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Abstract

The Indexed Minimum Empirical Divergence (IMED) algorithm is a highly ef-
fective approach that offers a stronger theoretical guarantee of the asymptotic
optimality compared to the Kullback–Leibler Upper Confidence Bound (KL-UCB)
algorithm for the multi-armed bandit problem. Additionally, it has been observed to
empirically outperform UCB-based algorithms and Thompson Sampling. Despite
its effectiveness, the generalization of this algorithm to contextual bandits with
linear payoffs has remained elusive. In this paper, we present novel linear versions
of the IMED algorithm, which we call the family of LinIMED algorithms. We
demonstrate that LinIMED provides a Õ(d

√
T ) upper regret bound where d is

the dimension of the context and T is the time horizon. Furthermore, empirical
studies reveal that LinIMED and its variants outperform widely-used linear bandit
algorithms such as LinUCB and Linear Thompson Sampling in some regimes.

1 Introduction

The multi-armed bandit (MAB) problem (Lattimore & Szepesvári (2020)) is a classical topic in
decision theory and reinforcement learning. Among the various subfields of bandit problems, the
stochastic linear bandit is the most popular area due to its wide applicability in large-scale, real-world
applications such as personalized recommendation systems (Li et al. (2010)), online advertising,
and clinical trials. In the stochastic linear bandit model, at each time step t, the learner has to
choose one arm At from the time-varying action set At. Each arm a ∈ At has a corresponding
context xt,a ∈ Rd, which is a d-dimensional vector. By pulling the arm a ∈ At at time step t, under
the linear bandit setting, the learner will receive the reward Yt,a, whose expected value satisfies
E[Yt,a|xt,a] = ⟨θ∗, xt,a⟩, where θ∗ ∈ Rd is an unknown parameter. The goal of the learner is to
maximize his cumulative reward over a time horizon T , which also means minimizing the cumulative
regret, defined as RT := E

[∑T
t=1 maxa∈At

Yt,a − Yt,At

]
. The learner needs to balance the trade-off

between the exploration of different arms (to learn their expected rewards) and the exploitation of the
arm with the highest expected reward based on the available data. When the action set At is varying
over time but finite (i.e., |At| < ∞), we term this setting as the stochastic linear bandit with finite but
varying arm setting, and this is the setting this paper focused on.

1.1 Motivation and Related Work

The K-armed bandit setting is a special case of the linear bandit. There exist several good algorithms
such as UCB1 (Auer et al. (2002)), Thompson Sampling (Agrawal & Goyal (2012)), and the Indexed
Minimum Empirical Divergence (IMED) algorithm (Honda & Takemura (2015)) for this setting.
There are three main families of asymptotically optimal multi-armed bandit algorithms based on
different principles (Baudry et al. (2023)). However, among these algorithms, only IMED lacks an
extension for contextual bandits with linear payoff. In the context of the varying arm setting of the
linear bandit problem, the LinUCB algorithm in Li et al. (2010) is frequently employed in practice. It
has a theoretical guarantee on the regret in the order of O(d

√
T log(T )) using the confidence width as

in OFUL (Abbasi-Yadkori et al. (2011)). Although the SupLinUCB algorithm introduced by Chu et al.
(2011) uses phases to decompose the reward dependence of each time step and achieves an Õ(

√
dT )

(the Õ(·) notation omits logarithmic factors in T ) regret upper bound, its empirical performance falls
short of both the algorithm in Li et al. (2010) and the Linear Thompson Sampling algorithm (Agrawal
& Goyal (2013)) as mentioned in Lattimore & Szepesvári (2020, Chapter 22).
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Problem indepen-
dent regret bound

Efficient for large
finite arm sets?

Regret bound in-
dependent of K?

Principle that the algo-
rithm is based on

OFUL (Abbasi-Yadkori et al. (2011)) O(d
√

T log(T )) ✗ ✓ Optimism
LinUCB (Li et al. (2010)) Difficult to analyze Not Applicable Unknown Optimism
LinTS (Agrawal & Goyal (2013)) O(d 3

2
√

T ) ∧
O(d

√
T log(K))

✓ ✓ Posterior sampling

SupLinUCB (Chu et al. (2011)) O(
√

dT log3(KT )) ✓ ✗ Optimism
LinUCB with OFUL’s confidence
bound

O(d
√

T log(T )) ✓ ✓ Optimism

LinIMED-3 (this paper) O(d
√

T log(T )) ✓ ✓ Min. empirical divergence

Table 1: Comparison of algorithms for linear bandits with finite, varying arm sets

On the other hand, the Optimism in the Face of Uncertainty Linear (OFUL) bandit algorithm in
Abbasi-Yadkori et al. (2011) achieves a regret upper bound of Õ(d

√
T ) through an improved analysis

of the confidence bound using a martingale technique. However, it involves a bilinear optimization
problem over the action set and the confidence ellipsoid when choosing the arm at each time. This is
computationally expensive, unless the confidence ellipsoid is a convex hull of a finite set.

