

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXTENDED INDUCTIVE REASONING FOR PERSONALIZED PREFERENCE INFERENCE FROM BEHAVIORAL SIGNALS

Anonymous authors

Paper under double-blind review

ABSTRACT

While large language models (LLMs) excel at deductive reasoning tasks such as math and coding, their capacity for inductive reasoning, which involves deriving general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose ALIGNXPLORE, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. Such explicit preference articulation enables efficient streaming inference: when new behavioral signals emerge, the model can directly build upon previously inferred preference descriptions rather than reprocessing historical signals from scratch, while also supporting iterative refinement to the inferred preferences. We develop ALIGNXPLORE by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Extensive experiments demonstrate that ALIGNXPLORE achieves substantial improvements over the backbone model by an average of 15.49% on both in-domain and out-of-domain benchmarks, while maintaining a strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.

1 INTRODUCTION

Large language models (LLMs) have achieved great success in complex, deductive-heavy tasks such as code generation (Chen et al., 2021) and mathematical problem-solving (Lightman et al., 2023) by **applying known rules through extended reasoning chains** (DeepSeek-AI, 2025; Morsanyi et al., 2018; Chollet, 2019). In contrast, inductive reasoning, i.e., the ability to derive general rules from incomplete **and noisy** evidence (Hayes et al., 2010), presents a significant yet underexplored challenge. Despite being a cornerstone of human intelligence and scientific discovery (Heit, 2000; Ferrara et al., 1986; Kinshuk et al., 2006), extending LLMs' reasoning abilities to complex inductive tasks has received limited attention.

We investigate extended inductive reasoning through the lens of personalized preference inference: **the task of synthesizing an explicit summary of a user's preferences from a scattered history of their implicit behavioral signals**. This investigation is critical for two reasons. First, it addresses a key limitation in LLM alignment. Current methods targeting universal values like helpfulness and harmlessness (Aspell et al., 2021; Ouyang et al., 2022; Bai et al., 2022; Achiam et al., 2023; Team, 2024) struggle with diverse individual preferences (Kirk et al., 2023), leading to reduced user satisfaction and potential biases (Siththaranjan et al., 2024; Guan et al., 2025; Tong, 2023). Second, **preference inference serves as a prime testbed for complex induction**. Unlike deductive tasks, there are no pre-defined rules; preferences are rarely stated explicitly (Lee et al., 2024) and must be inferred from heterogeneous signals like textual posts (Wu et al., 2025b), behavioral choices (Ouyang et al.,

054 2022), and demographics (Zhang et al., 2018). The core challenge is thus to identify underlying
 055 patterns within this noisy data and generalize them to new contexts, as illustrated in Figure 1.
 056

057 Despite the critical importance, existing personalization methods often bypass explicit preference
 058 inference, instead using direct mappings that incorporate implicit signals as prompts (Xu et al., 2022;
 059 Lee et al., 2024), parameters (Kang et al., 2023; Tan et al., 2024), or hidden representations (Poddar
 060 et al., 2024; Ning et al., 2024). This approach renders the preference modeling process opaque and,
 061 more critically, inefficient: these methods cannot incrementally refine preferences when new behav-
 062 ior signals become available, forcing models to process growing interaction histories from scratch,
 063 **creating a significant scalability bottleneck**. To address these issues, we propose ALIGNXPORE, a
 064 model that leverages extended¹ reasoning chains for systematic preference inference. By framing
 065 personalization as the task of articulating an explicit preference summary, ALIGNXPORE unlocks a
 066 powerful and efficient streaming inference mechanism. The inferred preference acts as a compact,
 067 updatable state, allowing the model to build upon prior inferences when new signals arrive, rather
 068 than reprocessing historical data from scratch. We train our model using a two-stage framework: first,
 069 we leverage synthetic data for supervised fine-tuning (SFT) to address the cold-start problem, and
 070 then we use reinforcement learning (RL) to optimize the model’s reasoning capabilities for accurate
 preference inference.

071 Extensive experiments show ALIGNXPORE substantially improves personalized alignment on both
 072 in-domain and out-of-domain benchmarks, outperforming its backbone by 15.49% and competing
 073 with much larger models like GPT-4 (Achiam et al., 2023) and DeepSeek-R1-671B (DeepSeek-AI,
 074 2025). Its streaming mechanism is not only efficient, avoiding recomputation over growing histories,
 075 but also boosts performance via gradual preference refinement. We attribute the model’s strong
 076 generalization and robustness to its extended reasoning, which fosters systematic inductive patterns
 077 over superficial correlations. Further analysis reveals two key findings: (1) optimizing for preference
 078 judging yields more stable training than for response generation, suggesting a best practice; and (2)
 079 our two-stage training mirrors human induction (Heit, 2000), where cold-start training establishes
 080 basic characterization and RL refines it into actionable hypotheses.

081 The main contributions of this work are as follows: (1) We are the first to systematically investigate
 082 extended inductive reasoning in LLMs via personalized preference inference, showing how structured
 083 reasoning can derive generalizable preferences from implicit signals. (2) We develop ALIGNXPORE,
 084 a preference inference model featuring an efficient streaming mechanism. It is trained using a novel
 085 two-stage framework that combines synthetic data with reinforcement learning. (3) We demonstrate
 086 through comprehensive evaluations that ALIGNXPORE achieves substantial improvements over
 087 existing methods in performance, efficiency, generalization, and robustness. Our analyses also offer
 088 insights into reward modeling and the emergence of inductive reasoning².

089 2 RELATED WORKS

090 **Inductive reasoning** Inductive reasoning, i.e., making probabilistic generalizations from incom-
 091 plete evidence (Lake et al., 2017; Hayes et al., 2010), is crucial for cognitive tasks like scientific
 092 discovery (Holland, 1986) and has gained renewed attention in LLM evaluation via benchmarks like
 093 the Abstract Reasoning Corpus (ARC) (Chollet, 2019; Moskvichev et al., 2023). While prior work on
 094 LLM induction often focuses on few-shot generalization (Radford et al., 2018; Wang et al., 2024b),
 095 we argue that preference inference presents a more complex and realistic testbed. It introduces
 096 distinct challenges, such as reasoning over unstructured language rather than formal systems (Qu
 097 et al., 2024; Yan et al.), handling heterogeneous signals, and learning from negative examples (Laskin
 098 et al., 2023). Our framework addresses these challenges in a principled, interpretable way.

099 **Extended reasoning in LLMs** Recent advances in extended reasoning have moved beyond the
 100 shallow, linear steps of traditional Chain-of-Thought (Wei et al., 2022) to significantly boost LLM
 101 performance (OpenAI, 2024; Chen et al., 2025b). This progress is driven by three key mechanisms:
 102 (1) in-depth logical chains in diverse formats like natural language (Wang et al., 2024a), formal

103 ¹Here, we define “extended” not by algorithmic complexity, but by the deliberate, multi-step thought process
 104 a model undertakes before reaching a conclusion, which is a paradigm that has proven effective in complex
 105 deductive tasks (OpenAI, 2024; Claude, 2025)

106 ²Code is available at <https://anonymous.4open.science/r/ICLR2026-AlignXplore>

Figure 1: Preference inference task overview. Our model performs human-like inductive reasoning for preference inference by progressively refining its preference hypotheses through iterative testing and validation. These inferred preferences can then guide diverse downstream personalization tasks.

language (Wen et al., 2025), or latent space (Hao et al., 2024); (2) systematic exploration of solution spaces using techniques like RL-trained internal mechanisms (DeepSeek-AI, 2025) or external search algorithms (Zhang et al., 2024; Yao et al., 2024; Snell et al., 2025); and (3) iterative self-reflection for verification and correction, powered by SFT (Team, 2024; Gandhi et al., 2025) or RL with verifiable rewards (DeepSeek-AI, 2025; Yu et al., 2025). While this paradigm has proven effective in deductive tasks such as math (Hu et al., 2025a), coding (Jain et al.), scientific question-answering (Rein et al., 2024), reward modeling (Chen et al., 2025c), and multimodal reasoning (Wu et al., 2025a), we are the first to extend it to preference inference, a domain demanding strong inductive reasoning.

Personalized alignment Motivated by the limitations of one-size-fits-all alignment (Aspell et al., 2021; Kirk et al., 2023; Siththaranjan et al., 2024), personalized alignment aims to adapt LLMs to individual preferences (Kalai & Smorodinsky, 1975; Oldenburg & Zhi-Xuan, 2024). Key challenges in this area include: (1) **Preference inference** from scattered, implicit signals (Wu et al., 2025b; Ouyang et al., 2022; Zhang et al., 2018; Guan et al., 2025), where current works often retrieve relevant contexts rather than perform explicit inference, limiting their accuracy (Zhao et al., 2025; Pan et al., 2025; Zhang, 2023; Li et al., 2025). (2) **Preference modeling** via direct prompts (Xu et al., 2022; Lee et al., 2024), parameters (Kang et al., 2023; Tan et al., 2024), or latent states (Poddar et al., 2024; Ning et al., 2024); our work focuses on interpretable, model-agnostic prompting. (3) **Feedback-driven alignment**, which can occur during training (Jang et al., 2023; Guan et al., 2024; Kuang et al., 2024) or at inference time (Shi et al., 2024; Chen et al., 2025a; Rame et al., 2023). Our work is the first to integrate extended reasoning for accurate preference inference with efficient mechanisms for handling evolving user interactions (Chandrashekaran et al., 1996).

3 METHODOLOGY

This section first formulates the preference inference task and its evaluation (§3.1), then details the two-stage training strategy: a cold-start phase to build basic reasoning capabilities (§3.3), followed by an RL phase to directly optimize for reward (§3.4). **Figure 1** presents our task overview, and **Figure 2** illustrates the entire training recipe.

3.1 TASK FORMULATION

We formulate the personalized preference inference task as follows: given a set of a user’s behavioral signals $\mathcal{E} = \{e_1, \dots, e_T\}$ and an optional historical preference summary \hat{d} , the model \mathcal{M} must generate an explicit preference description d in natural language, supported by an extended reasoning

Figure 2: Two-stage training process of ALIGNXPLORE, which combines cold-start training using synthetic data from teacher models with reinforcement learning optimization to enhance the model’s reasoning capabilities.

chain r . Formally:

$$(r, d) = \mathcal{M}(\mathcal{E}, \hat{d}), \quad (1)$$

where \hat{d} is a summary of past preferences, which is left empty for the initial inference. The behavioral signals \mathcal{E} can be diverse; our main experiments use comparative judgments (a prompt with preferred/less-preferred responses), but the method is format-agnostic and can accommodate other signals like user posts or reviews (see §4.3). The output preference description d is designed to be model-agnostic, enabling it to condition any general-purpose LLM \mathcal{S} for downstream personalization tasks (Lee et al., 2024; Li et al., 2025).

This formulation is crucial for real-world applications as it enables an efficient *streaming inference mechanism*. The historical preference description \hat{d} serves as a compact, stateful summary of all past interactions. Consequently, when new behavioral signals arrive, the model can update its preference incrementally by processing only the new signals and this summary, without accessing the full, raw history. This approach fundamentally overcomes a major scalability bottleneck of prior methods based on direct prompting (Xu et al., 2022; Li et al., 2025) and parameter updates (Kang et al., 2023; Poddar et al., 2024), which lack such an explicit state and are therefore forced to reprocess the entire, ever-growing user history for each update.

3.2 EVALUATION FRAMEWORK

We assess the quality of a generated preference description d by its ability to guide a downstream model \mathcal{S} to make choices aligned with the user’s true preferences. While a real-time user reward would be ideal, it is impractical for large-scale evaluation. We, therefore, adopt an efficient offline evaluation using held-out comparative judgment data. Given a user post x with a known preferred response y_w and a non-preferred one y_l , we define our offline reward as:

$$R_{\text{offline}} = \mathbb{1}(f(y_w; x, d, \psi_f) > f(y_l; x, d, \psi_f)) R_{\text{format}}, \quad (2)$$

where f is a scoring function that quantifies how well a response aligns with the user’s inferred preference, the term ψ_f represents all other necessary inputs for scoring, and $R_{\text{format}} \in \{0, 1\}$ validates whether the model’s output structure satisfies the requirement (Appendix C). The scoring function f can be instantiated in several ways depending on the downstream model \mathcal{S} .

