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Abstract

We address the problem of learning uncertainty-aware representations for graph-
structured data. While Graph Neural Ordinary Differential Equations (GNODE)
are effective in learning node representations, they fail to quantify uncertainty. To
address this, we introduce Latent Graph Neural Stochastic Differential Equations
(LGNSDE), which enhance GNODE by embedding randomness through Brownian
motion to quantify uncertainty. We provide theoretical guarantees for LGNSDE
and empirically show better performance in uncertainty quantification.

1 Introduction

Before the widespread of neural networks and the boom in modern machine learning, complex systems
in various scientific fields were predominantly modelled using differential equations. Stochastic
Differential Equations (SDEs) were the standard approach to incorporating randomness. These
methods were foundational across disciplines such as physics, finance, and computational biology
[Hoops et al., 2016, Quach et al., 2007, Mandelzweig and Tabakin, 2001, Cardelli, 2008, Buckdahn
et al., 2011, Cvijovic et al., 2014].

In recent years, Graph Neural Networks (GNNs) have become the standard for graph-structured
data due to their ability to capture relationships between nodes. They are widely used in social
network analysis, molecular biology, and recommendation systems. However, traditional GNNs
cannot reliably quantify uncertainty. Both aleatoric (inherent randomness in the data) and epistemic
(model uncertainty due to limited knowledge) are essential for decision-making, risk assessment, and
resource allocation, making GNNs less applicable in critical applications.

To address this gap, we propose Latent Graph Neural Stochastic Differential Equations (LGNSDE),
a method that perturbs features during both the training and testing phases using Brownian motion
noise, allowing for handling noise and aleatoric uncertainty. We also assume a prior SDE latent space
and learn a posterior SDE using a GNN. This Bayesian approach to the latent space allows us to
quantify epistemic uncertainty. As a result, our model can capture and quantify both epistemic and
aleatoric uncertainties. More specifically, our contributions are as follows:

• We introduce a novel model class combining SDE robustness with GNN flexibility for handling
complex graph-structured data, which quantifies both epistemic and aleatoric uncertainties.

• We provide theoretical guarantees demonstrating our model’s ability to provide meaningful uncer-
tainty estimates and its robustness to perturbations in the inputs.

*Corresponding author: rsb63@cam.ac.uk

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).



• We empirically show that Latent GNSDEs demonstrate exceptional performance in uncertainty
quantification, outperforming Bayesian GCNs [Hasanzadeh et al., 2020], and GCN ensembles [Lin
et al., 2022].

2 Methodology

Inspired by Graph Neural ODEs [Poli et al., 2019] and Latent SDEs [Li et al., 2020], we now
introduce our model: Latent Graph Neural SDEs − LGNSDEs (Figure 1), which use SDEs to define
prior and approximate posterior stochastic trajectories for H(t) [Xu et al., 2022]. Furthermore,
LGNSDEs can be viewed as the continuous representations of existing discrete architectures (A.4).

xx x

Figure 1: The diagram shows the evolution of one of the nodes of the input graph in latent space,
H(t), through an SDE, with sample paths (purple) and confidence bands representing variance. At
three timesteps, we visualize graph embeddings, where nodes (white and orange) become more
separable over time due to the influence of the vector field. The inset axes represent latent dimensions,
while the purple and yellow background highlights the magnitude and direction of the vector field
guiding the latent dynamics.

2.1 Model Definition

LGNSDEs are designed to capture the stochastic latent evolution of H(t) on graph-structured data.
We use an Ornstein-Uhlenbeck (OU) prior process, represented by

dH(t) = FG(H(t), t) dt+GG(H(t), t) dW(t),

where we set the drift and diffusion functions, FG and GG , to constants and consider them hyperpa-
rameters. Moreover, dW(t) is a Wiener process. The approximate posterior is defined as

dH(t) = FG(H(t), t, ϕ) dt+GG(H(t), t) dW(t), (1)

where FG is parameterized by a GCN with ϕ representing the learned weights of the neural network.
The drift function mainly determines the dynamics of the evolution of the latent state, while the
diffusion term GG(H(t)) dW(t) introduces stochastic elements. With the need to keep the Kullback-
Leibler (KL) divergence bounded, we set the diffusion functions of the prior and posterior to be the
same [Calvo-Ordonez et al. 2024, Archambeau et al. 2007].

