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ABSTRACT

Continual learning has recently become increasingly important with the devel-
opment of deep learning technology. The memory-based rehearsal is one of the
dominant methods: It samples data from a previous task, stores them in memory,
and retrains them with the current task. However, since the whole data cannot
be stored in fixed memory capacity, there is a problem to lose the knowledge of
previous data. In this paper, we propose a method for storing and reproducing
distributed representations of data for each class in memory. Data representation
is categorized by class and converted into a multivariate Gaussian distribution,
which is stored in memory in the form of means and variances. A generative algo-
rithm regenerates the model of previous tasks to restore the data representation for
the current task. In the inference process, local adaptation adjusts the model to the
distributed representation of data that changes as the number of tasks increases.
Experiments with CIFAR-10, CIFAR-100, and tiny-ImageNet show performance
improvements of 2.2%p, 5.01%p, and 3.44%p, respectively, compared to the state-
of-the-art method of memory replay, confirming the effectiveness of the proposed
method in data representation for memory replay.

1 INTRODUCTION

Continuous learning is a learning scenario that a model that learns data streams without forget-
ting previously learned knowledge (Bang et al., 2022)(Bang et al., 2021) (Lopez-Paz & Ranzato,
2017) (Prabhu et al., 2020). Recently, many deep learning models have shown excellent perfor-
mance in multiple domains, but unfortunately, when the data distribution changes sequentially, the
phenomenon of losing previously acquired knowledge occurs, called catastrophic forgetting (CF)
(McCloskey & Cohen, 1989). This phenomenon can be alleviated by combining newly added and
previous data, but it is inevitable that retraining is inefficient if the model size is too large, and
sometimes the model cannot access previous data (e.g.,due to for privacy issues).

As an approach to solving CF, inspired by the principle of human memory, a rehearsal method using
memory with a separate space from the model has been investigated (Bang et al., 2022) (Bang et al.,
2021) (Prabhu et al., 2020) (Kim et al., 2021) (Kirkpatrick et al., 2017).The method prevents CF
effectively by explicitly storing raw data in memory so that the model can preserve knowledge and
combine them with data stored in memory when learning other data or tasks. However, traditional
rehearsal methods do not capture the variance of each class by storing only some data due to the
limitations of fixed memory space. In addition, it is vulnerable to overfitting because it focuses
on data only inside the memory. And the method that relies on the data sampling method has
the possibility of losing information of the previous tasks when updating the memory, making it
challenging to choose which data samples should be discarded (Zhang et al., 2021).

Let dkdiscard be a data sample of class k that is not stored in the memory. C and N are a fixed memory
capacity, the number of data N respectively, where N > C. The distribution of the data set σ(Dk)

and the distribution of σ(D
′k), {D′k|dkdiscard /∈ D

′k,∀dksampled ∈ D
′k} are not the same. Continual

learning (CL), when viewed from a long-term perspective, continues to increase the number of data
and classes while having a fixed memory capacity, causing the problem of not accurately capturing
data variance. Figure 1 shows this problem with the chaning dimension boundaries according to the
discard of data samples.
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Figure 1: . The dimension boundaries change when random data are discarded and stored in mem-
ory; each circle represents raw data. As the difference between N and C enlarges, there is a differ-
ence in the original data distribution

In this paper, we propose a method of storing data representation in memory and solving CF using
a generative algorithm. The goal of CL is to retain the knowledge that the model has learned in a
continuous task until the last task, implicitly maintaining the distribution of all the learned data from
the model’s perspective. Thus, the key idea of the proposed method is to enable the model to learn
and maintain the distribution of data. Based on the idea of Memory Recall (Zhang et al., 2021),
we learn the data representation with multivariate Gaussian distribution and construct the model.
For learning the distribution, we capture the representation of data, not raw data themselves, as a
multivariate Gaussian mixture model, store them in memory for each class, reproduce the data using
the generative algorithm in the new task, and combine them with the data in the task to allow the
model to learn the distribution.

When storing data representations it is required that the model be consistent in its data represen-
tations as it learns the tasks. To satisfy this, we construct the representation model that limits the
gradient to learn in a direction orthogonal to the previous tasks for the representation of the data
maintain in the same space for each task (Zeng et al., 2019). Additionally, the classification perfor-
mance decreases where the ranges of each data overlap, resulting in a drop in predictive performance
as the model pursues general performance for all data. To solve this problem, we apply local adap-
tation to prevent it(de Masson D’Autume et al., 2019) (Sprechmann et al., 2018).