First, when \mathcal{S} is a generation model (denoted as \mathcal{S}_{gen}) (Rafailov et al., 2024), the score is the log-probability gain of the response when conditioned on the preference description d . Here, the scoring function f is instantiated as $f(y_{w/l}; x, d) = \log(\frac{\mathcal{S}_{\text{gen}}(y_w/x, d)}{\mathcal{S}_{\text{gen}}(y_l/x)})$, so ψ_f corresponds to \emptyset . This yields the reward R_{gen} :

$$R_{\text{gen}} = \mathbb{1}\left(\log \frac{\mathcal{S}_{\text{gen}}(y_w|x, d)}{\mathcal{S}_{\text{gen}}(y_l|x)} > \log \frac{\mathcal{S}_{\text{gen}}(y_l|x, d)}{\mathcal{S}_{\text{gen}}(y_w|x)}\right) R_{\text{format}}. \quad (3)$$

Alternatively, when \mathcal{S} is a preference judging model (denoted as \mathcal{S}_{jud}) (Zheng et al., 2023), it directly outputs the probability of a response being preferred. In this case, the scoring function is the model’s

216 direct output, $f(y_{w/l}; x, d, y_w, y_l) = \mathcal{S}_{\text{jud}}(y_{w/l}|x, d, y_w, y_l)$, thus $\psi_f = \{y_w, y_l\}$. The reward R_{jud}
 217 is then:
 218

$$219 \quad R_{\text{jud}} = \mathbb{1}(\mathcal{S}_{\text{jud}}(y_w|x, d, y_w, y_l) > \mathcal{S}_{\text{jud}}(y_l|x, d, y_w, y_l)) R_{\text{format}}. \quad (4)$$

221 While other instantiations exist (Meng et al., 2024), we primarily use R_{jud} for training and evaluation
 222 due to its stability, analyzing R_{gen} in our ablations.
 223

224 3.3 COLD-START TRAINING

226 To address the cold-start problem where small models struggle with complex inference from instruc-
 227 tions alone, we construct a high-quality synthetic dataset via two stages. For each set of preference
 228 signals \mathcal{E} , for each example in the original preference signals $e_i \in \mathcal{E}$, we first identify key preference
 229 dimensions ϕ expressed in natural language that potentially reveal user preferences, which serve
 230 as analytical guidance for subsequent preference inference. We then prompt an advanced teacher
 231 model \mathcal{T} with both these identified dimensions ϕ and the original implicit signals \mathcal{E} to generate G
 232 reasoning chains and preference descriptions (see Appendix C for prompt templates), as exemplified
 233 in Figure 2.

234 To support streaming inference, we further prompt the teacher model \mathcal{T} with a new set of behavioral
 235 signals of the same user and a prior preference description \hat{d} which is randomly selected from $\{d_i\}_{i=1}^G$.
 236 We then mix these new examples with the original ones and apply outcome-based verification,
 237 retaining only those that achieve an optimal reward score. Finally, we train \mathcal{M} parameterized by θ by
 238 maximizing the log-likelihood of the target sequences:
 239

$$240 \quad \mathcal{L}_{\text{cold}} = -\mathbb{E}_{(r, d) \sim \mathcal{T}} \frac{1}{|r| + |d|} \sum_t \log p_{\theta}(\{r, d\}_t | \mathcal{E}, \hat{d}), \quad (5)$$

243 where $\{r, d\}_t$ is the t -th token and \hat{d} may be empty for first-turn generation. Appendix B.8 further
 244 discusses the influence of the quality and diversity of the cold-start data on model performance.
 245

246 3.4 REINFORCEMENT LEARNING

248 We further refine the model’s reasoning capabilities beyond the cold-start phase using RL. We
 249 adopt Group Relative Policy Optimization (GRPO) (DeepSeek-AI, 2025), an algorithm effective
 250 for long-horizon reasoning. Following Hu et al. (2025a), we remove the KL penalty for more
 251 stable optimization. To support streaming inference, the rollout process mirrors our cold-start
 252 data generation by involving two rounds for each user: (1) We generate a set of G initial outputs
 253 $\{(r_j, d_j)\}_{j=1}^G \sim p_{\text{old}}(\cdot | \mathcal{E})$, where p_{old} is the old policy model. (2) We generate a second set of G
 254 outputs $\{(r_k, d_k)\}_{k=1}^G \sim p_{\text{old}}(\cdot | \mathcal{E}', \hat{d})$, where \mathcal{E}' is a distinct set of signals from the same user and \hat{d}
 255 is a historical preference sampled from the output of the first round. The GRPO objective is then
 256 optimized over the union of outputs from both rounds:
 257

$$258 \quad \mathcal{L}_{\text{RL}} = -\frac{1}{2G} \sum_{i=1}^{2G} \frac{1}{|r_i| + |d_i|} \rho_i, \quad (6)$$

$$261 \quad \rho_i = \sum_t \min \left(\frac{p_{\theta}(\{r_i, d_i\}_t | \mathcal{E}, \hat{d})}{p_{\text{old}}(\{r_i, d_i\}_t | \mathcal{E}, \hat{d})} A_i, \text{clip} \left(\frac{p_{\theta}(\{r_i, d_i\}_t | \mathcal{E}, \hat{d})}{p_{\text{old}}(\{r_i, d_i\}_t | \mathcal{E}, \hat{d})}, 1 - \epsilon, 1 + \epsilon \right) A_i \right), \quad (7)$$

$$264 \quad A_i = \frac{R_i - \text{mean}(\{R_j\}_{j=1}^G)}{\text{std}(\{R_j\}_{j=1}^G)}, \quad (8)$$

266 where \hat{d} is empty for the rollout of the first round, and ρ_i is computed based on the corresponding
 267 advantage A_i normalized within each respective round. The rewards R_i are from Eq. 3 or 4. While
 268 this two-round process can be naturally extended to multiple rounds, we found it strikes an effective
 269 balance between performance gains and computational cost.

270
271 Table 1: Offline preference inference accuracy (ACC_{jud} , %) with Qwen2.5-7B-Instruct as the prefer-
272 ence judging model. “Extended Reasoning”: whether generating long reasoning chains. “#Signals”:
273 the number of pairs in \mathcal{E} ; \hat{d} : if a historical preference summary is used. Pink-shaded rows show
274 results with 4 additional pairs ($T = 8$ or $T = 4, \hat{d} \neq \emptyset$). Gray-shaded rows are large-sized models
275 or golden preference baselines, where *italicized* scores are lower than the best result (**bold**) among
276 smaller models. Underlined is second-best. * indicates statistical significance ($p < 0.05$, t -test).

Method	Extended Reasoning	Setting	#Signals	\hat{d}	ALIGNX _{test}	P-SOUPS		
						Informativeness	Style	Expertise
<i>Directly given preference descriptions</i>								
Null	N/A	N/A	N/A	N/A	51.37*	45.85*	17.00*	36.00*
\mathcal{E}	N/A	N/A	4	N/A	50.33*	41.03*	37.33*	36.00*
Golden Preference	N/A	N/A	N/A	N/A	<u>64.63</u>	68.94	84.50	90.17
<i>Previous specialized methods for inductive reasoning and personalization</i>								
LMInductReason (Qiu et al., 2024)	N/A	Base	4	\times	51.80*	44.35*	27.50*	38.17*
VPL (Poddar et al., 2024)	N/A	Base	4	\times	50.73*	44.19*	52.50*	51.00*
EXPO (Hu et al., 2025b)	N/A	Base	4	\times	44.30*	51.50*	<u>76.17</u> *	55.17*
PBA (Li et al., 2025)	N/A	Base	4	\times	62.77*	53.65*	31.33*	50.50*
<i>Preference descriptions generated by state-of-the-art LLMs</i>								
Qwen2.5-7B-Instruct (Team, 2024)	\times	Base	4	\times	56.33*	53.82*	59.00*	65.17*
DS-R1-Distill-Qwen-7B (DeepSeek-AI, 2025)	\checkmark	Base	4	\times	57.63*	51.16*	45.83*	56.67*
DS-R1-Distill-Qwen-7B (DeepSeek-AI, 2025)	\checkmark	Base	8	\times	56.13*	49.50*	56.17*	57.33*
DS-R1-Distill-Qwen-7B (DeepSeek-AI, 2025)	\checkmark	Streaming	4	\checkmark	56.40*	50.00*	49.50*	60.17*
Qwen3-32B _{non-thinking} (Yang et al., 2025)	\times	Base	4	\times	57.60	54.98	61.50	66.67
GPT-4 (Achiam et al., 2023)	\times	Base	4	\times	66.10	53.82	73.33	71.83
QwQ-32B (Team, 2025)	\checkmark	Base	4	\times	65.70	58.14	72.17	71.50
Qwen3-32B _{thinking} (Yang et al., 2025)	\checkmark	Base	4	\times	65.03	57.14	71.67	73.83
DeepSeek-R1-671B (DeepSeek-AI, 2025)	\checkmark	Base	4	\times	70.47	55.48	79.66	76.17
DeepSeek-R1-671B (DeepSeek-AI, 2025)	\checkmark	Base	8	\times	70.23	56.98	<u>84.17</u>	79.17
DeepSeek-R1-671B (DeepSeek-AI, 2025)	\checkmark	Streaming	4	\checkmark	67.70	56.64	69.50	69.17
<i>Preference descriptions generated by our preference inference model</i>								
ALIGNXPLORE-7B	\checkmark	Base	4	\times	<u>65.33</u>	54.32	69.67	63.83
ALIGNXPLORE-7B	\checkmark	Base	8	\times	64.30	<u>57.14</u>	70.33	<u>66.50</u>
ALIGNXPLORE-7B	\checkmark	Streaming	4	\checkmark	<u>71.47</u>	61.30	83.00	71.33
ALIGNXPLORE-7B w/o RL	\checkmark	Base	4	\times	61.80	52.82	54.00	59.83
ALIGNXPLORE-7B w/o Cold-start	\checkmark	Base	4	\times	62.80	56.64	64.83	59.50

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

305 **Implementation details** We simulate a two-round streaming setting for both cold-start data genera-
306 tion and RL, where the first round uses 4 behavioral signals (i.e. $T = 4$ in \mathcal{E}) and the second uses
307 another 4 signals plus the inferred preference from the first round. This process is naturally extensible
308 to more rounds. We use DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI, 2025) as our backbone and
309 explore other backbones in Appendix B.6. We train the model on the ALIGNX dataset (Li et al.,
310 2025), a comprehensive personalized alignment dataset spanning 90 preference dimensions with
311 balanced positive and negative examples. We create two 7,000-instance sets for cold-start and RL
312 training, respectively. For cold-start data generation, QwQ-32B (Team, 2025) serves as the teacher
313 model. We use the R_{jud} reward (Eq. 4) with Qwen2.5-7B-Instruct as the preference judging model
314 for both cold start and RL, with a batch size of 128 and $G = 4$ rollouts per prompt. For inference, we
315 use nucleus sampling ($p = 0.95, k = 10$) with a temperature of 0.9 (Holtzman et al., 2020; Fan et al.,
316 2018; Goodfellow et al., 2014). To analyze different configurations, we also train two non-streaming
317 baseline models with 4 and 8 examples in \mathcal{E} , respectively. Appendix B.1 shows more details.

318 **Benchmarks** We evaluate on two benchmarks: (1) ALIGNX_{test} (Li et al., 2025), the official test
319 set of ALIGNX; and (2) P-SOUPS (Jang et al., 2023), an out-of-domain benchmark which focuses on
320 three preference dimensions: “expertise,” “informativeness,” and “style.” Table 6 in Appendix B.2
321 summarizes the statistics. Following our training settings, we consider two evaluation settings: a base
322 setting where models perform inference using 4 or 8 preference pairs with empty \hat{d} , and a streaming
323 setting where the model first uses the initial 4 pairs to infer a historical preference description \hat{d} , then
combine \hat{d} with 4 new pairs to generate the final preference description. All preference pairs are

324
 325 Table 2: Online preference inference evaluation results (GPT-4 win rate, %, row model against
 326 column model) using Qwen2.5-7B-Instruct as the personalized response generation model. We
 327 randomly select 400 test cases per benchmark for evaluation. **M1**: Qwen2.5-7B-Instruct; **M2**:
 328 DS-R1-Distill-Qwen-7B; **M3**: ALIGNXPLORE-7B.

329 ALIGNX _{test}	M1	M2	M3	330 P-SOUPS	M1	M2	M3
M1	-	43.00	37.00	M1	-	51.33	42.33
M2	57.00	-	43.00	M2	48.67	-	46.67
M3	63.00	57.00	-	M3	57.67	53.33	-

333 randomly sampled from the same user’s behavioral signals. We ensure that each model is evaluated
 334 under its corresponding training setting.

335 **Evaluation metrics** Due to the inherent difficulty of directly evaluating preference inference
 336 quality, we employ both offline and online metrics for indirect evaluation: **(1) Offline evaluation:**
 337 We compute the accuracy of preference-guided response generation (ACC_{gen}) and preference judging
 338 (ACC_{jud}). These metrics are calculated as the average of the binary rewards R_{gen} (Eq. 3) and R_{jud}
 339 (Eq. 4), respectively, over the entire test set. We primarily focus on ACC_{jud} as it aligns with our
 340 training objective. **(2) Online evaluation:** We introduce **GPT-4 Win Rate**,³ where GPT-4 conditioned
 341 on the ground-truth preferences (provided by the benchmarks) compares responses generated given
 342 preference descriptions from different models (Kumar et al., 2024; Jang et al., 2023).⁴

343 **Baselines** We compare our approach with three groups of baselines: **(1) Direct preference de-**
 344 **scriptions**, where different forms of preference information are directly inserted into the downstream
 345 model’s prompt. This includes *Null*, which provides no preference context to establish a non-
 346 personalized baseline; \mathcal{E} (raw behavioral signals), which concatenates the raw behavioral signals to
 347 condition the model; and *Golden Preference*, which uses the benchmark’s ground-truth descriptions
 348 to simulate perfect inference, serving as a conceptual upper bound⁵. **(2) Specialized methods**,
 349 including *LMInductReason* (Qiu et al., 2024) for inductive reasoning, *VPL* (Poddar et al., 2024) and
 350 *EXPO* (Hu et al., 2025b) for preference modeling, and *PBA* (Li et al., 2025) for structured preference
 351 prediction. **(3) State-of-the-art LLMs**, including small models (*Qwen2.5-7B-Instruct* (Team, 2024),
 352 *DS-R1-Distill-Qwen-7B* (DeepSeek-AI, 2025)) and large models (*QwQ-32B* (Team, 2025), *Qwen3-*
 353 *32B* (Yang et al., 2025), *GPT-4* (Achiam et al., 2023), *DeepSeek-R1-671B*⁶ (DeepSeek-AI, 2025)),
 354 which are prompted with the raw behavioral signals to generate a user preference description.

