the recently presented Transformer-based trackers. We12

demonstrate empirically that our methods yield useful and well-calibrated track-13

ing uncertainties.14

1 Introduction15

Uncertainty-aware cell tracking is a key requirement for fully automated data analysis of high16

throughput live-cell microscopy (LCM) data, where images often contain hundreds or thousands of17

almost indistinguishably looking, moving, growing and dividing cells and where temporal resolution18

of the time-lapses is limited by biological and technical considerations such as phototoxicity (Tin-19

evez et al., 2012) or camera movement speed in multi-colony setups (Seiffarth et al., 2025). LCM20

enables researchers to analyze cellular behavior beyond the population level, revealing dynamics,21

development and multi-species interactions (Blöbaum et al., 2024; Fante et al., 2024; Burmeister22

et al., 2021). The recent advances in computer vision, mainly driven by the success of deep learning23

and ever-improving computational resources, form a substantial pillar of modern LCM analyses, as24

the amount of data collected in a single experiment exceeds what humans are able to overlook (Kasa-25

hara et al., 2023; Seiffarth et al., 2025; Witting et al., 2025). The strong reliance on computational26

tools demands for high reliability and trustworthiness, which is improved by uncertainty-aware anal-27

yses aiming to reliably estimate the confidence in their own predictions. While over-confidence in28

deep neural networks encountering distribution shifts is a commonly known issue in the deep learn-29

ing community (Guo et al., 2017; Kristiadi et al., 2020), uncertainty estimation as a remedy has – so30

far – attracted only little attention in cell tracking.31

In this work, we strive to make cell tracking more reliable by complementing it with uncertainty32

estimation. To this end, we explore two perspectives on the tracking problem, considering it as a33

Bayesian inference and as a classification problem. Our Bayesian perspective gives rise to the cell34

tracking posterior, motivating sampling and approximate sampling methods for uncertainty quan-35

tification, which however come at increased computational costs. The classification perspective36

provides less costly, nevertheless useful alternatives to quantify uncertainty. Moreover, the classi-37

fication perspective also provides tools to evaluate and calibrate uncertainty estimates using known38
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Figure 1: Schematic presentation of our Bayesian perspective and inference method for uncertainty-
aware cell tracking. a depicts the detections X t,X t′ of two consecutive frames. b The set of biolog-
ically feasible assignments A* forms a subset within the set of all possible many-to-many assign-
ments. c Sorting assignment solutions by their posterior density we approximate the full posterior
by a set of the K most plausible solutions.

techniques such as temperature scaling (Guo et al., 2017). Notably, the methods under consideration39

are applicable to the large family of linear assignment-based tracking methods, which are embedded40

naturally within our framework.41

2 Probabilistic Cell Tracking42

Cell Tracking as Bayesian Inference In the case of multiple cells x1, . . . , xm ∈ X t and43

x′
1, . . . , x

′
n ∈ X t′ , we aim to find an assignment A ∈ P(X t ×X t′), such that every mother cell44

is represented at most twice and every daughter cell is represented at most once. We denote the45

subset of all assignments that adhere to those constraints as A* ⊂ P(X t ×X t′), the biologically46

feasible assignments (cf. Figure 1b). The common approach to solve for a single assignment is to47

optimize the joint likelihood of observing cells X t′ given X t and an assignment A, i.e.48

Aopt := argmax
A∈A*

P(X t′ | X t, A) = argmax
A∈A*

∑
(xi,x′

j)∈A

−w(xi, x
′
j)−mwa − nwd (1)

where m and n are the numbers of appearing and disappearing cells, −wa and −wd are the re-49

spective log probabilities of the events, and w(xi, x
′
j) is some chosen cost function. Considering50

that the structure of the solution A ∈ A*, i.e. its biological feasibility, is known a priori with-51

out the need for any actual observations, the formulation from Equation (1) lends itself nicely to a52

