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Abstract. In this work, we propose a learning-based framework for un-
supervised and end-to-end learning of diffeomorphic image registration.
Specifically, the proposed network learns to produce and integrate time-
dependent velocity fields in an LDDMM setting. The proposed method
guarantees a diffeomorphic transformation and allows the transforma-
tion to be easily and accurately inverted. We also showed that, without
explicitly imposing a diffeomorphism, the proposed network can provide
a significant performance gain while preserving the spatial smoothness
in the deformation. The proposed method outperforms the state-of-the-
art registration methods on two widely used publicly available datasets,
indicating its effectiveness for image registration. The source code of this
work is available at: https://bit.ly/3EtYUFN.
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1 Introduction

Deformable image registration functions by establishing the spatial correspon-
dence between the moving and the fixed images. Traditionally, image registra-
tion has been accomplished by optimizing a pair-wise objective function iter-
atively [3, 5, 9, 18]. Over the last decade, deep learning has emerged as a ma-
jor area of research in the field of medical image analysis, including registra-
tion [4, 7, 8, 12, 15, 16, 20]. Learning-based registration models optimize a global
functional for a dataset during training, thereby obviating the time-consuming
and computationally expensive per-image optimization during inference.

Diffeomorphic image registration is appealing in many medical imaging ap-
plications, owing to its properties like topology preservation and transformation
invertibility. A diffeomorphic transformation can be achieved via the time inte-
gration of sufficiently smooth time-stationary [1,2, 11] or time-dependent veloc-
ity fields [3,5]. Almost all existing end-to-end learning-based registration models
adopt stationary velocity fields because of their ease of implementation and rel-
atively low computational cost [8,15,16]. In this work, however, we demonstrate
how time-dependent velocity fields can be efficiently incorporated into an end-
to-end deep neural network framework, which results in diffeomorphisms (an
illustrative example is shown in Fig. 1) and improved registration performance.

https://bit.ly/3EtYUFN
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Fig. 1. Inversion and composition of the deformation fields using the proposed method.
A neural network learns to generate time-dependent velocity fields for 8 time-steps.

2 Background on LDDMM

In the LDDMM setting [5], the transformation ϕt is computed as the flow of
a time-dependent velocity field vt, specified by the ODE: dϕ

dt = vt(ϕt) with t ∈
[0, 1]. The final transformation at t = 1 is gained by integrating the velocity fields

in time: ϕ1 = ϕ0 +
∫ 1

0
vt(ϕt)dt with ϕ0 = Id. Then, the optimal transformation

is formulated as a variational problem of the form:

v∗ = argmin
v

(
λ

∫ 1

0

∥vt∥2V dt+ ∥I0 ◦ ϕ1 − I1∥2L2

)
, (1)

where ∥ · ∥L2 denotes the standard L2-norm, ∥f∥V = ∥Lf∥L2 and L is a differ-
ential operator of the type (−α∆ + γ)βId with β > 1.5, and I0 and I1 are the
moving and fixed images, respectively. With sufficiently smooth v, a dffieomor-
phism is guaranteed in this setting.

3 Methods

In this work, a neural network was used to generate velocity fields with a pre-
determined discretized number of time-steps, specified by N (as shown in Fig.
2). Then, the field integration layer integrates the generated velocity fields to

form the transformation at the end-point, i.e., ϕ1 ≈ Id +
∑N

t=1 vt ◦ ϕt, and

the inverse transformation ϕ−1 is computed as Id−
∑N

t=1 vt ◦ ϕt. The proposed
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Fig. 2. Network architecture. The network integrates N time-steps of velocity fields
to form a final deformation field. Note that skip connections and activation functions
were omitted for visualization.

network may be trained self-supervisedly, end-to-end, using moving and fixed
image pairs. We chose our previously developed TransMorph [6] (denoted as
TM) as the base network since it showed state-of-the-art performance on several
datasets. However, we underline that the proposed method is not architecture-
specific and can readily be integrated into any architecture. The loss function
was derived from Eqn. 1 with an additional term to account the available label
map information:

L(v, I0, I1) =
∑
t

∥Lvt∥2L2 + ∥I0 ◦ ϕ1 − I1∥2L2 +
1

M

∑
m

∥Sm
0 ◦ ϕ1 − Sm

1 ∥2L2 , (2)

where S0 and S1 denote the M -channel label maps of the moving and fixed
images, respectively, where each channel corresponds to the label map of an
anatomical structure. We denote the model trained using this loss function as
TM-TVFLDDMM.

As a consequence of imposing a diffeomorphic transformation, excessive reg-
ularization may lead to a suboptimal registration accuracy measured by im-
age similarity or segmentation overlap. Here, we demonstrate that by integrat-
ing time-dependent velocity fields, we could implicitly enforce transformation
smoothness and improve performance without explicitly imposing a diffeomor-
phism. In this setting, we used a diffusion regularizer to regularize only the
velocity field at the end-point:

L(v, I0, I1) = ∥∇v1∥2L2 +NCC(I0 ◦ ϕ1, I1) +Dice(S0 ◦ ϕ1, S1), (3)

where ∇v is the spatial gradient operator applied to v, NCC(·) denotes nor-
malized cross-correlation, and Dice(·) denotes Dice loss. We denote the model
trained using this loss function as TM-TVF.

