
SuffixDecoding: Extreme Speculative Decoding for
Emerging AI Applications

Gabriele Oliaro§,† Zhihao Jia† Daniel Campos§ Aurick Qiao§
§Snowflake AI Research †Carnegie Mellon University

{goliaro,zhihaoj2}@cs.cmu.edu,
{daniel.campos,aurick.qiao}@snowflake.com

� Project Page: https://suffix-decoding.github.io
� Code: https://github.com/snowflakedb/ArcticInference

Abstract

Speculative decoding is widely adopted to reduce latency in large language model
(LLM) inference by leveraging smaller draft models capable of handling diverse
user tasks. However, emerging AI applications, such as LLM-based agents, present
unique workload characteristics: instead of diverse independent requests, agentic
frameworks typically submit repetitive inference requests, such as multi-agent
pipelines performing similar subtasks or self-refinement loops iteratively enhancing
outputs. These workloads result in long and highly predictable sequences, which
current speculative decoding methods do not effectively exploit. To address this
gap, we introduce SuffixDecoding, a novel method that utilizes efficient suffix trees
to cache long token sequences from prompts and previous outputs. By adaptively
speculating more tokens when acceptance likelihood is high and fewer when it
is low, SuffixDecoding effectively exploits opportunities for longer speculations
while conserving computation when those opportunities are limited. Evaluations
on agentic benchmarks, including SWE-Bench and Text-to-SQL, demonstrate that
SuffixDecoding achieves speedups of up to 5.3×, outperforming state-of-the-art
methods—2.8× faster than model-based approaches like EAGLE-2/3 and 1.9×
faster than model-free approaches such as Token Recycling. SuffixDecoding is
open-sourced at https://github.com/snowflakedb/ArcticInference.

1 Introduction

Large language models (LLMs) are foundational to agentic AI applications, such as automated coding
assistants [Wang et al., 2025, Yang et al., 2024], multi-agent workflows [Wang et al., 2024a, Chen
et al., 2024a], and retrieval systems [Wang et al., 2024d, Gao et al., 2024b]. Unlike basic chatbots,
these workloads issue repetitive and predictable inference requests. For instance, multi-agent systems
repeatedly perform similar tasks, and reasoning loops [Wang et al., 2023a, Madaan et al., 2023]
regenerate similar token sequences. Despite this predictable repetition, existing methods fail to fully
exploit recurring patterns, leaving latency as a bottleneck.

A popular strategy for mitigating inference latency is speculative decoding [Leviathan et al., 2023,
Chen et al., 2023, Miao et al., 2024, Cai et al., 2024, Lin et al., 2024, Zhang et al., 2024]. While an
LLM can only generate one token per forward pass, it can verify multiple tokens. Leveraging this
phenomenon, speculative decoding methods use small “draft” models or additional decoding heads
to predict multiple candidate tokens, which the LLM then verifies in parallel.

To efficiently handle the long repetitions common in agent-driven applications, speculative decoding
methods must satisfy two critical requirements. First, they need to generate draft tokens rapidly and

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://suffix-decoding.github.io
https://github.com/snowflakedb/ArcticInference
https://github.com/snowflakedb/ArcticInference

with minimal overhead, enabling maximal exploitation of long speculation lengths. Second, they
must do so adaptively—only generating more draft tokens when acceptance likelihood is high and
fewer tokens when acceptance likelihood is low, to prevent verification from becoming a bottleneck.

However, existing speculative decoding approaches fall short in meeting these dual requirements.
Model-based methods can use significant GPU time when speculating long sequences, and can incur
memory contention and kernel-level transitions [Chen et al., 2024b, Li et al., 2024] that must be
managed carefully. Conversely, existing model-free approaches, such as prompt-lookup decoding
(PLD) [Saxena, 2023], achieve low overhead and rapid token generation, but typically lack adaptivity.
These methods speculate a fixed number of tokens irrespective of acceptance likelihood, leading to
wasted computational resources on verifying long and improbable draft sequences.

5 8

2 5 9

9 1 2 4

3 6

1 3 7

8 5 4 8 5

Ongoing
Inference 8

5

4

4

8

5

5

8

5

Index

Previous
Outputs Suffix Trees

4

8

5

1 2

1 3

3 6

Speculation Tree
Candidates

Expansion 1 2

1 3

Scoring

Verification &
Generation

Verify (LLM)

1 2

1

8 5 4 8 5 3

Speculation Tree

3

1

4

8

5

4

8

Figure 1: Overview of SuffixDecoding’s algorithm. Two suffix trees track ongoing inference (top-left)
and previous outputs (bottom-left). SuffixDecoding uses these trees to find matching patterns based
on recently generated tokens. It constructs a speculation tree (middle) by selecting the most likely
continuations, scoring them based on frequency statistics. Finally, the best candidate is verified by
the LLM in a single forward pass (right), with accepted tokens (shown in green) being added to the
output and used for the next round of speculation.

To address these limitations, we introduce SuffixDecoding (Fig 1), a model-free speculative decoding
method for repetitive, agent-driven workloads. SuffixDecoding uses efficient suffix trees to cache
long token sequences from prompts and previous outputs. Each node represents a token, and paths
encode previously observed subsequences, enabling rapid pattern matching to identify continuations
based on prior occurrences. Draft tokens are generated extremely quickly (∼20 microseconds per
token) without GPU overhead.

At each inference step, SuffixDecoding adaptively limits its number of draft tokens based on the
length of the pattern match, and uses frequency-based statistics captured within the suffix trees to
score and select the best speculation candidate. Longer pattern matches enable confident speculation
of longer token sequences, maximizing its effectiveness on agentic workloads, while shorter pattern
matches trigger conservative speculation to avoid computational waste. Moreover, SuffixDecoding
can seamlessly integrate with existing model-based speculative decoding methods. This flexibility
enables a hybrid approach that leverages suffix-tree-based speculation for repetitive, predictable
agentic workloads, while exploiting the strengths of model-based speculation methods for open-ended
conversational tasks, thus achieving the best of both worlds.

We evaluate SuffixDecoding on two practical agent-driven workloads: SWE-Bench, an LLM-based
software engineering benchmark, and AgenticSQL, a proprietary multi-agent pipeline application
for SQL generation. We compare with state-of-the-art model-based and model-free speculative
decoding methods using Spec-Bench [Xia et al., 2024], showing up to 2.8× faster decoding than
EAGLE-2/3 [Li et al., 2025a], and 1.9× faster decoding than Token Recycling [Luo et al., 2024].
For SWE-Bench, we also measured the comprehensive, end-to-end task completion time—including
prompt prefilling, token generation, and execution of external actions—and demonstrate speculative
speedups of up to 4.5×. These results highlight that SuffixDecoding substantially reduces latency for
real-world agentic applications, addressing a critical bottleneck in practical inference scenarios.

2

2 Background and Related Work

LLM Inference. LLM inference involves two stages: given a prompt xprompt = (x1, x2, . . . , xm),
the LLM first processes the prompt in parallel (prefill), then sequentially generates new tokens
(decode), with each token xt>m conditioned on previously generated tokens:

xt+1 = Sample(x|x1,...,t).

In greedy sampling, the highest-probability token is selected iteratively until a stopping condition.
Since each token depends on preceding outputs, generation is inherently sequential, requiring a
separate forward pass per token, limiting throughput and underutilizing parallel hardware accelerators.

Speculative Decoding. Speculative decoding [Leviathan et al., 2023] accelerates inference by
generating multiple candidate tokens quickly using a lightweight model, which can then be verified
in parallel by the primary LLM. The basic method has two core steps:

1. Speculation: A smaller “draft” model rapidly produces speculative tokens xspec =
(xt+1, . . . , xt+n) based on the existing token prefix x<t.

2. Verification: The LLM verifies the draft tokens in parallel, accepting tokens up to the first
discrepancy and discarding the rest.

This shifts computation from sequential generation to parallel verification. However, draft models
still require compute resources and add orchestration complexity. Model-based methods include
Medusa [Cai et al., 2024], SpecInfer [Miao et al., 2024] (which introduced tree-based speculation),
multi-token prediction [Gloeckle et al., 2024], and blockwise parallel decoding [Stern et al., 2018,
Kim et al., 2024].

Recent model-free methods include Prompt Lookup Decoding [Saxena, 2023], Token Recycling [Luo
et al., 2024], LLMA [Yang et al., 2023], and ANPD [Ou et al., 2024]. These rely on small reference
texts and lack adaptive speculation. SuffixDecoding is uniquely designed for agentic applications
with long repetitive sequences.