We conduct several experiments by changing the number of tasks for the datasets of CIFAR 10,
CIFAR100 and tiny-ImageNet, and achieve the best performance compared to the previous mod-
els. Additionally, significant performance improvements are derived through memory access and
associated representation regeneration in the inference phase.

Our main contributions are as follows (1) Instead of raw data, we store the representation in memory
for each class of data and solve the CF by regenerating the data. (2) To solve the uncertainty of the
data represented by the distributed expression, local adaptation is used to prevent this. (3) It achieves
the-state-of-the-art performance in the datasets such as CIFAR-10, CIFAR-100 and tiny-ImageNet.

2 RELATED WORKS

2.1 REHEARSAL-BASED CONTINUAL LEARNING

Prabhu et al. (2020) suggested a method that can operate in the same way as in the class and task
incremental situations. This method, which greedily samples data, stores it in memory, and learns
the entire memory as a new model, has inspired many rehearsal methods. Despite its simplicity,
the rehearsal-based approach has shown outstanding performance in continual learning settings.
Inspired by sampling methods, many studies have been conducted to screen relevant data in renew-
able memory (Bang et al., 2022) (Bang et al., 2021) (Chaudhry et al., 2018b) (Castro et al., 2018)

2



Under review as a conference paper at ICLR 2023

(Chaudhry et al., 2018a). Bang et al. (2021) is a method for sampling by estimating the uncertainty
of the data , and Yoon et al. (2021) proposed diversified sampling by “Core-Set (Sener & Savarese,
2017)”. However, storing raw data samples in memory is not accurate in capturing the distributed
representation of a particular class, and excavating necessary data is a task that requires additional
effort. In this work, we try to solve the problem arising from raw data sampling by using the dis-
tributed representation of each data class. Since our method estimates the variance using all data,
we do not need to sample the data. We only allocate additional space to the memory according to
the class so that we can expect a minimal memory update.

2.2 REPRESENTATION LEARNING IN CONTINUAL LEARNING

The continual learning method focusing on representation is as follows. Rebuffi et al. (2017) pre-
vents representations from being forgotten by leveraging distillation and designed for the blurry
setup. Javed & White (2019) gives the model a new functionality, OML, to learn a robust
learning representation that prevents CF. Gupta et al. (2020) proposes La- MAML (Look-ahead
MAML), a fast optimization-based meta-learning algorithm with the help of small episode memory.
Both the previous two works attempt to solve CL using data representation in relation to meta-
learning.Gallardo et al. (2021) Zhang et al. (2020) applies the self-supervised learning method to
generate a more generalized data representation.

2.3 REGULARIZATION IN CONTINUAL LEARNING

This method can be divided into limiting the learning of parameters and adjusting gradients. Kirk-
patrick et al. (2017) first introduced the Regularization method that limits the changes in the essential
parameters of the model, and similar work was proposed in Hu et al. (2021). The gradient optimiza-
tion approach induces the weight gradient to be orthogonal to input data to prevent changes in the
output vectors (Zeng et al., 2019) (Wang et al., 2021) (Saha et al., 2021). Zeng et al. (2019) pro-
posed OWM, which estimates the orthogonal projector to the null space of input. Our main idea is to
store the distributed data representation of the task in memory. At this time, the model that outputs
the data representation is also affected by CF, so we use OWM to ensure that the model’s output is
represented consistently.

Figure 2: The overview of proposed method

3



Under review as a conference paper at ICLR 2023

3 PROPOSED METHOD

When task tn is input, the encoder outputs a data representation. The representation is forwarded
as a classifier, and the label is predicted. At the same time, the representation is transformed into
a multivariate Gaussian distribution by expectation-maximization(EM) algorithm. In the new task,
tn+1 state, the means and variances from t0,...,n stored in memory are regenerated through the
generative algorithm and forwarded to the classifier with the data representation of tn+1. The OWM
learning mechanism is used so that the output representation of the encoder can be in a certain space
according to the task. In the test step, local adaptation is performed to select a representation similar
to the test data from memory and retrain the classifier to eliminate the uncertainty of the distributed
representation. The adjusted classifier is then discarded after predicting the test dataset(detailed in
3.4).