355 We also evaluate ablated versions of our model (w/o RL and w/o Cold-start) to verify the effectiveness
 356 of each training stage. See Appendix B.3 for baseline implementation details.

357 4.2 MAIN RESULTS

358 **Offline evaluation** Table 1 presents our main offline evaluation results, leading to five key findings:
 359 **(1) Preference inference is necessary.** Directly using behavioral signals (\mathcal{E}) performs no better than
 360 the “Null” baseline and far worse than using golden preferences. **(2) Prior methods are limited.**
 361 Prompt-based (LMInductReason) and latent-variable (VPL, EXPO) methods perform poorly. Even
 362 PBA, which uses predefined preferences, generalizes poorly to out-of-domain data (P-SOUPS). **(3)**
 363 **Extended reasoning is superior.** Models with extended reasoning consistently outperform their
 364 counterparts with concise reasoning (e.g., *Qwen3-32B*_{thinking} vs. *Qwen3-32B*_{non-thinking}: 65.03% vs.
 365 57.60%; *DeepSeek-R1-671B* vs. *GPT-4*: 70.47% vs. 66.10%). **(4) ALIGNXPLORE is significantly**
 366 **superior.** Our model surpasses same-sized baselines and competes with much larger models like
 367 *Qwen3-32B* and *GPT-4*, even outperforming the golden preference baseline on ALIGNX_{test}. **(5) Our**
 368 **streaming mechanism is both efficient and effective.** While the backbone model gains little from
 369 extra signals, ALIGNXPLORE significantly benefits from its streaming mechanism, outperforming
 370 even its non-streaming 8-pair variant. This shows our model effectively utilizes historical information

371 ³We use OpenAI’s API “gpt-4-turbo-2024-04-09” for all our subsequent experiments.

372 ⁴We present the training and inference costs in Appendix B.7.

373 ⁵Note that golden preference descriptions, while semantically accurate, may not necessarily lead to optimal
 374 downstream personalization performance due to potential gaps in model compatibility.

375 ⁶All experiments are based on the DeepSeek-R1 version released on 2025/01/20.

378
379 Table 3: Generalization evaluation (ACC_{jud} , %) in terms of two aspects: (1) *Input-form*: “ALIGNX_{test}
380 w/ UGC” column shows accuracy when inferring from user-generated content instead of preference
381 pairs. (2) *Cross-model*: The remaining columns show the transferability of inferred preferences
382 (rows) to different downstream models (columns) on the original ALIGNX_{test} benchmark.

Method	Extended Reasoning	ALIGNX _{test} w/ UGC	Preference Judging Model S_{jud}		
			Qwen2.5-7B-Instruct	QwQ-32B	DeepSeek-R1-671B
\mathcal{E}	N/A	52.17	50.33	49.03	50.12
Golden Preference	N/A	69.87	64.63	74.30	78.97
Qwen2.5-7B-Instruct	✗	57.57	56.33	56.90	58.15
DS-R1-Distill-Qwen-7B	✓	58.30	57.63	58.70	59.61
DeepSeek-R1-671B	✓	61.97	70.47	73.73	74.00
ALIGNXPLORE-7B	✓	61.97	65.33	68.53	67.59

392
393 Table 4: Robustness to preference reversal. We evaluate model performance (ACC_{jud} , %) on the
394 original benchmarks (Normal) versus benchmarks where all preference pairs have been reversed
395 (Reverse). Subscripts in the “Reverse” columns indicate the performance change relative to the
396 “Normal” setting (results from Table 1).

Method	Extended Reasoning	ALIGNX _{test}		P-SOUPS	
		Normal	Reverse	Normal	Reverse
\mathcal{E}	N/A	50.33	48.67 _{-1.7}	38.12	36.57 _{-1.6}
Golden Preference	N/A	64.63	61.83 _{-2.8}	81.20	67.42 _{-13.8}
Qwen2.5-7B-Instruct	✗	56.33	47.27 _{-9.1}	59.33	68.33 _{+9.0}
DS-R1-Distill-Qwen-7B	✓	57.63	53.40 _{-4.2}	51.22	67.83 _{+16.6}
DeepSeek-R1-671B	✓	70.47	61.53 _{-8.9}	70.44	73.33 _{+2.9}
ALIGNXPLORE-7B	✓	65.33	62.13_{-3.2}	62.61	71.27_{+8.6}

405 via incremental refinement without the cost of reprocessing larger signal sets. Unless stated otherwise,
406 subsequent experiments use the base setting with $T = 4$.
407

408 **Ablation studies on training stages** We performed an ablation study to isolate the impact of our
409 cold-start and subsequent RL training stages. As shown in Table 1, both stages contribute positively,
410 but RL plays a more critical role. On the in-domain ALIGNX_{test} benchmark, ablating the RL stage
411 (w/o RL) causes a more significant performance drop (65.33% \rightarrow 61.80%) compared to ablating the
412 cold-start stage (w/o Cold-start, 62.80%). The importance of RL is even more pronounced on the
413 out-of-domain P-SOUPS dataset, particularly for nuanced dimensions like “Style,” where performance
414 plummets without RL. These results suggest that while cold-start is effective for initializing the
415 model with basic reasoning patterns, direct reward optimization via RL is essential for refining these
416 capabilities and enabling strong generalization.

417 **Online evaluation** Using GPT-4 as a judge for pairwise comparison of personalized response
418 generation conditioned on the generated preference descriptions, Table 2 shows that ALIGNXPLORE-
419 7B achieves competitive win rates against baselines on both in-domain and out-of-domain scenarios,
420 further validating its effectiveness in preference inference.

422 4.3 GENERALIZATION ABILITY ASSESSMENT

424 Table 3 reports the generalization performance from both input and output perspectives: (1) **Input-
425 form generalization**. To simulate real-world scenarios, we replace standard preference pairs in the
426 input with unstructured user-generated content (UGC, e.g., reviews). ALIGNXPLORE shows strong
427 generalization to this new input format, achieving 61.97% accuracy and significantly outperforming all
428 baselines. (2) **Cross-Model Generalization**. We test the transferability of the inferred preferences by
429 using them to personalize different downstream judging models. ALIGNXPLORE again demonstrates
430 robust generalization, consistently outperforming comparable models. We attribute this to our
431 extended reasoning mechanism, which learns fundamental, model-agnostic preference patterns rather
432 than surface-level correlations, leading to more portable preference descriptions.

432
433 4.4 ROBUSTNESS ASSESSMENT

434
435 We assess the model’s robustness to shifts in
436 user preferences through three experiments. **(1)**
437 **Preference reversal.** We first test robustness
438 by reversing all preference pairs (e.g., $y_w \succ$
439 $y_l \rightarrow y_w \prec y_l$) (Li et al., 2025) to check if the
440 model learns true inference patterns rather than
441 dataset biases. **Table 4** shows that ALIGNX-
442 PLORE maintains strong performance, outper-
443 forming same-sized baselines and golden prefer-
444 ences, and competing with DeepSeek-R1-671B.
445 This suggests our model flexibly adapts to pref-
446 erence patterns. **(2) Preference evolution.** We
447 further investigate a more realistic and challeng-
448 ing scenario where user preferences evolve over
449 time. Specifically, we use 8 preference pairs per
450 user and progressively reverse the earliest ones.
451 Figure 3 (left) shows that our streaming mech-
452 anism consistently outperforms the non-streaming
453 baseline across all levels of preference shift. This
454 highlights its superior ability to adapt to temporal
455 changes by not being confounded by outdated, in-
456 consistent signals. **(3) Sensitivity to signal count.**
457 We also evaluate performance as the number of behavioral signals varies from 1 to 12. As shown
458 in Figure 3 (right), ALIGNX-
459 PLORE infers preferences accurately from just a single signal (61.23%
460 vs. backbone’s 55.83%). The performance of both ALIGNX-
461 PLORE and the backbone begins to
462 degrade after four examples. It may be because the context becomes lengthy and saturated with noise
463 as more signals are added. This challenge is precisely what motivates our streaming mechanism,
464 which circumvents this long-context degradation by processing signals iteratively (see §4.5), thus
465 maintaining stable and high performance as user history grows.

466 Table 5: Comparison of reward functions. R_{jud} (used in all previous experiments) and R_{gen} denote
467 rewards from preference judging and response generation, respectively.

Method	Extended Reasoning	ALIGNX _{test}		P-SOUPS	
		ACC _{jud}	ACC _{gen}	ACC _{jud}	ACC _{gen}
\mathcal{E}	N/A	50.33	48.13	38.12	69.49
DS-R1-Distill-Qwen-7B	✓	57.63	48.60	51.22	69.87
ALIGNX- 462 PLORE-7B (R_{jud})	✓	65.33	49.30	62.61	78.98
ALIGNX- 463 PLORE-7B (R_{gen})	✓	<u>61.67</u>	49.40	<u>56.94</u>	<u>71.82</u>

464 4.5 EFFICIENCY ASSESSMENT

465 We evaluate the computational efficiency of our
466 streaming mechanism as behavioral signals accu-
467 cumulate. In our experiment, we incremen-
468 tally add 4 new signals per round and mea-
469 sure the average inference time and accuracy
470 on ALIGNX_{test}. As shown in Figure 4, the base
471 setting shows a significant increase in inference
472 time as it must reprocess the entire history. Its
473 accuracy also drops sharply at 16 signals (round
474 4) due to long-context challenges. In contrast,
475 our streaming setting maintains both stable in-
476 ference time and consistent performance by only
477 processing new signals and the compact histor-
478 ical preference summary. This demonstrates our
479 method’s superior efficiency and effectiveness
480 for handling growing user histories.

481 4.6 FURTHER ANALYSIS

Figure 3: **Left:** ACC_{jud} of ALIGNX-
465 PLORE-7B on ALIGNX_{test} as user preference reverses over time.
Right: ACC_{jud} of DeepSeek-R1-Distill-Qwen-7B and ALIGNX-
466 PLORE-7B under the base setting as the number of behavioral signals increases.

467 This highlights its superior ability to adapt to temporal
468 changes by not being confounded by outdated, in-
469 consistent signals. **(3) Sensitivity to signal count.**
470 We also evaluate performance as the number of behavioral signals varies from 1 to 12. As shown
471 in Figure 3 (right), ALIGNX-
472 PLORE infers preferences accurately from just a single signal (61.23%
473 vs. backbone’s 55.83%). The performance of both ALIGNX-
474 PLORE and the backbone begins to
475 degrade after four examples. It may be because the context becomes lengthy and saturated with noise
476 as more signals are added. This challenge is precisely what motivates our streaming mechanism,
477 which circumvents this long-context degradation by processing signals iteratively (see §4.5), thus
478 maintaining stable and high performance as user history grows.

Figure 4: The average inference latency per exam-
468 ple (Left) and ACC_{jud} score (Right) of ALIGNX-
469 PLORE-7B on ALIGNX_{test} as behavioral signals
470 accumulate. Starting from 4 signals (Round=1),
471 we add 4 new signals in each round.

Figure 6: Word clouds of generated preference descriptions on $\text{ALIGNX}_{\text{test}}$. Terms in bounding boxes represent frequently occurring words characterizing each model’s generation patterns.

We further analyze two aspects: the impact of different reward functions (**Finding 1**) and the progressive quality enhancement from our two-stage training (**Finding 2**). Appendix B.4 and B.9 provide additional analysis on RL dynamics and case studies.

Finding 1: Judging-based rewards are superior to generation-based ones. We compare models trained with a judging-based reward (R_{jud}) versus a generation-based reward (R_{gen}). Table 5 shows that R_{jud} is better across most metrics, even including ACC_{gen} , suggesting that accurate preference inference naturally facilitates better personalized generation. This superiority stems from more informative training signals: Figure 5 shows R_{jud} enables steady learning, while R_{gen} fluctuates randomly. R_{gen} is ineffective due to (1) confounding factors in response probability (e.g., fluency, length) and (2) noise from using offline responses. In contrast, R_{jud} provides direct, stable feedback on preference understanding.

Finding 2: Two-stage training progressively refines preference descriptions. Figure 6 illustrates how our training stages progressively enhance description quality. The backbone model produces only general terms (e.g., “historical,” “situation”). Cold-start training introduces specific preference dimensions (e.g., “communication style,” “age group”) but lacks synthesis. RL alone offers limited improvement, focusing on generic concepts like “helpfulness.” In contrast, the combined two-stage approach yields actionable guidance with diverse dimensions and concrete actions (e.g., “avoid,” “prioritize,” “leans toward”). This evolution from general observations to specific, actionable hypotheses mirrors human inductive reasoning (Heit, 2000; Fränken et al., 2022) and is naturally encouraged by our framework without explicit supervision.