Agentic AI Algorithms. Agentic applications structure tasks as multiple LLM calls, generating
long repetitive token sequences. Self-consistency [Wang et al., 2023a] samples multiple reasoning
paths from the same prompt, sharing similar chain-of-thought steps. Self-refinement [Madaan et al.,
2023] iteratively fixes errors, revising small portions while preserving surrounding content. Multi-
agent workflows [Khot et al., 2023] use specialized agents with narrow functions, producing repetitive
outputs. These patterns create opportunities for exploiting long repeated sequences.

Methods for Accelerating LLM Agents. Recent works target latency in agentic applications.
ALTO [Santhanam et al., 2024] optimizes multi-agent workflows through pipelining and scheduling.
Dynasor [Fu et al., 2024] early-terminates unlikely reasoning paths. SuffixDecoding takes an
orthogonal speculative decoding approach and can be used in combination.

3 SuffixDecoding

The goal of SuffixDecoding is to enable fast, adaptive speculative decoding over long sequences,
particularly suited for agentic applications where repeated inference calls often contain highly
predictable and overlapping token sequences. In such settings, long stretches of output can be
accurately predicted from prior and ongoing requests.

To fully exploit these opportunities, SuffixDecoding must address two key challenges. First, it must
support fast generation of speculative sequences—including long continuations—without relying
on draft models or expensive token-by-token prediction. Second, it must be adaptive to the current
prediction context: aggressively speculating long continuations only when they are likely to be
accepted, and speculating shorter sequences when uncertain to avoid wasted verification compute.

To support fast speculation, SuffixDecoding builds a suffix tree [Weiner, 1973] over the tokens in the
current and prior requests, and uses the suffix tree to generate speculative tokens. The root node of
the tree represents the beginning of a suffix of any token sequence stored in the tree, each child of

3

a node represents a specific token which is a possible continuation from its that node, and the path
from the root to each node represents a distinct subsequence.

For each request, we consider speculating token sequences from (1) the prompt and output of that
request, and (2) the outputs of prior requests. Doing so captures the source of output token repetition
from many agentic algorithms, including self-consistency, self-refinement, and multi-agent pipelines.

SuffixDecoding leverages suffix trees to perform fast pattern matching and find possible continuations
of token sequences. Suppose the prompt and output tokens of an ongoing inference is x1:t. Consider
a suffix xt−p+1:t of length p, which we will refer to as the pattern sequence. We walk the suffix tree
starting from the root node, and at each step taking the child that corresponds to token xt−p+i. If no
such child exists, then the pattern is not found and SuffixDecoding reverts to standard non-speculative
decoding. Otherwise, after p steps, we arrive at a node whose descending paths are the possible
continuations of the pattern sequence.

Although this procedure can quickly find a (potentially large) set of candidate sequences, verifying
all of them in speculative decoding may be cost-prohibitive. Instead, SuffixDecoding builds a much
smaller and more likely speculation tree through a greedy expansion and scoring procedure, and uses
this smaller tree in tree-based speculation. An overall illustration of SuffixDecoding is shown in
Fig. 1, which we detail in the rest of this section.

Suffix Tree Construction. Building the suffix tree and updating it as part of an online inference
service involves two stages. First, the previous inference outputs can be added to the tree in a single
offline processing step (e.g. from historical logs), or online during inference serving after each
inference request completes. Second, the current ongoing prompt and out tokens are added online as
new requests are received and as each new token is generated.

In reality, we found it convenient to maintain two different suffix trees: a global tree for the previously
generated outputs, and a separate per-request tree for the current ongoing inference request. This
circumvents the complexities and overheads due to synchronizing the suffix tree updates from multiple
concurrent requests. The global tree can be constructed offline in O(n) time, while the per-request
tree can be efficiently constructed and updated online [Ukkonen, 1995].

Although suffix trees are memory-efficient at O(n) space, the global tree can still become large
when there are many previous outputs. However, they only require CPU memory, which is typically
plentiful and under-utilized in LLM serving scenarios. For example, AWS p5.48xlarge are often
used for LLM serving and have 2TB of main memory, which is easily enough to support a suffix
tree over millions of historical outputs and billions of tokens. Given typical server configurations,
SuffixDecoding can cache approximately a month’s worth of generated tokens before requiring cache
eviction (see Appendix B for detailed memory overhead analysis).

Speculation Tree Expansion. Given a pattern sequence xt−p+1:t of an ongoing inference x1:t,
SuffixDecoding can quickly find a node Np in the global or per-request suffix tree whose descending
paths are the possible continuations of the pattern sequence. To select a smaller more likely sub-tree
that is of a more practical size for speculative verification, we start with the single node Np and grow
a sub-tree greedily by expanding one leaf node at a time.

In particular, we define:

C(N) =
COUNT(N)∑

M∈CHILDREN(PARENT(N)) COUNT(M)

D(N) =

{
D(PARENT(N))× C(N), if N ̸= Np

1, otherwise
,

where COUNT(N) is the number of occurrences of node N in the reference corpus, which can be
computed when constructing the suffix tree. Starting with the single node Np in our speculation
sub-tree, we consider all children of all of its leaf nodes, and add the node N with the highest D(N).
This process is repeated until the sub-tree reaches a predetermined size limit, MAX_SPEC.

Intuitively, C(N) estimates the probability that TOKEN(N) would be the next observed token in a sub-
sequence TOKEN(Np), . . . , TOKEN(PARENT(N)), and D(N) estimates the probability that TOKEN(N)
would be ultimately accepted by the speculative tree verification, assuming the output tokens follow

4

historical patterns. Thus, SuffixDecoding builds the speculation tree by greedily adding leaf nodes
that it believes to be the most likely to be accepted during verification.

Algorithm 1 Speculation Tree Generation
function EXPANDSPECULATIONTREE(N_p, MAX_SPEC)

Input: Suffix tree node Np, MAX_SPEC
Initialize T ← {Np}
while |T | < MAX_SPEC do

N ← argmaxN∈CHILDREN(LEAVES(T)) D(N)
T ← T ∪ {N}

end while
return T

end function
function MATCHPATTERN(S, x1:t, p)

Input: Suffix tree S, sequence x1:t, length p
Initialize Np ← ROOT(S)
for i = 1 to p do

if NO_CHILD(Np, xt−p+i) then
return ∅

end if
Np ← CHILD(Np, xt−p+i)

end for
return Np

end function
function GENERATECANDIDATETREE(S_g, S_r, x1:t, α, P)

Input: Global suffix tree Sg , prompt suffix tree Sr , sequence x1:t, max spec factor α, max pattern size P
Initialize Tbest ← ∅, SCOREbest ← 0
for S in {Sg, Sr} do

for p = 1 to P do
N ← MatchPattern(S, x1:t, p)
T ← ExpandSpeculationTree(N,αp)
if SCORE(T) > SCOREbest then

Tbest ← T
SCOREbest ← SCORE(T)

end if
end for

end for
return Tbest

end function

5 10 15
Pattern Match Length

2

4

6

8

10

M
ea

n
Ac

ce
pt

ed
 T

ok
en

s

(a) Avg accepted tokens vs
pattern match length.

0.0 0.1 0.2 0.3
Acceptance Rate

1.4

1.5

1.6

1.7

1.8

Sp
ee

du
p

Fa
ct

or

2

4

8

16

32
64

=0.5

=1.0

=2.0

=4.0

=8.0
=16.0 Constant

Adaptive

(b) Using constant vs adap-
tive MAX_SPEC.

Figure 2: (a) the mean number of accepted to-
kens increases with the length of the pattern match,
which motivates MAX_SPEC = αp. (b) shows that
this choice achieves a better trade-off between ac-
ceptance rate and speculative speedup.

Adaptive Speculation Lengths. While the
procedure above allows SuffixDecoding to
cache and quickly speculate long token se-
quences based on empirical probability esti-
mates, it also needs a mechanism for adaptively
controlling the number of tokens it speculates.
SuffixDecoding achieves this by dynamically ad-
justing MAX_SPEC. Low values mean fewer but
more likely tokens would be chosen for specu-
lation, while higher values mean more but less
likely tokens would be chosen. If too low, then
the speedup from speculation can be limited,
and if too high, then compute may be wasted on
verifying unlikely tokens.

To guide how to adaptively set MAX_SPEC, we
observed that the number of accepted tokens in
practice typically increases with longer pattern
sequence lengths p (Fig. 2a). Thus, we define
MAX_SPEC adaptively as

MAX_SPEC(p) = αp,

5

where α is a user-defined max speculation factor. Fig. 2b shows that setting MAX_SPEC adaptively
according to the pattern length results in a better trade-off between acceptance rate and speculative
speedup. In practice, we found that α ∈ [1, 4] works well for agentic applications.

Speculation Tree Scoring. So far, we have discussed how to obtain a speculation tree given a suffix
tree and a pattern length p. However, SuffixDecoding maintains two suffix trees, the global suffix
tree and the per-request suffix tree, each with many choices for p. To obtain just a single speculation
tree, we build speculation trees for both the global suffix tree and the per-request suffix tree, and for a
range of values of p. Then, a single speculation tree is selected according to a scoring function:

SCORE(Tspec) =
∑

N∈Tspec

D(N).

