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ABSTRACT

Treatment effect estimation in continuous time is crucial for personalized
medicine. However, existing methods for this task are limited to point estimates of
the potential outcomes, whereas uncertainty estimates have been ignored. Need-
less to say, uncertainty quantification is crucial for reliable decision-making in
medical applications. To fill this gap, we propose a novel Bayesian neural con-
trolled differential equation (BNCDE) for treatment effect estimation in contin-
uous time. In our BNCDE, the time dimension is modeled through a coupled
system of neural controlled differential equations and neural stochastic differen-
tial equations, where the neural stochastic differential equations allow for tractable
variational Bayesian inference. Thereby, for an assigned sequence of treatments,
our BNCDE provides meaningful posterior predictive distributions of the potential
outcomes. To the best of our knowledge, ours is the first tailored neural method
to provide uncertainty estimates of treatment effects in continuous time. As such,
our method is of direct practical value for promoting reliable decision-making in
medicine.

1 INTRODUCTION

Personalized medicine seeks to choose treatments that improve a patient’s future health trajectory.
To this end, reliable estimates of treatment effects over time are needed (Allam et al., 2021; Bica
et al., 2021). For example, in cancer therapy, a physician may base the decisions of applying
chemotherapy on whether or not the expected health trajectory will improve after treatment.

In medicine, there is a growing interest in estimating treatment effects from patient trajectories using
observational data (e.g., electronic health records) (Allam et al., 2021; Bica et al., 2021; Feuerriegel
et al., 2024). Methods for this task should fulfill two requirements: (1) Existing methods typically
require a patient’s health trajectory to be recorded in regular time steps (e.g., Bica et al., 2020; Mel-
nychuk et al., 2022). However, medical practice is highly volatile and dynamic, as patients may need
immediate treatment. Hence, methods are needed that model patient trajectories not in discrete time
(e.g., fixed daily or hourly time steps) but in continuous time (i.e., actual timestamps). (2) To ensure
reliable decision-making, medicine is not only interested in point estimates but also the correspond-
ing uncertainty (e.g., credible intervals) (Zampieri et al., 2021; Banerji et al., 2023). For example,
rather than saying that a treatment is expected to reduce the size of a tumor by x, one is interested in
whether the size of a tumor will reduce by x with 95% probability, given the evidence of available
data. Hence, methods for treatment effect estimation must allow for uncertainty quantification.
To the best of our knowledge, a tailored method that accounts for both (1) and (2) is still missing.

Several neural methods have been developed for individualized treatment effect estimation from ob-
servational data over time (see Section 2 for an overview). Here, methods often focus on simplified
settings in discrete time (e.g., Lim et al., 2018; Bica et al., 2020; Kuzmanovic et al., 2021; Li et al.,
2021; Melnychuk et al., 2022) but not in continuous time. In contrast, there is only a single neural
method that operates in continuous time, namely, TE-CDE (Seedat et al., 2022). Yet, this method
lacks rigorous uncertainty quantification.
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Continuous time Outcome uncertainty Model uncertainty

RMSNs (Lim et al., 2018) ✗ ✗ ✗
CRN (Bica et al., 2020) ✗ ✗ ✗
G-Net (Li et al., 2021) ✗ ✓ (✗)
CT (Melnychuk et al., 2022) ✗ ✗ ✗

TE-CDE (Seedat et al., 2022) ✓ ✗ (✗)

BNCDE (ours) ✓ ✓ ✓

(✗): Authors use only MC dropout for model uncertainty

Table 1: Overview of key neural methods for treatment effect estimation over time. Model uncer-
tainty (epistemic) refers to the uncertainty with respect to the optimal model parameters. Outcome
uncertainty (aleatoric) is the uncertainty that is inherent to the data-generating process. While model
uncertainty decreases with increasing sample size, outcome uncertainty does not.

In this work, we develop a novel neural method for treatment effect estimation from observational
data in continuous time that allows for Bayesian uncertainty quantification. For this purpose, we
propose the Bayesian neural controlled differential equation (called BNCDE). In our BNCDE, we
follow the Bayesian paradigm to account for both model uncertainty and outcome uncertainty. To
the best of our knowledge, ours is the first tailored neural method for uncertainty-aware treatment
effect estimation in continuous time.

In our BNCDE, the time dimension is modeled through a coupled system of neural controlled differ-
ential equations and neural stochastic differential equations, where the neural stochastic differential
equations allow for tractable variational Bayesian inference. Specifically, we use latent neural SDEs
to parameterize the posterior distribution of the weights in the neural controlled differential equa-
tions. By design, the solutions to our SDEs are stochastic weight processes based on which we then
compute the Bayesian posterior predictive distribution of the potential outcomes in continuous time.

We contribute to three different streams of the literature:1 (1) We contribute to the literature on
treatment effect estimation: We develop a novel method for treatment effect estimation from obser-
vational data in continuous time with uncertainty quantification. (2) We contribute the the neural
differential equation literature: To the best of our knowledge, we are the first to propose a Bayesian
version of neural controlled differential equations. (3) We contribute to the medical literature: We
show empirically that our method yields state-of-the-art performance, paving the way for reliable,
uncertainty-aware medical decision making.

2 RELATED WORK

We discuss methods related to (i) individualized treatment effect estimation over time and (ii) neural
ordinary differential equations, as well as Bayesian methods for (i) and (ii). Thereby, we show that a
Bayesian method for uncertainty quantification in our setting is missing (see Table 1). We emphasize
that we focus on methods for individualized treatment effect estimation over time and not for average
treatment effect estimation (e.g. Robins et al., 2000; Robins & Hernán, 2009; Rytgaard et al., 2022;
Frauen et al., 2023).

Treatment effect estimation over time: Many works focus on estimating heterogeneous treatment
effects from observational data in the static setting (e.g., Johansson et al., 2016; Alaa & van der
Schaar, 2017; Louizos et al., 2017; Shalit et al., 2017; Yoon et al., 2018; Zhang et al., 2020; Melny-
chuk et al., 2023). In contrast, only a few works consider individualized treatment effect estimation
in the dynamic setting, that is, over time.2 We focus on neural methods for this task, as existing
non-parametric methods (Xu et al., 2016; Schulam & Saria, 2017; Soleimani et al., 2017) impose
strong assumptions on the outcome distribution, are not designed for multi-dimensional outcomes
and static covariate data, and scalability is limited.

(1) Some methods operate in discrete time. Examples are the recurrent marginal structural net-
works (RMSNs) (Lim et al., 2018), counterfactual recurrent network (CRN) (Bica et al., 2020),

1https://github.com/konstantinhess/Bayesian-Neural-CDE
2Brouwer et al. (2022) focus on a different setting with a single, static treatment (see Supplement E).
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G-Net (Li et al., 2021), and causal transformer (CT) (Melnychuk et al., 2022). However, these meth-
ods are all limited to discrete time (e.g., regular recordings such as in daily or hourly time steps),
which is often unrealistic in medical practice.

(2) A more realistic approach is to estimate treatment effects in continuous time. To the best of our
knowledge, the only neural method for that purpose is the treatment effect neural controlled dif-
ferential equation (TE-CDE) (Seedat et al., 2022). TE-CDE leverages neural controlled differential
equations (CDEs) to capture treatment effects in continuous time (see Supplement C for details on
TE-CDE). However, unlike our method, TE-CDE does not allow for uncertainty quantification.

In the continuous time setting, the timestamps of observation may be informative about the potential
outcomes and bias their estimates. A general framework to address informative sampling has been
developed in (Vanderschueren et al., 2023) and applied to TE-CDE. We later also apply this approach
to our BNCDE; see Supplement K.

Uncertainty quantification for treatment effect estimation: Jesson et al. (2020) highlight the
importance of Bayesian uncertainty quantification for treatment effect estimation in the static setting.
In the time-varying setting, existing methods are limited in that they use Monte Carlo (MC) dropout
(Gal & Ghahramani, 2016) as an ad-hoc solution. However, MC dropout relies upon mixtures of
Dirac distributions in parameter space, which leads to approximations of the true posterior which
are questionable and not faithful (Le Folgoc et al., 2021). In contrast, a tailored neural method for
Bayesian uncertainty quantification in the continuous time setting is still missing.

Neural differential equations: Neural ordinary differential equations (ODEs) can be seen as
infinitely-deep residual neural networks (Chen et al., 2018; Haber & Ruthotto, 2018; Lu et al.,
2018), where infinitesimal small hidden layer transformations correspond to the dynamics of a time-
evolving latent vector field. Neural CDEs (Kidger et al., 2020; Morrill et al., 2021) extend neural
ODEs in order to process time series data in continuous time (for more details, see Supplement D).

Uncertainty quantification for neural ODEs: There are only a few existing approaches for this
task. (1) Variants of Markov chain Monte Carlo (MCMC) have directly been applied to neural ODEs
(Dandekar et al., 2022). However, MCMC methods are known to scale poorly to high dimensions.
(2) Fast approximate Bayesian inference can be achieved through Laplace approximation (Ott et al.,
2023). (3) ODE2VAE (Yıldız et al., 2019) uses Gaussian distributions for variational inference in
neural ODEs. Yet, both (2) and (3) rely on unimodal distributions with limited expressiveness.
(4) The posterior can be approximated through neural stochastic differential equations (SDEs) (Li
et al., 2020). A key benefit of this is that neural SDEs as a variational family are both scalable and
arbitrarily expressive (Tzen & Raginsky, 2019; Xu et al., 2022). However, no work has integrated
Bayesian uncertainty quantification into neural CDEs.

Research gap: As shown above, there is no method for treatment effect estimation in continuous
time with Bayesian uncertainty quantification. To fill this gap, we propose our BNCDE. To the best
of our knowledge, our BNCDE is also the first Bayesian neural CDE.

3 PROBLEM FORMULATION

Setup: Let t ∈ [0, T̄ ] be the observation time and let τ ∈ (0,∆] be the prediction window. We then
consider n patients (i.i.d.) as realizations of the following variables: (1) Outcomes over time are
given by Yt ∈ R (e.g., tumor volume). (2) Covariates Xt ∈ Rdx include additional patient informa-
tion such as comorbidity. (3) Treatments are given by At ∈ {0, 1}da , where multiple treatments can
be administered at the same time. The treatment assignment is controlled by a multivariate counting
process Nt ∈ Nda

0 with intensity λ(t), where Nt corresponds to the number of treatments assigned
up to a specific point in time t. This is consistent with medical practice where the same treatment
is oftentimes applied multiple times. For example, cancer patients may receive multiple cycles of
chemotherapy (Curran et al., 2011).

Importantly, we focus on a setting in continuous time. That is, the outcomes and covariates of
each patient i are recorded at timestamps {ti0, ti1, . . . , timi

} with ti0 = 0 and timi
= t̄i, where mi

is the number of timestamps and t̄i is the latest observation time for patient i.3 Observation times

3W.l.o.g., we assume that ti0 = 0 for all i.
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are assumed to follow another, possibly history-dependent, intensity process ζ(t). This is a crucial
difference from a setting in discrete time, since, in our setting, the timestamps are arbitrary and thus
non-regular. Further, the timestamps may differ between patients.