Let Y be a collection of target variables, e.g., class labels, for some of the graph nodes. Given Y we
train our model with variational inference, with the ELBO computed as

LELBO(ϕ) = E

[
log p(Y|H(t1))−

∫ t1

t0

1

2
∥v(H(u), ϕ, θ,G)∥22 du

]
,
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where the expectation is approximated over trajectories of H(t) sampled from the approximate
posterior SDE, and v = GG(H(t))−1[FG,ϕ(H(u), u)− FG,θ(H(u), u)].

To sample H(t) from the approximate posterior, we integrate the SDE in Eq. 1:

H(t1) = H(t0) +

∫ t1

t0

FG,ϕ(H(u), u) du+

∫ t1

t0

GG(H(u), u) dW(u),

where H(t0) are the node-wise features Xin in the graph G. In practice, this is not feasible since the
posterior drift FG,ϕ is parametrised by a neural network. We numerically solve this integral with a
standard Stochastic Runge-Kutta method [Rößler, 2010]. We then use a Monte Carlo approximation
to get the expectation of H(t0) and approximate the posterior predictive distribution as

p(Y∗|G,Xin,Y) ≈ 1

N

N∑
n=1

p (Y∗|Hn(t1),G) ,

where H1(t1), . . . ,HN (t1) are samples drawn from the approximate posterior p(H(t1)|Y,Xin,G).
Following Poli et al. [2019], we use a similar encoder-decoder setup. Our encoding focuses solely on
the features of individual nodes, while the graph structure remains unchanged. Finally, we remark
that the memory and time complexity are O(|E|d+L) and O(L) respectively, where L is the number
of SDE solver steps, E is the number of edges in the graph and d is the dimension of the features.

3 Theoretical Guarantees
In this section, we present key results on the stability and robustness of our framework under mild
assumptions (Appendix A.2). Firstly, we address the fundamental question of whether our proposed
models provide meaningful uncertainties. By showing that the variance of the latent representation
bounds the model output variance, we highlight the ability of LGNSDEs to capture and quantify
inherent uncertainty in the system. The latent representation is the underlying structure from which the
model’s output is generated, i.e. the uncertainty in the latent space directly influences the uncertainty
in predictions. We formalize this in the following lemma:

Proposition 1. Under assumptions 1-3, there exists a unique mild1 solution to an LGNSDE of the
form

dH(t) = FG(H(t), t,θ) dt+GG(H(t), t) dW(t),

whose variance bounds the variance of the model output ŷ(t) as:

Var(ŷ(t)) ≤ L2
hVar(H(t)),

where L2
h is the Lipschitz constant of the readout layer. This ensures that the output variance is

bounded by the prior variance of the latent space, providing a controlled measure of uncertainty.

We now demonstrate the robustness of our framework under small perturbations in the initial condi-
tions. By deriving explicit bounds on the deviation between the perturbed and unperturbed solutions
over time, we show that the model’s output remains stable.

Proposition 2. Under assumptions 1-3, consider two initial conditions H0 and H̃0 = H0 + δH(0),
where δH(0) ∈ Rn×d is a small perturbation in the initial node features with ∥δH(0)∥F = ϵ. Assume
that H0 is taken from a compact set H ⊆ Rn×d. Then, the deviation between the solutions H(t) and
H̃(t) of the LGNSDE with these initial conditions remains bounded across time t2, specifically

E[∥H(t)− H̃(t)∥F ] ≤ ϵe(Lf+
1
2L

2
g)t.

In summary, we show analytically that our framework effectively quantifies uncertainty and maintains
robustness under small perturbations of the input. First, we confirm that the model’s output variance
is controlled and directly linked to the variance of the latent state. Second, we provide a bound on the
deviation between solutions with perturbed initial conditions, ensuring stability over time. The proofs
can be found in Appendix A.
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Figure 2: Top: Entropy distributions comparing correct and incorrect model predictions on the
CORA dataset. Higher entropy is expected for incorrect predictions. Bottom: Entropy distributions
comparing OOD samples with in-distribution samples in the CORA dataset.

4 Experiments
We evaluate LGNSDEs on 5 datasets (see A.2 for details on these datasets and hyperparameters), we
compare it to GNODE [Poli et al., 2019], GCN Kipf and Welling [2016], Bayesian GCN (BGCN)
[Hasanzadeh et al., 2020], and an ensemble of GCNs [Lin et al., 2022].