3.1 MODEL ARCHITECTURE AND DEFINITION

The network of this method splits into two parts: encoder and classifier. The encoder is a part that
learns the general representation of input data, which is constructed as several convolutional layers.
The classifier is a part that predicts the input representations into their classes, which is constructed
as several Fully connected layers. Denote encoder and classifier as Ei and Ci, respectively, where
i represents each model after index learning of the task Ti. Task Ti consists of data xk

i and a label
yk
i , where k represents the class.

3.2 DATA REPRESENTATION WITH GRADIENT REGULARIZATION

We first train the encoder to output meaningful representations from the data. Since the previous
task does not exist at i = 0, memory contributes nothing to the model’s learning. Thus, the model
is trained with yk

0 = C0(E0(x
k
0)). After that, the gradient regularization method is applied, when

i > 0, to ensure that the output of Ei and the output of Ei+1 are consistent. The idea is that the
gradient of Ei+1, ∇Wi+1 computed from a backpropagation, if ∇WT

i+1Xi = 0, then the output
will remain the same, which means the learned knowledge is preserved. So, we must compute an
orthogonal projector matrix P that projects ∇W to the orthogonal subspace of input space. By
Least Square Solution, It is computed by P = I −A(ATA − αI)−1A, where A is the set of all
output yl by layer l in E, I is Identity Matrix, and α is a hyperparameter. Because the network
cannot access every input vector of each layer in continual learning, OWM utilizes the Recursive
Least Square (RLS) Algorithm to approximately compute P by the following equation.

Pl = Pl−1 − kly
T
l Pl−1 (1)

kl =
Pl−1yl

α+ yT
l Pl−1yl

(2)

The orthogonal projector Pl of the l-th layer of the network is then multiplied by the weight gradient
of the corresponding layer to regularize the learning direction. Our goal is to approximate the
data distribution, so we normalize the output vectors of the encoder to reduce the variance of their
distribution to help the estimation. Moreover, we add a self-supervised loss to let the network learn
generalized features(Shen et al., 2021).

Figure 3: A schematic diagram of the distributed representation and memory storage, regeneration
of the data
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3.3 MEMORY ACCESS AND DATA REPRESENTATION GENERATION

After training the network with OWM, we estimate the distribution of representations as a mix-
ture of multivariate Gaussian distribution. Multivariate Gaussian represents data with mean µ and
covariance Σ as

N(x) = (
1

2π
)−

p
2 |Σ|− 1

2 exp(−1

2
(x′ − µ)TΣ−1(x′ − µ)) (3)

Where x′ is E(x). The advantage of multivariate Gaussian distribution is that the representation
can be seen from multiple dimensional perspectives. Covariance shows the correlation between two
variables so that multivariate Gaussian can represent the actual distribution accurately. To estimate
the such distribution, we use Expectation-Maximization (EM) algorithm to compute means and
covariances (Dempster et al., 1977). EM algorithm is a method to find the maximum log-likelihood
of probability function as

L(X; θ) = ln p(X|π, µ,Σ) = Σx lnΣ
K
k=1πkN(x|µx,Σk) (4)

Where N is a number of x, K is the number of distributions, N(·) is the equation (3) to compute
means and covariances, and π is the ratio of data in each distribution. The EM iterates between two
steps. The expectation step (E-step) evaluates the responsibility γ, which is the probability of the
data point xn in the k-th distribution, uses current means and covariances.

γ(znk) =
πkN(xn|µk,Σk)

ΣK
j=1πjN(xn|µj ,Σj)

(5)

γ is then used to compute means and covariances in the Maximization step,

µk =
ΣN

n=1γ(znk)xn

ΣN
n=1γ(znk)

,Σk =
ΣN

n=1γ(znk)(xn − µn)(xn − µn)
T

ΣN
n=1γ(znk)

, πk =
1

N
ΣN

n=1γ(znk) (6)

These equations are derived by partial derivative equation (4) to maximize the likelihood. The
computed means and covariances per class are stored in the memory. In the proposed method, the
data representation stored in memory has one row per class, and if the number of classes at this time
is C,K represents the number of classes, so the size of Memory M becomes C ×K.

