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1 INTRODUCTION

We propose Causal Dependence Plots (CDPs) to visual-
ize relationships between input variables and a predicted
outcome. Motivated by explaining or interpreting AI or ma-
chine learning models [1, 4, 5, 8], we focus on supervised
learning, i.e. regression or classification, and specifically the
model-agnostic or "black-box" setting. Model-agnostic in-
terpretation methods are limited to observing how the model
responds to variation in the inputs, and cannot access its
internal structure.

Simple explanations that focus on one input variable at a
time can be powerful tools for human understanding. How-
ever, just as with the interpretation of linear regression
model coefficients, the relationships revealed by focusing
on one predictor at a time can be misleading. When varying
one input variable, we must make some choice about what
values to use for the other inputs. The Partial Dependence
Plot (PDP) of Friedman [2] and Individual Conditional Ex-
pectation (ICE) plot from Goldstein et al. [3] are popular
visual explanation methods. PDPs and ICE plots treat other
predictors as independent of the one being plotted. This
only captures the model dependence on each variable if
predictors are independent and the model is additive [6].
Explanation methods may break—by ignoring—or respect
existing statistical or causal dependencies between predic-
tors.

Problem statement. If there are causal relationships be-
tween predictors but our visualization, interpretation, or ex-
planation method does not respect them the resulting model
explanation may be irrelevant or misleading [9, 14]. Such
explanations could support spurious scientific hypotheses,
lead to incorrect decisions for regulating or aligning algo-
rithmic systems, sub-optimal allocations of resources based
on model predictions, a breakdown between human feed-
back and reinforcement learning systems, or other forms of
error and harm. For these reasons, we care about the causal
validity of model explanations.

High level proposal. We use an auxiliary Explanatory
Causal Model (ECM) to interpret or explain a given ma-
chine learning model. For each input predictor that we wish
to explain, we use the ECM to determine how other inputs
vary when that predictor is manipulated, rather than treating
them as independent or fixed. We call the resulting plots
Causal Dependence Plots or CDPs.

Pseudo-algorithm. To construct a CDP showing how f̂
depends on x, a user specifies an explanatory causal model
(ECM) M containing x and the other predictors, and an
intervention I(x) that manipulates x. The intervention I(x)
is chosen based on the specific explanation desired. An
explanatory dataset D can be given or, if unavailable, gener-
ated by the ECM. For each observation i in D, and at each
grid point x in the horizontal plot axis:

1. The ECM is used to simulate counterfactual values
for all features of observation i under the intervention
I(x).

2. Counterfactual features are input into the prediction
function f̂ , and the resulting counterfactual prediction
is stored in an array indexed by (i, x).

Each observation in D then has an individual counterfactual
prediction curve plotted against x. The empirical average
of these curves is also plotted, and this is the main output
of the CDP. The individual curves can be shown or sup-
pressed as desired by the user. The resulting CDP shows
how the model’s predictions causally depend on x when this
predictor is varied by the intervention I(x) in ECM M .

Motivating example. Consider a model for parental income
P , school funding F , and graduates’ average starting salary
S, with ECM shown in the bottom row of Figure 1. In the
top row, the ECM functions are plotted in the left panel, and
the remaining panels show visual explanations of supervised
models that predict Ŝ = f̂(P, F ). Blue curves show how
Ŝ depends on P when P is causally manipulated without
holding F constant, i.e. under the intervention do(P = p).
Orange curves show the dependence of Ŝ on P when F is
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P F S

Ŝ = f̂(P, F )


P ∼ U [0, 1.5],
F = 2P 3 +N (0, 0.22),

S = F − P 2 +N (0, 0.22)

Ŝ = f̂(P, F )

Figure 1: Motivating example. Causal Dependence Plots (top row) and the Explanatory Causal Model (bottom) for the
motivating example. Total Dependence (TDP) is represented in blue and Natural Direct Dependence in orange. Panel (a)
shows the relationships of the ECM. Counterfactual curves for individual points are shown as thin, light lines, with averages
displayed as thick, dark lines. Panels (b-c) show CDPs for a linear model and random forest (RF) model, respectively. Panel
(d) shows PDP and ICE curves for the RF model from a standard software library. This is identical to our NDDP in panel (c).
We show this holds true in general: PDP/ICE are a special case of CDPs.

held constant at its observed value, and coincides exactly
with a standard PDP. Several key takeaways are evident in
Figure 1:

• There can be qualitative differences between direct (or
partial) dependence and total dependence, a conse-
quential fact when considering how interventions may
change (predicted) outcomes. An intervention which
does not hold other predictors constant—arguably
the canonical causal operation—can be shown by
our TDP. This is, to best of our knowledge, a novel
contribution with high potential impact.

• Our framework includes some existing model expla-
nation plots like ICE and PDPs as special cases. In
panels (c-d), and later in Theorem B.2, we see that
PDP + ICE = NDDP. A practitioner seeing only the
PDP in panel (d) may conclude that "dependence" of Ŝ
on P is weak, especially if P ≤ 1. The TDP in panel
(c) shows a stronger increasing relationship closer to
the true total dependence and a more holistic view of
how Ŝ depends on P .