We have access to observational data hi
t = {yi[0,t], xi

[0,t], a
i
[0,t]}, t ∈ [0, t̄i], which we refer to as

patient trajectories. Formally, the observed outcomes at time t are given by yi[0,t] =
⋃

ℓ≤ki
{yi

tiℓ
} and

the observed covariates by xi
[0,t] =

⋃
ℓ≤ki

{xi
tiℓ
}, where tiki

≤ t is the latest observation time up to
time t with ki ≤ mi. In contrast, we have full knowledge of the history of assigned treatments, i.e.,
ai[0,t] =

⋃
s≤t{ais}. We are interested in the potential outcome for a new patient ∗ at time t̄∗ + ∆,

Yt̄∗+∆[a
′
(t̄∗,t̄∗+∆]], for an arbitrary future sequence of treatments a′(t̄∗,t̄∗+∆] =

⋃
t̄∗<τ≤t̄∗+∆ a′τ ,

given a patient’s observed trajectory h∗
t̄∗ . For notation, we write hi

(t̄i+∆)− = hi
t̄i ∪ {ai(t̄i,t̄i+∆]}

when we include the factual future sequence of treatments. We write hi
t̄i+∆ = hi

(t̄i+∆)− ∪ {yit̄i+∆}
when we further include the realized observed outcome for this future sequence of treatments.

Estimation Task: Our objective is to predict the potential outcome for a future sequence of assigned
treatments, given the observed patient history. In the following, we adopt the potential outcomes
framework (Neyman, 1923; Rubin, 1978) and its extensions to the time-varying setting (Lok, 2008;
Robins & Hernán, 2009; Saarela & Liu, 2016; Rytgaard et al., 2022).

Unique to our setting is that we do not focus on simple point estimates but perform Bayesian un-
certainty quantification. In the Bayesian framework, model parameters ω ∈ Ω are assigned a prior
distribution p(ω). Further, for an individual ∗ and a future sequence of treatments a′(t̄∗,t̄∗+∆], the po-
tential outcome Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] has a likelihood p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ , ω), given a parameter
realization ω and patient trajectory h∗

t̄∗ . We thus aim to estimate the posterior predictive distribution

p(Yt̄∗+∆[a
′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ ,H) = Ep(ω|H)

[
p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ , ω)
]
, (1)

which is the weighted average likelihood under the parameter posterior distribution p(ω | H) given
the training data H =

⋃n
i=1 h

i
t̄i+∆. Of note, our setting is different from other works such as

TE-CDE (Seedat et al., 2022), where only point estimates such as E[Yt̄∗+∆[a
′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ ] are
computed but without uncertainty quantification. Instead, we estimate the full distribution of the
potential outcomes.

Identifiability: The above estimation task is challenging due to the fundamental problem of causal
inference (Imbens & Rubin, 2015) in that only factual but never counterfactual patient trajecto-
ries are observed. To ensure identifiability from observational data, we make the following three
assumptions that are standard in the literature (Lok, 2008; Robins & Hernán, 2009; Saarela &
Liu, 2016; Rytgaard et al., 2022; Ying, 2022): (1) Consistency: Given a sequence of treatments
A[0,t+τ ] = a[0,t+τ ], t ≥ 0 and τ ∈ [0,∆], the potential outcome Yt+τ [a[0,t+τ ]] coincides with the
observed outcome Yt+τ . (2) Overlap: For any realization of patient history Ht = ht, there is a pos-
itive probability of receiving treatment at any point t in time. That is, the intensity process satisfies
0 < λ(t | ht) < 1. Similar to estimating the propensity score in the static setting (Schweisthal
et al., 2023), the intensity can be estimated from data (Leemis, 1991). (3) Unconfoundedness: The
treatment assignment probability is independent of future outcomes and unobserved information.
This means that the intensity process satisfies λ(t | ht) = λ(t | ht,F(Ys[a

′
(t,s]] : s > t)), where

F(Ys[a
′
(t,s]] : s > t) is the filtration generated by future potential outcomes.

4 BAYESIAN NEURAL CONTROLLED DIFFERENTIAL EQUATION

4.1 ARCHITECTURE

Our BNCDE builds upon an encoder-decoder architecture (see Fig. 1) with three components. The
A encoder receives the patient trajectory Ht in continuous time and encodes it into a hidden rep-

resentation Zt up to time T̄ . The B decoder then takes the hidden representation ZT̄ together
with a future sequence of treatments a′τ and transforms it into a new hidden representation Z̃τ

for 0 < τ ≤ ∆, where ∆ is the desired prediction window. Both the encoder and the decoder
each consist of (i) a neural CDE and (ii) a latent neural SDE (see Supplement D for an overview).
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Figure 1: Our BNCDE consists of an encoder, a decoder, and a prediction head.

(i) The neural CDEs compute hidden representations of the patient trajectories in continuous time.
The hidden representations in the neural CDEs allow us to model non-linearities in the data, reduce
dimensionality, and capture dependencies between observed variables (Yt, Xt, At). (ii) The latent
neural SDEs approximate the posterior distribution of the neural CDE weights. Finally, the C pre-
diction head receives Z̃∆ and parameterizes the likelihood of the potential outcome. We explain
the different components in the following.

A Encoder: The encoder has two components, namely a neural CDE and a latent neural SDE:
(i) The neural CDE encodes a hidden representation that is driven by the patient history. (ii) The
latent neural SDE approximates the posterior distribution of the neural CDE weights.

The neural CDE consists of a trainable embedding network ηeϕ : R1+dx+da → Rdz that encodes the
initial outcome Y0, covariates X0, and treatments A0 into a hidden state Z0. The hidden state Z0

serves as the initial condition of the neural CDE. Formally, it is given by

Zt =

∫ t

0

fe(Zs, s | ωs) d[Ys, Xs, As], t ∈ (0, T̄ ], Z0 = ηeϕ(Y0, X0, A0), (2)

where fe(Zt, t | ωt) : Rdz+1 → Rdz×(1+dx+da) is the neural vector field controlled by [Yt, Xt, At]
given the network weights ωt. In particular, fe is a Bayesian neural network. It encodes information
about the patient patient history into the hidden states Zt at any time t ∈ [0, T̄ ]. Given the observed
data, the posterior distribution of the random weights ωt is modeled through the latent neural SDE.
Hence, the weights are not static but time-varying. The output ZT̄ is then passed to the decoder.

The neural SDE is used to model the neural CDE weights ωt ∈ Rdω . Here, we assume that the
weights evolve over time according to a stochastic process, where the stochastic process is the so-
lution to the latent neural SDE. Specifically, we optimize the neural SDE to approximate the joint
posterior distribution p(ω[0,T̄ ] | H) of the weights ωt on [0, T̄ ] given the training data. We refer to
the joint variational distribution as qeϕ(ω[0,T̄ ]). Then, the neural SDE is formally defined by

ωt =

∫ t

0

geϕ(ωs, s) ds+

∫ t

0

σ dBs, t ∈ (0, T̄ ], ω0 = ξeϕ, (3)

where geϕ : Rdω+1 → Rdω is the drift network, σ is a constant diffusion coefficient, Bt ∈ Rdω is a
standard Brownian motion, and ξeϕ ∼ N (νeϕ, σ) is the initial condition.

B Decoder: The decoder also consists of a neural CDE and a latent neural SDE. (i) The neural
CDE is controlled by a future sequence of treatments. (ii) The latent neural SDE approximates the
posterior distribution of the neural CDE weights.

The neural CDE takes the hidden representation ZT̄ from the encoder as the initial condition. The
neural CDE is then given by

Z̃τ =

∫ τ

0

fd(Z̃s, s | ω̃s) da
′
s, τ ∈ (0,∆], Z̃0 = ZT̄ , (4)
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where fd(Z̃τ , τ | ω̃τ ) : Rdz+1 → Rdz×(1+dx+da) is the Bayesian neural vector field controlled by a
future sequence of treatments a′τ given the network weights ω̃τ . The hidden state Z̃∆ is then passed
to the prediction head.

The neural SDE is defined in the same way as in the encoder. It is used to make a variational
approximation qdϕ(ω̃[0,∆]) of the joint posterior distribution p(ω̃[0,∆] | H, ω[0,T̄ ]) of the weights ω̃τ

on [0,∆] given the training data and the neural CDE weights from the encoder. Formally, the neural
SDE is given by

ω̃τ =

∫ τ

0

gdϕ(ω̃s, s) ds+

∫ τ

0

σ dB̃s, τ ∈ (0,∆], ω̃0 = ξϕ, (5)

where gdϕ : Rdω̃+1 → Rdω̃ is the drift network, B̃τ ∈ Rdω̃ is another standard Brownian motion,
and ξdϕ ∼ N (νdϕ, σ) is the initial condition.

C Prediction head: The prediction head is a trainable mapping ηpϕ : Rdz → R2. It takes the hidden
state Z̃∆ as input and then predicts the expected value µT̄+∆ and the outcome uncertainty ΣT̄+∆ of
the potential outcome at time T̄ +∆ via

(µT̄+∆,ΣT̄+∆) = ηpϕ(Z̃∆). (6)

4.2 COUPLED SYSTEM OF NEURAL DIFFERENTIAL EQUATIONS

We can write our BNCDE as a coupled system of differential equations, which allows our BNCDE
to learn in an end-to-end manner. Formally, the system of neural differential equations is given by

d

(
ω̃τ

Z̃τ

)
=

(
gdϕ(ω̃τ , τ)

fd(Z̃τ , τ | ω̃τ )

)
d

(
τ

a′τ

)
+ σ d

(
B̃τ

0

)
, (7)

d

(
ωt

Zt

)
=

(
geϕ(ωt, t)

fe(Zt, t | ωt)

)
d

(
t

[Yt, Xt, At]

)
+ σ d

(
Bt

0

)
, (8)

with initial conditions

Z̃0 = ZT̄ , ω̃0 = ξdϕ, Z0 = ηeϕ(Y0, X0, A0) and ω0 = ξeϕ, (9)

and where t ∈ (0, T̄ ] and τ ∈ (0,∆]. The prediction head then outputs (µT̄+∆,ΣT̄+∆) = ηpϕ(Z̃∆).
The embedding network ηeϕ, the prediction head ηpϕ, the initial conditions ξeϕ and ξdϕ, and the drift
networks geϕ and gdϕ are learned via gradient-based methods.

For our model, the use of neural SDEs has three main benefits. (1) Neural SDEs allow us to approx-
imate parameter posterior distributions that are arbitrarily complex. We emphasize that, although σ
is constant, prior research (Tzen & Raginsky, 2019; Xu et al., 2022) shows that given a sufficiently
expressive family of drift networks, neural SDEs are able to approximate the true posterior distri-
butions with arbitrary accuracy. (2) Our neural SDEs are non-autonomous, which means that they
directly incorporate dependency on time. This way, we make sure that the weights learn to adjust
their dynamics over time. (3) Our neural SDEs are learned through variational Bayes and enable
inference in seconds.