The results in Table 3 demonstrate that LGNSDE consistently ranks as either the best or second-best
model across most datasets in terms of Micro-AUROC (Area Under the Receiver Operating Character-
istic), AURC (Area Under the Risk Coverage), and accuracy. This indicates that LGNSDE effectively
handles model uncertainty, successfully distinguishing between classes (AUROC), maintaining low
risk while ensuring confident predictions (AURC), and delivering high accuracy.
The top figure 2 shows the entropy distributions of the models for correct and incorrect predictions.
Note that most models display similar mean entropy for both correct and incorrect predictions.
Notably, our model stands out with the largest difference in entropy, with incorrect predictions having
35% more entropy compared to correct predictions, a larger gap than observed in other models.

4.1 Out of Distribution Detection
Metric Model Cora Citeseer Computers Photo Pubmed

AUROC (↑)

GCN 0.7063 ± 0.0569 0.7937 ± 0.0366 0.7796 ± 0.0271 0.8578 ± 0.0136 0.6127 ± 0.0351
GNODE 0.7398 ± 0.0677 0.7828 ± 0.0465 0.7753 ± 0.0795 0.8473 ± 0.0158 0.5813 ± 0.0242
BGCN 0.7193 ± 0.0947 0.8287 ± 0.0377 0.7914 ± 0.1234 0.7910 ± 0.0464 0.5310 ± 0.0472
ENSEMBLE 0.7031 ± 0.0696 0.8190 ± 0.0375 0.8292 ± 0.0338 0.8352 ± 0.0059 0.6130 ± 0.0311
LGNSDE (Our) 0.7614 ± 0.0804 0.8258 ± 0.0418 0.7994 ± 0.0238 0.8707 ± 0.0099 0.6204 ± 0.0162

AURC (↓)

GCN 0.0220 ± 0.0049 0.0527 ± 0.0075 0.0072 ± 0.0013 0.0076 ± 0.0006 0.3227 ± 0.0266
GNODE 0.0184 ± 0.0053 0.0545 ± 0.0110 0.0070 ± 0.0029 0.0097 ± 0.0015 0.3357 ± 0.0309
BGCN 0.0208 ± 0.0091 0.0458 ± 0.0071 0.0064 ± 0.0047 0.0108 ± 0.0034 0.3714 ± 0.0317
ENSEMBLE 0.0215 ± 0.0061 0.0487 ± 0.0072 0.0041 ± 0.0011 0.0081 ± 0.0003 0.3277 ± 0.0265
LGNSDE (Our) 0.0168 ± 0.0070 0.0479 ± 0.0109 0.0061 ± 0.0011 0.0068 ± 0.0008 0.3205 ± 0.0135

Table 1: AUROC (Mean ± Std) and AURC (Mean ± Std) for OOD Detection across datasets. Red
denotes the best-performing model, and blue denotes the second-best-performing model.

We evaluate the models’ ability to detect out-of-distribution (OOD) data by training them with one
class left out of the dataset. This introduces an additional class in the validation and test sets that
the models have not encountered during training. The goal is to determine if the models can identify
this class as OOD. We analyze the entropy, H(y|Xi) = −

∑C
c=1 p(y = c|Xi) log p(y = c|Xi),

where p(y = c|Xi) represents the probability of input Xi belonging to class c. Entropy quantifies
the uncertainty in the model’s predicted probability distribution over C classes for a given input Xi.

1A mild solution to an SDE is expressed via an integral equation involving the semigroup generated by the
linear operator and represents a weaker notion of the solution.

2Note that while the bound is exponential in t, in practice, the time horizon is usually constrained to a limited
range, such as t ∈ [0, 1]. Within this interval, the exponential factor does not grow excessively. Furthermore, in
practice, L2

g = 0 and Lf is easily controllable.
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Figure 2 shows the test entropy distribution for in-distribution (blue) and out-of-distribution (red)
data. For each test sample, predictions were made over C − 1 classes, excluding the left-out class.
The OOD class exhibits higher entropy, indicating greater uncertainty. While most models show
similar entropy distributions for both data types, our LGNSDE model achieves a clear separation,
with a 50% higher mean entropy for OOD data compared to in-distribution data. Other models show
less than a 10% difference between the two distributions.

Table 1 presents the AUROC and AURC scores for OOD detection across multiple datasets. AU-
ROC evaluates the model’s ability to differentiate between in-distribution and out-of-distribution
(OOD) samples, with higher scores indicating better discrimination. AURC measures the risk of
misclassification as coverage increases, where lower values are preferred. The LGNSDE model (ours)
consistently achieves the best AUROC and AURC scores across most datasets, indicating its superior
performance in accurately identifying OOD samples and minimizing the risk of misclassification.