For randomized algorithms designed for the linear bandit problem, Agrawal & Goyal (2013) proposed
the LinTS algorithm, which is in the spirit of Thompson Sampling (Thompson (1933)) and the
confidence ellipsoid similar to that of LinUCB-like algorithms. This algorithm performs efficiently
and achieves a regret upper bound of O(d 3

2
√

T ∧ d
√

T log K), where K is the number of arms at
each time step such that |At| = K for all t. Compared to LinUCB with OFUL’s confidence width, it
has an extra O(

√
d ∧

√
log K) term for the minimax regret upper bound.

Recently, MED-like (minimum empirical divergence) algorithms have come to the fore since these
randomized algorithms have the property that the probability of selecting each arm is in closed form,
which benefits downstream work such as offline evaluation with the inverse propensity score. Both
MED in the sub-Gaussian environment and its deterministic version IMED have demonstrated superior
performances over Thompson Sampling (Bian & Jun (2021), Honda & Takemura (2015)). Baudry
et al. (2023) also shows MED has a strong relationship with Thompson Sampling. In particular, it is
argued that MED and TS can be interpreted as two variants of the same exploration strategy. Bian &
Jun (2021) also shows that probability of selecting each arm of MED in the sub-Gaussian case can be
viewed as a closed-form approximation of the same probability as in Thompson Sampling. We take
inspiration from the extension of Thompson Sampling to linear bandits and thus are motivated to
extend MED-like algorithms to the linear bandit setting and prove regret bounds that are competitive
vis-à-vis the state-of-the-art bounds.

Thus, this paper aims to answer the question of whether it is possible to devise an extension of the
IMED algorithm for the linear bandit problem in the finite and varying arm setting with a regret upper
bound of O(d

√
T log T ) which matches LinUCB with OFUL’s confidence bound while being as

efficient as LinUCB. The proposed algorithm, called LinIMED, can be viewed as a generalization of
the IMED algorithm (Honda & Takemura (2015)) to the linear bandit setting. We prove that LinIMED
and its variants achieve a regret upper bound of Õ(d

√
T ) and they perform efficiently, no worse than

LinUCB. Moreover, in our empirical study, we found that the different variants of LinIMED perform
even better than LinUCB and LinTS for the synthetic and real-world instances under consideration.

Compared to OFUL, LinIMED works more efficiently. Compared to SupLinUCB, our algorithm
is significantly simpler, and compared to LinUCB with OFUL’s confidence bound, our empirical
performance is better. This is because in our algorithm, the exploitation term and exploration term are
independent and this leads to a finer control while tuning the hyperparameters in the empirical study.

Finally, compared to LinTS, our algorithm’s (specifically LinIMED-3) regret bound is superior, by an
order of O(

√
d ∧

√
log K). Since fixed arm setting is a special case of finite varying arm setting,

our result is more general than other fixed-arm linear bandit algorithms like Spectral Eliminator
(Valko et al. (2014)) and PEGOE (Lattimore & Szepesvári (2020, Chapter 22)). We summarize the
comparisons of LinIMED to other linear bandit algorithms in Table 1.
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2 Problem Statement
Notations: For any d dimensional vector x ∈ Rd and a d × d positive definite matrix A, we use
∥x∥A to denote the Mahalanobis norm

√
x⊤Ax. We use a ∧ b (resp. a ∨ b) to represent the minimum

(resp. maximum) of two real numbers a and b.

The Stochastic Linear Bandit Model: In the stochastic linear bandit model, the learner chooses
an arm At at each round t from the arm set At = {at,1, at,2, . . . , at,K} ⊆ R, where we assume the
cardinality of each arm set At is fixed to be a constant such that |At| = K for all t ≥ 1. Each arm
a ∈ At at time t has a corresponding context xt,a, which is known to the learner. After choosing arm
At, the environment reveals the reward

Yt = ⟨θ∗, Xt⟩ + ηt

to the learner where Xt := xt,At
is the corresponding context of the arm At, θ∗ ∈ Rd is

an unknown coefficient of the linear model, ηt is an R-sub-Gaussian noise conditioned on
{A1, A2, . . . , At, Y1, Y2, . . . , Yt−1} such that for any λ ∈ R, almost surely,

E [exp(ληt) | A1, A2, . . . , At, Y1, Y2, . . . , Yt−1] ≤ exp
(λ2R2

2

)
.