4.3 POSTERIOR PREDICTIVE DISTRIBUTION

Our model generates the full posterior predictive distribution of the potential outcome, given patient
history and training data. For a potential outcome at time t̄∗ +∆, our variational approximation of
the posterior predictive distribution in Eq. 1 is given by

Ep(ω̃[0,∆],ω[0,t̄∗]|H)

[
p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | ω̃[0,∆], ω[0,t̄∗], h

∗
t̄∗)
]

≈ Eqeϕ(ω[0,t̄∗])

{
Eqdϕ(ω̃[0,∆])

[
p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | ω̃[0,∆], ω[0,t̄∗], h

∗
t̄∗)
]}

. (10)
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Hence, our posterior predictive distribution can be thought of as a Gaussian mixture model with
infinitely many mixture components parameterized by the weights ω[0,T̄∗] and ω̃[0,∆]. We provide a
formal derivation in Supplement F.

We emphasize that our model incorporates both (1) model uncertainty (epistemic) and (2) outcome
uncertainty (aleatoric): (1) Model uncertainty is represented by the variance of the latent neural
SDEs. The variances of the marginals qeϕ(ωt) and qdϕ(ωτ ) are larger for patient histories h∗

t̄∗ and
future sequences of treatments a′(t̄∗,t̄∗+∆] that are unlike any observations in the training data H.
Correspondingly, this leads to a larger variance of the posterior predictive distribution. Our BNCDE
therefore informs about uncertainty in predictions due to lack of data support. (2) Outcome uncer-
tainty is determined by the likelihood variance Σt̄∗+∆. A larger likelihood variance implies that for
a given patient history h∗

t̄∗ and a future sequence of treatments a′(t̄∗,t̄∗+∆], there is a higher degree
of variability in the potential outcome at future time t̄∗ +∆.

4.4 TRAINING

Our BNCDE is trained by maximizing the evidence lower bound (ELBO), which further requires
the specification of prior distributions of the neural CDE weights and a likelihood.

Priors: Our chosen priors for both the encoder weights ωt and the decoder weights ω̃τ are indepen-
dent Ornstein-Uhlenbeck (OU) processes due to their finite variance in the time limit. We set the
prior drifts to he(ωt) = (−ωt) and hd(ω̃τ ) = (−ω̃τ ) respectively and the diffusion coefficients to
σ.

Likelihood: The likelihood in Eq. 10 is a normal distribution parameterized by the prediction head
in Eq. 6. That is, we model the likelihood as

YT̄+∆[a
′
(T̄ ,T̄+∆]] | (ω̃[0,∆], ω[0,T̄ ], HT̄ ) ∼ N (µT̄+∆,ΣT̄+∆). (11)

ELBO: For training, we optimize the variational posterior distribution of the weights using the data
H. Specifically, we maximize the ELBO for an observation i given by

log p(yit̄i+∆ | hi
(t̄i+∆)−) ≥Eqeϕ(ω[0,t̄i])

{
Eqdϕ(ω̃[0,∆])

[
log p(yit̄i+∆ | ω̃[0,∆], ω[0,t̄i], h

i
(t̄i+∆)−)

]}

−DKL[q
d
ϕ(ω̃[0,∆]) ∥ p(ω̃[0,∆])]−DKL[q

e
ϕ(ω[0,t̄i]) ∥ p(ω[0,t̄i])], (12)

where DKL is the Kullback–Leibler divergence, p(ω̃[0,∆]) and p(ω[0,t̄i]) are the joint distributions
of the OU priors on [0,∆] and [0, t̄i] respectively. We provide a full derivation of the ELBO loss
in Supplement F. A summary of the numerical ELBO approximation is provided in Supplement G.
Further implementation details of our model are provided in Supplement H.

5 NUMERICAL EXPERIMENTS

5.1 SETUP

Data: We benchmark our method using the established pharmacokinetic-pharmacodynamic tumor
growth model by Geng et al. (2017). Variants of this model are the standard used to assess the
performance of time-varying treatment effect models (Lim et al., 2018; Bica et al., 2020; Li et al.,
2021; Melnychuk et al., 2022; Seedat et al., 2022; Vanderschueren et al., 2023). In the tumor growth
model, the outcome Yt is the tumor volume Geng et al. (2017). At time t, a treatment may be applied
and, if so, includes chemotherapy, radiotherapy, or both. We employ the same model variant as in
Vanderschueren et al. (2023), where observations are sampled non-regularly, that is, in continuous
time. We provide more details in Supplement B.

Baselines: Due to the novelty of our setting, there are no existing baselines for uncertainty quan-
tification in continuous time (see Table 1). The only comparable method is TE-CDE with Monte
Carlo (MC) dropout (Seedat et al., 2022). Implementation details are in Supplement H.

Performance metrics: We use different metrics to assess whether the uncertainty estimates of our
method are faithful and sharp. To this end, we examine the posterior predictive credible intervals
(CrIs) of the potential outcomes generated by the different methods. For each patient, we compute
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the individual equal-tailed (1 − α) posterior predictive CrI with α ∈ [0.01, 0.05]. This choice is
motivated by medical practice, where the treatment effectiveness is typically evaluated based on the
95% and 99% CrIs. We assess the faithfulness of the CrIs by computing the empirical coverage,
that is, the proportion of times the CrIs contain the outcomes in the test data. We further assess
the sharpness of the computed CrIs by reporting the median width of the CrIs between 95% and
99% over all patients in the test data. We report the results for the prediction windows ∆ = 1, 2, 3.
Results for additional prediction windows in Supplement J. We report the averaged results along
with the standard deviation over five different seeds.

We further evaluate the error in the point estimates. Specifically, we compute the mean squared
error (MSE) of the Monte Carlo mean estimates of the observed outcomes.

5.2 RESULTS

■ Faithfulness: We first evaluate whether the estimated CrIs are faithful. For this, we show the
empirical coverage across different quantiles (1 − α). The results are in Fig. 2. For our BNCDE,
the (1− α) CrI almost always contains at least (1− α) of the outcome, implying that the estimated
CrIs are generally faithful. In contrast, the estimated CrIs for TE-CDE are generally not faithful.
In particular, the CrIs from TE-CDE often contain fewer outcomes than the (1 − α) level should
guarantee, implying that the uncertainty estimates from TE-CDE are overconfident. This is in line
with the literature, where MC dropout is found to produce poor approximations of the posterior (Le
Folgoc et al., 2021). For longer prediction windows ∆, the advantages from our method are even
greater. In sum, the results demonstrate that our method is clearly superior.
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Figure 2: Faithfulness: Empirical coverage across different CrI quantiles. Shown are different
prediction windows ∆ = 1, 2, 3. Areas in green (red) indicate that the CrIs are faithful (not faithful).

■ Sharpness: We compare the median width of estimated CrIs (see Fig. 3). The CrIs from our
BNCDE are significantly sharper than those of TE-CDE. This holds for all prediction windows,
which further demonstrates the effectiveness of our method.
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Figure 3: Sharpness: Width of the CrIs (median) for different quantiles α.

■ Error in point estimates: We further compare the errors in the Monte Carlo mean estimates of
the treatment effects. The rationale is that our BNCDE may be better at computing the posterior
distribution, yet the more complex architecture could hypothetically let the point estimates deterio-
rate. However, this is not the case, and we see that our BNCDE is clearly superior (see Fig. 4). We
further find that the performance gain from our method is robust across different levels of noise in
the data-generating process (i.e., larger Var(ϵt)).
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Figure 4: Error in point estimates: Reported is the median over the mean squared errors (MSE) of
the point estimates of the outcomes. The results are based on test data that is generated with varying
levels of noise, i.e., Var(ϵt).

5.3 COMPARISON OF MODEL UNCERTAINTY

We now provide a deep-dive comparing the uncertainty estimates for model uncertainty only (and
thus without outcome uncertainty). We do so for two reasons: (1) We can directly compare the
model uncertainty from both our BNCDE and TE-CDE with MC dropout as the latter is limited
to model uncertainty. (2) We can better understand the role of the neural SDE in our method (i.e.,
before the variational approximations are passed to the prediction head). For TE-CDE, we thus
use the variance in the MC dropout samples as a measure of model uncertainty. For our BNCDE,
we capture the model uncertainty with the Monte Carlo variance in the means of the likelihood
µt̄∗+∆ under the neural SDE weights ω[0,t̄∗] and ω̃[0,∆]. However, both measures are not directly
comparable. Hence, inspired by analyses for static settings (Jesson et al., 2020; 2021; Oprescu et al.,
2023), we compare the deferral rate. That is, we report errors in the MSE of the treatment effect as
we successively withhold samples with the largest Monte Carlo variance.
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Figure 5: To compare model uncertainty, the normalized MSE of estimated treatment effects be-
tween the treatment arms versus deferral rate is shown.

Fig. 5 shows the normalized MSE across different proportions of withheld samples. For TE-CDE
with MC dropout, the MSE decreases almost randomly, implying that the MC estimates as a mea-
sure of model uncertainty are highly uninformative (and close to random deferral). For our BNCDE,
a larger MSE in the treatment effect estimates corresponds to a higher model uncertainty, thus im-
plying that the model uncertainty in our method is more informative.

Extension: We repeat our experiments for informative sampling (see Supplement K). For this, we
extend both our BNCDE and TE-CDE using the inverse intensity weighting method from Vander-
schueren et al. (2023). We find that our method remains clearly superior.

Conclusion: Our results show the following: (1) Our BNCDE produces posterior predictive CrIs
that are faithful. In contrast, the CrIs from TE-CDE can be overconfident, which, in medicine, may
lead to treatment decisions that are dangerous. (2) Our BNCDE further provides approximations of
the CrIs that are sharper. (3) Our BNCDE generates more informative estimates of model uncer-
tainty compared to TE-CDE with MC dropout. (4) Our BNCDE is further more robust against noise
than TE-CDE with MC dropout and, also, (5) highly effective for longer prediction windows. We
discuss the applicability of our BNCDE in medical scenarios in Supplement A.
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A DISCUSSION ON THE APPLICABILITY IN MEDICAL SCENARIOS

In our main paper, we demonstrated that BNCDE represents a significant step toward reliable,
uncertainty-aware decision-making in medicine. To this end, we improve over existing methods by
leveraging the Bayesian paradigm and by introducing a novel neural approach for uncertainty-aware
treatment effect estimation. Specifically, we provide strong empirical evidence that our BNCDE
based on a combination of neural CDEs and latent neural SDEs outperforms the existing ad-hoc
baselines, namely TE-CDE (Seedat et al., 2022) with MC dropout (Gal & Ghahramani, 2016). Ad-
ditionally, we demonstrate numerically that our method is compatible with other extensions, such as
the informative sampling framework by Vanderschueren et al. (2023) and balanced representations
(Bica et al., 2020; Melnychuk et al., 2022; Seedat et al., 2022) (see Supplements K and L).