5 Conclusions and Future Work
In conclusion, LGNSDEs outperform the tested models, opening a new avenue for uncertainty
quantification in graph data. In future work, stronger benchmarks should be included for a more com-
prehensive evaluation. Additionally, Neural SDEs face challenges with time and memory complexity.
Further work should explore more scalable sampling methods to address these limitations.
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A Theoretical Remarks

A.1 Notation

Let G = (V, E) denote a graph with node set V and edge set E . The node feature matrix at time t is
H(t) ∈ Rn×d, where n is the number of nodes and d is the feature dimension. The evolution of H(t)
is described by a Graph Neural Stochastic Differential Equation, with drift function FG(H(t), t,θ)
and diffusion function GG(H(t), t). Here, FG depends on the graph G, the node features H(t), time
t, and parameters θ. The diffusion function GG depends on G and H(t) but not on θ, as in practice,
this is usually a constant function. The randomness is introduced through the Brownian motion
W(t).

The constants Lf and Lg are Lipschitz constants for the drift and diffusion functions, respectively,
ensuring the existence and uniqueness of the solution to the GNSDE. The linear growth condition
is controlled by a constant K, preventing unbounded growth in FG and GG . Finally, Var(H(t))
represents the variance of the node features, capturing the aleatoric uncertainty in the system, which
is also reflected in the variance of the model output y(t) = h(H(t)).

A.2 Technical Assumptions

Assumption 1. The drift and diffusion functions FG and GG satisfy the following Lipschitz conditions:

∥FG(H1(t), t,θ)− FG(H2(t), t,θ)∥F ≤ Lf∥H1(t)−H2(t)∥F (2)
∥GG(H1(t), t)−GG(H2(t), t)∥F ≤ Lg∥H1(t)−H2(t)∥F (3)

for all H1,H2 ∈ Rn×d, t ∈ [0, T ], and some constants Lf and Lg .

Assumption 2. The drift and diffusion functions FG and GG satisfy a linear growth condition:

∥FG(H(t), t,θ)∥2F + ∥GG(H(t), t)∥2F ≤ K(1 + ∥H(t)∥2F ),

for all H ∈ Rn×d, t ∈ [0, T ], and some constant K.

Assumption 3. The variance of the initial conditions, H(0) = H0, of the dynamical system is
bounded: E[∥H0∥2F ] < ∞.
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A.3 Proofs

Proposition 1. Under assumptions 1-3, there exists a unique mild3 solution to an LGNSDE of the
form

dH(t) = FG(H(t), t,θ) dt+GG(H(t), t) dW(t),

whose variance bounds the variance of the model output ŷ(t) as:

Var(ŷ(t)) ≤ L2
hVar(H(t)),

where L2
h is the Lipschitz constant of the readout layer. This ensures that the output variance is

bounded by the prior variance of the latent space, providing a controlled measure of uncertainty.

Proof. Using Theorem 1 in Lin et al. [2024], it follows that the Lipschitz conditions of FG and GG
ensure the existence and uniqueness of a mild solution H(t) to the GNSDE.

Now, consider the stochastic part of the variance of the solution. By applying the Itô isometry, we
can compute the expectation of the Frobenius norm of the stochastic integral:

E

[∥∥∥∥∫ t

0

GG(H(u), u)dW(u)

∥∥∥∥2
F

]
= E

[∫ t

0

∥GG(H(u), u)∥2F du
]
.

Under the Lipschitz condition on GG , we can bound the variance of H(t) as follows:

Var(H(t)) =

∫ t

0

∥GG(H(u), u)∥2F du.

If GG is bounded, i.e., ∥GG(H(u), u)∥F ≤ M for some constant M , then Var(H(t)) ≤ M2t. This
shows that the variance of the latent state H(t) is bounded and grows linearly with time, capturing
the aleatoric uncertainty introduced by the stochastic process.

Finally, assuming that the model output y(t) is a function of the latent state H(t), y(t) = h(H(t)),
where h : Rn×d → Rn×p is a smooth function, we can apply Itô’s Lemma as follows:

dy(t) = h′(H(t)) [FG(H(t), t,θ) dt+GG(H(t), t) dW(t)] +
1

2
h′′(H(t))GG(H(t), t)2 dt.

For the variance of y(t), we focus on the term involving GG(H(t), t) dW(t):

Var(y(t)) =
∫ t

0

tr
(
h′(H(u))⊤GG(H(u), u)GG(H(u), u)⊤h′(H(u))

)
du.