Intuitively, if D(N) estimates the probability that node N in a speculation tree Tspec would be
accepted, then SCORE(Tspec) estimates the expected number of accepted tokens. SuffixDecoding then
selects the Tspec with the highest SCORE as the final speculation tree to be verified. The end-to-end
candidate generation from speculation tree expansion to scoring is described in Alg. 1.

Hybrid Suffix Speculative Decoding. Lastly, we find that SCORE(Tspec) can be used to dynamically
decide between using SuffixDecoding or falling back to a model-based speculation method, which is
useful for practical scenarios when the workload can be mixed between agentic and more diverse
applications. Specifically, for each decoding iteration, we always speculate using SuffixDecoding
first. If SCORE(Tspec) > τ , where τ is a configurable threshold, then SuffixDecoding’s draft tokens
are used. Otherwise, we use a fall-back speculation method, such as EAGLE-3 [Li et al., 2025a].

As a practical guideline, we find that setting τ close to the mean accepted tokens of the fallback
speculator works well for mixed workloads, while using SuffixDecoding alone (τ = 0) is optimal for
highly repetitive agentic tasks. A detailed sensitivity analysis of τ across different workload types is
provided in Appendix B.1. For batched serving scenarios, SuffixDecoding can be integrated with
existing batch-level speculation control methods (see Appendix C).

4 Evaluation

4.1 Evaluation Methodology

Classify

Extract

Enrich

SQL 1

SQL N

Error
Correction

Error
Correction

Combine
Question

Interpretation
+ SQL Query

Semantic
Model

User
Question

Valid
Queries

SQL
Database

Structured
Generation

Retrieval-Augmented Generation (RAG)

Unstructured
Generation

Figure 3: AgenticSQL is a multi-agent workflow
consisting of stuctured generation, unstructured
generation, and retrieval-augmented generation
steps across several different LLMs. Useful fea-
tures are extracted from the user question (Classify
and Extract) and supplemented with retrieved con-
text (Enrich). Several text-to-SQL steps propose
solutions to the user question (SQL 1. . . N) in par-
allel with feedback from an error corrector. A last
Combine step synthesizes the proposed SQL can-
didates into a final SQL query and text response.

Baseline Comparisons. We compare with
both model-based and model-free speculative
decoding methods using Spec-Bench [Xia et al.,
2024]. (1) EAGLE-2 and EAGLE-3 [Li et al.,
2025a], state-of-the-art model-based specula-
tors, (2), Prompt-Lookup Decoding (PLD) [Sax-
ena, 2023], a simple model-free speculator
based on ngram-matching, and (3) Token Re-
cycling [Luo et al., 2024], a more recent model-
free speculator that sources token sequences
from both the prompt and previous outputs.
EAGLE-3 and Token Recycling both leverage
tree speculation [Miao et al., 2024].

Datasets and Agentic Applications. We eval-
uate on both agentic and non-agentic workloads.
For agentic applications, we trace requests from
two real applications: OpenHands [Wang et al.,
2024c] on SWE-Bench [Jimenez et al., 2024] (a
GitHub issue resolution benchmark), and Agen-
ticSQL, a proprietary multi-agent SQL genera-
tion workflow (Fig. 3). For non-agentic work-
loads, we use Spec-Bench, consisting of open-
ended, single-turn tasks across 13 categories, in-

6

Spec-Bench AgenticSQL SWE-Bench
Benchmarks

0%

100%

200%

300%

400%

500%

Sp
ee

du
p

1.0x 1.0x 1.0x

1.8x
1.6x

1.8x 1.9x

2.4x

1.6x
1.4x

2.1x

1.5x

2.2x

2.7x

1.4x
1.7x

5.3x

2.5x

1.7x

5.2x

2.4x2.5x

3.8x

2.5x

4.1x

Speculative Speedups over Vanilla Decoding
Baselines

Vanilla
Eagle
Eagle 2
Eagle 3
PLD

Token Recycling
Suffix (linear)
Suffix (tree)
Hybrid (linear)
Hybrid (tree)

Spec-Bench AgenticSQL SWE-Bench
Benchmarks

0

2

4

6

8

M
ea

n
A

cc
ep

te
d

To
ke

ns
(to

ke
ns

/s
te

p)

1.0 1.0 1.0

3.1 2.9

3.5 3.6

4.6

3.2

1.6

2.4

3.2

2.5

3.2 3.1

1.8

6.3

7.8

1.8

6.2

7.6

4.6

7.3

4.7

7.5

Mean Accepted Tokens per Step

Figure 4: Speculative speedups (top) and mean accepted tokens per step (bottom) compared to vanilla
decoding for SuffixDecoding and baseline methods on three benchmarks: Spec-Bench, AgenticSQL,
and SWE-Bench. Experiments use Llama-3.1-8B-Instruct on a single H100 GPU with batch size 1.
Speedup is measured as the ratio of wall-clock time-per-output-token relative to vanilla decoding.
Suffix (tree) and Hybrid (tree) use SuffixDecoding’s tree speculation algorithm, which constructs a
speculation tree from the suffix tree for parallel verification. Suffix (linear) and Hybrid (linear) use a
simpler linear speculation approach that only allows sequential token chains. The hybrid variants
combine SuffixDecoding with EAGLE-3, dynamically selecting between suffix-based and model-
based speculation based on pattern match confidence. Note that EAGLE-2/3 and Token Recycling
failed to run on several SWE-Bench tasks due to long context lengths (>8192 tokens), indicated by
missing bars. Spec-Bench represents a non-agentic workload and is included for comparison. Further
sub-task breakdowns, including the raw time-per-output-token and mean acceptance lengths, can be
found in Appendix A.1.

cluding 8 MT-Bench categories (Writing, Role-
play, Reasoning, Math, Coding, Extraction, STEM, Humanities). We include Spec-Bench to stress-
test SuffixDecoding’s limitations and evaluate the hybrid fallback mechanism.

End-to-end System Evaluation. We implemented SuffixDecoding in vLLM [Kwon et al., 2023].
By running OpenHands live, we show SuffixDecoding accelerates end-to-end task completion times,
including prefill and code execution.

Hardware configuration. We conducted our experiments on a single p5.48xlarge AWS instance
equipped with 8× NVIDIA H100 80G GPUs and 2TB of main memory.

Simulated Ablations. In addition to our main evaluation using real hardware, we also leverage
a simulated verifier for additional experiments in Sec. 4.4 and continued in Appendix A.2. Given
a prompt x1:n and example ground-truth response yn+1:t, we can accurately simulate speculative
verification for greedy sampling by verifying that speculated token xn+i = yn+i.

4.2 Baseline Comparisons

We compare SuffixDecoding with EAGLE-2, EAGLE-3, PLD, and Token Recycling on SWE-
Bench and AgenticSQL. We also run the Spec-Bench standard dataset, which is a more traditional
non-agentic workload. Fig. 4 shows the results. First, on the agentic workloads, SuffixDecoding

7

outperforms all baselines. In AgenticSQL, SuffixDecoding obtains a mean speedup of 5.3× over
vanilla decoding, a 2.8× improvement over EAGLE-2/3, and 1.9× higher than Token Recycling. In
SWE-Bench, EAGLE-2/3 fail due to their maximum sequence length limitations. SuffixDecoding
obtains a mean speedup of 2.5× over vanilla decoding, a 1.7× improvement over PLD, the next
best baseline. SuffixDecoding’s superior performance in agentic workloads can be attributed to its
consistently higher mean accepted tokens per decoding step. In AgenticSQL, SuffixDecoding reaches
6.3 mean accepted tokens per step—substantially higher than EAGLE-3 (3.6 tokens) and Token
Recycling (3.2 tokens). In SWE-Bench, SuffixDecoding achieves 7.8 mean accepted tokens per step,
while PLD only accepts 3.2 tokens per step on average.

On non-agentic workloads such as Spec-Bench (which includes open-ended single-turn tasks and 8
MT-Bench categories), SuffixDecoding alone is outperformed by EAGLE-2/3 and Token Recycling,
as expected for less repetitive scenarios. However, the hybrid approach of SuffixDecoding + EAGLE-
3 achieves the best of both worlds: we speculate with the faster SuffixDecoding method whenever
possible and fall back to EAGLE-3 when the speculation score is too low. The Hybrid approach
obtains a mean speedup of 2.5× over vanilla decoding, outperforming the 2.4× speedup from
standalone EAGLE-3 and the 2.2× speedup from Token Recycling.