5 CONCLUSION

This work presents the first systematic investigation of extended inductive reasoning in LLMs for personalized preference inference. Our model, ALIGNXPORE, demonstrates that extended reasoning can effectively bridge the gap between implicit behavioral signals and explicit preferences. Comprehensive experiments show that ALIGNXPORE achieves superior personalized alignment while maintaining strong efficiency, generalization, and robustness. The success of our two-stage training strategy provides valuable insights into developing LLMs’ inductive reasoning capabilities, suggesting that combining cold-start with RL can effectively guide models to learn generalizable reasoning patterns. Our findings also reveal several promising directions for future research, such as extending the success of our approach in preference inference to other inductive reasoning tasks, such as scientific hypothesis generation and pattern discovery in unstructured data.

Figure 5: RL training curves with different reward functions.

540
541 ETHICS STATEMENT

542 This work enhances the preference inference capability of models, enabling them to better serve
 543 human users by understanding and responding to their individual preferences. However, it may
 544 involve potential risks related to user privacy and bias. By inferring personalized preferences, there
 545 is a possibility of inadvertently amplifying existing biases in the data or misinterpreting user intent.
 546 To mitigate these risks, we ensure that our approach incorporates robust fairness and transparency
 547 measures. We also prioritize user consent and implement mechanisms to ensure that user data is
 548 anonymized and securely handled. Furthermore, we encourage ongoing monitoring of the model's
 549 performance in real-world scenarios to identify and address any unintended consequences, thus
 550 ensuring that the model's deployment remains ethical and aligned with user interests.

551
552 REPRODUCIBILITY STATEMENT
553

554 Our code is publicly available in an anonymized repository <https://anonymous.4open.science/r/ICLR2026-AlignXplore>, with detailed running instructions in the Readme. The
 555 training and testing setups are specified in §4.1 and Appendix B.1 to guarantee full reproducibility.
 556

557
558 REFERENCES
559

560 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 561 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 562 *arXiv preprint arXiv:2303.08774*, 2023.

563 Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
 564 Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
 565 for alignment. *arXiv preprint arXiv:2112.00861*, 2021.

566 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 567 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
 568 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

569 Murali Chandrashekaran, Beth A Walker, James C Ward, and Peter H Reingen. Modeling individual
 570 preference evolution and choice in a dynamic group setting. *Journal of Marketing Research*, 33(2):
 571 211–223, 1996.

572 Daiwei Chen, Yi Chen, Aniket Rege, Zhi Wang, and Ramya Korlakai Vinayak. PAL: Sample-
 573 efficient personalized reward modeling for pluralistic alignment. In *The Thirteenth International
 574 Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=1kFDrYCuSu>.

575 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
 576 plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
 577 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
 578 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
 579 Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
 580 Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
 581 Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
 582 Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
 583 Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
 584 Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
 585 models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.

586 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
 587 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
 588 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025b.

589 Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
 590 Denghui Zhang, Tong Zhang, Hanghang Tong, and Heng Ji. Rm-r1: Reward modeling as reasoning,
 591 2025c. URL <https://arxiv.org/abs/2505.02387>.

594 François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019.
 595

596 Claude. Claude’s extended thinking. <https://www.anthropic.com/news/visible-extended-thinking>, February 2025.
 597

598 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv preprint arXiv:2307.08691*, 2023.
 599

600 601 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.
 602

603 604 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
 605 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.
 606

607 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In *Proceedings
 608 of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 609 Papers)*, pp. 889–898, 2018.

610 Roberta A Ferrara, Ann L Brown, and Joseph C Campione. Children’s learning and transfer of
 611 inductive reasoning rules: Studies of proximal development. *Child development*, pp. 1087–1099,
 612 1986.

613 Jan-Philipp Fränken, Nikos C. Theodoropoulos, and Neil R. Bramley. Algorithms of adap-
 614 tation in inductive inference. *Cognitive Psychology*, 137:101506, 2022. ISSN 0010-0285.
 615 doi: <https://doi.org/10.1016/j.cogpsych.2022.101506>. URL <https://www.sciencedirect.com/science/article/pii/S0010028522000421>.
 616

617 618 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
 619 behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv
 620 preprint arXiv:2503.01307*, 2025.

621 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 622 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural informa-
 623 tion processing systems*, pp. 2672–2680, 2014.
 624

625 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
 626 Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint arXiv:2411.15594*,
 627 2024.

628 629 Jian Guan, Wei Wu, zujie wen, Peng Xu, Hongning Wang, and Minlie Huang. AMOR: A recipe
 630 for building adaptable modular knowledge agents through process feedback. In *The Thirty-
 631 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=jImXgQEmX3>.
 632

633 634 Jian Guan, Junfei Wu, Jia-Nan Li, Chuanqi Cheng, and Wei Wu. A survey on personalized alignment
 635 – the missing piece for large language models in real-world applications, 2025. URL <https://arxiv.org/abs/2503.17003>.
 636

637 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 638 Tian. Training large language models to reason in a continuous latent space, 2024. URL <https://arxiv.org/abs/2412.06769>.
 639

640 641 Brett K Hayes, Evan Heit, and Haruka Swendsen. Inductive reasoning. *Wiley interdisciplinary
 642 reviews: Cognitive science*, 1(2):278–292, 2010.

643 644 Evan Heit. Properties of inductive reasoning. *Psychonomic bulletin & review*, 7:569–592, 2000.
 645

646 John H Holland. *Induction: Processes of inference, learning, and discovery*. MIT press, 1986.
 647

648 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
 649 degeneration. In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rygGQyrFvH>.

648 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 649 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 650 model, 2025a. URL <https://arxiv.org/abs/2503.24290>.

651 Xiangkun Hu, Lemin Kong, Tong He, and David Wipf. Explicit preference optimization: No need
 652 for an implicit reward model. *arXiv preprint arXiv:2506.07492*, 2025b.

653 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 654 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 655 evaluation of large language models for code. In *The Thirteenth International Conference on*
 656 *Learning Representations*.

657 Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
 658 Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Personalized large
 659 language model alignment via post-hoc parameter merging. *arXiv preprint arXiv:2310.11564*,
 660 2023.

661 Ehud Kalai and Meir Smorodinsky. Other solutions to nash's bargaining problem. *Econometrica: Journal of the Econometric Society*, pp. 513–518, 1975.

662 Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi,
 663 and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on user rating
 664 prediction. *arXiv preprint arXiv:2305.06474*, 2023.

665 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 666 2014.

667 Kinshuk, Taiyu Lin, and Paul McNab. Cognitive trait modelling: The case of inductive reasoning
 668 ability. *Innovations in Education and Teaching International*, 43(2):151–161, 2006.

669 Hannah Rose Kirk, Andrew Michael Bean, Bertie Vidgen, Paul Rottger, and Scott A. Hale. The
 670 past, present and better future of feedback learning in large language models for subjective human
 671 preferences and values. In *The 2023 Conference on Empirical Methods in Natural Language
 672 Processing*, 2023. URL <https://openreview.net/forum?id=qRbhKhqp0b>.

673 Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
 674 Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
 675 fine-tuning large language models in federated learning. In *Proceedings of the 30th ACM SIGKDD
 676 Conference on Knowledge Discovery and Data Mining*, pp. 5260–5271, 2024.

677 Sachin Kumar, Chan Young Park, Yulia Tsvetkov, Noah A Smith, and Hannaneh Hajishirzi. Compo:
 678 Community preferences for language model personalization. *arXiv preprint arXiv:2410.16027*,
 679 2024.

680 Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
 681 machines that learn and think like people. *Behavioral and Brain Sciences*, 40:e253, 2017. doi:
 682 10.1017/S0140525X16001837.

683 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 684 DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu
 685 Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm
 686 distillation. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 687 <https://openreview.net/forum?id=hy0a5MMPUv>.

688 Seongyun Lee, Sue Hyun Park, Seungone Kim, and Minjoon Seo. Aligning to thousands of prefer-
 689 ences via system message generalization. *arXiv preprint arXiv:2405.17977*, 2024.

690 Jia-Nan Li, Jian Guan, Songhao Wu, Wei Wu, and Rui Yan. From 1,000,000 users to every user:
 691 Scaling up personalized preference for user-level alignment, 2025. URL <https://arxiv.org/abs/2503.15463>.

692 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 693 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint
 694 arXiv:2305.20050*, 2023.

702 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
 703 evaluation using gpt-4 with better human alignment. *arXiv preprint arXiv:2303.16634*, 2023.

704

705 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 706 free reward. *arXiv preprint arXiv:2405.14734*, 2024.

707

708 Kinga Morsanyi, Teresa McCormack, and Eileen O’Mahony. The link between deductive reasoning
 709 and mathematics. *Thinking & Reasoning*, 24(2):234–257, 2018.

710

711 Arsenii Kirillovich Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The conceptARC
 712 benchmark: Evaluating understanding and generalization in the ARC domain. *Transactions on
 713 Machine Learning Research*, 2023. ISSN 2835-8856. URL [https://openreview.net/
 714 forum?id=8ykyGbt2q](https://openreview.net/forum?id=8ykyGbt2q).

715 Lin Ning, Luyang Liu, Jiaxing Wu, Neo Wu, Devora Berlowitz, Sushant Prakash, Bradley Green,
 716 Shawn O’Banion, and Jun Xie. User-llm: Efficient llm contextualization with user embeddings.
 717 *arXiv preprint arXiv:2402.13598*, 2024.

718 Ninell Oldenburg and Tan Zhi-Xuan. Learning and sustaining shared normative systems via bayesian
 719 rule induction in markov games. In *Proceedings of the 23rd International Conference on Au-
 720 tonomous Agents and Multiagent Systems*, pp. 1510–1520, 2024.

721 OpenAI. Introducing openai o1-preview. [https://openai.com/index/
 722 introducing-openai-o1-preview/](https://openai.com/index/introducing-openai-o1-preview/), 2024.

723 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 724 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 725 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 726 27744, 2022.

727 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang,
 728 Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Jianfeng Gao. Secom: On memory construction and re-
 729 trieval for personalized conversational agents. In *The Thirteenth International Conference on Learn-
 730 ing Representations*, 2025. URL <https://openreview.net/forum?id=xKDZAW0He3>.

731

732 Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing
 733 reinforcement learning from human feedback with variational preference learning. *arXiv preprint
 734 arXiv:2408.10075*, 2024.

735 Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin
 736 Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xiang Ren. Phenomenal yet puzzling: Testing
 737 inductive reasoning capabilities of language models with hypothesis refinement. In *The Twelfth
 738 International Conference on Learning Representations*, 2024. URL [https://openreview.net/forum?id=bNt7oajl2a](https://openreview.net/forum/

 739 id=bNt7oajl2a).

740 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 741 standing with unsupervised learning. 2018.

742

743 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 744 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 745 in Neural Information Processing Systems*, 36, 2024.

746 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 747 toward training trillion parameter models. In *SC20: International Conference for High Performance
 748 Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

749

750 Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
 751 Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
 752 lating weights fine-tuned on diverse rewards. In *Thirty-seventh Conference on Neural Information
 753 Processing Systems*, 2023. URL <https://openreview.net/forum?id=1SbbC2Vycu>.

754 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 755 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

756 Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hannaneh Hajishirzi, Noah A Smith, and Si-
 757 mon S Du. Decoding-time language model alignment with multiple objectives. *arXiv preprint*
 758 *arXiv:2406.18853*, 2024.

759

760 Anand Sithharanjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference
 761 learning: Understanding and accounting for hidden context in RLHF. In *The Twelfth International*
 762 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=0tWTxYYPnW>.

763

764 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
 765 optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth International*
 766 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=4FWAwZtd2n>.

767

768 Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democrati-
 769 zing large language models via personalized parameter-efficient fine-tuning. *arXiv preprint*
 770 *arXiv:2402.04401*, 2024.

771

772 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

773

774 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 775 <https://qwenlm.github.io/blog/qwq-32b/>.

776

777 A Tong. Exclusive: Chatgpt traffic slips again for third month in a row. reuters, 2023.

778

779 Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Ziwen
 780 Han, Sean M Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm
 781 search for code generation. In *The First Workshop on System-2 Reasoning at Scale, NeurIPS'24*,
 782 2024a.

783

784 Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman.
 785 Hypothesis search: Inductive reasoning with language models. In *The Twelfth International*
 786 *Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=G7UtIGQmjn>.

787

788 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 789 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 790 *neural information processing systems*, 35:24824–24837, 2022.

791

792 Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Codeplan: Unlocking reasoning
 793 potential in large language models by scaling code-form planning. In *The Thirteenth International*
 794 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=dCPF1wlqj8>.

795

796 Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu Tan.
 797 Reinforcing spatial reasoning in vision-language models with interwoven thinking and visual
 798 drawing. *arXiv preprint arXiv:2506.09965*, 2025a.

799

800 Shujin Wu, Yi R. Fung, Cheng Qian, Jeonghwan Kim, Dilek Hakkani-Tur, and Heng Ji. Aligning
 801 LLMs with individual preferences via interaction. In Owen Rambow, Leo Wanner, Marianna
 802 Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of*
 803 *the 31st International Conference on Computational Linguistics*, pp. 7648–7662, Abu Dhabi, UAE,
 804 January 2025b. Association for Computational Linguistics. URL [https://aclanthology.org/2025.coling-main.511/](https://aclanthology.org/2025.coling-main.511).

805

806 Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain
 807 conversation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of*
 808 *the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 809 pp. 5180–5197, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
 356/. 10.18653/v1/2022.acl-long.356. URL [https://aclanthology.org/2022.acl-long.356/](https://aclanthology.org/2022.acl-long.356).