Using the Cauchy-Schwarz inequality for matrix norms, we can bound this as follows:

tr
(
h′(H(u))⊤GG(H(u), u)GG(H(u), u)⊤h′(H(u))

)
≤ ∥h′(H(u))∥2F ∥GG(H(u), u)∥2F .

Therefore, if h is Lipschitz continuous with constant Lh, then:

Var(y(t)) ≤ L2
h

∫ t

0

∥GG(H(u), u)∥2F du = L2
hVar(H(t)).

Hence, under the Lipschitz continuity and boundedness assumptions for the drift and diffusion
functions, the solution to the GNSDE exists and is unique, and its output variance serves as a
meaningful measure of aleatoric uncertainty.

Proposition 2. Under assumptions 1-3, consider two initial conditions H0 and H̃0 = H0 + δH(0),
where δH(0) ∈ Rn×d is a small perturbation in the initial node features with ∥δH(0)∥F = ϵ. Assume
that H0 is taken from a compact set H ⊆ Rn×d. Then, the deviation between the solutions H(t) and
H̃(t) of the LGNSDE with these initial conditions remains bounded across time t4, specifically

E[∥H(t)− H̃(t)∥F ] ≤ ϵe(Lf+
1
2L

2
g)t.

3A mild solution to an SDE is expressed via an integral equation involving the semigroup generated by the
linear operator and represents a weaker notion of the solution.

4Note that while the bound is exponential in t, in practice, the time horizon is usually constrained to a limited
range, such as t ∈ [0, 1]. Within this interval, the exponential factor does not grow excessively. Furthermore, in
practice, L2

g = 0 and Lf is easily controllable.
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Proof. Consider two solutions H1(t) and H2(t) of the GNSDE with different initial conditions.
Define the initial perturbation as δH(0) where H1(0) = H0 + δH(0) and H2(0) = H0, with
∥δH(0)∥F = ϵ.

The difference between the two solutions at any time t is given by δH(t) = H1(t) −H2(t). The
dynamics of δH(t) are:

d(δH(t)) = [FG(H1(t), t,θ)− FG(H2(t), t,θ)] dt+ [GG(H1(t), t)−GG(H2(t), t)] dW(t).

Applying Itô’s Lemma to tr(δH(t)⊤δH(t)), we obtain:

d(tr(δH(t)⊤δH(t))) = 2tr
(
δH(t)⊤ [FG(H1(t), t,θ)− FG(H2(t), t,θ)]

)
dt

+ 2tr
(
δH(t)⊤ [GG(H1(t), t)−GG(H2(t), t)] dW(t)

)
+ tr

(
[GG(H1(t), t)−GG(H2(t), t)]

⊤
[GG(H1(t), t)−GG(H2(t), t)]

)
dt.

Taking the expected value, the stochastic integral term involving dW(t) has an expectation of zero
due to the properties of the Brownian motion. Thus, we have:

E[d(tr(δH(t)⊤δH(t)))] = E
[
2tr(δH(t)⊤[FG(H1(t), t,θ)− FG(H2(t), t,θ)])

]
dt

+ E[∥GG(H1(t), t)−GG(H2(t), t)∥2F ] dt.

Here, the second term arises from the variance of the diffusion term, as captured by Itô’s Lemma.
Using the Lipschitz bounds for FG and GG , we obtain:

E[d(tr(δH(t)⊤δH(t)))] ≤ (2LfE[tr(δH(t)⊤δH(t))] + L2
gE[tr(δH(t)⊤δH(t))]) dt.

Rewriting this as a differential inequality:

d

dt
E[tr(δH(t)⊤δH(t))] ≤ (2Lf + L2

g)E[tr(δH(t)⊤δH(t))].

Solving this using Gronwall’s inequality gives:

E[tr(δH(t)⊤δH(t))] ≤ tr(δH(0)⊤δH(0))e(2Lf+L2
g)t.

Since ∥δH(0)∥F = ϵ, we conclude that:

E[∥δH(t)∥F ] ≤ ϵe(Lf+
1
2L

2
g)t.5

Hence, the deviation in the output remains bounded under small perturbations to the initial conditions,
providing robustness guarantees.