The hybrid approach also performs well in AgenticSQL, achieving a 4.1× speedup in the tree
variant, significantly better than the 1.9× speedup from standalone EAGLE-2/3 and the 2.7× speedup
from Token Recycling. These speedups are achieved thanks to the hybrid approach’s impressive
7.5 mean accepted tokens per step, more than 2× higher than EAGLE-2/3 and Token Recycling.
SuffixDecoding has a slightly lower mean acceptance length of 6.3, but its much lower speculation
cost and higher acceptance rate make it the winning solution in agentic tasks (5.3× average speedup
compared to the 4.1× speedup of the hybrid approach).

“feature_w”: false, “feature_x”:

false, “feature_y”: false, “feature_z”: false}

true, “feature_y”:

true, “feature_z”: false}

false, “feature_z”: false}

Prefix

Spec branch 1

Spec branch 2

Spec branch 3

Spec branch 4

Figure 5: A SuffixDecoding speculation tree containing 66
tokens for the AgenticSQL Extract task.

A peek into a speculation tree.
To gain some intuition into why Suf-
fixDecoding performs so well for cer-
tain tasks, we examine how it builds
a speculation tree for the AgenticSQL
Extract task. The outputs of the Ex-
tract task have many characteristics in
common. First, they are all JSON doc-
uments following the same format and
key names, with keys often appearing
in the same order. Second, many of
the features are discrete values, and in
particular, boolean true/false values. These patterns are recorded in SuffixDecoding’s global suffix
tree and guide its speculation tree construction.

Fig. 5 shows an example of a speculation tree constructed by SuffixDecoding. We observed many
instances of large speculation trees that branch at each boolean true/false value of several consecutive
features. These speculation tree always contains a branch with high acceptance, advancing output
generation by dozens of tokens or more in one step. Although this is one specific example of a
speculation tree, it demonstrates that SuffixDecoding can find complex patterns in previous outputs,
particularly for structured generation tasks, that help accelerate output generation.

4.3 End-to-End SWE-Bench on vLLM

In this section, we show that SuffixDecoding can be efficiently integrated into vLLM, a popular
inference system used in production deployments, and it can effectively accelerate accelerate end-to-
end agentic task completion time. For this experiment, we run OpenHands directly on vLLM with
SuffixDecoding, so the agent is solving each benchmark problem live. We also use the specially-
trained LLM all-hands/openhands-lm-32b-v0.1-ep3, which was fine-tuned for SWE-Bench
and achieves 37.2% on SWE-Bench Verified. Since there are no model-based methods with draft
models trained for this LLM, we compare with vLLM’s native implementation of PLD.

Fig. 6 shows the results. First, we note that decoding time (i.e. output generation) takes a majority
of the time across all SWE-Bench tasks, dominating both prefilling and agentic actions (i.e. code
execution). In this end-to-end scenario, SuffixDecoding outperforms PLD by 1.3–3×, leading to a

8

Figure 6: End-to-end task-completion time of the OpenHands agent on SWE-Bench Verified. The
benchmarks are run with a concurrency of 8 tasks running simultaneously. vLLM is deployed on 4
H100 GPUs configured with 4-way tensor parallelism and prefix caching enabled. The results are
broken down by the different code repositories in SWE-Bench.

1.8–4.5× speculative speedup over vanilla decoding. Since SuffixDecoding exactly preserves the
output distribution of the LLM, it matches the original model’s 37.2% score on SWE-Bench Verified.

4.4 Ablation Experiments

In this section, we present a few ablation studies on SuffixDecoding using a simulated verifier on
offline traces. Given a ground-truth prompt-response pair from an LLM, we can verify the draft tokens
proposed by SuffixDecoding by comparing with the ground truth responses. Additional ablation
studies can be found in Appendix A.2.

0

5

10

15

Av
g.

 S
pe

ed
up

 F
ac

to
r Both Trees (Baseline)

Global Tree Only
Per-request Tree Only

C
la

ss
ify

C
om

bi
ne

E
nr

ic
h

E
xt

ra
ct

SQ
L

1

SQ
L

2

SQ
L

3

AgenticSQL Task

0

5

10

15

20

25

Av
g.

 S
pe

cu
la

te
d

To
ke

ns

Figure 7: Speedup factor and number of speculated
tokens for the tasks in AgenticSQL. SuffixDecod-
ing was run with only the global suffix tree, only
the per-request suffix tree, and both (baseline).

Global vs per-request suffix trees. We study
the impact of the two suffix trees: the global
suffix tree containing previous outputs, and the
per-request suffix tree containing the prompt and
generation of the current ongoing request. To
do so, we ran the tasks in AgenticSQL using
SuffixDecoding (1) with the global suffix tree
only, (2) with the per-request suffix tree only,
and (3) using both trees.

Fig. 7 shows the results. First, we note that with
the exception of the Content Enrichment (En-
rich) and Extract steps, using both suffix trees
performs better than using just one. The small
degradations on the enrich and extract steps sug-
gest that, when both trees are present, SuffixDe-
coding may sometimes choose a speculation tree
from the per-request suffix tree when the global
suffix tree may have been the better choice. Im-
provements to SuffixDecoding’s speculation tree
scoring mechanism may help bridge this gap.

Second, the global tree outperforms the per-
request tree on all tasks except for Combine.
This is because the Combine task heavily re-uses tokens from its context, which are the proposed SQL

9

solutions from the previous steps in the workflow. Although there is a diversity of task characteristics,
SuffixDecoding is able to achieve high speedups on all of them by combining both suffix trees.

103 104

Suffix Tree Size (# Examples)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sp
ee

du
p

Fa
ct

or

Magicoder
WildChat

103 104

Suffix Tree Size (# Examples)

0.00

0.05

0.10

0.15

0.20

0.25

Ac
ce

pt
an

ce
 R

at
e

Magicoder
WildChat

Figure 8: Speedup (left) and acceptance rate (right)
vs global suffix tree size for Magicoder and Wild-
chat (α = 1). The speedup from SuffixDecoding
continues to increase with more previous output
examples, while the acceptance rate holds steady.

SuffixDecoding in open-ended scenarios. Al-
though SuffixDecoding is designed for agentic
workloads with long repeated token sequences,
it is also interesting to evaluate it using more
open-ended workloads like WildChat (open-
ended chat) [Zhao et al., 2024] and Magicoder
(code-oriented chat) [Wei et al., 2023]. Details
on these datasets can be found in Appendix A.2.

In Fig. 8, we show the speedup and acceptance
rate of SuffixDecoding on WildChat and Magi-
coder across a range of suffix tree sizes between
256 and 10,000 output examples. First, we note
a promising pattern: the speedup consistently
improves as the size of the suffix tree grows.
This indicates that SuffixDecoding can learn use-
ful patterns even in workloads with lower token
repetition, and may be a substitute for model-
based methods when a draft model is not available.

Second, perhaps surprisingly, the acceptance rate does not change much even when the suffix tree
size varies across almost two orders of magnitude. We believe this is primarily due to the effect of
the adaptive speculation length MAX_SPEC = αp. Although less data may mean less certainty in the
speculated tokens, the pattern matches are also shorter, which results in fewer speculated tokens.

5 Conclusion

In this paper, we presented SuffixDecoding, a model-free speculative decoding approach designed
for emerging agentic applications. Using efficient suffix tree data structures, SuffixDecoding ef-
fectively exploits long and repetitive token sequences found in many agentic algorithms, such as
self-consistency, self-refinement, and multi-agent pipelines. Using two practical agentic applications,
OpenHands and AgenticSQL, we showed that SuffixDecoding significantly accelerates their decod-
ing latency and task-completion times, and is also significantly faster than other model-based and
model-free speculative decoding baselines.

References
Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. Medusa:

Simple llm inference acceleration framework with multiple decoding heads, 2024. URL https://arxiv.
org/abs/2401.10774.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https://github.
com/sahil280114/codealpaca, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling, 2023. URL https://arxiv.org/
abs/2302.01318.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu, and Yemin Shi.
Autoagents: A framework for automatic agent generation, 2024a. URL https://arxiv.org/abs/2309.
17288.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and Beidi Chen.
Sequoia: Scalable, robust, and hardware-aware speculative decoding, 2024b. URL https://arxiv.org/
abs/2402.12374.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang. Efficiently
serving llm reasoning programs with certaindex, 2024. URL https://arxiv.org/abs/2412.20993.

10

https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2412.20993

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou. Text-to-sql
empowered by large language models: A benchmark evaluation. Proc. VLDB Endow., 17(5):1132–1145, May
2024a. ISSN 2150-8097. doi: 10.14778/3641204.3641221. URL https://doi.org/10.14778/3641204.
3641221.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey, 2024b. URL
https://arxiv.org/abs/2312.10997.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve. Better & faster
large language models via multi-token prediction. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
Swe-bench: Can language models resolve real-world github issues?, 2024. URL https://arxiv.org/abs/
2310.06770.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal.
Decomposed prompting: A modular approach for solving complex tasks, 2023. URL https://arxiv.org/
abs/2210.02406.