The covariance and mean stored in memory are repeatedly used to generate data presentation. From
randomly generated normal vectors S, we generate the representation x̂ of class k as

x̂k = (S ∗ λk)Γ
T
k + µk (7)

Σk = ΓkλkΓ
T
k (8)

where the covariance is decomposed into an eigenvalue matrix λk and eigenvector matrix Γk.

Classifier Ci performs classification through the data representation regenerated from the memory
and the output of the encoder. To cope with the increase in class, a new classifier Ci is generated for
each task to proceed with learning. So,

y0,1,...,i = Ci(Ei(Xi); X̂0,1,...,i−1) (9)

where X̂0,1,...,i−1 is set of x̂ from memory. That is since the classifier can learn the representation
of data for T0, T1, . . . , Ti, CF can be prevented.

3.4 LOCAL ADAPTATION IN TEST PHASE

When representation is stored and regenerated, uncertainty exists where the distribution between
the data overlaps. C and E are linked and affected by loss, and there is a tendency to learn and
generalize all data.

We apply a method of fine-tuning the associated with the test dataset, inspired by local adaptation
(de Masson D’Autume et al., 2019). Unlike the base method, We use E(xN ′) as the key value by
storing the multivariate Gaussian distribution in memory and selecting the covariance and average
of the classes to be regenerated accordingly, where N ′ is the test task. Within the memory consisting
of the mean and covariance, the class with the highest probability of belonging is selected through
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Table 1: Results of our method and other baseline methods on CelebA, when trained after different
epochs and with different margins.

Method CIFAR-10 CIFAR-100 tiny-ImageNet
Accuracy(%) 5 tasks 10 tasks Accuracy (%)

Joint Learning 73.01±0.74 39.97±0.88 37.15±0.20

Replay

Rebuffi et al. (2017) 58.93±0.19 25.43±0.70 23.61±0.51 26.29±0.47
Wu et al. (2019) 57.08±0.63 26.84±0.87 14.95±0.37 -

Chaudhry et al. (2021) 41.57±0.25 29.34±0.49 26.88±0.59 -
Wu et al. (2018) 22.39±0.83 20.52±0.46 15.23±0.62 13.48±0.16

Aljundi et al. (2019) 50.95±0.36 24.87±0.72 23.63±0.52 21.84±0.34

Regularization
Kirkpatrick et al. (2017) 18.98±0.10 12.53±0.69 7.56±0.25 7.33±0.30

Wang et al. (2021) 18.65±0.85 8.69±1.09 6.68±0.88 6.02±0.74
Zeng et al. (2019) 52.11±0.83 29.93±0.83 27.40±0.28 25.18±0.21

Sample Zhang et al. (2021) 35.78±1.36 22.75±0.98 11.88±1.02 11.01±0.61
Generation Shen et al. (2021) 56.88±0.42 31.59±0.42 30.20±0.69 30.15±0.47

Ours(w/o local adaptation) 60.07±0.42 36.11±0.56 34.80±0.83 32.18±0.92
Ours 61.13±0.12 35.83±0.58 35.21±0.48 33.59±0.51

probability estimation, and the selected class is regenerated by equations (7) and (8). The CN ′ is
then adjusted through the following equation.

WN ′ = argmin
W̃N

λ||W̃N −WN ||22 − ΣKd

k=1α log p(yki |xk
i ; W̃N ) (10)

where λ is a hyperparameter, αk is the weight of the k-th retrieved example and ΣKd

k=1α = 1. We
assume that all Kd retrieved examples are equally important regardless of their distance to the query
vector and set αk = 1

K , WN is the weight of CN , and WN ′ is discarded after being finetuning.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTAL SETUP

We conduct CIL experiment on the widely used datasets in related works (Rebuffi et al., 2017)(Shen
et al., 2021), : CIFAR-10 and CIFAR-100, Tiny-ImageNet. We split CIFAR-10 dataset into 5 tasks,
each task containing 2 classes. CIFAR-100 data is split into 5 tasks, and 10 tasks with 20 classes, and
10 classes per task. Split-Tiny-ImageNet is built from Tiny-ImageNet Le & Yang (2015) by splitting
200 class samples into 10 disjoint sets of samples, each consisting of 20 classes. We conduct 6-fold
cross-validation for every dataset.