Denote a∗
t := arg maxa∈At

⟨θ∗, xt,a⟩ as the arm with the largest reward at time t. The goal of the
learner is to minimize the expected cumulative regret over the horizon T . The (expected) cumulative
regret is defined as

RT = E

[
T∑

t=1
⟨θ∗, xt,a∗

t
⟩ − ⟨θ∗, Xt⟩

]
.

Assumption 1. For each time t, we assume that ∥Xt∥ ≤ L, and ∥θ∗∥ ≤ S for some fixed L, S > 0.
We also assume that ∆t,b := maxa∈At

⟨θ∗, xt,a⟩ − ⟨θ∗, xt,b⟩ ≤ 1 for each arm b ∈ At and time t.

3 Description of LinIMED Algorithms
In the pseudocode of Algorithm 1, for each time step t, in Line 4, we use the improved confidence
bound of θ∗ as in Abbasi-Yadkori et al. (2011) to calculate the confidence bound βt−1(γ). After that,
for each arm a ∈ At, in Lines 7 to 8, the empirical gap between the highest empirical reward and the
empirical reward of arm a is estimated as

∆̂t,a =
{

maxj∈At
⟨θ̂t−1, xt,j⟩ − ⟨θ̂t−1, xt,a⟩ if LinIMED-1,2

maxj∈At
UCBt(j) − UCBt(a) if LinIMED-3

Then, in Lines 10 to 12, with the use of the confidence width of βt−1(γ), we can compute the
index It,a for the empirical best arm a = arg maxj∈At

µ̂t,a (for LinIMED-1,2) or the highest UCB
arm a = arg maxj∈At

UCBj(a) (for LinIMED-3). The different versions of LinIMED encourage
different amounts of exploitation. For the other arms, in Line 14, the index is defined and computed as

It,a =
∆̂2

t,a

βt−1(γ)∥xt,a∥2
V −1

t−1

+ log 1
βt−1(γ)∥xt,a∥2

V −1
t−1

.

Then with all the indices of the arms calculated, in Line 17, we choose the arm At with the minimum
index such that At = arg mina∈At

It,a (where ties are broken arbitrarily) and the agent receives
its reward. Finally, in Lines 19 to 21, we use ridge regression to estimate the unknown θ∗ as θ̂t

and update the matrix Vt and the vector Wt. After that, the algorithm iterates to the next time step
until the time horizon T . From the pseudo-code, we observe that the only differences between the
three algorithms are the way that the square gap, which plays the role of the empirical divergence,
is estimated and the index of the empirically best arm. The latter point implies that we encourage
the empirically best arm to be selected more often in LinIMED-2 and LinIMED-3 compared to
LinIMED-1; in other words, we encourage more exploitation in LinIMED-2 and LinIMED-3. Similar
to the core spirit of IMED algorithm Honda & Takemura (2015), the first term of our index It,a for
LinIMED-1 algorithm is ∆̂2

t,a/(βt−1(γ)∥xt,a∥2
V −1

t−1
), this is the term controls the exploitation, while

the second term − log(βt−1(γ)∥xt,a∥2
V −1

t−1
) controls the exploration in our algorithm.
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Algorithm 1 LinIMED-x for x ∈ {1, 2, 3}
1: Input: Dimension d, Regularization parameter λ, Bound S on ∥θ∗∥, Sub-Gaussian parameter R,

Concentration parameter γ of θ∗, Bound L on ∥xt,a∥ for all t ≥ 1 and a ∈ At, Constant C ≥ 1.
2: Initialize: V0 = λId×d, W0 = 0d×1(all zeros vector with d dimensions), θ̂0 = V −1

0 W0
3: for t = 1, 2, . . . T do
4: Receive the arm set At and compute βt−1(γ) = (R

√
d log( 1+(t−1)L2/λ

γ ) +
√

λS)2.
5: for a ∈ At do
6: Compute:
7: µ̂t,a = ⟨θ̂t−1, xt,a⟩ and ∆̂t,a = maxj∈At

µ̂t,j − µ̂t,a (LinIMED-1, 2)
8: UCBt(a) = ⟨θ̂t−1, xt,a⟩ +

√
βt−1(γ)∥xt,a∥V −1

t−1
and

∆̂t,a = maxj∈At
UCBt(j) − UCBt(a) (LinIMED-3)