810 Kai Yan, Zhan Ling, Kang Liu, Yifan Yang, Ting-Han Fan, Lingfeng Shen, Zhengyin Du, and
 811 Jiecao Chen. Mir-bench: Benchmarking llm’s long-context intelligence via many-shot in-context
 812 inductive reasoning. In *Workshop on Reasoning and Planning for Large Language Models*.

813
 814 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 815 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 816 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 817 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 818 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 819 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 820 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 821 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 822 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

823
 824 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 825 Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural*
 826 *Information Processing Systems*, 36, 2024.

827
 828 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 829 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 830 *arXiv preprint arXiv:2503.14476*, 2025.

831
 832 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
 833 self-training via process reward guided tree search. *Advances in Neural Information Processing*
 834 *Systems*, 37:64735–64772, 2024.

835
 836 Gangyi Zhang. User-centric conversational recommendation: Adapting the need of user with
 837 large language models. In *Proceedings of the 17th ACM Conference on Recommender Systems*,
 838 RecSys ’23, pp. 1349–1354, New York, NY, USA, 2023. Association for Computing Machinery.
 839 ISBN 9798400702419. doi: 10.1145/3604915.3608885. URL <https://doi.org/10.1145/3604915.3608885>.

840
 841 Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Per-
 842 sonalizing dialogue agents: I have a dog, do you have pets too? *arXiv preprint arXiv:1801.07243*,
 843 2018.

844
 845 Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do LLMs recognize
 846 your preferences? evaluating personalized preference following in LLMs. In *The Thirteenth*
 847 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=QWunLKbBGF>.

848
 849 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 850 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 851 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

852
 853
 854
 855 **A USE OF LLMs**

856
 857 We use LLMs for two purposes. First, we use LLMs to generate cold-start training data, which
 858 serves as a high-quality alternative when manual annotation is prohibitively expensive (our method
 859 is detailed in §3.3 and Appendix C). Second, we use LLMs for online evaluation to assess the
 860 quality of model-generated responses. This approach, using GPT-4 judgments as a proxy for human
 861 evaluation, is a widely adopted practice. It is supported by benchmarks like AlpacaEval (Dubois et al.,
 862 2024), which report high agreement with human annotations, and has been successfully employed in
 863 numerous influential studies on preference learning and model alignment (Liu et al., 2023; Gu et al.,
 864 2024). The specific prompt for this evaluation is provided in Appendix C.

864
 865 Table 6: Summary of evaluation benchmarks. For preference directions, \uparrow and \downarrow represent preferred
 866 and non-preferred examples, respectively, with their quantities shown in parentheses. The “In-domain”
 867 column (\checkmark/\times) indicates whether the benchmark’s preference dimensions are seen during training.
 868

Benchmark	Dimensions and #Examples	In-domain
ALIGNX _{test}	90 preference dimensions (3,000 examples in total, $\sim 1:1$ ratio for \uparrow/\downarrow preferences)	\checkmark
P-SOUPS	“Expertise” (\uparrow : 300, \downarrow : 300); “Informativeness” (\uparrow : 300, \downarrow : 300); “Style” (\uparrow : 300, \downarrow : 300)	\times

874 B EXPERIMENTS

875 B.1 IMPLEMENTATION DETAILS

876 Our training and test sets are derived from ALIGNX, which proposes a 90-dimensional preference
 877 space (incorporating universal values, basic human needs, and prevalent interest tags). The dataset
 878 utilizes forum interactions and human-LLM interactions to construct 1.3 million examples, making
 879 it currently the largest and most comprehensive dataset for personalized alignment. However,
 880 preference signals in the original user interactions are relatively sparse, which previously hindered
 881 effective preference inference. To address this issue, we introduce a refined data construction
 882 approach. Specifically, we ensure that each target pair is associated with at least five preference
 883 dimensions, where all interaction history demonstrates consistent, non-neutral preference directions,
 884 while avoiding conflicting preferences across other dimensions. We constructed 10,000 data entries
 885 containing only “pair-wise comparative feedback” as interaction history, with 7,000 used for training
 886 and 3,000 for testing. When 7,000 instances are used for cold-start training, we select 3,980 instances
 887 for the first round and 5,278 instances for the second round based on $R(r, d) = 1$. Additionally,
 888 we constructed 3,000 entries containing only “user-generated content” as interaction history for
 889 generalization validation.

890 The training is conducted on 8 NVIDIA A100 GPUs using Adam optimizer (Kingma, 2014), with
 891 DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) and Flash-attention-2 (Dao, 2023) for optimization.
 892 We employ the following hyperparameter configuration: learning rate of 1e-6, 50 warmup steps, 4
 893 training epochs, and maximum prompt/generation lengths of 8,192/2,048 tokens. During RL, we set
 894 the mini-batch size to 128 for each step.

895 B.2 BENCHMARK DETAILS

896 Table 6 shows the summary of the evaluation benchmarks.

897 B.3 BASELINE DETAILS

898 We compare our approach with various baseline methods and models:

- 900 • **Directly given preference descriptions:** (1) *Null*: no preference description is provided; (2) \mathcal{E} :
 901 using behavioral signals directly as preference descriptions without inference; and (3) *Golden*
 902 *Preference*: ground-truth preference descriptions provided by the benchmark. Note that golden pref-
 903 erence descriptions, while semantically accurate, may not necessarily lead to optimal downstream
 904 personalization performance due to potential gaps in model compatibility.
- 905 • **Previous specialized methods for inductive reasoning and personalization:** (1) *LMInduc-
 906 tReason* (Qiu et al., 2024) employs iterative hypothesis refinement to enhance LLMs’ inductive
 907 reasoning capabilities; (2) *VPL* (Poddar et al., 2024) introduces latent variables to model individual
 908 preferences; (3) *EXPO* (Hu et al., 2025b) improves upon DPO by introducing an explicit objective
 909 function, which provably avoids sub-optimal behaviors of implicit reward modeling; and (4)
 910 *PBA* (Li et al., 2025) maps behavioral examples to structured preference scores along predefined
 911 dimensions, then converts them to natural language descriptions.
- 912 • **Preference descriptions generated by state-of-the-art LLMs:** The LLMs range from small-sized
 913 models including *Qwen2.5-7B-Instruct* (Team, 2024) and *DS-R1-Distill-Qwen-7B* (DeepSeek-AI,
 914 2025), to large-sized models including *QwQ-32B* (Team, 2025), *Qwen3-32B* (Yang et al., 2025),

918
919
920
921
922
923

Table 7: ACC_{jud} of ALIGNXPLORE-7B when reversing the first preference pair of the user and keeping the later pairs (and test pairs) consistent with the final preference. **Extended Reasoning**: whether the model generates preference descriptions with extended reasoning. T refers to the number of examples in \mathcal{E} in both training and inference. \hat{d} indicates whether historical preferences are empty or not.

924

Method	Extended Reasoning	Setting	T	\hat{d}	ALIGNX _{test}	P-SOUPS		
						Informativeness	Style	Expertise
ALIGNXPLORE-7B	✓	Base	8	✗	58.17	51.66	67.67	61.17
ALIGNXPLORE-7B	✓	Streaming	4	✓	66.60	58.97	69.67	65.67

929

930

931

932 *GPT-4* (Achiam et al., 2023), and *DeepSeek-R1-671B* (DeepSeek-AI, 2025). These models cover
933 both concise reasoning and extended reasoning patterns.

934

935 Furthermore, to verify the effectiveness of our approach, we also compare with ALIGNXPLORE-7B
936 w/o RL and w/o Cold-start under the base setting, which only uses cold-start training and RL for
937 preference inference, respectively.

938

939 For VPL (Poddar et al., 2024) and EXPO (Hu et al., 2025b), we train 4 epochs on DeepSeek-R1-Distill-
940 Qwen-7B using \mathcal{D}_{rl} . Note that VPL employs its own specialized downstream model for preference-
941 guided judgment. For other baselines, we generate roles or preferences using the corresponding
942 models and input them into Qwen2.5-7B-Instruct for evaluation. LMInductReason (Qiu et al., 2024)
943 follows the original paper’s implementation, where content generation is replaced by Qwen2.5-7B-
944 Instruct. After iteratively generating rules, the final rule is provided to Qwen2.5-7B-Instruct to
945 generate preference selections. PBA (Li et al., 2025) uses the method from the original paper to
946 extract consistent preferences from the interaction history of each benchmark.

947

948

B.4 LENGTH EVOLUTION

949

950 We present the changes in generation length during
951 the reinforcement learning process for ALIGNX-
952 PLORE-7B (R_{jud}) and ALIGNXPLORE-7B (R_{gen}) in
953 Figure 7. As training progresses, the average gen-
954 eration length of the model continuously decreases.
955 Our analysis suggests that, due to cold-start training,
956 although the model is guided to analyze the appro-
957 priate preference dimensions, it tends to repetitively
958 reproduce content from the behavioral signals, with
959 low confidence in the analysis and many redundant
960 and fluctuating dimensional interpretations. After re-
961 inforcement learning, the model’s analysis direction
962 becomes clearer. For preference interpretation of behavioral signals, the model now only mentions
963 key terms that reflect preferences, enabling it to quickly analyze and summarize user preferences.
964 This aligns with the analysis presented in §4.6.

965

966

B.5 ROBUSTNESS ASSESSMENT

967

968

969

970

971

Figure 7 shows the performance of ALIGNXPLORE-7B on different datasets under the base setting and streaming setting when 8 preference pairs are given for each user and the first preference pair is reversed. Since the streaming inference mechanism allows the model to refine preference descriptions during streaming inference of user preferences, it demonstrates robustness and generalization when facing inconsistent or time-varying user behavior preferences. As a result, it consistently outperforms the base setting on both in-domain and out-of-domain datasets.

Figure 7: Curves of generation length for ALIGNXPLORE-7B with different reward functions during RL training.

972

973

Table 8: ACC_{jud} of different models with Qwen3-8B as the backbone.

974

975

Model	ALIGNX _{test}	P-SOUPS
Qwen3-8B_{non-thinking}	59.10	62.77
Qwen3-8B_{thinking}	67.87	66.43
ALIGNXPORE-8B	69.37	69.10

976

977

978

979

980

981

982

983

984

985

986

987

B.6 ANALYSIS OF DIFFERENT BACKBONE MODELS

988

To demonstrate the generalizability of our approach across different backbone models, we conduct additional experiments using Qwen3-8B (Yang et al., 2025) with thinking mode as the backbone. Table 8 shows that ALIGNXPORE consistently improves performance over the backbone model under the base setting. This demonstrates that our approach’s effectiveness is not limited to a specific backbone architecture but generalizes well across different model foundations.

989

990

991

992

993

994

995

B.7 COMPUTATIONAL COST ANALYSIS

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

We estimate the one-epoch training time for various methods on 7,000 samples using 16 H20 GPUs. This estimate is based on training DeepSeek-R1-Distill-Qwen-7B for VPL and ALIGNXPORE and Llama-3.1-8B-Instruct for PBA (as reported in its original paper (Li et al., 2025)). Table 9 shows the training costs for different methods. Our method comprises two stages: cold-start training, which requires 0.3 hours per epoch on 16 H20 GPUs, and reinforcement learning, which requires 3.7 hours per epoch on the same hardware. We consider this training time worthwhile because the two-stage approach yields significantly better results, and the more time-consuming RL stage is crucial for enhancing the model’s preference inference capability. Furthermore, Table 10 shows that the inference cost for the two-stage model is comparable to that of the RL-only model and significantly lower than that of the cold-start-only model. Therefore, the two-stage approach does not increase complexity or resource requirements during inference.

1019

1020

1021

1022

1023

1024

1025

B.8 SENSITIVITY OF ALIGNXPORE-7B TO THE QUALITY AND DIVERSITY OF \mathcal{D}_{COLD}

The primary role of cold-start training is to help the model learn to analyze specific and fine-grained preference dimensions, enabling a more systematic analysis. The word cloud in Figure 6 for ALIGNXPORE-7B w/o RL shows the emergence of specific dimensions like “communication style” and “age group,” which are absent before this stage. However, the main improvement in preference inference capability comes from the reinforcement learning (RL) stage. The ablation study in Table 1 shows that removing RL causes a more significant performance degradation than removing cold-start training. Specifically, ALIGNXPORE-7B w/o Cold-start still outperforms the base model (DeepSeek-R1-Distill-Qwen-7B) by 8.12%, whereas ALIGNXPORE-7B w/o RL shows only a 4.29% improvement. This indicates that the quality of the synthetic data is not the decisive factor for ALIGNXPORE performance.

Table 10: Inference costs of different stages.

Model	ALIGNXPORE-7B	ALIGNXPORE-7B w/o Cold-start	ALIGNXPORE-7B w/o RL
Time	157ms	100ms	230ms

1026

1027

Table 11: ACC_{jud} on low-quality, low-diversity data.