Taehyeon Kim, Ananda Theertha Suresh, Kishore A Papineni, Michael Riley, Sanjiv Kumar, and Adrian
Benton. Accelerating blockwise parallel language models with draft refinement. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=KT6F5Sw0eg.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding.
In Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language models with
dynamic draft trees, 2024. URL https://arxiv.org/abs/2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceleration of large
language models via training-time test, 2025a. URL https://arxiv.org/abs/2503.01840.

Zikun Li, Zhuofu Chen, Remi Delacourt, Gabriele Oliaro, Zeyu Wang, Qinghan Chen, Shuhuai Lin, April
Yang, Zhihao Zhang, Zhuoming Chen, Sean Lai, Xinhao Cheng, Xupeng Miao, and Zhihao Jia. Adaserve:
Accelerating multi-slo llm serving with slo-customized speculative decoding, 2025b. URL https://arxiv.
org/abs/2501.12162.

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xiaotian Yu, Guangming Lu, and Rong Xiao. Bita: Bi-directional
tuning for lossless acceleration in large language models, 2024. URL https://arxiv.org/abs/2401.
12522.

Junda Liu, Yilong Zhao, Zheyu Shen, and Yiying Zhang. Turbospec: Closed-loop speculation control system for
optimizing llm serving goodput, 2024. URL https://arxiv.org/abs/2406.14066.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu, and
Wanxiang Che. Turning trash into treasure: Accelerating inference of large language models with token
recycling, 2024. URL https://arxiv.org/abs/2408.08696.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine
Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar,
and Zhihao Jia. Specinfer: Accelerating large language model serving with tree-based speculative inference
and verification. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS ’24, page 932–949, New York, NY,
USA, 2024. Association for Computing Machinery. ISBN 9798400703867. doi: 10.1145/3620666.3651335.
URL https://doi.org/10.1145/3620666.3651335.

11

https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://openreview.net/forum?id=KT6F5Sw0eg
https://openreview.net/forum?id=KT6F5Sw0eg
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2501.12162
https://arxiv.org/abs/2501.12162
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2401.12522
https://arxiv.org/abs/2406.14066
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2303.17651
https://doi.org/10.1145/3620666.3651335

Jie Ou, Yueming Chen, and Wenhong Tian. Lossless acceleration of large language model via adaptive n-gram
parallel decoding, 2024. URL https://arxiv.org/abs/2404.08698.

Keshav Santhanam, Deepti Raghavan, Muhammad Shahir Rahman, Thejas Venkatesh, Neha Kunjal, Pratiksha
Thaker, Philip Levis, and Matei Zaharia. Alto: An efficient network orchestrator for compound ai systems. In
Proceedings of the 4th Workshop on Machine Learning and Systems, EuroMLSys ’24, page 117–125, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400705410. doi: 10.1145/3642970.
3655844. URL https://doi.org/10.1145/3642970.3655844.

Apoorv Saxena. Prompt lookup decoding, November 2023. URL https://github.com/apoorvumang/
prompt-lookup-decoding/.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregressive
models. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 10107–10116, Red Hook, NY, USA, 2018. Curran Associates Inc.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, September 1995. ISSN
0178-4617. doi: 10.1007/BF01206331. URL https://doi.org/10.1007/BF01206331.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances large
language model capabilities, 2024a. URL https://arxiv.org/abs/2406.04692.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Executable code
actions elicit better llm agents, 2024b. URL https://arxiv.org/abs/2402.01030.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao,
Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and
Graham Neubig. OpenHands: An Open Platform for AI Software Developers as Generalist Agents, 2024c.
URL https://arxiv.org/abs/2407.16741.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao,
Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and
Graham Neubig. Openhands: An open platform for ai software developers as generalist agents, 2025. URL
https://arxiv.org/abs/2407.16741.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023a. URL
https://arxiv.org/abs/2203.11171.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 13484–13508, Toronto,
Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL
https://aclanthology.org/2023.acl-long.754.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot, Yuwei Zhang,
Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Speculative rag: Enhancing
retrieval augmented generation through drafting, 2024d. URL https://arxiv.org/abs/2407.08223.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is all you
need. arXiv preprint arXiv:2312.02120, 2023.

Peter Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Annual Symposium on Switching
and Automata Theory (Swat 1973), SWAT ’73, page 1–11, USA, 1973. IEEE Computer Society. doi:
10.1109/SWAT.1973.13. URL https://doi.org/10.1109/SWAT.1973.13.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhifang Sui.
Unlocking efficiency in large language model inference: A comprehensive survey of speculative decoding,
2024. URL https://arxiv.org/abs/2401.07851.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. Swe-agent: Agent-computer interfaces enable automated software engineering, 2024. URL https:
//arxiv.org/abs/2405.15793.

12

https://arxiv.org/abs/2404.08698
https://doi.org/10.1145/3642970.3655844
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://doi.org/10.1007/BF01206331
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2203.11171
https://aclanthology.org/2023.acl-long.754
https://arxiv.org/abs/2407.08223
https://doi.org/10.1109/SWAT.1973.13
https://arxiv.org/abs/2401.07851
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and Furu Wei.
Inference with reference: Lossless acceleration of large language models, 2023. URL https://arxiv.org/
abs/2304.04487.

Liangsheng Yin, Yineng Zhang, Ying Sheng, and The SGLang Team. Achieving faster
open-source llama3 serving with sglang runtime (vs. tensorrt-llm, vllm). https://lmsys.
org/blog/2024-07-25-sglang-llama3/, July 2024. URL https://lmsys.org/blog/
2024-07-25-sglang-llama3/. LMSYS Org Blog.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao,
Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-SQL task. In Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 3911–3921, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft & verify:
Lossless large language model acceleration via self-speculative decoding, 2024. URL https://arxiv.org/
abs/2309.08168.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m chatGPT
interaction logs in the wild. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=Bl8u7ZRlbM.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan
Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with
mt-bench and chatbot arena, 2023. URL https://arxiv.org/abs/2306.05685.

13

https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://lmsys.org/blog/2024-07-25-sglang-llama3/
https://lmsys.org/blog/2024-07-25-sglang-llama3/
https://lmsys.org/blog/2024-07-25-sglang-llama3/
https://lmsys.org/blog/2024-07-25-sglang-llama3/
https://aclanthology.org/D18-1425
https://arxiv.org/abs/2309.08168
https://arxiv.org/abs/2309.08168
https://openreview.net/forum?id=Bl8u7ZRlbM
https://arxiv.org/abs/2306.05685

A Technical Appendices and Supplementary Material

A.1 Details for Main Experiments

A.1.1 Experiment setup details

Setup of Spec-Bench experiments (Sec. 4.2). We conducted our Spec-Bench experiments by
running the Spec-Bench codebase from the original repository with the following modifications.
First, we updated the code to work with the latest version of the transformers library, which is
required to run recent open-source LLMs such as meta-llama/Llama-3.1. We also added support
for arbitrary datasets (such as SWE-Bench and AgenticSQL) and implemented SuffixDecoding within
the framework. We ran the experiments on a 8xH100 80GB GPU cluster, with 1TB RAM. We ran
each baseline using one GPU, and a batch size of 1, just like in the original SpecBench code.

Setup of vLLM SWE-Bench experiment (Sec. 4.3). We conducted the end-to-end SWE-
Bench experiment on a 8xH100 80GB GPU cluster, with 1TB RAM. We served the
all-hands/openhands-lm-32b-v0.1-ep3 model locally using vLLM, with a tensor parallelism
degree of 4 and with prefix caching enabled. We used the flashinfer kernels for sampling. We
made some minor modifications to vLLM to record the per-request and per-step statistics of interest
(time-per-token latency, throughput, acceptance length, acceptance rate). We used the same settings
for all baselines. We ran the OpenHands daemon on the same machine, and used the OpenAI API
to interact with the vLLM server. We ran OpenHands with the CodeActAgent [Wang et al., 2024b]
with ITERATIVE_EVAL_MODE=true, and a maximum of 100 iterations, as recommended by the
OpenHands authors. We used a maximum of 16 concurrent workers to run the SWE-Bench tasks.

A.1.2 Detailed sub-task results

The following tables present detailed performance metrics across all evaluation benchmarks. For
Spec-Bench, the 13 categories include both single-turn open-ended tasks (qa, rag, math_reasoning,
summarization, translation) and multi-turn tasks. Eight of these categories (Writing, Roleplay,
Reasoning, Math, Coding, Extraction, STEM, Humanities) are from MT-Bench [Zheng et al., 2023],
allowing direct performance comparison on this widely-used benchmark.