9: if a = arg maxj∈At
µ̂t,a (LinIMED-1,2) or a = arg maxj∈At

UCBt(a) (LinIMED-3)
then

10: It,a = − log(βt−1(γ)∥xt,a∥2
V −1

t−1
) (LinIMED-1)

11: It,a = log T ∧ (− log(βt−1(γ)∥xt,a∥2
V −1

t−1
)) (LinIMED-2)

12: It,a = log C

maxa∈At ∆̂2
t,a

∧ (− log(βt−1(γ)∥xt,a∥2
V −1

t−1
)) (LinIMED-3)

13: else
14: It,a = ∆̂2

t,a

βt−1(γ)∥xt,a∥2
V

−1
t−1

− log(βt−1(γ)∥xt,a∥2
V −1

t−1
)

15: end if
16: end for
17: Pull the arm At = arg mina∈At

It,a (ties are broken arbitrarily) and receive its reward Yt.
18: Update:
19: Vt = Vt−1 + XtX

⊤
t

20: Wt = Wt−1 + YtXt

21: θ̂t = V −1
t Wt

22: end for

3.1 Relation to the IMED algorithm of Honda & Takemura (2015)
The IMED algorithm is a deterministic algorithm for the K-armed bandit problem. At each time step
t, it chooses the arm a with the minimum index

a = arg min
i∈[K]

Ti(t)Dinf(F̂i(t), µ̂∗(t)) + log Ti(t), (1)

where Ti(t) =
∑t−1

s=1 1 {At = a} is the total arm pulls of the arm i until time t and Dinf(F̂i(t), µ̂∗(t))
is some divergence measure between the empirical distribution of the sample mean for arm i and
the arm with the highest sample mean. More precisely, Dinf(F, µ) := infG∈G:E(G)≤µ D(F ||G) and
G is the family of distributions supported on (−∞, 1]. As shown in Honda & Takemura (2015), its
asymptotic bound is even better than KL-UCB (Garivier & Cappé (2011)) algorithm and can be
extended to semi-bounded support models such as G. Also, this algorithm empirically outperforms
the Thompson Sampling algorithm as shown in Honda & Takemura (2015). However, the linear
extension of IMED algorithm was, prior to our work, still unknown. In our design of LinIMED
algorithm, we replace the optimized KL-divergence measure in IMED in Eqn. (1) with the squared
gap between the sample mean of the arm i and the arm with the maximum sample mean. This choice
simplifies our analysis and does not adversely affect the regret bound. On the other hand, we view
the term 1/Ti(t) as the variance of the sample mean of arm i at time t; then in this spirit, we use
βt−1(γ)∥xt,a∥2

V −1
t−1

as the variance of the sample mean (which is ⟨θ̂t−1, xt,a⟩) of arm a at time t.

4 Theorem Statements
Theorem 1. Under Assumption 1, the assumption that ⟨θ∗, xt,a⟩ ≥ 0 for all t ≥ 1 and a ∈ At, and
the assumption that

√
λS ≥ 1, the regret of the LinIMED-1 algorithm is upper bounded as follows:

RT ≤ O
(
d
√

T log
3
2 (T )

)
.
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A proof sketch of Theorem 1 is provided in Section 5.

Theorem 2. Under Assumption 1, and the assumption that
√

λS ≥ 1, the regret of the LinIMED-2
algorithm is upper bounded as follows:

RT ≤ O
(
d
√

T log
3
2 (T )

)
.

Theorem 3. Under Assumption 1, the assumption that
√

λS ≥ 1, and that C in Line 12 is a constant,
the regret of the LinIMED-3 algorithm is upper bounded as follows:

RT ≤ O
(
d
√

T log(T )
)
.