Our experiments further demonstrate that our method holds great relevance in clinical settings. First,
our method allows for treatment effect estimation in continuous time. That is, it does not rely on the
unrealistic assumption of regular recording times in electronic health records (Özyurt et al., 2021),
but can instead account for highly irregularly sampled recording times. In electronic health records,
irregular observation times are common and quasi-standard (Alaa et al., 2017; Allam et al., 2021).
Because of this, the assumptions in existing methods for discrete time are directly violated, while
a particular strength of our method is that we explicitly account for irregular sampling. Second,
our method does not only provide point estimates of the potential outcomes but estimates the full
posterior predictive distribution. This is crucial in personalized medicine, as physicians may want
to base their decisions on uncertainty estimates. In fact, uncertainty estimates are imperative for all
medical applications to avoid patient harm (Banerji et al., 2023). To account for that, our posterior
predictive distribution provides insights into both (i) model uncertainty (see Fig. 5) and (ii) outcome
uncertainty (see Supplement I) of the potential outcomes in continuous time, and is the first tailored
neural method for this task.

Combining outcome estimation in continuous time and rigorous uncertainty quantification in a sin-
gle, neural end-to-end architecture is a major improvement over all existing neural baselines (see
Section 2). Furthermore, existing non-parametric approaches (Xu et al., 2016; Schulam & Saria,
2017; Soleimani et al., 2017) impose strong assumptions on the outcome distribution, they are not
designed for multi-dimensional outcomes and static covariate data, and they face scalability issues.
For instance, Gaussian Process methods as in (Schulam & Saria, 2017) require a matrix inversion of
the covariance matrix involving all patients in the training data. Due to the cubic scaling of this op-
eration, this is completely impractical in medical scenarios with constrained time and computational
resources.

However, while our BNCDE presents a first and important step toward uncertainty-aware medical
decision-making with neural networks, our method also has limitations as any other. We discuss
them in the following:

(i) Our BNCDE remains a black-box method that is not directly explainable. While explainability
is often desired in medical scenarios for reliable decision-making, this issue is not unique to our
method but applies to all previously mentioned neural approaches (Lim et al., 2018; Bica et al.,
2020; Li et al., 2021; Melnychuk et al., 2022; Seedat et al., 2022). As such, we suggest a careful use
of our method in high-stakes decisions. Instead, we recommend the use of our method in automated
or routine tasks. For example, there is a growing number of smartphone apps with digital health
interventions (Murray et al., 2016), which could benefit from personalization through our method.
Further, we argue that recognizing highly non-linear, complex, and inexplicable patterns in data is
what neural networks are designed for; this, of course, contradicts direct explainability.

(ii) As reliability is of high importance, we emphasize that tuning the diffusion hyperparameter has
noticeable impact on the approximation quality of the latent neural SDEs. In particular, during our
experimental studies, increasing the diffusion constant directly led to stronger conservatism in the
predictive predictive estimates.

(iii) Training our BNCDE involves solving high-dimensional stochastic differential equations. This
is a numerically challenging task and is the computational bottleneck of our method. However, we
emphasize that, as validated in Supplement M, the training time scales only linearly with the dimen-
sion of the latent neural SDEs. This is not different from the scaling of any other fully connected
neural network. Furthermore, we emphasize that, once the network is trained, inference for new
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patients can be achieved in seconds. Hence, this makes our method suitable for deployment as a
decision support tool in clinical settings.

(iv) Our work focuses on approximate Bayesian inference for neural CDEs of moderate size as en-
countered in medical practice and has not been designed for very high-dimensional settings (e.g.,
inference on neural CDEs with billions of parameters). While such high-dimensional settings are
out of scope for this work, uncertainty quantification is typically needed for moderately sized (rather
than very large) datasets and neural networks in practice. The reason is that, for moderately sized
datasets, we cannot expect to learn the true data-generating mechanisms. Instead, we expect that
there is uncertainty in how medical treatments affect patient health and, to deal with this, it is im-
perative in medicine to make treatment choices by incorporating the underlying uncertainty (Banerji
et al., 2023).

(v) Due to the highly complex structure in electronic health records, sufficient data is required to
obtain robust estimation results. However, we are optimistic that this will not be an issue in the near
future due to the increasing amount of available data and data sharing agreements (e.g., Johnson
et al., 2016; Pollard et al., 2018; Hyland et al., 2020; Thoral et al., 2021; Rodemund et al., 2023).

(vi) As with any other method for treatment effect estimation, ours relies upon mathematical assump-
tions. Importantly, the above implementation of our BNCDE does not account for confounding bias.
Confounding bias distorts the true causal relationship between a treatment and an outcome, stem-
ming from the influence of an unaccounted-for variable. This occurs when a variable is associated
with both the treatment and the outcome, introducing a potential source of bias. For instance, pa-
tients with more severe health conditions may be more likely to receive treatment A, while those
with better health status may be given treatment B (Vokinger et al., 2021). Consequently, when
estimating the effect of treatment A from data, bias towards a worse outcome emerges due to the
association between health condition and treatment assignment. Addressing confounding bias in
discrete-time literature involves adjustments like inverse propensity weighting (IPW) (RMSNs (Lim
et al., 2018)) and G-computation (G-Net (Li et al., 2021)). However, these adjustments lead to very
high estimation variance. Other neural methods such as (Bica et al., 2020; Melnychuk et al., 2022;
Seedat et al., 2022) try to reduce confounding bias through balanced representations. However,
balancing is an approach for reducing estimation variance and not for mitigating confounding bias
(Shalit et al., 2017). Furthermore, it may even introduce an infinite data bias (Melnychuk et al.,
2024) (see Supplement N for a detailed discussion on balanced representations). As in (Vander-
schueren et al., 2023), we therefore decided against balanced representations in our main paper. Of
note, our BNCDE is generally compatible with balancing, as we show in Supplement L. Notwith-
standing, while estimation bias due to confounding is still an open issue, we emphasize that this is
not unique to our method but a general problem in the literature for time-varying treatment effect
estimation.

Finally, we acknowledge that treatment effect estimation in the continuous-time setting is challeng-
ing and remains subject to ongoing research. Our BNCDE faces the same lack of proper adjustments
as the only other neural baseline (Seedat et al., 2022) and does not offer unbiasedness guarantees.
Nevertheless, we believe that our BNCDE is a major improvement over existing methods and a
direct step towards reliable decision-making in medicine.
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B CANCER SIMULATION

The tumor data was simulated according to the lung cancer model by Geng et al. (2017), which
has previously been used in (Lim et al., 2018; Bica et al., 2020; Li et al., 2021; Melnychuk et al.,
2022; Seedat et al., 2022; Vanderschueren et al., 2023). In particular, we adopt the simulation
setting by Vanderschueren et al. (2023), which includes irregularly sampled observations and avoids
introducing confounding bias in the treatment assignment mechanism.

The tumor volume, which we refer to as the outcome variable in the main paper, evolves according
to an ordinary differential equation:

dYt =


1 + ρ log

(
K

Yt

)

︸ ︷︷ ︸
Tumor growth

− αcct︸︷︷︸
Chemotherapy

− (αrdt + βrd
2
t )︸ ︷︷ ︸

Radiotherapy

+ ϵt︸︷︷︸
Noise


Yt dt, (13)

where ρ is a growth parameter, K is the carrying capacity, αc, αr and βr control the chemo and radio
cell kill, respectively, and ϵt introduces randomness into the growth dynamics. The parameters were
sampled according to Geng et al. (2017) and are summarized in Table 2. The variables ct and dt are
set following the work by Lim et al. (2018); Bica et al. (2020); Seedat et al. (2022). The time t is
measured in days.

Variable Parameter Distribution Value (µ, σ2)

Tumor growth Growth parameter ρ Normal (7.00× 10−5, 7.23× 10−3)
Carrying capacity K Constant 30

Radiotherapy Radio cell kill αr Normal (0.0398, 0.168)
Radio cell kill βr – Set to βr = 10× αr

Chemotherapy Chemo cell kill αc Normal (0.028, 7.00× 10−4)

Noise – ϵt Normal (0, 0.012)

Table 2: Sampling details of parameters used in the tumor simulation model.

We make the following, additional adjustments as informed by prior literature:

• As in (Lim et al., 2018; Bica et al., 2020; Seedat et al., 2022; Vanderschueren et al., 2023),
heterogeneity between patients is introduced by modeling different subgroups. Each sub-
group differs in their average response to treatment, expressed by the mean values of the
normal distributions. For subgroup 1, we increase µ(αr) by 10%, and, for subgroup 2, we
increase µ(αc) by 10%.

• Following Kidger et al. (2020), we add a multivariate counting variable that counts how
often each treatment has been administered up to a specific time.

• As in (Vanderschueren et al., 2023), the observation process is governed by an intensity
process with history-dependent intensity

ζit = sigmoid
[
γ

(
D̄i

t

D
− 1

2

)]
, (14)

where γ controls the sampling informativeness, D = 13 cm, and D̄i
t is the average tumor

diameter over the last 15 days. For our informative sampling experiments in Section 5 and
for the additional prediction windows in Supplement J, we set γ = 1. For our experiments
in Supplement K, we increased the sampling informativeness to γ = 2.

Treatments are assigned according to either a concurrent or a sequential treatment arm (Curran et al.,
2011). That is, patients receive treatment either (i) weekly chemotherapy for five weeks and then
radiotherapy for another five weeks or (ii) biweekly chemotherapy and radiotherapy for ten weeks.
Patients are randomly divided between the two treatment regimes. For any patient in the test data, we
simulate both the factual outcome under the assigned treatment arm and the counterfactual outcome
under the unassigned treatment arm.
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For training, validation, and testing, our observed time window is 55 days with an additional predic-
tion window of up to 5 days. For training and validation, we simulated 10, 000 and 1000 observa-
tions, respectively. For testing, we simulated the trajectories and the outcomes for 10, 000 patients
under both treatment arms, respectively. We standardized our data with the training set.
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C TE-CDE

In this section, we give a brief overview of the so-called treatment effect neural controlled differential
equation (TE-CDE) (Seedat et al., 2022). We present the main ideas of the original TE-CDE model
but refer to the original paper for more details. We build upon our notation to avoid ambiguities.

TE-CDE uses neural controlled differential equations to predict potential outcomes in continuous
time. For this, TE-CDE assumes that a hidden state variable Zt ∈ Rdz is driven by the outcome
history, covariate history, and treatment history. The control path is interpolated in continuous time
from observational, irregularly sampled data. The hidden state variable Zt encodes information
about the potential outcomes for a given treatment assignment. In (Seedat et al., 2022), TE-CDE is
trained with an adversarial loss term to enforce balanced representations (see Supplement N for a
discussion on balanced representations). However, balanced representations are not the focus of our
paper, and we thus omit them for better comparability.