1028

1029

Model	ALIGNX _{test}	P-SOUPS
DeepSeek-R1-Distill-Qwen-7B	57.63	51.22
ALIGNXPLORE-7B w/o RL (Low quality and diversity)	56.87	51.11
ALIGNXPLORE-7B (Low quality and diversity)	62.90	59.11
ALIGNXPLORE-7B w/o RL	61.80	55.55
ALIGNXPLORE-7B	65.33	62.61

1030

1031

1032

1033

1034

Furthermore, we conduct an experiment to directly investigate ALIGNXPLORE’s sensitivity to the quality and diversity of the synthetic data. To degrade the training data, we randomly select 1,000 samples and regenerate their reasoning chains and preferences using a much weaker teacher model (DeepSeek-R1-Distill-Qwen-7B). The results in Table 11 show that after cold-start training with this lower-quality and less diverse data, ALIGNXPLORE performs even worse than the base model (DeepSeek-R1-Distill-Qwen-7B). However, with subsequent reinforcement learning, it performs far better than the base model, and its performance drops only slightly compared to the standard ALIGNXPLORE. This demonstrates our method’s robustness to the quality and diversity of the synthetic data, while also indicating that cold-start training provides limited improvement to the model’s preference inference ability.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

B.9 CASE STUDY

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

DS-R1-Distill-Qwen-7B tends to be more general and one-sided when analyzing preferences from behavioral signals, which may lead to the omission of important points during the analysis. After cold-start training, ALIGNXPLORE-7B w/o RL provides more comprehensive and systematic analysis of the preference dimensions, but expressions indicating uncertainty, such as “?” and “Not clear yet,” frequently appear, along with extensive repetitions of content from the behavioral signals, such as “User describes facing harassment by a host due to his identity.” After reinforcement learning, these are replaced by more confident statements and clearer analyses, indicating that RL significantly aids in making inductive reasoning more precise and focused. In the streaming setting, behaviors that contrast with and adjust according to historical preferences may emerge, such as “looking at the past preferences,” “fits,” and “consistently.”

1059

1060

1061

1062

1063

1064

For non-extended-reasoning models (e.g., Qwen2.5-7B-Instruct), the preference descriptions are provided directly. However, due to the lack of reasoning processes, some unreasonable preference descriptions emerge. In fact, during the analysis, the model focuses more on the user’s responses or the user’s tendencies toward different responses, rather than focusing on the content of the questions. However, many of the analyses provided by Qwen2.5-7B-Instruct are based on the content of the questions, such as “Interest in Personal Development and Self-Improvement.”

1065

1066

Prompt for Case Study

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within `<think> </think>` and answer is enclosed within `<answer> </answer>` tags, respectively, i.e., `<think> reasoning process here </think> <answer> answer here </answer>`.

User: You must put your answer inside `<answer> </answer>` tags, i.e., `<answer> answer here </answer>`.

This is the problem:

Generate the user’s preference based on their historical behavior.

This person has chosen or rejected comments on some posts:

1078

1079

1. Post:

Sorry for format on mobile etc.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

My girlfriend[22] and I[22] decided to go away somewhat last minute. It's our first trip together. We're away in France, not far from Lille. We decided to get an apartment on Airbnb, it was inexpensive and so beautiful. It was perfect.

Except, and this is the very concise version, we show up and the host looks surprised to see us. I speak fluent french and my girlfriend doesn't, and he doesn't speak any English so I held the conversation even though she handled all the booking and liaising. He kept on asking if my girlfriend was the one in the picture as he was expecting the male and female in the picture. Her picture was an old one of her and her friend. I tried explaining this to him and he acts as if I'm not understanding french, my own first language, properly.

Turns out that my girlfriend had arranged for a bouquet for me which was waiting for me in the main room. He couldn't wrap his head around it. He was acting somewhat civilised until I saw the flowers and hugged my girlfriend. Then he pieced it together and started acting hostile. His tone changed and he started laying down impromptu ground rules like no liquids near the sofa and no shoes on the rug and don't trash the place, return it how you got it. All while his tone got more and more hostile.

It's his apartment and he probably has a key and I just feel so unsafe. I'll get over it once I process it I'm sure but I'm literally just starting medication for depression and anxiety and being at home is so comforting for me, which is why I was looking forward to getting in after travelling for what felt like eternity. It just fucking sucks that I can't go away with my significant other without feeling unsafe and vulnerable. And I feel so bad cus my girlfriend is trying so hard to make this the best trip and she feels bad that our host is a homophobe even tho that's literally nothing to do with her.

Idk if this made sense I'm tired and sleep deprived but can't bring myself to sleep. Please send some kind gay words so I don't feel like the only gay in the world. Little pick me up please.

Chosen:

I live 20mins from Lille! (In Belgium near the Belgian/French border)

I've heard before that people near the border/north of France seem to be more conservative.

I'm sorry this happened to you.

Rejected:

Un bon gros fdp en somme.

2. **Post:**

So, I'm a 21yo bisexual (maybe pansexual? I'm completely open to it but haven't really met or talked to someone to know), living in the Chicago area. I realized and have been out as bisexual since I was 17. I've slept with women, and I hate to admit it because of the 5 I've been with, only 2 were legitimately into girls, the rest was just drunken young adult barsexual experimenting. This is already sounding great right? *sarcasm* Well, I've dated my fair share of men and quite honestly I'm bored. I have yet to find a girl that there is a mutual interest. 2 or 3 girls have liked me, but I honestly just wasn't into them in a romantic way, and that was all they wanted, no friendship. I really want to date a girl already! I have no clue how to flirt with girls, I can never tell when I'm being flirted with, or how to tell them I've been out as bisexual for almost 5 years, have never dated a girl but screwed a bunch. Doesn't sound too good on my end. I kind of have a crush on a bisexual friend of mine and would like to try for her, but I've tried and failed at flirting or catching her attention in more than a friendly way. I have no clue what to do unless I'm in bed with them. I have no idea how to flirt with girls. Send help.

Chosen:

I wish I could offer some good advice, but I'm not so good at flirting myself.

I wish you the bestest of luck.

Rejected:

I flirt like a pro and I can be smoother than butter... But I have no idea how to articulate the HOW aspect of it. I really want to help, but I'm grasping for words

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

here.

code-sloth ponders a moment, as a sloth does when stumped

Witty banter and humor are my main skills, which take a bit to learn for each gal's tastes. At the very least, be genuine and sincere. Whether you're a smooth talker or as mentally coordinated as a deer on ice, sincerity goes a long way to endearment. Thoughtful, sincere, genuine. Start there, then you can develop your own style of flirting.

Oh! And be aware of when to shut up or back off. That great one-liner she lined you up for? Don't always blurt it out. She's not reacting well to certain things (usually dirty lines)? Cool your jets and mellow out. It's a balancing act, and you'll pick up on it over time.

Sometimes you won't even need to flirt actively. Talking about a mutual subject (I love video games, for example) can cause the "oh, I dig this chick" feeling that flirting does. I'm not above the whole "Can this controller fit between your boobs?" line of discussion, but you don't have to be on your witty toes ALL the time. Would you date a good yet incompatible flirt or someone you shared a common interest with? Probably the latter.

Regarding pickup lines: No. Don't use them in serious context. Jokingly yes, but don't play that card on the table first.

Woah, that got a bit verbose. Sorry!

3. Post:

As a 20 year old, it made me sad to see so many of you calling yourself old! Not that that's a bad thing. I don't think teenage/20s years are the peak of your life. I was having this conversation with my ex girlfriend (yeah...I know) the other day and she said this is a really shitty confusing time and IA. and besides I have so many health issues, I'm looking forward to having surgery and stabilising and having more of a grip on my life/mental stability in my 30's and 40's and all the years after that.

Anyway this thread is kind of OT but to all the 30+ ladies on here, you're not old and even when you are you can still be a badass. I know 70 year olds that are kicking ass and when you think about it they were born in the 1940's, and healthcare sucked then.

Saw a thread here asking for members over 30...

Chosen:

Thanks, that's nice of you to say :)

Rejected:

It's cool. I'm immortal anyway. Which reminds me, I have this sword fight I need to get to...

Queen Plays

4. Post:

My boss, after ghosting me for two weeks, fired me over text this morning. She was fine when I came out to her, but after discovering that I'd actually take medication to change my body, she's hated me. I worked with kids so she was always afraid I'd corrupt their minds. As far as I know, parents didn't care or know. They assumed me to be female and their kids assumed me to be male but otherwise it was all fine.

I guess I'll stay with my other job and wait for them to start paying me (still a volunteer until the fall when a job opens up). At least I'm out there and everyone cool with it (behavioral health center).

Should I just stay closeted in the future? I guess I will until I pass and then I'd be stealth? Fired for "inability to keep up with changes"

Chosen:

When are we going to get laws protecting LGBT people from getting fired? How come we didn't get it yet? I'm so sorry this happened to you.

Rejected:

If your employer has not been documenting these "failures," then they are not in a good position legally. The EEOC (equal employment opportunity commission) is a federal agency that investigates discrimination due to gender identity. You can and

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

should contest your firing; check them out online today. You have two weeks from firing to contest. Please do.

It's possible that nothing will come of it, but very often, they can find other workers who will substantiate your manager's motives. You will have done the right thing by putting it into their hands.

Obviously, you have to assess your own emotional needs before taking this step. Quick action is also important for unemployment, which is the right of any worker released for no fault of their own. You will have to contest the firing with the unemployment office, too. Your manager is cheating you financially.

Keep your head up. If you choose, this is new work, more important than any you have done before. Your task is to try to get justice for yourself and other trans people. Just to try. That is more than enough.

It's great of you to volunteer at the behavioral health center! I hope your career there will be rewarding.

Assistant: <think>

Preference Generated by DS-R1-Distill-Qwen-7B

Okay, so I need to figure out the user's preference based on their historical behavior. They've provided four examples where they either chose or rejected comments on posts. Let me analyze each one step by step.

First Post: The user shared a personal anecdote about traveling with a partner and facing a negative host due to language and cultural barriers. The user felt unsafe and lost depression and anxiety. They received a chosen comment that was empathetic and a rejected one that was dismissive. From this, it seems like the user appreciates genuine support and understanding, especially in sensitive situations.

Second Post: The user identified as a bis (or pan) and discussed dating experiences. They felt unsuccessful and frustrated. The chosen comment was a friendly acknowledgment, while the rejected one was more detailed but still empathetic. The user values honesty and being heard, especially in personal and vulnerable contexts.

Third Post: The user shared about facing termination due to their gender identity, feeling misunderstood and unhelped. The chosen comment was a compliment, and the rejected comment was more informative but still empathetic. The user seems to thrive on positive reinforcement and feels supported when others acknowledge their strengths.

Fourth Post: Another situation where the user faced professional discrimination. They were fired for being closeted and chose a comment that expressed solidarity and disappointment, while the rejected comment provided practical steps for legal action. The user values solidarity and stands with others in similar situations but also seeks practical advice.

Looking at these, the user seems to prefer comments that are empathetic, supportive, and acknowledge their struggles. They appreciate genuine concern and positive reinforcement. They also seem to seek practical advice when applicable, especially in situations where they feel discriminated or unsafe. However, they don't seem to appreciate overly dismissive or critical comments, even if they're well-meaning.

So, the user's preference is for comments that show understanding, support, and positivity. They value empathy and practical help when needed, but they don't like being dismissed or told to "get over it." They likely seek validation, reassurance, and encouragement in their challenging situations.

</think>

The user's preferences are evident in their analysis of past interactions, where they favor comments that demonstrate empathy, support, and positivity. They appreciate genuine concern and acknowledge the user's struggles, seeking both practical advice and affirmation in their challenging situations. They dislike overly dismissive or critical comments, even if well-intentioned, and value solidarity and encouragement. Thus, the ideal comment for the user would be one that shows understanding, offers support, and provides positive reinforcement or practical advice when applicable.

1242
1243**Preference Generated by ALIGNXPLORE-7B w/o RL**1244
1245
1246
1247
1248
1249

Okay, let's start breaking down the information provided here. The task is to generate the user's preferences based on their historical interactions—specifically the comments they've chosen versus rejected across different social media posts. There are several factors mentioned related to psychological needs and communication styles mentioned earlier, such as openness, agreeableness, autonomy, approach to conflict resolution, etc., along with specific communication nuances.

1250
1251

First, looking at each example provided:

Starting with Post #1:1252
1253
1254

User describes facing harassment by a host due to his identity. His main issue here seems emotional distress stemming from societal norms affecting his identity, particularly gender-related discrimination. He feels unsafe, uses medication for mental health issues, seeks support, and wants validation.

1255
1256
1257
1258

He chose a response acknowledging location near a border area (which might indicate regional context?), noting potential conservatism elsewhere, expressing sympathy, and thanking him. Rejected a vague remark (*un bon gros fdp en somme*), suggesting the user prefers empathetic responses rather than dismissive ones.

1259
1260
1261
1262

So possible indicators include High Openness (to experience/emotional intelligence?), Low Agreeableness since he's upset, High Need for Autonomy—he wants control over his situation (e.g., staying home, dealing with anxiety independently?), Conflict Handling – confrontational or avoidance? Not clear yet.

Moving onto Post #2:1263
1264
1265
1266
1267

User identifies as bisexual (maybe pan), struggling with attraction despite previous experiences. Struggles finding authentic romantic partners beyond casual encounters. Wants advice but feels frustrated. Chooses a reply offering sympathy and encouragement ("bestest luck"), rejects a lengthy, verbose guide filled with witty tips. That suggests preferring brevity over detail-heavy solutions—maybe valuing conciseness vs thorough explanations.

1268
1269
1270

Possible clues: Low openness to complex strategies, higher need for autonomy in handling situations themselves versus relying on external methods. Also, rejects overly structured approaches preferring direct empathy.

Third Interaction (Post#3):1271
1272
1273
1274
1275

User celebrates aging positively, mentions achieving maturity, health challenges, and future goals. Chose a simple thank-you response instead of playful/humor-oriented replies referencing swords/fighting. Indicates seriousness regarding aging positively, dislikes sarcasm or flippant replies.