Bayesian interpretation with Aopt being the maximum a posteriori (MAP) estimate of the posterior53

distribution of assignments54

P(A | X t′ ,X t) ∝ P(X t′ | X t, A)P(A) (2)

where we choose the uniform distribution over valid assignments A* as prior distribution, P(A) :=55

1{A∈A*}
/
| A* | . Given this cell tracking posterior distribution, we obtain the predictive distribution56

of the event that xi is the mother of x′
j57

Pij := P((xi, x
′
j) ∈ A | X t,X t′) =

∑
A∈A*

1{(xi,x′
j)∈A} P(A | X t,X t′) (3)

as the weighted frequency of xi being the mother of x′
j among all possible solutions. We estimate58

Equation (3) by means of the self-normalized importance-weighted estimator (Tokdar and Kass,59

2010)60

Pij ≈
K∑

k=1

1{(xi,x′
j)∈Ak} · pk, with weight pk :=

P(X t′ | X t, Ak)P(Ak)∑K
l=1 P(X t′ | X t, Al)P(Al)

, (4)

for k = 1, . . . ,K and where we now assumed A1, . . . , AK to be the top-K best solutions. We61

sketch this method in Figure 1c and refer to it as AS in the results. As an alternative approach,62

we consider perturbation of of input features like the detected masks or positions. We propose two63

approaches: FP , which averages the costs over the perturbed features, and FP+A , which solves64

the assignment problem for each pair of perturbed input features and approximates the predictive65

posterior Eq. (3) as the frequency at which an event {(xi, x
′
j) ∈ A} is contained in the resulting66

assignment solutions.67
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Figure 2: (a) Mean ECE and standard error thereof across datasets at decreasing temporal resolution.
(b) Mean accuracy improvement when only considering the most certain tracking predictions, using
either the edge-wise confidence (cf. Eq. (5)) or entropy (cf. Eq. (6)) as uncertainty estimate.

Cell Tracking as Classification Task Cell tracking can be viewed as a multi-class classification68

problem by considering the problem of choosing the right mother for each individual daughter. That69

is, for your favorite daughter x′
j ∈ X t′ , the classes are just the mothers X t from the preceding70

frame. The class – or rather mother – probabilities are obtained by performing daughter-wise soft-71

max normalization of the predicted costs72

Pi|j = P((xi, x
′
j) ∈ A |x′

j ,X t,X t′) =
exp

{
−w(xi, x

′
j)
}∑

x∈X t
exp

{
−w(x, x′

j)
} . (5)

We can interpret the softmax probabilities Pi|j from Equation (5) as confidence scores, enabling73

their usage for uncertainty estimation. This approach is also compatible to the Bayesian approaches74

from Section 2 by simply column-normalizing the edge probabilities Pij from Equation (4) as Pi|j =75

Pij/
∑

k Pkj . Moreover, the classification view enables to estimate and improve calibration using76

temperature scaling (TS ) as in Guo et al. (2017). The latter however is only applicable if annotated77

tracking data is available. Finally, as an alternative measure of uncertainty we can also consider the78

daughter-wise entropy Hj of the conditional distribution Pi|j79

Hj = −
∑
i

Pi|j logPi|j . (6)

3 Results80

In our experiments we investigate the calibration of tracking algorithms by Ruzaeva et al. (2022,81

Activity), Crocker and Grier (1996, Distance), Fukai and Kawaguchi (2023, Overlap) & Gallusser82

and Weigert (2025, Transformer). We consider 2D+t datasets from the Cell Tracking Challenge83

(Maška et al., 2014, 2023) and a large-scale microbial time-lapse microscopy sequence (Seiffarth84

et al., 2025). Our results show that these tracking algorithms are not per se well-calibrated (cf. SM ,85