14

SWE-Bench: Mean accepted tokens (tokens/step)

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 6.415 6.546 5.521 7.207 3.772 6.480 7.137 4.635 5.412 5.933 17.140 5.165 7.821
suffix (tree) 6.262 6.221 4.992 7.064 3.708 5.922 6.764 4.452 5.311 5.600 16.876 5.020 7.552
pld 2.831 3.008 2.756 3.080 2.195 2.996 3.223 2.629 2.904 2.669 4.724 2.641 3.168
recycling 3.159 3.058 3.004 3.133 - - 2.978 3.072 2.992 3.046 2.994 - 3.054
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

SWE-Bench: Mean Acceptance Rate

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 0.252 0.255 0.238 0.293 0.167 0.250 0.281 0.204 0.230 0.243 0.554 0.217 0.296
suffix (tree) 0.235 0.230 0.195 0.272 0.153 0.222 0.250 0.183 0.217 0.216 0.539 0.196 0.274
pld 0.191 0.210 0.184 0.215 0.128 0.208 0.231 0.174 0.199 0.175 0.379 0.175 0.225
recycling 0.028 0.027 0.026 0.028 - - 0.025 0.027 0.025 0.026 0.026 - 0.026
vanilla - - - - - - - - - - - - -
suffix-1.0-tree 0.385 0.381 0.348 0.420 0.330 0.388 0.409 0.349 0.375 0.375 0.632 0.373 0.421

SWE-Bench: Time per output token (ms)

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 30.563 21.881 26.013 37.012 22.238 23.828 23.598 27.739 29.313 31.949 25.613 17.072 27.436
suffix (tree) 30.800 22.238 26.278 37.095 22.728 23.998 23.847 28.388 29.451 32.496 25.853 17.199 27.711
pld 41.675 31.029 34.447 47.588 31.549 31.155 31.330 37.386 38.238 41.531 41.877 25.142 37.758
recycling 41.328 31.847 34.155 49.670 - - 33.434 34.304 38.438 39.667 78.153 - 43.774
vanilla 50.080 41.102 43.019 57.069 35.040 39.268 41.213 42.107 45.633 46.061 77.815 32.527 50.074
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

SWE-Bench: Speculation time per generated token (ms)

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
vanilla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
suffix (linear) 0.156 0.122 0.175 0.185 0.198 0.182 0.178 0.203 0.217 0.203 0.125 0.167 0.171
suffix (tree) 0.170 0.135 0.172 0.172 0.191 0.165 0.165 0.235 0.235 0.212 0.138 0.150 0.175
pld 0.191 0.197 0.208 0.176 0.266 0.200 0.191 0.222 0.208 0.228 0.126 0.217 0.191
recycling 9.298 6.023 7.982 13.731 - - 6.607 7.665 8.081 11.748 19.653 - 10.582
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

SWE-Bench: Speedup over vanilla decoding

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 2.213 2.442 2.039 1.951 1.792 1.962 2.210 1.792 1.888 2.356 4.453 2.292 2.452
suffix (tree) 2.158 2.412 1.991 1.985 1.759 1.972 2.190 1.754 1.912 2.296 4.417 2.280 2.433
pld 1.440 1.516 1.425 1.360 1.242 1.399 1.486 1.270 1.326 1.429 2.006 1.483 1.495
recycling 1.427 1.458 1.483 1.264 - - 1.360 1.311 1.290 1.399 1.328 - 1.358
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

15

AgenticSQL: Mean accepted tokens (tokens/step)

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
hybrid (tree) 4.180 14.813 15.081 6.448 3.983 3.932 4.006 7.500
hybrid (linear) 4.008 13.473 15.304 6.362 3.876 3.842 3.913 7.262
suffix (linear) 3.577 11.833 12.395 5.924 3.665 3.005 4.005 6.349
suffix (tree) 3.470 11.724 12.137 5.834 3.633 2.914 3.904 6.236
eagle2 3.156 5.173 3.249 3.534 3.066 3.761 3.057 3.572
recycling 2.915 4.125 3.125 3.138 2.951 2.929 2.994 3.169
eagle3 2.529 3.374 4.198 3.179 2.142 4.622 2.056 3.160
eagle 2.305 4.062 2.877 3.127 2.166 3.295 2.109 2.851
pld 1.427 4.134 1.455 3.914 2.074 1.452 2.151 2.373
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AgenticSQL: Mean Acceptance Rate

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
vanilla - - - - - - - -
suffix (linear) 0.212 0.628 0.740 0.428 0.318 0.245 0.330 0.415
suffix (tree) 0.189 0.605 0.614 0.397 0.294 0.225 0.298 0.375
hybrid (tree) 0.131 0.642 0.683 0.249 0.138 0.143 0.140 0.304
hybrid (linear) 0.124 0.595 0.750 0.242 0.130 0.139 0.133 0.302
pld 0.061 0.365 0.069 0.355 0.137 0.076 0.144 0.173
eagle 0.052 0.122 0.075 0.085 0.047 0.092 0.044 0.074
eagle2 0.036 0.070 0.037 0.042 0.034 0.046 0.034 0.043
eagle3 0.025 0.040 0.053 0.036 0.019 0.060 0.018 0.036
recycling 0.025 0.041 0.028 0.027 0.025 0.024 0.026 0.028

AgenticSQL: Time per output token (ms)

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
suffix (linear) 9.552 2.687 3.007 6.023 9.559 10.588 9.767 7.306
suffix (tree) 9.594 2.876 3.188 6.164 10.339 10.935 10.090 7.592
hybrid (tree) 11.975 3.491 3.633 7.883 14.329 11.600 14.399 9.604
recycling 10.316 7.314 9.470 9.724 10.981 9.981 10.702 9.782
hybrid (linear) 12.563 3.681 3.762 8.603 14.827 11.639 21.219 10.874
eagle2 16.814 9.210 15.078 13.877 17.967 12.312 17.531 14.677
pld 20.146 7.735 20.321 8.173 14.605 20.546 14.646 15.169
eagle 21.221 11.308 15.760 15.688 23.353 13.396 24.595 17.887
eagle3 23.334 14.729 12.513 16.863 26.997 10.747 27.728 18.966
vanilla 26.578 25.292 25.032 25.406 27.011 25.851 26.307 25.924

AgenticSQL: Speculation time per generated token (ms)

16

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
vanilla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
suffix (linear) 0.060 0.015 0.015 0.033 0.059 0.058 0.061 0.043
suffix (tree) 0.064 0.017 0.020 0.035 0.064 0.062 0.064 0.047
pld 0.419 0.124 0.422 0.130 0.281 0.434 0.276 0.298
recycling 0.762 0.303 0.399 0.577 0.928 0.260 0.922 0.592
hybrid (tree) 1.728 0.249 0.376 1.112 2.350 0.927 2.372 1.299
hybrid (linear) 1.776 0.256 0.358 1.177 2.387 0.930 4.389 1.604
eagle 3.189 1.693 2.423 2.372 3.423 2.197 3.616 2.700
eagle2 4.118 2.006 3.292 3.308 4.599 2.597 4.509 3.487
eagle3 6.092 3.526 3.021 4.350 7.156 2.543 7.332 4.854

AgenticSQL: Speedup over vanilla decoding

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
suffix (linear) 3.016 9.854 10.406 4.848 3.205 2.839 3.211 5.345
suffix (tree) 2.998 9.545 10.009 4.765 3.008 2.733 3.133 5.175
hybrid (tree) 2.338 7.672 8.191 3.613 2.057 2.496 2.077 4.068
hybrid (linear) 2.243 7.137 7.965 3.327 1.993 2.483 1.405 3.799
recycling 2.588 3.472 2.672 2.640 2.502 2.604 2.492 2.710
pld 1.330 3.695 1.255 3.298 1.936 1.311 1.905 2.105
eagle2 1.591 2.751 1.673 1.855 1.527 2.119 1.527 1.864
eagle3 1.328 1.720 2.025 1.619 1.108 2.496 1.056 1.623
eagle 1.324 2.246 1.598 1.669 1.229 1.955 1.138 1.595
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

17

Spec-Bench: Mean accepted tokens (tokens/step)

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
hybrid (tree) 6.325 5.418 4.980 5.817 5.080 4.958 4.812 4.610 4.556 5.155 4.550 3.432 5.306 4.684
eagle3 5.975 5.373 5.180 5.745 5.562 4.351 5.009 4.956 4.664 5.299 4.767 2.909 5.093 4.647
hybrid (linear) 5.958 5.249 4.966 5.446 5.121 4.452 4.753 4.607 4.557 5.089 4.520 3.345 5.158 4.553
eagle2 4.766 3.842 3.612 4.242 4.129 3.324 3.630 3.892 3.353 3.736 3.254 2.605 3.383 3.466
eagle 4.149 3.469 3.177 3.724 3.617 2.857 3.239 3.328 2.968 3.311 2.926 2.352 3.082 3.065
recycling 3.044 2.610 2.539 3.128 2.980 2.372 2.352 2.537 2.338 2.697 2.614 2.305 2.417 2.548
suffix (linear) 1.981 1.757 1.454 2.161 1.661 1.878 1.999 1.521 1.252 1.485 1.725 1.705 1.435 1.766
suffix (tree) 1.960 1.754 1.461 2.134 1.638 1.874 1.957 1.504 1.259 1.501 1.703 1.705 1.424 1.750
pld 1.911 1.670 1.387 1.957 1.475 1.461 1.967 1.490 1.206 1.430 1.816 1.362 1.394 1.606
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Spec-Bench: Mean Acceptance Rate