The upper bounds on the regret of LinIMED and its variants are all of the form Õ(d
√

T ), which,
ignoring the logarithmic term, is the same as OFUL algorithm (Abbasi-Yadkori et al. (2011)). The
bounds have a gap of

√
d compared to the lower bound in Chu et al. (2011). Compared to LinTS, it

has an advantage of O(
√

d ∧
√

log K). Also, these upper bounds do not dependent on the number
of arms K, which means it can be applied to linear bandit problems with a large but finite arm
set. One observes that LinIMED-2 and LinIMED-3 do not require the additional assumption that
⟨θ∗, xt,a⟩ ≥ 0 for all t ≥ 1 and a ∈ At to achieve the Õ(d

√
T ) upper regret bound. It is difficult to

prove the regret bound for the LinIMED-1 algorithm without this assumption since in our proof we
need to use that ⟨θ∗, Xt⟩ ≥ 0 for any time t to bound the F1 term. On the other hand, LinIMED-2
and LinIMED-3 encourage more exploitations in terms of the index of the empirically best arm
at each time without adversely influencing the regret bound; this will accelerate the learning with
well-preprocessed datasets. The regret bound of LinIMED-3, in fact, matches that of LinUCB with
OFUL’s confidence bound. In the proof, we will extensively use a technique known as the “peeling
device” (Lattimore & Szepesvári, 2020, Chapter 9). This analytical technique, commonly used in
the theory of bandit algorithms, involves the partitioning of the range of some random variable into
several pieces, then using the basic fact that P(A ∩ (∪∞

i=1Bi)) ≤
∑∞

i=1 P(A ∩ Bi), we can utilize the
more refined range of the random variable to derive desired bounds.

5 Proof Sketch of Theorem 1
We choose to present the proof sketch of Theorem 1 since it contains the main ingredients. Before
presenting the proof, we introduce the following lemma and corollary.

Lemma 1. (Abbasi-Yadkori et al. (2011, Theorem 2)) Under Assumption 1, for any time step t ≥ 1
and any γ > 0, we have

P
(
∥θ̂t−1 − θ∗∥Vt−1 ≤

√
βt−1(γ)

)
≥ 1 − γ.

This lemma illustrates that the true parameter θ∗ lies in the ellipsoid centered at θ̂t−1 with high
probability, which also states the width of the confidence bound.

The second is a corollary of the elliptical potential count lemma in Abbasi-Yadkori et al. (2011):

Corollary 1. (Corollary of Lattimore & Szepesvári (2020, Exercise 19.3)) Assume that V0 = λI and
∥Xt∥ ≤ L for t ∈ [T ], for any constant 0 < m ≤ 2, the following holds:

T∑
t=1

1

{
∥Xt∥2

V −1
t−1

≥ m
}

≤ 6d

m
log

(
1 + 2L2

λm

)
.

Proof. First we define a∗
t as the best arm in time step t such that a∗

t = arg maxa∈At
⟨θ∗, xt,a⟩, and

use x∗
t := xt,a∗

t
denote its corresponding context. Let ∆t := ⟨θ∗, x∗

t ⟩ − ⟨θ∗, Xt⟩ denote the regret in
time t. Define the following events:

Bt :=
{

∥θ̂t−1 − θ∗∥Vt−1 ≤
√

βt−1(γ)
}

, Ct :=
{

max
b∈At

⟨θ̂t−1, xt,b⟩ > ⟨θ∗, x∗
t ⟩ − δ

}
Dt :=

{
∆̂t,At ≥ ε

}
.

where δ and ε are free parameters set to be δ = ∆t√
log T

and ε = (1 − 2√
log T

)∆t in this proof sketch.
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Then the expected regret RT = E
∑T

t=1 ∆t can be partitioned by events Bt, Ct, Dt such that:

RT = E
T∑

t=1
∆t · 1 {Bt, Ct, Dt}︸ ︷︷ ︸

=:F1

+E
T∑

t=1
∆t · 1

{
Bt, Ct, Dt

}
︸ ︷︷ ︸

=:F2

+E
T∑

t=1
∆t · 1

{
Bt, Ct

}
︸ ︷︷ ︸

=:F3

+ E
T∑

t=1
∆t · 1

{
Bt

}
︸ ︷︷ ︸

=:F4

.

For F1, from the event Ct and the fact that ⟨θ∗, x∗
t ⟩ = ∆t + ⟨θ∗, Xt⟩ ≥ ∆t (here is where we use that

⟨θ∗, xt,a⟩ ≥ 0 for all t and a), we obtain maxb∈At⟨θ̂t−1, xt,b⟩ > (1 − 1√
log T

)∆t. For convenience,

define Ât := arg maxb∈At
⟨θ̂t−1, xt,b⟩ as the empirically best arm at time step t, where ties are

broken arbitrarily, then use X̂t to denote the corresponding context of the arm Ât. Therefore from the
Cauchy–Schwarz inequality, we have ∥θ̂t−1∥Vt−1∥X̂t∥V −1

t−1
≥ ⟨θ̂t−1, X̂t⟩ > (1 − 1√

log T
)∆t. This

implies that

∥X̂t∥V −1
t−1

≥
(1 − 1√

log T
)∆t

∥θ̂t−1∥Vt−1

. (2)