As is common for neural CDEs, TE-CDE encodes the initial outcome variable Y0, covariates X0

and treatment A0 into the hidden state Z0 through an embedding network ηeϕ : R1+dx+da → Rdz .
The hidden state then serves as the initial condition of the controlled differential equation given by

Zt =

∫ t

0

fe
ϕ(Zs) d[Ys, Xs, As], t ∈ (0, T̄ ] and Z0 = ηeϕ(Y0, X0, A0). (15)

Eq. 15 is the encoder network of TE-CDE. The last hidden state ZT̄ is then passed through a decoder
to predict the potential outcome YT̄+∆[a

′
(T̄ ,T̄+∆]

] for an arbitrary but fixed time window ∆ in the
future. The decoder is given by the neural CDE

YT̄+∆[a
′
(T̄ ,T̄+∆]] ≈ ηdϕ(Z̃∆), Z̃τ =

∫ τ

0

fd
ϕ(Z̃s) da

′
s, τ ∈ (0,∆] and Z̃0 = ZT̄ , (16)

where ηdϕ is the read-out mapping. In particular, for a new patient ∗, TE-CDE seeks to approximate
the expected value of the potential outcome, given the patient trajectory H∗

t̄∗ . That is, TE-CDE
approximates the quantity

E[Yt̄∗+∆[a
′
(t̄∗,t̄∗+∆]] | H∗

t̄∗ ]. (17)

Reassuringly, we highlight the following key differences between TE-CDE and our BNCDE:

1. TE-CDE targets Eq. 17 and thus makes a point estimate of the potential outcome at time
t̄∗ +∆. In contrast, our BNCDE estimates the full posterior predictive distribution of the
potential outcome.

2. TE-CDE directly optimizes the neural vector fields fe
ϕ and fd

ϕ of the CDE. Instead, our
BNCDE parameterizes the distribution of the neural CDE weights with latent neural SDEs.
This neural SDE is optimized to shape the posterior distribution of the neural CDE weights
given the training data. As such, the architectures of TE-CDE and our BNCDE are vastly
different.

3. TE-CDE may employ MC dropout to approximate model uncertainty. However, as we
show in our paper, the tailored neural SDEs provide more informative model uncertainty
quantification.

4. TE-CDE does not provide an estimate of the outcome uncertainty quantification. On the
other hand, our BNCDE incorporates outcome uncertainty through the likelihood variance
Σt̄∗+∆ (see Supplement I).

5. The training objective of TE-CDE is against the mean squared error (MSE). In contrast,
our method optimizes the evidence lower bound (ELBO). The ELBO seeks to balance the
expected likelihood under the posterior distribution with the Kullback-Leibler divergence
between prior and posterior SDEs. Therefore, our loss naturally incorporates weight regu-
larization.
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D NEURAL DIFFERENTIAL EQUATIONS

We provide a brief overview of (1) neural ODEs, (2) neural CDEs, and (3) neural SDEs.

Neural ODEs: Neural ordinary differential equations (ODEs) (Haber & Ruthotto, 2018; Lu et al.,
2018) combine neural networks with ordinary differential equations. Recall that, in a traditional
residual neural network with t = 1, . . . , T̄ residual layers, the hidden states are defined as

Zt = Zt−1 + fϕt(Zt−1), (18)

where fϕt
(·) is the t-th residual layer with trainable parameters ϕt and Z0 = X is the input data.

These update rules correspond to an Euler discretization of a continuous transformation. That is,
stacking infinitely many infinitesimal small residual transformations, fϕ(·) defines a vector field
induced by the initial value problem

Zt =

∫ t

0

fϕ(Zs, s) ds, Z0 = X. (19)

Instead of specifying discrete layers and their parameters, a neural ODE describes the continuous
changes of the hidden states over an imaginary time scale. A neural ODE thus learns a continuous
flow of transformations: an input X = Z0 is passed through an ODE solver to produce an output
Ŷ = ZT̄ . The vector field fϕ is then updated either by propagating the error backward through the
solver or using the adjoint method (Chen et al., 2018).

Neural CDEs: Neural controlled differential equations (CDEs) (Kidger et al., 2020) extend the
above architecture in order to handle time series data in continuous time. In a neural ODE, all
information has to be captured in the input Z0 = X , i.e., at time t = 0. Neural CDEs, on the other
hand, are able to process time series data. They can thus be seen as the continuous-time analog of
recurrent neural networks. For a path of covariate data Xt ∈ Rdx , t ∈ [0, T̄ ], a neural CDE is given
by an embedding network η0ϕ(·), a readout mapping η1ϕ(·), and a neural vector field fϕ that satisfy

Ŷ = η1ϕ(ZT̄ ), Zt =

∫ t

0

fϕ(Zs, s) dXs, t ∈ (0, T̄ ] and Z0 = η0ϕ(X0), (20)

where Zt ∈ Rdz and fϕ(Zt, t) ∈ Rdz×dx . The integral is a Riemann-Stieltjes integral, where
fϕ(Zs, s) dXs refers to matrix-vector multiplication. Here, the neural differential equation is said
to be controlled by Xt. Under mild regularity conditions, it can be computed as

Zt =

∫ t

0

fϕ(Zs, s)
dXs

ds
ds, t ∈ (0, T̄ ]. (21)

Computing the derivative with respect to time requires a representation of the data stream Xt for
any t ∈ [0, T̄ ]. Hence, irregularly sampled observations ((t0, x0), (t1, x1), . . . , (tn, xn) = (t̄, xn))
need to be interpolated over time, yielding a continuous time representation Xt. The neural vector
field fϕ, the embedding network η0ϕ, and the readout network η1ϕ are then optimized analogous to
the neural ODE. For data interpolation, Morrill et al. (2021) suggest different interpolation schemes
for different tasks such as rectilinear interpolation for online prediction.

Neural SDEs: Neural stochastic differential equations (SDEs) (Li et al., 2020) learn stochastic
differential equations from data. A neural SDE is given by a drift network gϕ and a diffusion network
σϕ that satisfy

ωt =

∫ t

0

gϕ(ωs, s) ds+

∫ t

0

σϕ(ωs, s) dBs, t > 0 and ω0 = ξϕ, (22)

where Bt is a standard Brownian motion and ξϕ ∼ N (νϕ, σϕ) is the initial condition.

For two SDEs with shared diffusion coefficient, their Kullback-Leibler (KL) divergence can be com-
puted on path space. This makes neural SDEs particularly suited for variational Bayesian inference.
Let gqϕ and h be the drifts of the variational neural SDE and the prior SDE respectively. Let further-
more σ(ωt, t) be their shared diffusion coefficient. Tzen & Raginsky (2019); Li et al. (2020) show
that the KL-divergence on path space then satisfies

DKL[q
q
ϕ(ω[0,t]) ∥ p(ω[0,t])] = Eqqϕ(ω[0,t])

[∫ t

0

(
(gqϕ(ωs, s)− h(ωs, s))/σ(ωs, s)

)2
ds

]
. (23)
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Of note, even for a constant shared diffusion parameter σ(ωt, t) = σ, a variational posterior distribu-
tion parameterized this way can approximate the true posterior arbitrarily closely using a sufficiently
expressive family of drift functions gqϕ (Tzen & Raginsky, 2019; Xu et al., 2022).
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E MOTIVATION FOR USING NEURAL CDES (AND NOT NEURAL ODES)

In the following, we provide a discussion on why we used neural CDEs instead of neural ODEs to
capture patient observations and to model future sequences of treatments for personalized decision-
making. We also highlight the main differences to CF-ODE (Brouwer et al., 2022), which builds on
neural ODEs to estimate treatment effects in a different setting than ours.

Why did we opt for neural CDEs instead of neural ODEs?

Neural ODEs can be thought of as residual neural networks with infinitely many, infinitesimal small
hidden layer transformations (see SupplementD). Thus, neural ODEs are designed to describe how a
deterministic system evolves, given its initial conditions (e.g., a patient’s initial health condition, an
initial treatment decision). However, it is impossible to change these dynamics over time, once the
neural ODE is learned. This is different from neural CDEs, which adjust for sequentially incoming
information (Kidger et al., 2020; Morrill et al., 2021). Further, neural CDEs make use of latent
representations, which are able to capture non-linearities and complex dependencies in the data.

Why is a single neural ODE not suitable for our task?

There are clear theoretical reasons why using a single neural ODE to model the dynamics of
(Yt, Xt, At) is not suitable. If we used a neural ODE to directly model the dynamics of (Yt, Xt, At),
this would mean that we learn an ODE that describes the deterministic evolution of (Yt, Xt, At),
given the initial conditions (Y0, X0, A0). In particular, we would then make the following assump-
tions that would conflict with our task:

• (i) The health conditions of a patient are completely captured in her initial state
(Y0, X0, A0). The initial state is the only variable that influences the evolution of a (neural)
ODE. However, we want the patient encoding to be updated over time.

• (ii) Given these initial conditions, the outcome and covariate evolution are deterministic. It
is not possible to “correct” an ODE at a future point in time to account for the randomness
of future observations. However, we want to take into account the information from the
observations in the future when they are measured.

• (iii) The treatment assignment plan is fixed a priori and cannot be changed. That means, we
would assume that sequences of treatments evolve like a deterministic process. This makes
modeling of arbitrary future sequences of treatments impossible.

• (iv) Future observations cannot change the dynamics of the system and, importantly, cannot
update beliefs about the potential outcomes. In particular, future observations cannot cor-
rect the posterior distribution that captures the uncertainty. However, we intend to update
the posterior distribution when patient information is recorded at later points in time.

How can our architecture based on neural CDEs address the above issues?

Our architecture solves all of the above issues. The reason is that neural CDEs have much larger
flexibility that is beneficial for our task:

• (i) Neural CDEs allow for patient personalization at any point in time t, and do not assume
that all information is captured at time t = 0.

• (ii) Future observations (Yt, Xt, At) can update the neural CDE. This is crucial, because
not all patient trajectories follow the same deterministic evolution.

• (iii) Using a neural CDE in our decoder, we can model arbitrary future sequences of mul-
tiple treatments.

• (iv) Incoming observations after time t = 0 can update our beliefs. This makes the neural
CDEs particularly suited for the Bayesian paradigm.

Importantly, the hidden states Zt in a neural CDE also allow us to model non-linearities in the
data, reduce dimensionality, and capture dependencies between observed variables (Xt, Yt, At). In
summary, using neural ODEs to directly model the dynamics of (Yt, Xt, At) has significantly lower
modeling capacities, limits patient personalization, and imposes prohibitive assumptions on the real
world. To this end, we argue that it is difficult – if not impossible – to adequately model the input
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through a joint neural ODE in our task, and, as a remedy, we opted for an approach based on neural
CDEs instead.

Of note, the Counterfactual ODE (CF-ODE) (Brouwer et al., 2022) leverages neural ODEs for
treatment-effect estimation in a different setting to ours. In the following, we demonstrate why
CF-ODE is not applicable to our setting. We highlight the limitations of this method and clarify
important differences to our BNCDE:

• (i) CF-ODE is inherently designed to forecast the treatment effect over time of a single,
static treatment. In contrast, our BNCDE is designed to estimate treatment effects for a
sequence of multiple treatments in the future.

• (ii) Accordingly, CF-ODE builds upon a static identifiability framework. Here, adjusting
for the measurements of the patient history at the time of treatment is assumed to be suffi-
cient to adjust for all confounders. However, the static identifiability form CF-ODE does
not hold true for time-varying settings as ours.

• (iii) CF-ODE directly models the latent states in the decoder with a neural SDE. In contrast,
our neural SDEs model the distribution of the neural CDE weights.

• (iv) All patient information in CF-ODE is contained deterministically in the initial state of
the ODE. Hence, all uncertainty needs to be incorporated in a deterministic, initial state. On
the other hand, our BNCDE captures patient information in the random variable ZT̄ = Z̃0.
Here, the Monte Carlo variance is propagated through the encoded trajectory Z[0,T̄ ], ac-
counting for uncertainty at each point in time t ∈ [0, T̄ ]. Therefore, model uncertainty is
directly incorporated into the patient encoding.