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
suffix (linear) 0.255 0.216 0.162 0.240 0.163 0.152 0.216 0.171 0.116 0.169 0.199 0.216 0.208 0.190
vanilla - - - - - - - - - - - - - -
suffix (tree) 0.244 0.211 0.156 0.232 0.149 0.144 0.203 0.156 0.115 0.165 0.189 0.208 0.194 0.179
pld 0.132 0.097 0.063 0.126 0.071 0.088 0.119 0.076 0.037 0.068 0.103 0.130 0.072 0.099
eagle 0.126 0.099 0.087 0.109 0.105 0.074 0.090 0.093 0.079 0.092 0.077 0.054 0.083 0.083
hybrid (linear) 0.109 0.084 0.072 0.100 0.078 0.074 0.075 0.069 0.062 0.075 0.068 0.044 0.077 0.070
hybrid (tree) 0.107 0.084 0.072 0.101 0.077 0.075 0.074 0.069 0.062 0.076 0.068 0.045 0.077 0.070
eagle3 0.083 0.073 0.070 0.079 0.076 0.056 0.067 0.066 0.061 0.072 0.063 0.032 0.068 0.061
eagle2 0.063 0.047 0.044 0.054 0.052 0.039 0.044 0.048 0.039 0.046 0.038 0.027 0.040 0.041
recycling 0.026 0.020 0.019 0.027 0.025 0.017 0.017 0.020 0.017 0.021 0.020 0.017 0.018 0.020

Spec-Bench: Time per output token (ms)

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
hybrid (linear) 7.218 9.235 8.970 7.974 8.783 11.534 10.576 9.899 10.195 8.698 9.857 14.858 8.806 10.747
hybrid (tree) 7.251 9.588 9.519 8.203 9.194 11.880 11.098 10.543 10.775 9.133 10.214 15.262 9.141 11.153
recycling 9.475 11.528 11.333 9.224 9.749 13.475 12.957 11.489 12.425 10.691 11.373 13.104 12.019 11.947
eagle2 9.721 13.256 12.822 11.157 11.338 14.903 14.012 12.631 14.229 12.461 14.422 19.116 13.992 14.387
eagle 10.201 13.193 13.570 11.485 11.895 16.219 14.222 13.215 14.639 13.022 14.840 19.425 14.280 14.925
suffix (tree) 13.833 16.284 18.670 13.547 16.304 19.839 15.285 18.382 21.339 18.034 15.825 16.595 19.154 16.875
suffix (linear) 13.595 16.245 18.212 13.292 16.447 19.999 15.378 18.061 21.217 18.041 15.925 16.670 18.925 16.936
pld 14.681 17.524 20.469 14.450 19.179 22.693 16.383 19.173 23.300 19.714 15.949 22.214 20.438 19.190
vanilla 24.721 24.903 24.979 24.466 24.992 25.082 25.698 24.475 24.433 24.871 25.114 24.904 24.463 25.076

Spec-Bench: Speculation time per generated token (ms)

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
vanilla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
suffix (linear) 0.071 0.079 0.099 0.067 0.087 0.097 0.089 0.084 0.101 0.094 0.092 0.076 0.084 0.088
suffix (tree) 0.074 0.080 0.104 0.069 0.091 0.099 0.093 0.088 0.103 0.097 0.096 0.079 0.086 0.091
recycling 0.243 0.318 0.291 0.240 0.255 0.391 0.419 0.304 0.320 0.275 0.321 0.365 0.310 0.340
pld 0.291 0.357 0.421 0.277 0.392 0.480 0.326 0.391 0.492 0.407 0.325 0.466 0.428 0.395
hybrid (linear) 1.369 1.838 2.026 1.510 1.854 2.455 2.152 2.070 2.353 1.925 2.118 3.096 1.949 2.259
eagle 1.698 1.977 2.268 1.877 1.892 2.389 2.034 2.060 2.421 2.166 2.434 2.885 2.351 2.289
hybrid (tree) 1.445 1.935 2.152 1.580 1.947 2.553 2.238 2.196 2.506 2.010 2.200 3.141 2.056 2.344
eagle3 1.913 2.172 2.218 2.001 2.030 2.674 2.419 2.334 2.500 2.160 2.402 4.084 2.237 2.634
eagle2 2.055 2.656 2.714 2.338 2.346 2.962 2.807 2.584 2.997 2.628 3.062 3.826 2.946 2.936

Spec-Bench: Speedup over vanilla decoding

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
hybrid (linear) 3.441 2.795 2.800 3.139 2.866 2.404 2.542 2.496 2.461 2.871 2.573 1.759 2.833 2.500
hybrid (tree) 3.442 2.717 2.644 3.132 2.736 2.611 2.445 2.344 2.330 2.732 2.485 1.713 2.736 2.458
eagle3 3.115 2.634 2.713 2.910 2.888 2.172 2.474 2.446 2.394 2.764 2.520 1.447 2.622 2.367
recycling 2.619 2.234 2.209 2.660 2.577 1.951 2.057 2.150 1.979 2.334 2.218 1.932 2.057 2.169
eagle2 2.548 1.998 1.958 2.215 2.220 1.733 1.877 1.968 1.751 2.007 1.756 1.336 1.791 1.825
eagle 2.427 1.956 1.848 2.142 2.112 1.600 1.841 1.871 1.703 1.922 1.702 1.305 1.753 1.752
suffix (tree) 1.796 1.620 1.350 1.930 1.558 1.785 1.886 1.364 1.149 1.389 1.624 1.627 1.310 1.661
suffix (linear) 1.828 1.630 1.383 1.967 1.544 1.773 1.890 1.389 1.156 1.386 1.618 1.618 1.327 1.659
pld 1.712 1.484 1.231 1.753 1.323 1.326 1.807 1.320 1.055 1.275 1.628 1.219 1.232 1.448
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

18

0 100 200 300 400 500
Number of SpiderSQL Examples

1.0

1.5

2.0

2.5

Sp
ee

du
p

Fa
ct

or

WildChat SpiderSQL
SpiderSQL Baseline

0 100 200 300 400 500
Number of SpiderSQL Examples

0.0

0.1

0.2

Ac
ce

pt
an

ce
 R

at
e

WildChat SpiderSQL
SpiderSQL Baseline

Figure 9: The performance of SuffixDecoding under input distribution shift. SuffixDecoding was
trained on outputs from WildChat, while being evaluated on SpiderSQL. X axis: the number of
SpiderSQL inputs, which are added to the global suffix tree after they are processed. Red line: the
performance of SuffixDecoding if trained on 500 output examples from only SpiderSQL offline.

A.2 Additional Ablation Experiments

In this appendix, we share ablation studies that reveal the impact of several design decisions in
SuffixDecoding. The studies are conducted using the simulated verifier described in Sec. 4.1.

A.2.1 Additional Dataset Details

We performed additional ablation experiments, which used additional datasets described below.

1. WildChat [Zhao et al., 2024]. We use instructions from the WildChat dataset, which consists
of real-world interactions between users and the ChatGPT service. WildChat represents the
most diverse and open-domain dataset used in our evaluations.

2. Magicoder [Wei et al., 2023]. Specifically, we use instructions from the Magicoder-Evol-
Instruct-110K dataset, which consists of code-related questions and instructions generated
via Self-Instruct [Chaudhary, 2023, Wang et al., 2023b] and further augmented for difficulty
and diversity [Luo et al., 2023] by GPT-4.

3. SpiderSQL. Spider [Yu et al., 2018] is a dataset of manually-annotated questions and SQL
responses over 200 different databases with multiple tables, covering 138 different domains.
We use instructions from DAIL-SQL [Gao et al., 2024a], which consists of LLM prompts
with instructions to answer questions from Spider using structured SQL code.

A.2.2 Effect of input distribution shift

In real-world LLM serving, the input characteristics of requests may change over time, and may
be out-of-distribution from the output examples that SuffixDecoding was trained on. To evaluate
this scenario, we run SuffixDecoding trained on WildChat outputs, and begin to send it inputs from
SpiderSQL, which represents a very sudden distribution shift.