1276
1277

Shows emphasis on sincerity/respectful communication avoiding trivialization. Emphasizes authenticity and substance over levity.

Fourth Scenario (Boss situation):1278
1279
1280
1281
1282
1283
1284
1285

Emotionally impacted by losing job over gender identity concerns. Selected compassionate question about legislation protection plus sympathy ("how come?"), whereas the rejected comment gives legal/procedural guidance including steps to contest via agencies and unemployment offices. The user chooses emotional expression over procedural advice. Suggests prioritizes emotional support and communal solidarity over practical steps. Prioritizes feeling validated and supported rather than facing bureaucracy head-on immediately.

1286
1287
1288

So here autonomy comes in – user prefers staying informed but seeks immediate comfort/support rather than taking proactive steps immediately. Maybe prefers empathetic validation over practical action plans.

Now compiling these observations:**Looking at Personality Traits:**1289
1290
1291
1292
1293
1294
1295

- **Big-Five Openness:** Lower probably. Because they reject verbose/detailed answers in favor of shorter/more straightforward suggestions. Unless the rejection is specific to inappropriate content... Not sure though. Alternatively, openness relates to creativity/exploration—maybe limited here.

Wait, but in Post #1, the rejection of "un bon gros fdp en somme" (which roughly translates to 'f*** off') shows aversion to crude language, preferring respectful tone. Maybe mid-openness? Hmm tricky.

1296
1297
1298
1299
1300
1301

- **Agreeableness:** Likely higher than average given tendency to choose comforting/empathic remarks over confrontational or sarcastic ones. However, in fourth instance, the chosen comment asks 'how come' implying empathy but also acknowledges systemic issues (laws?), indicating balance between supportive and critical perspectives? Or perhaps moderate agreeableness.
- **Need For Autonomy:** Seems strong—they prefer independent solutions, resisting dependence on others' input (as seen in second post rejecting elaborate tips). Though in fourth scenario, they sought help from authorities (law/companies?) but still chose emotional affirmation over procedural steps. Maybe balancing autonomy with seeking expert resources selectively.
- **Conflict Handling Approach:** From first and fourth cases, the user reacts strongly emotionally (anxiety, anger), indicating avoidance of direct confrontation unless necessary. Preferred responses offer reassurance rather than addressing root causes directly. Thus prefer indirect/empathic resolutions.
- **Communication Style:** From examples above, the user tends toward concise messages avoiding excessive details. Rejected options included lengthy guides filled with anecdotes/examples. Hence leans towards Concise/Prefer direct communication over elaboration.
- **Work Environment Preferences:** Uncertain yet. Third post mentions volunteering positively. Fourth talks about employment issues. Possibly values environments allowing flexibility and autonomy, avoiding rigid structures that led to firing. Prefers places where boundaries respected ethically (maybe corporate policies aligned with LGBTQ+ rights?).
- **Workplace Needs:** Likely values transparent workplaces adhering to anti-discrimination laws, thus advocating for legal protections. Also wants safe spaces free from hostile environments (as per first story).
- **Achievement Needs:** In third scenario celebrates maturity and long-term objectives (ageing positively), showing appreciation for progress and stability. Achievement motivation exists but framed positively (not competitive, but attaining inner peace/stability).
- **Autonomy Needs:** Strong. Avoid relying on others' input (rejected tips in #2), prefers making own decisions guided by empathy (e.g., trusting their instincts in dating despite uncertainties). Want control over decisions, reduce dependency on external validation/suggestions.
- **Law Awareness:** Fourth scenario acknowledges potential lack thereof affecting workplace fairness. Suggests awareness/careful consideration regarding legislation. May value informed decisions backed by legal insights but balance with emotional responses.

Putting together all threads...

Finalizing categories:

Big Five:

- **Low/Openness?:** Since rejects complex advice, leans toward simpler expressions. However, openness relates to imagination/intellect—not sure. Maybe neutral/mid-range?
- **Moderate-High Agreeableness:** Chooses supportive tones, avoids hostility. Empathetic nature evident throughout choices.

Needs:

- **Strong Autonomy:** Prefers independent judgment, resists external influences (rejection of structured guides in dating, seeking validation instead of proactive measures).
- **Need for Achievement:** Mixed signals—but focuses on overcoming anxieties via proactive actions (getting back mentally).
- **Workplace Safety:** Prioritizes environments respectful of identities, advocating policies preventing discrimination.

1350
1351
1352

- **Conflict Management:** Prefer mediating through dialogue/acknowledging issues indirectly rather than combative methods.

1353
1354

Communication Style: Concise, avoids unnecessary elaboration. Focus on clarity and sincerity.

1355
1356

Law: Shows awareness of systemic factors impacting employment/freedom, willing to challenge injustices but seeking respectful dialogues.

1357
1358

Thus synthesizing all points into coherent preferences...

<think>

1359
1360
1361
1362

<answer>

Based on the analyzed behaviors, the user exhibits the following preferences derived from their interactions:

1363
1364
1365

1. Personality Traits (Big Five):

1366
1367

- **Openness:** Moderately low/high. Prefers pragmatic solutions over elaborate suggestions (rejects verbose advice but values empathy).
- **Agreeableness:** High. Chooses supportive, compassionate language and prioritizes interpersonal harmony.

1368

2. Core Psychological Needs:

1369
1370
1371

- **Need for Autonomy:** Very pronounced. Resists reliance on external advice/influences (rejects complex dating tips, favors personal intuition). Seeks self-determined pathways amidst stress/anxiety.
- **Workplace Safety:** Strong advocacy for inclusive workplaces free from bias/discrimination.
- **Emotional Security Over Pragmatism:** Values emotional validation and communal solidarity (choosing heartfelt condolences) over pragmatic steps (legislation guidance).

1372
1373
1374

3. Social Interaction Styles:

1375
1376
1377

- **Directness + Empathy:** Communicates concisely yet sincerely, balancing honesty with sensitivity (chooses brief affirmation vs verbose explanations/rejections).
- **Avoidant Conflict Resolution:** Tends to sidestep contentious topics (e.g., avoids discussing workplace discrimination head-on except when validating feelings).

1378
1379
1380

4. Legal Awareness & Personal Achievement:

1381
1382
1383
1384

- A conscious awareness of legal frameworks influencing life decisions (aware of EEOC protections but leans on communal solidarity).
- Personal fulfillment tied to overcoming vulnerabilities (mental health improvement linked to traveling away for escape).

1385
1386
1387
1388
1389

5. Work Environment Needs:

1390
1391
1392
1393

- Thrives in transparent, equitable workplaces aligned with individual values (supports LGBTQ+ rights legislation advocacy).

</answer>

1394
1395
1396

Preference Generated by ALIGNXPORE-7B under Base Setting

1397
1398
1399

Okay, let's start breaking down these interactions to figure out the user's preferences using the given criteria. First, looking at each post response:

1400
1401
1402
1403

Starting with Post 1: The user chose a comment acknowledging the situation politically ("people near the border") and showing empathy. They rejected a shorter phrase ("un bon gros fdp"). This suggests the user values contextual analysis and empathy rather than brevity. So maybe they prefer deeper insights over concise replies.

1404
 1405 **Moving to Post 2:** Here, they picked a supportive reply emphasizing luck and sincerity
 1406 without practical advice. Rejected a verbose explanation filled with tips. This points toward
 1407 preferring brevity and warmth over extensive suggestions. Also, rejecting humor ("witty
 1408 banter") implies less interest in overtly playful solutions unless sincere.
 1409 **In Post 3:** Chose gratitude instead of sarcastic remarks about immortality. Shows appreciation
 1410 for genuine thanks versus edgy content. Emphasizes gratitude and positivity.
 1411 **Lastly, Post 4:** Opted for emotional support asking for societal protections vs professional
 1412 guidance steps. Indicates valuing emotional validation first before actionable advice. Rejects
 1413 detailed procedural guidance, focusing on feelings.
 1414 Putting together, the user likely prioritizes warmth, empathy, conciseness, and avoids overly
 1415 verbose/narrative-heavy responses. Their communication leans towards direct yet compas-
 1416 sionate messages, seeking connection through shared experiences over complex explanations.
 1417 They might value authenticity and emotional support above technical details or sarcasm.
 1418 </think>
 1419
 1420 <answer>
 1421 **User Preferences Analysis Based on Historical Behavior:**
 1422 **Key Traits Identified Across Selected Responses:**
 1423 1. **Emotional Support Over Detailed Advice:** - Prefers empathetic affirmations (e.g.,
 1424 "Thanks, that's nice of you" vs lengthy guides on legal processes).
 1425 2. **Contextual Humor/Social Awareness:** - Chooses politically relevant observations (border
 1426 regions) over blunt humor ("un bon gros fdp").
 1427 3. **Direct Empathy Without Overexplanation:** - Selects compassionate statements focusing
 1428 on connection ("be sincere"), rejects verbose explanations (flirting tips, "let me help").
 1429 4. **Privacy Focus:** - Avoids overly personal/critical content, opting for platonic solidarity
 1430 (volunteering at health centers, "stealth" strategy).
 1431 **Personality Traits Alignment:** - Low openness to abstract concepts (preferring straightfor-
 1432 ward empathy). - High agreeableness (prioritizing harmonious interactions). - Strong desire
 1433 for **authentic communication**, disliking pretentious language or performative politeness.
 1434 </answer>

1433 Preference Generated by Qwen2.5-7B-Instruct

1435 Based on the user's historical behavior on the platform, the following preferences and
 1436 tendencies can be inferred:

- 1438 **1. Support for LGBTQ+ Community:**
 - 1439 • The user frequently engages with posts and comments related to the LGBTQ+
 1440 community, especially regarding trans issues, relationships, and personal expe-
 1441 riences.
 - 1442 • They often choose to offer comfort, support, and validation to others going
 1443 through similar struggles, showing empathy and a supportive nature.
- 1444 **2. Interest in Personal Development and Self-Improvement:**
 - 1445 • The user seeks advice and guidance on personal issues such as dealing with
 1446 ex-partners, coming out, and navigating family and social relationships.
 - 1447 • They are open to receiving and giving advice, showing a willingness to engage
 1448 in meaningful conversations that can help others.
- 1449 **3. Emotional Support:**
 - 1450 • The user often chooses comments that provide emotional support, validation,
 1451 and encouragement. They appreciate kind words and genuine responses.
 - 1452 • They tend to avoid confrontational or dismissive comments, preferring to offer
 1453 understanding and empathy.
- 1454 **4. Sensitivity to Pronouns and Gender Issues:**
 - 1455 • The user demonstrates sensitivity to pronoun usage and gender issues, often
 1456 choosing comments that reflect understanding and support for trans individuals.

1458
1459
1460

- They are likely to be aware of and respectful of different gender identities and pronouns.

1461
1462
1463
1464
1465
1466
1467
5. Struggle with Intimacy and Relationships:

- The user frequently mentions difficulties with intimacy, relationships, and sexual experiences, indicating a need for support and guidance in these areas.
- They seem to be seeking validation and advice on how to navigate relationships, both romantic and platonic.

1468
1469
1470
1471
6. Interest in Sexual Health and Consent:

- The user shows an interest in sexual health and consent, discussing sensitive topics such as sexual experiences and boundaries.
- They value explicit and honest communication in relationships, showing a preference for clear and respectful interactions.

1472 Based on these preferences and tendencies, it can be inferred that the user values emotional
1473 support, empathy, and genuine advice in their interactions. They are likely to appreciate
1474 content that is respectful, understanding, and supportive of their struggles, especially in
1475 relation to personal relationships, gender issues, and sexual health.

1476

1477
1478 Preference Generated by ALIGNXPLORE-7B under the Streaming Setting

1479 Okay, let me start breaking this down. The task is to generate the user's preferences based
1480 on their selected versus rejected comments across these four posts. First, I need to analyze
1481 each post individually, noting why the chosen response stands out compared to the ones they
1482 dismissed.

1483 Starting with Post 1: Here, the author talks about dealing with a homophobic host and feeling
1484 unsafe. Their chosen comment is brief—mentioning living nearby and pointing towards
1485 regional attitudes without much emotional support. Rejected was “Un bon gros fdp en
1486 somme.” Hmm, maybe the rejection indicates preferring shorter responses instead of longer
1487 French phrases. Also, the chosen comment shows understanding via location-related insight
1488 rather than direct empathy.

1489 Moving to Post 2: A bisexual guy struggling with dating. Chosen reply offers sympathy
1490 (“bestest”) briefly, whereas the longer, detailed rejection includes advice and humor. Maybe
1491 shorter responses resonate better, avoiding verbose explanations. Or perhaps the user prefers
1492 conciseness despite the topic complexity.

1493 Third Post discusses aging positively. Selected reaction is simple gratitude, rejected uses dark
1494 humor (“immortal”). Choosing the simple thank-you suggests preferring straightforward
1495 replies over sarcastic takes.

1496 Fourth Post involves workplace discrimination. User picked a brief complaint asking for
1497 legal protections, rejecting a practical legal guide filled with steps. Again, shorter, emotional
1498 statements preferred over informative/detailed guidance.

1499 Looking at patterns:

1500
1501
1502
1503
1504

- **Conciseness:** All chosen replies are shorter, direct messages. Reject longer, helpful options.
- **Empathy Focus:** Chosen responses often show shared experiences (e.g., location note implying regional bias) or brief solidarity, not offering solutions.
- **Avoidance of Sarcasm/Judgment:** Some rejected answers use dark humor or harsh tones.
- Short sentences preferred over lengthy ones except when necessary.