On the other hand, we claim that ∥θ̂t−1∥Vt−1 can be upper bounded as O(
√

T ). This can be seen from
the fact that ∥θ̂t−1∥Vt−1 = ∥θ̂t−1 − θ∗ + θ∗∥Vt−1 ≤ ∥θ̂t−1 − θ∗∥Vt−1 + ∥θ∗∥Vt−1 . Since the event
Bt holds, we know the first term is upper bounded by

√
βt−1(γ), and since the largest eigenvalue of

the matrix Vt−1 is upper bounded by λ + TL and ∥θ∗∥ ≤ S, the second term is upper bounded by
S

√
λ + TL2. Hence, ∥θ̂t−1∥Vt−1 is upper bounded by O(

√
T ). Then one can substitute this bound

back into Eqn. (2), and this yields

∥X̂t∥V −1
t−1

≥ Ω
( 1√

T

(
1 − 1√

log T

)
∆t

)
. (3)

Furthermore, by our design of the algorithm, the index of At is not larger than the index of the arm
with the largest empirical reward at time t. Hence,

It,At
=

∆̂2
t,At

βt−1(γ)∥Xt∥2
V −1

t−1

+ log 1
βt−1(γ)∥Xt∥2

V −1
t−1

≤ log 1
βt−1(γ)∥X̂t∥2

V −1
t−1

. (4)

In the following, we set γ as well as another free parameter Γ as follows:

Γ = d log
3
2 T√

T
and γ = 1

t2 , . (5)

If ∥Xt∥2
V −1

t−1
≥ ∆2

t

βt−1(γ) , by using Corollary 1 with the choice in Eqn. (5), the upper bound of F1 in

this case is O
(
d
√

T log T
)
. Otherwise, using the event Dt and the bound in (3), we deduce that for all

T sufficiently large, we have ∥Xt∥2
V −1

t−1
≥ Ω

( ∆2
t

βt−1(γ) log(T/∆2
t )

)
. Therefore by using Corollary 1 and

the “peeling device” (Lattimore & Szepesvári, 2020, Chapter 9) on ∆t such that 2−l < ∆t ≤ 2−l+1

for l = 1, 2, . . . , ⌈Q⌉ where Q = − log2 Γ and Γ is chosen as in Eqn. (5). Now consider,

F1 ≤ O(1) + E
T∑

t=1
∆t · 1

{
∥Xt∥2

V −1
t−1

≥ Ω
( ∆2

t

βt−1(γ) log(T/∆2
t )

)}

≤ O(1)+TΓ+ E
T∑

t=1

⌈Q⌉∑
l=1

∆t · 1
{

∥Xt∥2
V −1

t−1
≥Ω

( ∆2
t

βt−1(γ) log(T/∆2
t )

)}
1

{
2−l <∆t ≤2−l+1}

≤ O(1) + TΓ + E
T∑

t=1

⌈Q⌉∑
l=1

2−l+1 · 1
{

∥Xt∥2
V −1

t−1
≥ Ω

( 2−2l

βt−1(γ) log(T · 22l)

)}

6
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≤ O(1)+TΓ+E
⌈Q⌉∑
l=1

2−l+1O

(
22ldβT (γ) log(22lT ) log

(
1+ 2L2 · 22lβT (γ) log(T · 22l)

λ

))
(6)

≤ O(1) + TΓ +
⌈Q⌉∑
l=1

2l+1 · O

(
dβT (γ) log( T

Γ2 ) log
(

1 +
L2βT (γ) log( T

Γ2 )
λΓ2

))

≤ O(1) + TΓ + O

(
dβT (γ) log( T

Γ2 )
Γ log

(
1 +

L2βT (γ) log( T
Γ2 )

λΓ2

))
, (7)

where in Inequality (6) we used Corollary 1. Substituting the choices of Γ and γ in (5) into (7)
yields the upper bound on E

∑T
t=1 ∆t · 1 {Bt, Ct, Dt} · 1

{
∥Xt∥2

V −1
t−1

<
∆2

t

βt−1(γ)
}

of the order

O(d
√

T log
3
2 T ). Hence F1 ≤ O(d

√
T log

3
2 T ). Other details are fleshed out in Appendix A.2.