FP , FP+A & AS in Fig. 2a), but calibration is achievable using TS, if annotated tracking data86

is available (cf. SM+TS , FP+TS , FP+A+TS & AS+TS in Fig. 2a). Further, we consider the87

accuracy improvement achievable by sorting out the most uncertain tracking decisions and present88

results in Fig. 2b. This setting reflects a possible real-world scenario where a human annotator is89

guided by the uncertainty estimate to manually correct the automated tracking result. We notice that90

using our proposed daughter-wise entropy approach for quantifying uncertainty, even the vanilla91

tracking algorithms can produce ’useful’ uncertainties, i.e. uncertainties that positively correlate92

with model performance. However, in particular our approximate Bayesian methods FP+A &93

AS show higher improvements in accuracy and are less reliant on temperature scaling and, thus,94

annotated tracking data. This comes at the price of increased computational costs of those methods.95

Overall, we also observe that using the entropy-based uncertainty estimation (cf. Eq. (6)) is more96

reliable in this setting.97
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Luisa Blöbaum, Luca Torello Pianale, Lisbeth Olsson, and Alexander Grünberger. Quantifying microbial99

robustness in dynamic environments using microfluidic single-cell cultivation. Microbial Cell Factories, 23100

(1):44, 2024. 1101

Alina Burmeister, Qiratt Akhtar, Lina Hollmann, Niklas Tenhaef, Fabienne Hilgers, Fabian Hogenkamp, Sascha102

Sokolowsky, Jan Marienhagen, Stephan Noack, Dietrich Kohlheyer, and Alexander Grünberger. (Optochem-103

ical) Control of Synthetic Microbial Coculture Interactions on a Microcolony Level. ACS Synthetic Biology,104

10(6):1308–1319, 2021. Publisher: American Chemical Society. 1105

John C. Crocker and David G. Grier. Methods of Digital Video Microscopy for Colloidal Studies. Journal of106

Colloid and Interface Science, 179(1):298–310, 1996. 3107

Niklas Fante, Christian K. Desiderato, Christian U. Riedel, and Alexander Grünberger. Time-resolved cell-to-108

cell heterogeneity of Listeria innocua after nisin exposure. Frontiers in Bioengineering and Biotechnology,109

12, 2024. Publisher: Frontiers. 1110

Yohsuke T Fukai and Kyogo Kawaguchi. LapTrack: linear assignment particle tracking with tunable metrics.111

Bioinformatics, 39(1):btac799, 2023. 3112

Benjamin Gallusser and Martin Weigert. TRACKASTRA: Transformer-Based Cell Tracking for Live-Cell113

Microscopy. In Computer Vision – ECCV 2024, pages 467–484, Cham, 2025. Springer Nature Switzerland.114

3115

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural Networks. In116

Proceedings of the 34th International Conference on Machine Learning, pages 1321–1330. PMLR, 2017.117

ISSN: 2640-3498. 1, 2, 3118

Keitaro Kasahara, Markus Leygeber, Johannes Seiffarth, Karina Ruzaeva, Thomas Drepper, Katharina Nöh,119
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Tianqi Guo, Yin Wang, Jan P. Allebach, Rina Bao, Noor M. Al-Shakarji, Gani Rahmon, Imad Eddine134

Toubal, Kannappan Palaniappan, Filip Lux, Petr Matula, Ko Sugawara, Klas E. G. Magnusson, Layton135

Aho, Andrew R. Cohen, Assaf Arbelle, Tal Ben-Haim, Tammy Riklin Raviv, Fabian Isensee, Paul F. Jäger,136
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Berkels. Cell tracking for live-cell microscopy using an activity-prioritized assignment strategy. In 2022142

IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), pages 1–7, 2022.143

3144
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Eisenhut, Andreas P. M. Weber, Eric von Lieres, and Dietrich Kohlheyer. A microfluidic system for the155

cultivation of cyanobacteria with precise light intensity and CO 2 control: enabling growth data acquisition156

at single-cell resolution. Lab on a Chip, 25(3):319–329, 2025. Publisher: Royal Society of Chemistry. 1157

5


	Introduction
	Probabilistic Cell Tracking
	Results