• (iv) The use of a gated recurrent unit Cho et al. (2014) in the CF-ODE encoder implies
regular sampling of the patient trajectories. This assumption is a crucial violation of med-
ical reality, where it is standard that measurements are taken at irregular points in time.
Therefore, CF-ODE does not account for uncertainty due to irregular sampling.

• (vi) The single treatment decision in CF-ODE is limited to binary treatments. Instead, our
BNCDE can deal with any treatment.
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F VARIATIONAL APPROXIMATIONS

We provide a detailed derivation of (1) our approximate posterior predictive distribution and (2) our
evidence lower bound.

Notation: We slightly abuse notation for better readability. We denote the expectation with respect
to the stochastic process ωt on path space as

∫
(·) dp(ω[0,T̄ ]) = Ep(ω[0,T̄ ])

[(·)]. (24)

The analogue applies for ω̃τ .

Approximate posterior predictive distribution: In the Bayesian framework, the posterior predic-
tive distribution of the outcome of interest Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] given observed inputs h∗

t̄∗ and training
data H is the expectation of the outcome likelihood under the weight posterior distribution. Hence,
we approximate the posterior predictive distribution via

p(Yt̄∗+∆[a
′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ ,H) (25)

=

∫
p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ , ω̃[0,∆], ω[0,t̄∗]) dp(ω̃[0,∆], ω[0,t̄∗] | H) (26)

=

∫
p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ , ω̃[0,∆], ω[0,t̄∗]) dp(ω̃[0,∆] | ω[0,t̄∗],H) dp(ω[0,t̄∗] | H) (27)

≈
∫

p(Yt̄∗+∆[a
′
(t̄∗,t̄∗+∆]] | h∗

t̄∗ , ω̃[0,∆], ω[0,t̄∗]) dq
d
ϕ(ω̃[0,∆]) dq

e
ϕ(ω[0,t̄∗]) (28)

=Eqeϕ(ω[0,t̄∗])

[
Eqdϕ(ω̃[0,∆])

[
p(Yt̄∗+∆[a

′
(t̄∗,t̄∗+∆]] | ω̃[0,∆], ω[0,t̄∗], h

∗
t̄∗)
]]

. (29)

Evidence lower bound: Recall that, in our notation, a training sample is
hi
t̄i+∆ = hi

(t̄i+∆)− ∪ {yit̄i+∆}, where hi
(t̄i+∆)− is the training input and yit̄i+∆ the target.

Our objective is an ELBO maximization, which we derive via

log p(yit̄i+∆ | hi
(t̄i+∆)−) (30)

= log

∫
p(yit̄i+∆ | hi

(t̄i+∆)− , ω̃[0,∆], ω[0,t̄i]) dp(ω̃[0,∆], ω[0,t̄i]) (31)

= log

∫
p(yit̄i+∆ | hi

(t̄i+∆)− , ω̃[0,∆], ω[0,t̄i]) dp(ω̃[0,∆]) dp(ω[0,t̄i]) (32)

= log

∫
p(yit̄i+∆ | hi

(t̄i+∆)− , ω̃[0,∆], ω[0,t̄i])

(
qdϕ(ω̃[0,∆])q

e
ϕ(ω[0,t̄i])

p(ω̃[0,∆])p(ω[0,t̄i])

)−1

dqdϕ(ω̃[0,∆]) dq
e
ϕ(ω[0,t̄i])

(33)

≥
∫ [

log p(yit̄i+∆ | hi
(t̄i+∆)− , ω̃[0,∆], ω[0,t̄i])

− log

(
qdϕ(ω̃[0,∆])

p(ω̃[0,∆])

)
− log

(
qeϕ(ω[0,t̄i])

p(ω[0,t̄i])

)]
dqdϕ(ω̃[0,∆]) dq

e
ϕ(ω[0,t̄i]) (34)

=Eqeϕ(ω[0,t̄i])

{
Eqdϕ(ω̃[0,∆])

[
log p(yit̄i+∆ | ω̃[0,∆], ω[0,t̄i], h

i
(t̄i+∆)−)

]}

−DKL[q
d
ϕ(ω̃[0,∆]) ∥ p(ω̃[0,∆])]−DKL[q

e
ϕ(ω[0,t̄i]) ∥ p(ω[0,t̄i])], (35)

where Eq. 31 follows from the standard pairwise independence assumption of inputs and weights,
Eq. 32 is due to the independence of the OU priors, and Eq. 34 follows from Jensen’s inequality.

The ELBO objective is maximized for qdϕ(ω̃[0,∆]) = p(ω̃[0,∆] | hi
t̄i+∆, ω[0,t̄i]) and

qeϕ(ω[0,t̄i]) = p(ω[0,t̄i] | hi
t̄i+∆). We can see this by substituting in the true weight posteriors
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into Eq. 34. This yields
∫ [

log p(yit̄i+∆ | hi
(t̄i+∆)− , ω̃[0,∆], ω[0,t̄i])− log

(
p(ω̃[0,∆] | hi

t̄i+∆, ω[0,t̄i])

p(ω̃[0,∆])

)

− log

(
p(ω[0,t̄i] | hi

t̄i+∆)

p(ω[0,t̄i])

)]
dp(ω̃[0,∆] | hi

t̄i+∆, ω[0,t̄i]) dp(ω[0,t̄i] | hi
t̄i+∆) (36)

=

∫
log

(
p(yit̄i+∆ | hi

(t̄i+∆)− , ω̃[0,∆], ω[0,t̄i])p(ω̃[0,∆], ω[0,t̄i])

p(ω̃[0,∆], ω[0,t̄i] | hi
(t̄i+∆)− , y

i
t̄i+∆)

)
dp(ω̃[0,∆], ω[0,t̄i] | hi

t̄i+∆) (37)

=

∫
log

(
p(yit̄i+∆, ω̃[0,∆], ω[0,t̄i]) | hi

(t̄i+∆)−)

p(ω̃[0,∆], ω[0,t̄i] | hi
(t̄i+∆)− , y

i
t̄i+∆)

)
dp(ω̃[0,∆], ω[0,t̄i] | hi

t̄i+∆) (38)

=

∫
log

(
p(ω̃[0,∆], ω[0,t̄i] | hi

(t̄i+∆)− , y
i
t̄i+∆)p(y

i
t̄i+∆ | hi

(t̄i+∆)−)

p(ω̃[0,∆], ω[0,t̄i] | hi
(t̄i+∆)− , y

i
t̄i+∆)

)
dp(ω̃[0,∆], ω[0,t̄i] | hi

t̄i+∆)

(39)

=

∫
log p(yit̄i+∆ | hi

(t̄i+∆)−) dp(ω̃[0,∆], ω[0,t̄i] | hi
t̄i+∆) (40)

= log p(yit̄i+∆ | hi
(t̄i+∆)−), (41)

where Eq. 38 follows again from prior independence of input data and weights and the fact that
hi
t̄i+∆ = hi

(t̄i+∆)− ∪ {yit̄i+∆}.
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G NUMERICAL COMPUTATION OF THE EVIDENCE LOWER BOUND

The objective of our BNCDE is the evidence lower bound (ELBO), which is approximated after the
forward pass of the numerical SDE solver.

Recall that, for an observation i, the ELBO is given by

log p(yit̄i+∆ | hi
(t̄i+∆)−) ≥ Eqeϕ(ω[0,t̄i])

{
Eqdϕ(ω̃[0,∆])

[
log p(yit̄i+∆ | ω̃[0,∆], ω[0,t̄i], h

i
(t̄i+∆)−)

]}

−DKL[q
d
ϕ(ω̃[0,∆]) ∥ p(ω̃[0,∆])]−DKL[q

e
ϕ(ω[0,t̄i]) ∥ p(ω[0,t̄i])]. (42)

We approximate the expectations with respect to qeϕ(ω[0,t̄i]) and qdϕ(ω[0,∆]) with Monte Carlo sam-
ples ωj

[0,t̄i] and ω̃k
[0,∆] of the weight trajectories from the numerical SDE solver. That is, we compute

the expected likelihood via

Eqeϕ(ω[0,t̄i])

{
Eqdϕ(ω̃[0,∆])

[
log p(yit̄i+∆ | ω̃[0,∆], ω[0,t̄i], h

i
(t̄i+∆)−)

]}
(43)

≈ 1

J

∑

ωj

[0,t̄i]
∼qeϕ

{ 1

K

∑

ω̃k
[0,∆]

∼qdϕ

[
log p(yit̄i+∆ | ω̃k

[0,∆], ω
j
[0,t̄i], h

i
(t̄i+∆)−)

]}
, (44)

where [0, t̄i] and [0,∆] are grid approximations of [0, t̄i] and [0,∆], respectively.

The Kullback-Leibler (KL) divergences between priors and variational posteriors on path space can
also be computed through Monte Carlo approximations. Here, we focus on the KL-divergence in
the encoder component; the decoder part follows analogously. Recall that we seek to compute the
KL-divergence between the solutions of the SDEs

dωt =

{
geϕ(ωt) dt+ σ dBt

he(ωt) dt+ σ dBt.
(45)

Previously, Tzen & Raginsky (2019) and Li et al. (2020) have shown that for two stochastic differ-
ential equations with shared diffusion coefficient σ, the KL-divergence on path space satisfies

DKL[q
e
ϕ(ω[0,t̄i]) ∥ p(ω[0,t̄i])] = Eqeϕ(ω[0,t̄i])

[∫ t̄i

0

(
(geϕ(ωt)− he(ωt))/σ

)2
dt

]
. (46)

Therefore, it can be approximated with Monte Carlo samples from the numerical SDE solver. That
is, we compute

Eqeϕ(ω[0,t̄i])

[∫ t̄i

0

(
(geϕ(ωt)− he(ωt))/σ

)2
dt

]
≈ 1

J

∑

ωj

[0,t̄i]
∼qeϕ

[∫

[0,t̄i]

(
(geϕ(ω

j
t )− he(ωj

t ))/σ
)2

dt

]
,

(47)

where
∫
[0,t̄i]

(·) dt denotes the integral approximation from the SDE solver. In other words, for each
Monte Carlo particle j, we pass the KL-divergence term as additional state through the SDE solver
and then take the Monte Carlo average at time t̄i.
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H IMPLEMENTATION DETAILS

In the following, we summarize the implementation details of our BNCDE and TE-CDE. Experi-
ments were carried out on 1× NVIDIA A100-PCIE-40GB. Training of BNCDE and TE-CDE took
approximately 34 hours and 22 hours, respectively.

The hyperparameters of TE-CDE were taken from the original work (Seedat et al., 2022). For both
training and testing, the dropout probabilities in the prediction head were set to p = 0.1. As in our
BNCDE, we included the time covariate t as an input to TE-CDE, as this improved performance.