For F2, since Ct and Dt together imply that ⟨θ∗, x∗
t ⟩ − δ < ε + ⟨θ̂t−1, Xt⟩, then using the choices

of δ and ε, we have ⟨θ̂t−1 − θ∗, Xt⟩ > ∆t√
log T

. Substituting this into the event Bt and using the
Cauchy–Schwarz inequality, we have

∥Xt∥2
V −1

t−1
≥ ∆2

t

βt−1(γ) log T
.

Again applying the “peeling device” on ∆t and Corollary 1, we can upper bound F2 as follows:

F2 ≤ TΓ + O

(
dβT (γ) log T

Γ

)
log

(
1 + L2βT (γ) log T

λΓ2

)
. (8)

Then with the choice of Γ and γ as stated in (5), the upper bound of the F2 is also of order
O(d

√
T log

3
2 T ). More details of the calculation leading to Eqn. (8) are in Appendix A.3.

For F3, this is the case when the best arm at time t does not perform sufficiently well so that the
empirically largest reward at time t is far from the highest expected reward. One observes that
minimizing F3 results in a tradeoff with respect to F1. On the event Ct, we can again apply the
“peeling device” on ⟨θ∗, x∗

t ⟩ − ⟨θ̂t−1, x∗
t ⟩ such that q+1

2 δ ≤ ⟨θ∗, x∗
t ⟩ − ⟨θ̂t−1, x∗

t ⟩ < q+2
2 δ where

q ∈ N. Then using the fact that It,At
≤ It,a∗

t
, we have

log 1
βt−1(γ)∥Xt∥2

V −1
t−1

<
q2δ2

4βt−1(γ)∥x∗
t ∥2

V −1
t−1

+ log 1
βt−1(γ)∥x∗

t ∥2
V −1

t−1

. (9)

On the other hand, using the event Bt and the Cauchy–Schwarz inequality, it holds that

∥x∗
t ∥V −1

t−1
≥ (q + 1)δ

2
√

βt−1(γ)
. (10)

If ∥Xt∥2
V −1

t−1
≥ ∆2

t

βt−1(γ) , the regret in this case is bounded by O(d
√

T log T ). Otherwise, combining
Eqn. (9) and Eqn. (10) implies that

∥Xt∥2
V −1

t−1
≥ (q + 1)2δ2

4βt−1(γ) exp
(

− q2

(q + 1)2

)
.

Using Corollary 1, we can now conclude that F3 is upper bounded as

F3 ≤ TΓ + O

(
dβT (γ) log T

Γ

)
log

(
1 + L2βT (γ) log T

λΓ2

)
. (11)

Substituting Γ and γ in Eqn. (5) into Eqn. (11), we can upper bound F3 by O(d
√

T log
3
2 T ). Complete

details are provided in Appendix A.4.

For F4, using Lemma 1 with the choice of γ = 1/t2 and Q = − log Γ, we have

F4 = E
T∑

t=1
∆t · 1

{
Bt

}
≤ TΓ + E

T∑
t=1

⌈Q⌉∑
l=1

∆t · 1
{

2−l < ∆t ≤ 2−l+1}
1

{
Bt

}
≤ TΓ +

T∑
t=1

⌈Q⌉∑
l=1

2−l+1P
(
Bt

)
≤ TΓ +

T∑
t=1

⌈Q⌉∑
l=1

2−l+1γ < TΓ + π2

3 .
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(a) K = 10 (b) K = 100 (c) K = 1000
Figure 1: Simulation results (expected regrets) on the synthetic dataset with different K’s

Thus, F4 ≤ O(d
√

T log
3
2 T ). In conclusion, with the choice of Γ and γ in Eqn. (5), we have shown

that the expected regret of LinIMED-1 RT =
∑4

i=1 Fi is upper bounded by O(d
√

T log
3
2 T ).

Remark 1. For LinIMED-2, the proof is similar but the assumption that ⟨θ∗, xt,a⟩ ≥ 0 is not required.
For LinIMED-3, by directly using the UCB, we improve the regret bound to match the state-of-the-art
O(d

√
T log T ), which matches that of LinUCB with OFUL’s confidence bound.

6 Empirical Studies
This section aims to justify the utility of the family of LinIMED algorithms we developed and
to demonstrate their effectiveness through quantitative evaluations in simulated environments and
real-world datasets such as the MovieLens dataset.