The network follows the original model in OWM. The encoder is composed of 3 convolutional
layers with 64, 128, 256 output channels and 2× 2 filter. Classifier is composed of 3 FC layers with
1000, 1000, n (class number) nodes. Our method estimates and stores one mean and covariance per
class (K = 2) and generates 1,000 representations for each class. For Rehearsal methods, we use a
memory size of 2,000 images for CIFAR10, and 20,000 images for CIFAR100, tiny-ImageNet. Note
that other branches of continual learning such as parameter isolation methods, are implemented in
TIL setup, so they show bad performance in CIL setup. Therefore, we excluded their results.

4.2 RESULTS

From Table 1, our method shows the highest accuracy compared to other methods except for
Joint Learning, where the network is trained with all the data as conventional deep learning. Our
method achieves a performance improvement of approximately 3%p compared to the previous one
in CIFAR-10 and 5%p in CIFAR-100. Tiny ImageNet the improvement of traditional contrast in
about 3%p can see the effect. This shows the utility value of data presentation and proves that
the data represented by multivariate performs better than before. In addition, we demonstrated the
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Table 2: Accuracy on different number of Gaussian Distribution Number (K) in CIFAR10

# Distribution (K) 1 2 3 4 5 10
Accuracy (%) 60.07±0.42 62.66±0.24 63.67±0.36 63.55±0.15 64.11±0.08 64.64±0.12

Table 3: Accuracy on different number of retrive class Kd with 200 sample in CIFAR10

# retrive class(Kd) 2 3 4 5 6 7
Accuracy (%) 58.15±0.21 59.91±0.30 60.81±0.32 61.13 ± 0.12 61.08 ± 0.09 61.10±0.07

value of local adaptation through slightly better performance than without local adaptation when
fine-tuning through local adaptation. Figure 4 shows the task-wise results to visualize the accuracy
drop. We show that our proposed model (applied with local adaptation) does not forget more than
other models and prevents CF according to the task.

Table 2 shows the performance difference in CIFAR-10 according to the number of Gaussian dis-
tributions. It can be seen that the more sophisticated data is recovered using many distributions,
the better the performance is. We also demonstrate the t-SNE result of the generated representa-
tions compared to actual representations in Figure 5. It is visible that representations generated by
multivariate Gaussian distribution can precisely approximate the actual distribution. Table 3 shows
the performance according to the number of classes selected during the test phase. The best perfor-
mance result was achieved when there were 5 classes. Based on this, we set five retrieve classes in
all experimental results.

Figure 4: Task-wise accuracies (%). Joint learning shows the Upper Bound of the model.

4.3 DISCUSSION

Our method shows a bigger performance gain in longer tasks, where the performance improves
5.01%p in the 10-task CIFAR-100 experiment. This shows the scalability of our method. Kirkpatrick
et al. (2017) and Wang et al. (2021) are initially implemented in TIL, so they perform poorly in this
experiment. Wu et al. (2019) and Chaudhry et al. (2021) try to alleviate the class imbalance and
the overfitting, but their results indicate that their methods are ineffective. In addition, our model
showed about 3%p performance improvement over the previous best performance model on other
datasets.

Tables 3 and 4confirmed that the appropriate retrieve class and the number of data samples are
essential. When the retrieve class was small, the classification performance was low, and a good
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Table 4: Accuracy on different number of sample with 5 retrive class in CIFAR10

# samples by (Kd) 50 100 150 200 300 500
Accuracy (%) 57.21±0.84 58.44±0.96 61.02±0.58 61.13 ± 0.12 60.00 ± 0.13 59.36±0.17

Figure 5: t-SNE of real representations and generated representations of class 0 in CIFAR10 by (a)
univariate Gaussian, (b) GAN-based generator, and (c) multivariate Gaussian.

performance could be expected in more than five retrieve classes. Otherwise, the number of sampling
achieved the highest performance at 200 and lower performance at 500. We think the cause of this
phenomenon is that the knowledge up to TN learned by the model is diluted when local adaptation
is over-applied.

5 CONCLUSION

This paper points out the limitations of raw data sampling and proposes a memory-based method
based on the presentation of data to solve this problem. CF was prevented by converting the pre-
sentation of data into a Gaussian distribution, storing it in memory, combining data from new tasks
with data regenerated according to distributed expression, and improving performance during the
test through local adaptation.

In future work, we intend to develop an inference method that prevents overfitting the test dataset by
considering the local adaptation discussed in the disruption and the gradient of the existing model.
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