We optimized the hidden layers of the neural SDEs drift over {16, (16, 16), (16, 64, 16),
(16, 64, 64, 16), (16, 64, 64, 64, 16)} and the diffusion coefficient σ over {0.01, 0.001, 0.0001}. We
used the same neural SDE configuration for both the encoder and the decoder. Importantly, we no-
ticed that higher diffusions generally lead to more conservative estimates of the posterior predictive
distribution, which may be desirable in medical practice. Our performance metric was the ELBO
objective on the validation set. We only optimized the hyperparameters for the prediction window
∆ = 1 and then used the same configurations for ∆ = 2, . . . , 5. For better comparability, our
BNCDE had the same hyperparameter specifications as TE-CDE where possible.

For both our BNCDE and TE-CDE, we increased the learning rates of the linear embedding and
prediction networks compared to the original TE-CDE implementation for more efficient training
(Kidger et al., 2020). Further, we used cubic Hermite splines with backward differences in the neural
CDEs, which have been shown to be superior to linear interpolation (Morrill et al., 2021). As we
want to understand the true source of performance gain, we removed the balancing loss term in TE-
CDE for comparability. However, we emphasize that the balancing loss term could easily be added
to our BNCDE, as we show in our extended analysis in Supplement N).

Table 3 lists the selected hyperparameters.

Component Hyperparameter BNCDE (ours) TE-CDE (Seedat et al., 2022)

General

Batch size 64 64
Optimizer Adam (Kingma & Ba, 2015) Adam
Max. number of epochs 500 500
Patience 10 10
MC samples training 10 10
MC samples prediction 100 100
Hidden state size dz 8 8
Interpolation method Cubic Hermite splines Cubic Hermite splines

Differential equation solver Solver Euler-Maruyama Euler
Step size Adaptive Adaptive

Embedding network
Learning rate 10−3 10−3

Hidden layers — —
Output activation — —

Neural CDEs

Learning rate — 10−4

Hidden layers 2 2
Hidden dimensions (128, 128) (128, 128)
Hidden activations ReLU ReLU
Output activation tanh tanh

Neural SDEs

Learning rate 10−4 —
Hidden layers 5 —
Hidden dimensions (16, 64, 64, 64, 16) —
Hidden activations ReLU —
Output activation — —
Diffusion coefficient 0.001 —

Prediction network

Learning rate 10−3 10−3

Hidden layers — —
Output activation ( — , softplus) —
Dropout probability — 0.1

Intensity network (only for Supplement K)
Learning rate 10−3 10−3

Hidden layers — —
Output activation sigmoid sigmoid

Balancing network (only for Supplement L)

Learning rate 10−3 10−3

Hidden layers — —
Output activation — —
Balancing hyperparameter 0.01 0.01

Table 3: Hyperparameters of BNCDE and TE-CDE. Hyperparameters of TE-CDE were taken from
(Seedat et al., 2022). Our BNCDE used the same hyperparameters where possible.
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I EVALUATION OF OUTCOME UNCERTAINTY

We now assess the quality of the estimated outcome (aleatoric) uncertainty. In our BNCDE, out-
come uncertainty is captured in the likelihood variance ΣT̄+∆ via

YT̄+∆[a
′
(T̄ ,T̄+∆]] | (ω̃[0,∆], ω[0,T̄ ], HT̄ ) ∼ N (µT̄+∆,ΣT̄+∆). (48)

Outcome uncertainty is due to the randomness that is inherent to the data-generating process. It is
irreducible in the sense that, even if we had infinite training data and hence zero model uncertainty,
the potential outcome would still be random.

For a given patient history HT̄ and future sequence of treatments a′
(T̄ ,T̄+∆]

, computing the true out-
come uncertainty is intractable. Instead, we can check whether our BNCDE produces informative
estimates of the outcome uncertainty. Variational Bayesian methods may heavily over- or underes-
timate the outcome uncertainty, yielding uninformative estimates. Hence, through our analysis, we
provide insights that our BNCDE produces meaningful estimates of outcome uncertainty for differ-
ent patient histories and future sequences of treatments. In particular, we show that there is a direct
relation between estimated outcome uncertainty and prediction error. Intuitively, prediction errors
should be larger for outcomes with higher outcome uncertainty. This means that if the potential out-
come for a particular patient history and future sequence of treatments is subject to a large variance,
the prediction errors should increase accordingly.

The results in Fig. 6 show the relation between prediction errors and estimated outcome uncertainty
for varying prediction windows. For each patient, we compute the Monte Carlo average of the esti-
mated outcome uncertainty ΣT̄+∆ as well as the average point prediction error. We notice that our
BNCDE provides varying levels of outcome uncertainty for different patients and future sequences
of treatments. Further, prediction errors are highly correlated with estimated outcome uncertainties.
Therefore, our BNCDE generates meaningful estimated outcome uncertainties. Importantly, this is
another key advantage of our BNCDE over approaches such as TE-CDE (Seedat et al., 2022) with
MC dropout (Gal & Ghahramani, 2016), which are not capable of estimating potential outcome
uncertainties.
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Figure 6: We analyze the association between estimated outcome uncertainty and prediction error.
The prediction errors are highly correlated with the estimated outcome uncertainties.
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J ADDITIONAL PREDICTION WINDOWS

We repeat the experiments from Section 5 for the prediction windows ∆ = 4 and ∆ = 5. We
report the results in Figures 7 and 8, respectively. The results are consistent with our main paper:
(i) The credible intervals generated by our BNCDE remain faithful and sharp. In contrast, TE-CDE
produces unfaithful CrIs. (ii) The point estimates of the outcome by our BNCDE are more stable
under increasing noise in the data generation. (iii) The model uncertainty of our BNCDE is better
calibrated.
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Figure 7: We repeat our experiments from Section 5. Reported are the results for the prediction
window ∆ = 4.
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Figure 8: We repeat our experiments from Section 5. Reported are the results for the prediction
window ∆ = 5.
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K EXTENSION TO INFORMATIVE SAMPLING

We show that our BNCDE is superior over TE-CDE, even when used together with the informative
sampling framework from Vanderschueren et al. (2023). The motivation for this is that the obser-
vation times of an outcome may themselves contain valuable information about the health status of
a particular patient. For example, patients in a more severe state of health are likely to be visited
more often, leading to a correspondingly higher observation intensity. To address such informative
sampling, Vanderschueren et al. (2023) propose to weight the training objective with the inverse
observation intensity. To achieve this, they introduce an additional prediction head for TE-CDE,
which estimates the observation intensities. The inverse estimated observation intensities are then
used to weight the training objective, which has been shown to improve performance in outcome
estimation. This extension of TE-CDE is called the TESAR-CDE.

Changes to tumor growth simulator: We extend our simulation setup as follows. In the tumor
growth simulator (see Supplement B), the observation times are determined by an intensity process
with an intensity function

ζit = sigmoid
[
γ

(
D̄i

t

D
− 1

2

)]
, (49)

where γ controls the sampling informativeness, D = 13cm and D̄i
t is the average tumor diameter

over the last 15 days. For higher values of γ, the total number of observed outcomes reduces but
the informativeness of each observation timestamp increases. We later change γ = 2.0 to introduce
informative sampling.

Changes to our BNCDE: We can easily incorporate the inverse intensity weighting into our
BNCDE to account for informative sampling. The final hidden representation Z̃i

∆ of patient i is
additionally passed through a second prediction head ηζϕ to estimate the observation intensity via

ζ̂it̄i+∆ = ηζϕ(Z̃
i
∆). (50)

The evidence lower bound (ELBO) for a patient observation i is then weighted with the inverse
estimated observation intensity, i.e.,

ELBOi/ζ̂it̄i+∆. (51)

Experiments: We repeat the experiments from Section 5, where we increase the level of infor-
mativeness γ from 1.0 to 2.0. We focus on the prediction window ∆ = 1 with inverse intensity
weighting enabled for both methods.

We benchmark our BNCDE with TESAR-CDE. For TESAR-CDE, we enable MC dropout in the
outcome prediction head ηpϕ but not in the intensity prediction head ηζϕ. We provide implementation
details of ηζϕ in Supplement H. For both TESAR-CDE and our extended BNCDE, optimization of
ηζϕ is performed as in the original work by Vanderschueren et al. (2023). That is, the error in the
estimated observation intensity is not propagated through the whole computational graph but only
through ηζϕ.

Results: Fig 9 shows, that in the informative sampling setting, our method remains superior. Our
BNCDE (i) produces more faithful and sharper credible interval approximations; (ii) generates more
stable point estimates of the outcome under increasing noise; and (iii) has a better calibrated model
uncertainty. In sum, this demonstrates the effectiveness of our BNCDE even for informative sam-
pling.
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Figure 9: We repeat the experiments for settings with informative sampling. For this, we increase the
informativeness parameter in the tumor growth simulator to γ = 2.0. Following (Vanderschueren
et al., 2023), we weight the training objective with the estimated inverse observation intensity. We
benchmark our extended BNCDE against TESAR-CDE (Vanderschueren et al., 2023), for which we
enable MC dropout in the outcome prediction head.
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L REAL-WORLD AND SEMI-SYNTHETIC DATA

We provide further insights that our BNCDE remains reliable on different data sets. For this, we use
the MIMIC-extract (Wang et al., 2020). In particular, we use the same preprocessing of MIMIC-III
(Johnson et al., 2016) as in earlier studies (Melnychuk et al., 2022). The MIMIC-extract provides
intensive care unit data at irregularly recorded times measured in units of hours.

We also examine whether our BNCDE is compatible with balanced representations. While it is
often used in the literature for mitigating confounding bias (Bica et al., 2020; Melnychuk et al.,
2022; Seedat et al., 2022), it actually reduces estimation variance (Shalit et al., 2017), e.g., due to
overlap violations, which is particularly relevant in the time-varying setting.

L.1 EXPERIMENTAL SETUP

Real-world data: We consider patients with 30 observation times. For each patient, we select time-
varying patient covariates heart rate, red blood cell count, sodium, mean blood pressure, systemic
vascular resistance, glucose, chloride urine, glascow coma scale total, and hematocrit and positive
end-expiratory pressure set. Additionally, we use gender and age as static covariates. We have
additional access to discrete treatments vasopressors and mechanical ventilation. We seek to predict
the outcome diastolic blood pressure. The remaining covariates serve as unobserved confounders.

We use a 60/15/25 split for training, validation, and testing on N = 10, 000 observations.

Semi-synthetic data generation: In order to generate treatment assignments and outcomes, we
proceed as follows:

(i) We only consider patient histories with 30 to 50 observation times. For each patient, we then
select time-varying covariates (1) heart rate, (2) red blood cell count, (3) sodium, (4) mean blood
pressure and (5) systemic vascular resistance, and static covariates (6) gender and (7) age. Impor-
tantly, these covariates are observed irregularly at different hourly levels. Let K = 7 be the number
of covariates. We write Xi

tj (k) when referring to covariate k ∈ {1, 2, . . . , 7} of patient i at hour j.

(ii) We forward-fill each patient covariate in time. Note that this is done only for data generation,
not for training and testing, as our model is designed to handle irregularly sampled data.