We compare our LinIMED algorithms with LinTS and LinUCB with the choice λ = L2. We set
βt(γ) = (R

√
3d log(1 + t) +

√
2)2 (here γ = 1

(1+t)2 and L =
√

2) for the synthetic dataset with
varying and finite arm set and βt(γ) = (R

√
d log((1 + t)t2) +

√
20)2 (here γ = 1

t2 and L =
√

20)
for the MovieLens dataset respectively. The confidence widths

√
βt(γ) for each algorithm are

multiplied by a factor α and we tune α by searching over the grid {0.1, 0.2, . . . , 1.0} and report the
best performance for each algorithm; see Appendix D. Both γ’s are of order O( 1

t2 ) as suggested by
our proof sketch in Eqn. (5). We set C = 30 in LinIMED-3 throughout. The sub-Gaussian noise level
is R = 0.1. We choose LinUCB and LinTS as competing algorithms since they are paradigmatic
examples of deterministic and randomized contextual linear bandit algorithms respectively.

6.1 Experiments on a Synthetic Dataset in the Varying Arm Set Setting
We perform an empirical study on a varying arm setting. We evaluate the performance with different
dimensions d and different number of arms K. We set the unknown parameter vector and the best
context vector as θ∗ = x∗

t = [ 1√
d−1 , . . . , 1√

d−1 , 0]⊤ ∈ Rd. There are K − 2 suboptimal arms vectors,
which are all the same (i.e., repeated) and share the context [ t

(t+1)
√

d−1 , . . . , t
(t+1)

√
d−1 , t

t+1 ]⊤ ∈ Rd.
Finally, there is also one “worst” arm vector with context [0, 0, . . . , 0, 1]⊤. This synthetic dataset is
inspired by the synthetic varying arm set in Gales et al. (2022). First we fix d = 20. The results for
different numbers of arms such as K = 10, 100, 1000 are shown in Fig. 1. Note that each plot is
repeated 10 times to obtain the mean and standard deviation of the regret. From Fig. 1, we observe
that LinIMED and its variants outperform LinTS and LinUCB regardless of the number of the arms
K. Second, we set K = 10 with the dimension d = 20, 50, 100. Each trial is again repeated 10 times
and the regret over time is shown in Fig. 2. Again, we see that LinIMED and its variants clearly
perform better than LinUCB and LinTS.

The experimental results on synthetic data demonstrate that the performances of all three versions of
the LinIMED algorithms are largely similar but LinIMED-3 is slightly superior (corroborating our
theoretical findings). More importantly, they outperform both the LinTS and LinUCB algorithms in a
statistically significant manner, regardless of the number of arms K or the dimension d of the data.
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(a) d = 20 (b) d = 50 (c) d = 100

Figure 2: Simulation results (expected regrets) on the synthetic dataset with different d’s

(a) K = 50 (b) K = 100 (c) K = 500

Figure 3: Simulation results (CTRs) of the MovieLens dataset with different K’s

6.2 Experiments on the MovieLens Dataset
The MovieLens dataset (Cantador et al. (2011)) is a widely-used benchmark dataset for research in
recommendation systems. We specifically use the MovieLens 10M dataset, which contains 10 million
ratings (from 0 to 5) and 100,000 tag applications applied to 10,000 movies by 72,000 users. To
preprocess the dataset, we choose the best K ∈ {50, 100, 500} movies for consideration. At each
iteration t, one random user visits the website and is recommended one of the best K movies. We
assume that the user will click on the recommended movie if the user’s rating of this movie is at least 3;
otherwise, the user will not click. We implement the three versions of LinIMED, LinUCB, and LinTS
on this dataset. Each trial is repeated over 5 runs and the averages and standard deviations of the
click-through rates (CTRs) as functions of time are reported in Fig. 3. Note that the CTR is the number
of clicks per time which corresponds to the reward. One observes that on the MovieLens dataset, the
variants of LinIMED also perform similarly. Furthermore, they significantly outperform LinUCB
and LinTS for all K ∈ {50, 100, 500} when time horizon T is sufficiently large. In particular, for
K ≥ 100, the CTR of LinIMED-1,2 is at least 0.05 larger than the traditional competitors.

7 Future Work
In the future, a fruitful direction of research is to analyze the effect of directly using the KL-divergence
in the Line 14 of Algorithm 1 instead of the estimated squared gap ∆̂2

t,a; we believe that in this case,
the analysis would be more challenging, but the theoretical and empirical performances might be
superior to our three LinIMED algorithms. In addition, one can generalize the family of IMED-style
algorithms to generalized linear bandits or neural contextual bandits.
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