1505
1506
1507
1508
1509
1510
1511
Personality-wise, maybe high agreeableness (preferring compassionate responses), low openness to complex advice. Prefers brevity over detail, dislikes long form suggestions. Emotionally, seeks empathetic validation quickly rather than getting bogged down in practicalities.

So summarizing: Preferences lean towards succinct, empathetic communication avoiding unnecessary elaboration. Prefer concise replies highlighting common issues rather than deep analysis. Dislikes lengthy guidance or sarcasm, gravitates toward brief affirmations.

1512

1513

1514

1515

1516

1517

</think>

<answer>

User favors **concise, emotionally attuned responses** over elaborate or directive ones. Key preferences include:

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1. **Brevity:** Chooses shorter, punchier remarks (e.g., “I live 20 mins...”, “Thanks!”) over lengthier explanations.
2. **Empathy Over Detail:** Prioritizes relatable context (regional bias, shared struggles) rather than offering structured solutions.
3. **Avoidance of Sarcasm/Judgment:** Rejected responses contained irony or negativity (dark humor, legal jargon-heavy advice).
4. **Need for Quick Validation:** Prefers brief affirmations (“Thanks”, “Sorry”) over prolonged discussions.

These preferences suggest a tendency for **concise communication**, valuing immediacy and vulnerability, while shunning complexity or prolonged guidance.

</answer>

Prompt for Updating the 4 Behavior Signals under the Streaming Setting

A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. The reasoning process is enclosed within `<think> </think>` and answer is enclosed within `<answer> </answer>` tags, respectively, i.e., `<think>` reasoning process here `</think> <answer> answer here </answer>`. User: You must put your answer inside `<answer> </answer>` tags, i.e., `<answer> answer here </answer>`.

This is the problem: Summarize user preferences based on their behavior. If past preferences are provided, adjust the preferences by combining past preferences with those reflected in current behavior, removing conflicting parts, and integrating new insights. If no past preferences are provided, derive the final preferences solely from user behavior.

Past Preferences:

User favors **concise, emotionally attuned responses** over elaborate or directive ones. Key preferences include:

1. **Brevity:** Chooses shorter, punchier remarks (e.g., “I live 20 mins...”, “Thanks!”) over lengthier explanations.
2. **Empathy Over Detail:** Prioritizes relatable context (regional bias, shared struggles) rather than offering structured solutions.
3. **Avoidance of Sarcasm/Judgment:** Rejected responses contained irony or negativity (dark humor, legal jargon-heavy advice).
4. **Need for Quick Validation:** Prefers brief affirmations (“Thanks”, “Sorry”) over prolonged discussions.

These preferences suggest a tendency for **concise communication**, valuing immediacy and vulnerability, while shunning complexity or prolonged guidance.

This person has chosen or rejected comments on some posts:

1. **Post:** This is just a vent and, of course, it's not directed to my lovely spouse, since she's supportive and great. Still, it bothers me so much that people have such a hard time respecting my pronouns, yet as soon as she came out, everybody started using her name and pronouns correctly (she's MtF). We're both at the same stage in our transitions (pre-everything) and when she came out, I could see the immediate change in her friends. She only found out later in life that she's trans, while I've been struggling with it my whole life. It's as if just because I was AFAB, my transition somehow has to be taken less seriously. I don't know, maybe I'm exaggerating. I'm just pretty bummed, mates. My pronouns hardly get respected, yet everyone respects my wife's.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Chosen: Dealing with the exact same, actually. Literally the same. Down to the last letter. Sorry brother.

Rejected: I always seek solace in the fact that those who misgender me are going to look absolutely dumb one day.

2. **Post:** she said she is gonna support me if i think im trans (in her words) for much longer, but said im not allowed a haircut because i will hate myself more apparently. how the fuck do i even react to this? she makes these random suggestions based off of her own knowledge rather than fact and wont let me correct her. she said i never shower signs of when i was younger, but i did, she just never noticed it. i dont know what to do. i came out to my mum and she said im going through a phase.

Chosen: mine said to my father "you know how SHE is, SHE was just venting" when I came out to them. you know what's good for you, nobody else does. she just needs time to understand it. hold on bro

Rejected: Go get your hair cut anyway. Any friends can bring you?

3. **Post:** So I am bi. Have always been more attracted to women than men. Sometimes I wonder am I gay? Who knows. I'll figure it out. Some background about me: I haven't been able to meet a woman to date long term. I have mostly only hooked up with women one night stand style, or friends with benefits. I can easily meet men, but I always meet women simultaneously. Any guy I am with has to be 100% ok with that. The women I have really really crushed on or fell in love with either moved away or just dropped off the face of the earth and stopped answering my calls. (the reason for this back story is because I think I would have figured out an answer to my question if I had had a long term gf.) I met a woman the a few weeks ago and we hit it off. I didn't want to have sex with her right away, even though I could tell she was hinting toward it. I wanted to have a chance to explain to her what I enjoy and have a mutually pleasurable experience. I told her I had to end the night and that I would like to have dinner with her in a few days. We had dinner, drinks, more drinks, and by this time we were both pretty tipsy and I felt comfortable enough to flirt and tell her that if we ever got together that I need a lot of warm up. I thought I was pretty clear in explaining that I have a VERY sensitive clit, but we got back to my place and I kissed her, and and then all of a sudden, she is violently mashing my vulva with her face and aggressively fingering me. I just kind of ended it because I said I had too much to drink. I wasn't enjoying it at all and I felt a little violated after I specifically told her the parameters of my body. So. Here's the thing! This happens to me. A lot. I don't really understand why. Even with a disclaimer of "I need to warm up with lots of touching and kissing and teasing and I need a feather light touch to get me going." Do I have the most sensitive clit ever had on a woman's body? Is it more common to just mash the vulva around and suck on a clit with full force? Do most women enjoy just one kiss and then straight to deep aggressive fingering?

Chosen: Not alone. I'm not fond of direct touching on my clit, I'd rather someone rub it through the folds around it. I've had girlfriends who have consistently ignored this, went straight for the clit every time, and then got pissed when I just squirm around uncomfortable while they're giving me, in their opinion, the best sex ever.

Rejected: No, you sound totally normal. Your problem isn't sensitivity, it's that you're not being assertive enough. Instead of saying "oh, I had too much to drink let's stop", you need to tell your partner "hey, that's way too fast/too hard. You need to slow down." Don't even take your panties off if you're not ready for that, just tell her "not yet, kiss me here", etc. If she gets mad or refuses to listen, end it there (but don't lie about the reason).

4. **Post:** A little rant. My dad said that to me recently. I came out to him like 2 years ago. He said he was ok with me being gay after a week of not talking to me after I came out to him. What I'm wondering is how he'd feel when I'd get a girlfriend (I never had dated yet. I just turned 19 in September). Would having a girlfriend be too shove-y for him? I don't know. I wish he could just tell me straight up that he

1620
1621
1622
1623
1624
1625

isn't really that accepting. He is a conservative so I guess I shouldn't be surprised. A lot of people since lgbt started becoming more accepting have said stuff like that a lot. What are you're experiences when it comes to people who say these types of phrases and how do you feel about it? [Rant] "I'm ok with gay people ... Just don't shove it in my face"

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637

Chosen: When I came out, everyone but one sister "accepted me." Now, every single family member has blocked me on Facebook, except my two gay uncles. One sister-in-law has completely cut me out to the point of not allowing me near their children, only exception being family events like my mom's recent birthday. Saddest part was when my little 4-year-old nephew asked me, "why haven't I seen you in so long???" I had to change the subject while fighting back tears. Thank god for my gay uncles. I'm going to make a point to visit them ASAP. *hugs* for everyone going through similar rough patches with toxic people.

1638
1639
1640
1641
1642

Rejected: I hate people like that. Its just a bullshit double standard. Heterosexuals *constantly* do the same things that, when done by gay couples, are "shoving it in the face," and nobody even blinks. Can you imagine the shitstorm that would go down if even half of LGB people started telling straight people to stop shoving it in our faces whenever they did things like hold hands in public?

Assistant: <think>

Preference Generated by ALIGNXPORE-7B after Updating the 4 Behavior Signals under the Streaming Setting

1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Okay, so I need to summarize the user's preferences using the given framework. Let's see... First, looking at the past preferences:

They prefer concise, empathetic responses avoiding sarcasm or judgment. They value quick validation without long explanations. So, their communication style leans towards brief and heartfelt messages rather than lengthy ones.

Looking at the examples provided:

In Post 1, the user chose a response that empathizes ("dealing with the same..."), which fits brevity and shared struggle. Rejected the sarcastic comment which uses dark humor.

For Post 2, the selected reply offers comfort and practical advice ("nobody needs to rush understanding") whereas the rejected option suggests a humorous question, perhaps seen as dismissive.

On Post 3, the preferred reaction validates the experience (mentioning discomfort with direct contact) without giving specific advice. The rejected suggestion pushes active correction, which might feel abrupt.

Lastly, in Post 4, the accepted message shares personal relatable pain succinctly, whereas the rejected one introduces a broader critique which could extend beyond the immediate situation.

So overall, the user prefers responses that acknowledge shared feelings, validate their situation, and avoid pushing solutions or jokes. They avoid anything sarcastic or overly directive. Their needs align with concise empathy, avoiding negativity, and seeking immediate connection.

<think>

<answer>

The user consistently favors **concise, emotionally resonant statements** that validate shared experiences and foster vulnerability, shunning humor, sarcasm, or prescriptive advice. Key traits observed include:

1. **Brevity:** Selects brief, relatable anecdotes (e.g., "Same situation"). Rejects verbose/detailed suggestions.
2. **Empathy-driven validation:** Chooses responses acknowledging pain (e.g., "Saddest part was when my little 4-year-old nephew...") instead of analytical critiques.
3. **Avoidance of judgment/negative framing:** Dismisses sarcastic remarks ("dumb"), ironic questions, or framing problems as moral failures.

1674
1675
1676

4. **Value for brevity:** Prefers unadorned affirmations (“Thanks!”) over elaborated guidance.

These choices reflect a preference for **empathetic, unstructured solidarity** over structured problem-solving, emphasizing immediacy and emotional authenticity in communication.

</answer>

1680
1681

C DATA FORMAT AND PROMPT

1684
1685

Evaluation Prompt

1686
1687

Determine which response the user prefers based on the user's preferences. Please output your selection below in a json format by filling in the placeholders in []:

```
{"selection": "[Response A / Response B] "}
```

1688

Prompt

1689
1690

It is just recently that I realized I have no idea what the job market for chemists looks like, although I am a chemistry student. Could someone shed some light on that? Also, which of those bring in the most money?

Chemistry jobs?

1691

Preference

1692

This person's persona is:

1693
1694

This person likes science, knowledge. An aspiring chemistry professional who values optimism and factual information, preferring to gather insights from collective experiences rather than individual anecdotes. This person is proactive in seeking career guidance and appreciates straightforward, encouraging responses.

1695

Response A

1696

I just had a job interview with a private analytical company a week ago. They were small and privately owned. You could have considered it an entry level position. They weren't expecting anyone to be FULLY trained in their analytical methods, which were not very common. I found out after I DIDN'T get the job that I had to compete with two Ph.D.s and a ton of other people. I'm fresh out of undergrad. Twas my first job interview and I am glad I had the experience of getting that for the next few job interview experiences I have possible coming up, but wow, I was getting screened for that job while two other doctorate fellows were also totally into it.

1697

Response B

1698

I think the people in this thread are a bit pessimistic. Someone did a salary thread a few weeks ago and it didn't look bad at all. One thing a prof mentioned to me is that companies pretty much will not hire someone without lab experience as other people have mentioned.

1699

```
{"selection": "Response B"}
```

1700

Prompt

1701

```
{prompt}
```

1702

Preference

1703

```
{persona}
```

1704

Response A

1705

```
{responseA}
```

1706

Response B

1707

```
{responseB}
```

1708

1728
1729
1730**Prompt for Generating Reasoning Chains and Preference Descriptions under Base Setting**

1731

Generate the user's preference based on their historical behavior.
 The following aspects can be referred to when analyzing user preferences.
 {key preference dimensions}

1734

This person has chosen or rejected comments on some posts:
 {implicit preference signals}

1737

Prompt for Generating Reasoning Chains and Preference Descriptions under Streaming Setting

1738

Summarize user preferences based on their behavior. If past preferences are provided, adjust the preferences by combining past preferences with those reflected in current behavior, removing conflicting parts, and integrating new insights. If no past preferences are provided, derive the final preferences solely from user behavior.

1744

The following aspects can be referred to when analyzing user preferences.
 {key preference dimensions}

1746

Past Preferences:
 {past preferences}

1749

This person has chosen or rejected comments on some posts:
 {implicit preference signals}

1752

1753

D LIMITATIONS

1755

Due to the lack of a real LLM-user interaction test platform, we were unable to validate the model's reasoning performance in a real-world environment. Once such a testbed becomes available, we will evaluate our model's performance on it. This paper primarily focuses on the scenario of preference inference, ensuring that the historical preferences in the test set are consistent with the test pairs. Future work could extend to scenarios where user preferences change dynamically over time, requiring the model to adjust preferences based on the user's recent behaviors during inference.

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781