(iii) Then, we simulate outcomes of patient i for a burn-in period of H = 0, . . . , 4 hours via

yitH+1
= −

H∑

h=0

1

h+ 1
tanh

(
1

2

2∑

k=1

βkX
i
tH−h

(k)

)
yith + ϵith(y), (52)

where yit0 = 1 for all i,, βk ∼ N (0, 1) are randomly sampled covariate coefficients, and ϵith(y) ∼
N (0, 0.012) are i.i.d. outcome noise terms.

(iv) Next, we sample the treatment assignments and patient outcomes at hours j > 5. At each time
tj , the binary treatment mechanism depends on the patient history in order to introduce confounding.
Specifically, the treatment probabilities are parameterized by

pitj (a) = sigmoid

(
tanh

(
1

K

K∑

k=1

βkX
i
tj−1

(k)

)
+ tanh

(
yitj−1

)
+ ϵitj (a)

)
, (53)

where ϵitj (a) ∼ N (0, 0.032) are i.i.d. noise terms. Treatment assignments are then sampled via

aitj ∼ Ber(pitj (a)). (54)

We simulate outcomes via

yitj+1
= −

4∑

h=0

1

h+ 1
tanh

(
1

2

2∑

k=1

βkX
i
tj−h

(k)

)
yitj + cos

(
yitja

i
tj

)
+ ϵitj+1

(y). (55)

(v) Since our BNCDE is designed for irregularly sampled data, we do not use the forward-filled
covariates but the original, irregularly sampled covariates for training and testing. Further, we
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apply an observation mask to the outcomes with observation probabilities

sigmoid
(
yitj

)
(56)

Further, we mask all outcomes for which no covariates are observed in the future.

We use a 60/15/25 split for training, validation and testing on N = 32, 673 observations.

L.2 BNCDE WITH BALANCED REPRESENTATIONS

For both the real-world data and the semi-synthetic data, our BNCDE is trained with balanced rep-
resentations (Bica et al., 2020; Melnychuk et al., 2022; Seedat et al., 2022) in order to reduce finite-
sample estimation variance. We provide a discussion on balanced representations in Supplement N.
To this end, we follow the implementation as in (Seedat et al., 2022). That is, we add a second
prediction head ηaϕ as in (Seedat et al., 2022) to make the hidden representations Zt and Z̃τ non-
predictive of the administered treatments. The treatment prediction head ηaϕ estimates the probability
of a future treatment piτj (a) at timestamp τj . For a sequence of treatments with treatment decisions
at irregular timestamps {τ1, . . . , τm}, the treatment prediction head is trained to maximize the binary
cross-entropy given by

BCE = − 1

m

m∑

j=1

aτj log(p̂
i
τj (a)) + (1− aτj ) log(1− p̂iτj (a)). (57)

The overall objective is then to maximize the weighted sum of evidence lower bound and binary
cross entropy. That is, we maximize

ELBO + α BCE, (58)

where α is a hyperparameter.

We choose α = 0.01 and a single linear transformation for ηaϕ. As proposed in the original TE-CDE
paper (Seedat et al., 2022), we also use balanced representations for our baseline, TE-CDE with MC
dropout. Importantly, we only use MC dropout in the outcome prediction head, not in the treatment
prediction head. For both our BNCDE and TE-CDE, all hyperparameters are kept as in the main
paper (see Supplement H).

L.3 RESULTS

For both datasets, we repeat our main experiments on the reliability of the posterior predictive dis-
tributions for ∆ = 1 hour ahead prediction.

(i) Real-world data: Fig. 10 shows the empirical coverage for the posterior predictive credible
intervals along with the width. Here, our BNCDE tends to have wider intervals. However, we clearly
see that estimates are much more reliable. Importantly, the credible intervals from our BNCDE
coincide very accurately with the frequentist outcome quantiles. On the other hand, TE-CDE with
MC dropout completely fails to obtain reliable credible intervals. In fact, the CrIs from TE-CDE
with MC dropout out are way too overconfident (i.e., too narrow), which could lead to harmful
decisions. In sum, our BNCDE therefore strongly outperforms the baseline on real-world data with
balancing.

(ii) Semi-synthetic data: Fig. 11 shows the empirical coverage for the posterior predictive credible
intervals along with the CrI width. Further, we increase the variance in the outcome noise ϵy(t) from
0.01 to 0.1 and repeat our robustness studies. Both methods generate estimates that are conservative
and have sufficient predictive coverage. In particular, all of the reported posterior predictive credible
intervals of our BNCDE contain all of the outcomes in the test set. We noticed that using balancing
on this semi-synthetic dataset increased the conservatism of our estimates. This is desirable and
shows in particular why our BNCDE is compatible with balancing. Further, compared with the TE-
CDE baseline with MC dropout, our BNCDE has much sharper credible intervals, while providing
more coverage than the baseline. Finally, we see that the point estimates of our BNCDE are again
much more resistant to increasing noise in the outcome distribution. In sum, this demonstrates the
effectiveness of our proposed BNCDE.

33



Published as a conference paper at ICLR 2024

0.95 0.96 0.97 0.98 0.99

Posterior predictive credible interval

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
rI

m
in

u
s

em
p

ir
ic

al
co

ve
ra

ge

TE-CDE

BNCDE (ours)

Overconfident

Conservative

(a) CrI coverage

0.95 0.96 0.97 0.98 0.99

Posterior predictive credible interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
re

d
ib

le
in

te
rv

al
w

id
th

TE-CDE

BNCDE (ours)

(b) CrI width

Figure 10: Real-world data: We repeat our main analysis of the reliability of the posterior predictive
credible intervals with balanced representations. We benchmark our extended BNCDE against TE-
CDE with MC dropout in the outcome prediction head. We include balanced representations as in
the original work (Seedat et al., 2022). We report the mean and standard deviation over five different
prediction runs.
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Figure 11: Semi-synthetic data: We repeat our main analysis of the reliability of the posterior
predictive credible intervals with balanced representations. Further, we increase the variance of the
outcome noise in Eq. 55 from 0.012 to 0.12 in the test data. We benchmark our extended BNCDE
against TE-CDE with MC dropout in the outcome prediction head. We include balanced represen-
tations as in the original work (Seedat et al., 2022). We report the mean and standard deviation over
five different prediction runs.
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M RUNTIME

Estimating treatment effects over time from electronic health records is notoriously difficult and may
require complex neural architectures. Importantly, this is a common issue in the existing baselines
as well as in our method. Below, we provide a discussion of why we expect that our runtime is still
reasonable in practical applications.

Arguably, the computational bottleneck in training our BNCDE is solving the neural SDEs. If the
neural CDE networks are very large, a high dimensional SDE has to be solved in the forward pass of
the training. To better understand this, we examine empirically how the training time of our method
scales with the dimension of the SDE. Thereby, we validate that training time only scales linearly
with the dimension of the neural CDE.

For this, we train our BNCDE for a single epoch on the cancer simulation data. As detailed in
Supplement B, there are N = 10, 000 training observations and we train on batches of size 64. All
experiments were carried out on 1× NVIDIA A100-PCIE-40GB.
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(a) We increase the number of hidden
layers in the encoder neural CDE. Run-
time increases approximately linearly.
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(b) We increase the number of Monte
Carlo samples in the SDE solver. Mul-
tiple samples can be used at little cost.

Figure 12: Runtime evaluation of our BNCDE.

First, we use the same parameterization as provided in Supplement H but change the number of
hidden layers in the neural CDE of the encoder. That is, we increase the number of hidden layers of
size 128 in the neural CDE and, hence, the dimension of the latent neural SDE. Fig. 12(left) reports
the average training time in minutes along with the standard deviation over three seeds against the
number of weights in neural CDE of the encoder. The training time only increases linearly with
the number of weights, which mimics the usual computational complexity for any fully connected
neural network.

Second, we investigate how training time scales with the number of Monte Carlo samples of the
weight trajectories ω[0,T ] and ω̃[0,∆]. Both the approximations of (i) the expected likelihood and
(ii) the Kullback-Leibler divergence in the evidence lower bound rely on Monte Carlo samples of
ω[0,T ] and ω̃[0,∆] (see Supplement G). Hence, training our BNCDE stabilizes for a higher number
of Monte Carlo samples of ω[0,T ] and ω̃[0,∆]. In order to gain insight how training time of our
BNCDE scales under multiple draws Monte Carlo draws of ω[0,T ] and ω̃[0,∆] at once, we use the
same hyperparameters as in our main experiments (see Supplement H), but we increase the number
of Monte Carlo draws from 1 to 100. Fig. 12 (right) reports the average training time in minutes
along with the standard deviation over three seeds against the number of Monte Carlo draws for
both ω[0,T ] and ω̃[0,∆]. Training time barely increases, which shows that Monte Carlo variance in
the training can be reduced at little cost.

As a side note, we emphasize that neither increasing the dimension of the latent neural SDEs nor
the number of Monte Carlo samples affects the discretization error of the SDE solver. In our ex-
periments, we found that adaptive solvers are suitable, e.g., the adaptive Euler-Maruyama scheme.
Following (Chen et al., 2018), we argue that discretization errors are in practice not an issue, as
modern solvers provide guarantees on accuracy.

In sum, we conclude that there are no drawbacks in using very deep neural CDE networks that are
specific to our BNCDE. Still, as is the case with other approximate Bayesian methods, there are
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no stability guarantees when training our method, that is, for learning very high-dimensional neural
SDEs (e.g., in the billions). Rather, our work focuses on Bayesian inference for neural CDEs of
moderate size as encountered in medical practice.
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N DISCUSSION ON BALANCED REPRESENTATIONS

Some prior works on estimating heterogeneous treatment effects propose to learn balanced repre-
sentations that are non-predictive of the treatment (Bica et al., 2020; Melnychuk et al., 2022; Seedat
et al., 2022). The idea is to mimic randomized clinical trials and reduce finite-sample error due to
estimation variance (Shalit et al., 2017). However, for time-varying treatment effects, this approach
has several drawbacks:

1. Learning guarantees only exist in static (i.e., non-time-varying) settings (Shalit et al., 2017).
Thus, balanced representations do not help with reducing bias due to identifiability issues
induced by time-varying confounders. For this, proper adjustment methods such as G-
computation or inverse-propensity weighting would be necessary (Pearl, 2009; Robins &
Hernán, 2009).

2. Even in static settings, methods based on balanced representations impose invertibility as-
sumptions on the learned representations (Shalit et al., 2017). This is highly unrealistic
in time-varying settings, where representations not only incorporate information about the
confounders but also about the full patient history.

3. Because invertibility is difficult to ensure, balanced representations may actually increase
bias. We refer to Curth & van der Schaar (2021) and Melnychuk et al. (2024) for a detailed
discussion on this issue. Again, this is particularly detrimental in time-varying settings.

In our main paper, we therefore decided not to incorporate balanced representations due to the rea-
sons described above. This is consistent with previous works in the literature (Curth & van der
Schaar, 2021; Vanderschueren et al., 2023). Nevertheless, we emphasize that balanced representa-
tions can be easily integrated into our BNCDE, see Supplement L.

In summary, balanced representations are a heuristic approach for reducing finite-sample variance.
Importantly, in order to avoid confounding bias, proper adjustments such as G-computation or
inverse-propensity weighting are needed.
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