A.4 GNSDE as a Continuous Representation of Graph ResNet with Stochastic Noise Insertion

Consider a Graph Neural Stochastic Differential Equation (GNSDE) represented as:

dH(t) = FG(H(t), t)dt+GG(H(t), t)dW(t),

where H(t) ∈ Rn×d, FG(H(t), t), and GG(H(t), t) are matrix-valued functions, and W(t) is a
Brownian motion. The numerical Euler-Maruyama discretization of this GNSDE can be expressed as

H(tj+1)−H(tj)

∆t
≈ FG(H(tj), tj) +

GG(H(tj), tj)∆Wj

∆t
,

5Note that the second term (stochastic part) can be omitted as the first term dominates.
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which simplifies to

Hj+1 = Hj + FG(Hj , tj)∆t+GG(Hj , tj)∆Wj .

Here, ∆t represents a fixed time step and ∆Wj is a Brownian increment, normally distributed
with mean zero and variance ∆t. This numerical discretization is analogous to a Graph Residual
Network (Graph ResNet) with a specific structure, where Brownian noise is injected at each residual
layer. Therefore, the Graph Neural SDE can be interpreted as a deep Graph ResNet where the depth
corresponds to the number of discretization steps of the SDE solver.
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B Details of The Experimental Setup

Table 2: Uniform Hyperparameters of the LGNSDE, GNODE, Bayesian GCN, GCN, Ensemble of
GCN models for all datasets.

Parameter GNSDE GNODE Other
Datasets All All All
t1 1 1 n/a
Hidden Dimensions 64 64 64
Learning Rate 0.01 0.01 0.01
Optimizer adam adam adam
Method SRK RK4 n/a
Dropout 0.2 0.2 0.2
Diffusion g 1.0 n/a n/a

Metric Model Cora Citeseer Computers Photo Pubmed

MICRO-AUROC (↑)

GCN 0.9654 ± 0.0050 0.9173 ± 0.0068 0.9680 ± 0.0016 0.9905 ± 0.0003 0.9006 ± 0.0139
GNODE nan ± nan 0.9146 ± 0.0063 0.9569 ± 0.0067 0.9885 ± 0.0007 0.8857 ± 0.0203
BGCN 0.9571 ± 0.0092 0.9099 ± 0.0090 0.9421 ± 0.0097 0.9489 ± 0.0189 0.7030 ± 0.1331
ENSEMBLE 0.9635 ± 0.0031 0.9181 ± 0.0062 0.9669 ± 0.0025 0.9886 ± 0.0004 0.8785 ± 0.0163
LGNSDE (Our) 0.9667 ± 0.0036 0.9111 ± 0.0072 0.9691 ± 0.0032 0.9909 ± 0.0004 0.9007 ± 0.0091

AURC (↓)

GCN 0.9966 ± 0.0007 0.9966 ± 0.0011 0.9994 ± 0.0005 0.9987 ± 0.0015 0.9994 ± 0.0004
GNODE nan ± nan 0.9967 ± 0.0011 0.9994 ± 0.0004 0.9998 ± 0.0001 0.9915 ± 0.0163
BGCN 0.9972 ± 0.0004 0.9963 ± 0.0010 0.9994 ± 0.0002 0.9989 ± 0.0005 0.9996 ± 0.0004
ENSEMBLE 0.9970 ± 0.0012 0.9967 ± 0.0012 0.9994 ± 0.0002 0.9989 ± 0.0006 0.9996 ± 0.0005
LGNSDE (Our) 0.9970 ± 0.0003 0.9971 ± 0.0005 0.9995 ± 0.0003 0.9997 ± 0.0002 0.9995 ± 0.0005

Accuracy (↑)

GCN 0.8105 ± 0.0173 0.7258 ± 0.0137 0.8098 ± 0.0048 0.9116 ± 0.0021 0.7570 ± 0.0229
GNODE nan ± nan 0.7235 ± 0.0159 0.7911 ± 0.0098 0.9053 ± 0.0032 0.7577 ± 0.0231
BGCN 0.7897 ± 0.0261 0.7013 ± 0.0196 0.7114 ± 0.0333 0.7124 ± 0.0968 0.4581 ± 0.1846
ENSEMBLE 0.8038 ± 0.0105 0.7108 ± 0.0166 0.8070 ± 0.0055 0.9070 ± 0.0019 0.7299 ± 0.0218
LGNSDE (Our) 0.8113 ± 0.0128 0.7120 ± 0.0119 0.8247 ± 0.0103 0.9169 ± 0.0021 0.7595 ± 0.0168

Table 3: AUROC (Mean ± Std), AURC (Mean ± Std), and Accuracy (Mean ± Std) for all datasets.
Red denotes the best-performing model, and blue denotes the second-best-performing model.
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