Fig. 9 shows the results. SuffixDecoding starts from having 4,000 output examples from WildChat,
and begins to receive SpiderSQL inference requests. Without any adaptation, SuffixDecoding still
achieves 1.5× speedup and 8% acceptance rate, but is far from the 2.6× speedup and 20% acceptance
rate it would achieve if it were trained on 500 examples from SpiderSQL instead.

After processing each SpiderSQL inference request, SuffixDecoding can insert its output into its
global suffix tree, which means it can adapt in an online fashion to the new input distribution. As
Fig. 9 shows, the performance of SuffixDecoding improves with the number of SpiderSQL inference
requests processed. Perhaps surprisingly, after observing 500 SpiderSQL and adapting online,
SuffixDecoding’s performance is almost indistinguishable to its performance if it were trained offline
on the 500 SpiderSQL examples alone. This suggests that SuffixDecoding is able to adapt to input
distribution shifts quickly and at no loss in performance.

19

A.2.3 Predicting SuffixDecoding Effectiveness

SuffixDecoding tends to perform better on more structured tasks compared to very open-ended ones
(e.g., AgenticSQL vs WildChat). We can measure this "structuredness" using empirical entropy. The
steps are as follows: (1) create a suffix tree from example model outputs (100 examples is typically
enough), (2) calculate the entropy of each node’s output distribution by determining how often each
child node is accessed, and (3) compute a weighted average of this entropy across all nodes. A low
average entropy indicates that output tokens are more predictable based on their prefixes, which
generally suggests that Suffix Decoding will perform better.

Table 1: Measured empirical entropy of our various evaluation datasets.
Dataset Average Entropy

AgenticSQL (Enrich) 0.171
AgenticSQL (Classify) 0.738
AgenticSQL (Extract) 0.0862
AgenticSQL (SQL1) 1.52
AgenticSQL (SQL2) 1.49
AgenticSQL (SQL3) 1.51
AgenticSQL (Combine) 1.49
Spider 2.50
WildChat 3.43
Magicoder 2.95

Table 1 shows the empirical entropy measured on samples from each of our evaluation datasets. We
find that the average entropy is closely related to the intuitive understanding of the "structuredness"
of each dataset. Additionally, it correlates well with the performance of SuffixDecoding on those
datasets. Therefore, practitioners can calculate this value using a small number of output examples to
assess whether SuffixDecoding is appropriate for their specific tasks.

B Scalability and Memory Overhead

The suffix trees employed by Suffix Decoding are highly time and memory efficient. Table 2 shows
the per-token lookup time, update time, and memory consumption across various tree sizes (using
requests from the SWE-Bench dataset).

Table 2: Performance metrics for different entry counts
Total # entries Total # tokens Memory footprint Avg update time Avg lookup time

(MB) per token (µs) per speculated token (µs)

1 K entries 27 M 1670 MB 3.95 12.18
5 K entries 143 M 2980 MB 4.06 10.93

10 K entries 285 M 4070 MB 4.05 12.00
15 K entries 429 M 5110 MB 4.07 11.62
20 K entries 572 M 6150 MB 4.04 11.64

Overall, the total memory consumption scales linearly with the size of the tree, and both the update and
lookup times remain fast even with larger trees. Given typical server configurations, SuffixDecoding
can cache many weeks of generated tokens before hitting CPU memory limits. For example,
optimized inference engines running Llama-8B on an A100 GPU can typically generate ∼ 5000
tokens per second ([Yin et al., 2024]) or ∼ 432M tokens per day. Typical A100 systems (e.g. AWS
p4d.24xlarge) have 144GB of CPU memory per A100 GPU. This means that Suffix Decoding can
potentially cache 31 days (see math below) of generated tokens per A100 GPU before hitting CPU
memory limits. Beyond this limit, it is also straightforward to incorporate cache eviction (e.g. LRU)
into Suffix Decoding to avoid out-of-memory problems.

Time to fill up GPU memory:

1. Memory per token: 6.15 GB ÷ 572M tokens = 1.075× 10−8 GB/token

20

2. Total token capacity: 144 GB ÷ (1.075× 10−8 GB/token) = 1.34× 1010 tokens

3. Time to fill: (1.34× 1010 tokens)÷ (5000 tok/s) = 2.68× 106 seconds = 31.0 days

B.1 Hybrid Fallback Threshold Sensitivity Analysis

The hybrid SuffixDecoding approach uses a fallback threshold τ to determine when to use suffix-
tree-based speculation versus falling back to a model-based speculator (e.g., EAGLE-3). This section
analyzes the sensitivity of performance to different threshold values across both open-ended and
agentic workloads.

Table 3 shows the wall-clock speedup results on Spec-Bench for various threshold values. For
open-ended generation tasks, we find that setting τ close to or slightly exceeding the mean accepted
tokens (MAT) of the model-based speculator yields the best performance. For instance, EAGLE-3
achieves a MAT of approximately 4.65 tokens/step on Spec-Bench. The results show that τ ∈ [5, 7]
produces the highest overall speedups (2.5×), with performance being relatively stable across this
range.

Table 3: Hybrid SuffixDecoding speedup on Spec-Bench across different threshold values τ .
τ coding qa math reasoning stem writing Overall

7 3.44 2.40 3.14 2.50 2.87 2.83 2.50
6 3.19 2.22 2.88 2.30 2.68 2.61 2.31
5 3.25 2.28 2.70 2.35 2.74 2.70 2.37
4 3.07 2.22 2.72 2.25 2.57 2.64 2.25
3 2.88 2.09 2.54 2.10 2.39 2.50 2.13
2 2.73 2.04 2.40 2.01 2.19 2.36 2.03
1 2.28 1.86 2.01 1.69 1.90 2.12 1.80
0 (suffix only) 1.83 1.77 1.97 1.39 1.39 1.33 1.66

Conversely, Table 4 shows results for AgenticSQL, a highly repetitive agentic workload. Here, the
standalone SuffixDecoding (τ = 0) achieves the best overall speedup (5.35×), as it can confidently
speculate much longer sequences than model-based methods. Higher threshold values progressively
degrade performance as the system increasingly falls back to less effective model-based speculation.

Table 4: Hybrid SuffixDecoding speedup on AgenticSQL across different threshold values τ .
τ Classify Extract Enrich Combine SQL Overall

0 (suffix only) 3.02 9.85 10.41 4.85 3.09 5.35
1 2.31 7.03 8.37 3.38 2.17 3.95
2 2.24 7.14 7.97 3.33 2.29 3.80
3 2.22 5.51 5.68 3.52 2.20 3.22
7 2.06 6.79 7.10 3.44 2.29 3.66

In summary, practitioners should set τ ≈ MATfallback for mixed or open-ended workloads, where
MATfallback is the mean accepted tokens of the fallback model-based speculator. For highly repet-
itive agentic workloads, using SuffixDecoding alone (τ = 0 or very low values) yields the best
performance.

C Batch-level Speculation Control

For batched serving scenarios, optimizing the speculation per request in a batch is crucial for many
practical online deployments. While SuffixDecoding focuses on what tokens to speculate, it is
also compatible with existing works that explore how much to speculate per request. For example,
TurboSpec [Liu et al., 2024] uses a "goodput" metric to balance speculation lengths and batch
size, noting that optimal speculation decreases as batch size increases. AdaServe [Li et al., 2025b]
formulates multi-SLO serving as a constrained optimization problem and introduces SLO-customized
speculative decoding that constructs speculation trees tailored to each request’s latency target. By
dynamically adjusting the number of speculative tokens generated by the SuffixTree per request,

21

SuffixDecoding can be integrated with TurboSpec to maximize the batch-wise goodput metric.
Furthermore, the statistics-based scoring used by Suffix Decoding can potentially better inform
methods like TurboSpec. For example, choosing to speculate more from sequences that have a higher
marginal score. These are interesting and important directions for future work.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The technical description is accurate, and the claimed numbers are exactly as
presented in the main evaluation section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper evaluates SuffixDecoding on Spec-Bench, a workload that it is not
designed for, to show its limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix A.1.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendix A.1.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper does not curate any new data, train any new models, use human
subjects, or risk negative societal impact.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper does not curate any new data, train any new models, use human
subjects, or risk negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets and baselines used are properly cited in the body of the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

28

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Related Work
	SuffixDecoding
	Evaluation
	Evaluation Methodology
	Baseline Comparisons
	End-to-End SWE-Bench on vLLM
	Ablation Experiments

	Conclusion
	Technical Appendices and Supplementary Material
	Details for Main Experiments
	Experiment setup details
	Detailed sub-task results

	Additional Ablation Experiments
	Additional Dataset Details
	Effect of input distribution shift
	Predicting SuffixDecoding Effectiveness

	Scalability and Memory Overhead
	Hybrid Fallback Threshold Sensitivity Analysis

	Batch-level Speculation Control