4 Experiments and Results

We validated the proposed method using two publicly available datasets, one in
2D and one in 3D. The 2D dataset is the Radboud Faces Database (RaFD) [13],
and it comprises eight distinct facial expression images for each of 67 subjects.
We randomly divided the subjects into 53, 7, and 7 subjects, and used face
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VM-2 [4] VM-diff [8] CycleMorph [12] TM [6] TM-TVFLDDMM TM-TVF
SSIM 0.858±0.038 0.805±0.044 0.875±0.038 0.899±0.035 0.829±0.049 0.910±0.028
FSIM 0.669±0.039 0.613±0.041 0.687±0.042 0.716±0.043 0.620±0.053 0.734±0.033

% of |Jϕ| ≤ 0 0.008±0.008 <0.001 0.001±0.002 0.002±0.002 <0.001 <0.001

Table 1. SSIM [19] and FSIM [21] comparisons between the proposed method and the
others on the RaFD dataset.

Validation Test
Dice SDlogJ HdDist95 Dice SDlogJ HdDist95

ConvexAdam [17] 0.846±0.016 0.067±0.005 1.500±0.304 0.81 0.07 1.63
LapIRN [16] 0.861±0.015 0.072±0.007 1.514±0.337 0.82 0.07 1.67

TM [6] 0.862±0.014 0.128±0.021 1.431±0.282 0.820 0.124 1.656

TM-TVFLDDMM 0.833±0.016 0.090±0.005 1.630±0.353 - - -
TM-TVF 0.869±0.014 0.094±0.018 1.396±0.297 0.824 0.090 1.633

Table 2. Validation and test results for the OASIS dataset from the 2021 Learn2Reg
challenge [10]. The validation results came from the challenge’s leaderboard, whereas
the test results came directly from the challenge’s organizers.

images of subjects glancing in the direction of the camera. A total of 2968, 392,
and 392 image pairs were used for training, validation, and testing. The images
were cropped then resized into 256× 256. The 3D dataset is the OASIS dataset
[14] obtained from the 2021 Learn2Reg challenge [10]. This dataset comprises a
total of 451 brain T2 MRI images, with 394, 19, and 38 images being used for
training, validation, and testing, respectively. We trained the proposed method
for 500 epochs using a learning rate of 1e−4. The number of time-steps, N , was
empirically set to 8. We set α = 0.01, γ = 0.01, and β = 2 for RaFD dataset,
and α = 0.01, γ = 0.001, and β = 2 for OASIS dataset. Note that due to the
absence of segmentation in the RaFD dataset, the segmentation losses in Eqns.
1 and 2 were omitted.

Table 1 and 2 show quantitative results of the proposed models on the
RaFD and OASIS datasets. On both datasets, the proposed TM-TVF yielded
the highest performance against all other methods, including the first-ranking
method (LapIRN [16]) from the Learn2Reg challenge. Specifically, TM-TVF
outperformed its base network TM in image similarity and segmentation over-
lap on the two datasets, with p values < 0.0001 from paired t-tests. Although,
a diffeomorphism was not explicitly guaranteed in TM-TVF, it still produced
much smoother transformations than TM and VM measured by SDlogJ and the
percentage of non-positive Jacobian determinant. On the other hand, although
TM-TVFLDDMM guarantees a diffeomorphic transformation (as shown in Fig.
1, 3, and 4), it results in relatively poor registration performance, which is most
likely owing to the excessive regularization imposed on the transformation.

5 Conclusion

In conclusion, we have proposed a learning-based framework for learning to gen-
erate time-dependent velocity fields in the LDDMM setting. The quantitative
results show that the framework outperformed state-of-the-art registration mod-
els, indicating the effectiveness of the proposed method. Moreover, the proposed
method is not architecture-specific and may be easily incorporated to improve
registration performance in any network architecture.
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Appendix A. Additional qualitative Results

Fig. 3. Qualitative comparisons of the deformation field smoothness. TM yielded a de-
formation field with noticeable folded voxels, but TM-TVF generated a smoother field
with state-of-the-art registration accuracy (as seen in Tables 1 and 2). TM-TVFLDDMM

generated a highly regularized deformation field with nearly no visible folded voxels.

Fig. 4. Qualitative comparisons of facial expression registration. TM-TVFLDDMM pro-
duced a smooth and invertible transformation, but all other transformations were not.
Additionally, TM-TVF yielded the best qualitative results for both forward and back-
ward registration. Note that the transformation inversions for VM-2, CycleMorph, and
TM were approximated using Id− u, where u denotes the displacement field.
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