• Explanations of models can be qualitatively different
from the underlying causal relationships. For exam-
ple, even a flexible model like the random forest in
panel (c) shows a direct dependence of Ŝ on P that
is increasing when the true direct dependence of S on
P is decreasing. As another example, panel (b) shows
that the total dependence of a linear model on a predic-

tor can be non-linear because the mediator F depends
non-linearly on P .

Discussion. The most important limitation for using CDPs
is that they require specifying an ECM. Firstly, we assert
this is an unavoidable requirement for any interpretation
method to have causal relevance. Secondly, there are many
potential applications based on different combinations of the
predictive setting and choice of ECM, such as causal semi-
supervised learning [12]. ECMs can be designed based on
a particular desired explanation; make use of prior domain
knowledge; and/or be learned and estimated from data using
causal structural learning methods. Uncertainty about an
ECM can be represented visually in the model explanation
plot. We do not require a complete and correctly specified
ECM to generate CDPs, they can be generated using only
partial knowledge about predictors. Finally, CDPs can be
useful for exploring model performance under covariate
shift [13].
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A REAL DATA WITH DOMAIN KNOWLEDGE

An ECM may be constructed using domain expertise. Figure 2 shows an ECM and CDPs for the Sachs et al. [11] dataset
of expression levels of proteins and phospholipds in human cells, for which data and a ground-truth DAG1 are publicly
available in the Causal Discovery Toolbox [7]. While the actual biology of the problem is not our focus here, there are
meaningful takeaways from the figure. For this model, the TDP shows an increasing relationship, while the NDDP/PDP
shows a decrease. The overall direction of the trend in predictions based on PKA is reversed if we hold other predictors
fixed. This is an important lesson for using model explanations in scientific machine learning.

B ALGORITHM DETAILS

For the following we assume predictor variables X, an outcome of interest Y , and a black-box function f̂(x) with outputs
that we may also denote Ŷ . A structural causal model MX, either assumed or learned from data, specifies the causal
relationships only for the predictors X and need not involve the outcome Y . Generating causal explanations for f̂ involves
performing abduction, action, and prediction with an ECM. In a large ECM graph we may suppress all arrows into Ŷ except
those from a single explanatory feature and its descendants. This is to simplify the display, as in Figure 2.

Definition B.1 (Explanatory Causal Model (ECM)). An ECM M augments the original SCM MX by including the
predicted outcome Ŷ as an additional variable with f̂ as its structural equation.

Algorithm 1 Total Dependence Plot (TDP)
Inputs: M (ECM), f̂ (black-box predictor), D (explanatory dataset), Xs (covariate of interest)

Get the possible values of Xs and set to X
Set N to the number of observations in D
Initialize N × |X| matrix of estimates Ŷ
for x in X do

Define intervention I = do(Xs = x)
Sample counterfactual dataset Ds←x entailed by PM|D;do(I)

Set Ŷ [:, x] to f̂(Ds←x)
end for
Plot N lines (X, Ŷ [i, :]) {(Individual Counterfactuals)}
Plot average (X,

∑
i Ŷ [i, :]/N) {(Causal Dependence)}

We often wish to decompose how much of the total effect of X on Ŷ (or Y ) is attributable to different pathways between the
variables. This can be explored via direct dependence below.

1Following the discussion in [10] and follow-up ground truth DAG for the Sachs et al. [11] dataset in Figure 5 of [10], we choose the
edge PIP3 → PIP2 in order to eliminate a would-be cycle.
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Figure 2: ECM for the Sachs et al. [11] dataset and corresponding CDPs for the effect of PKA on predicted p44/42. PKA
and its descendants are bolded. While the NDDP (i.e. PDP + ICE) shows an overall decrease, the TDP shows an increase.
Conclusions depend strongly, qualitatively, on the specific interpretive question we ask, and causal modeling allows us to
formulate questions precisely.

Algorithm 2 Natural Direct Dependence Plot (NDDP)
Inputs: M (ECM), f̂ (black-box predictor), D (explanatory dataset), Xs (covariate of interest)

Get the possible values of Xs and set to X
Set N to the number of observations in D
Initialize N × |X| matrix of estimates Ŷ
Get all descendants of Xs in M, excluding Ŷ , and store in C
Get observed values of all variables in C and store in c
Define intervention J = do(C = c)
for x in X do

Define intervention I = do(Xs = x)
Sample counterfactual dataset Ds←x entailed by PM|D;do(I,J)

Set Ŷ [:, x] to f̂(Ds←x)
end for
Plot N lines (X, Ŷ [i, :]) {(Individual Counterfactuals)}
Plot average (X,

∑
i Ŷ [i, :]/N) {(Causal Dependence)}

Comparing the construction of the NDDP to ICE curves and PDPs confirms what we observed in Figure 1(d).

Theorem B.2 (PDP + ICE = NDDP). When generating plots for the predictive model f̂ using the dataset D and feature Xs,
the ICE plot curves and Individual Counterfactual Natural Direct Dependence curves are identical. Hence, the NDDP is
identical to a PDP that includes ICE curves.

Remark B.3. To our knowledge this is the first result establishing a universally valid causal interpretation of PDPs. Its most
important limitation is that it applies to the model output Ŷ and not necessarily the original outcome Y .
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