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Abstract

The sharp increase in data-related expenses has motivated research into condensing
datasets while retaining the most informative features. Dataset distillation has
thus recently come to the fore. This paradigm generates synthetic datasets that are
representative enough to replace the original dataset in training a neural network.
To avoid redundancy in these synthetic datasets, it is crucial that each element
contains unique features and remains diverse from others during the synthesis
stage. In this paper, we provide a thorough theoretical and empirical analysis
of diversity within synthesized datasets. We argue that enhancing diversity can
improve the parallelizable yet isolated synthesizing approach. Specifically, we
introduce a novel method that employs dynamic and directed weight adjustment
techniques to modulate the synthesis process, thereby maximizing the represen-
tativeness and diversity of each synthetic instance. Our method ensures that each
batch of synthetic data mirrors the characteristics of a large, varying subset of
the original dataset. Extensive experiments across multiple datasets, including CI-
FAR, Tiny-ImageNet, and ImageNet-1K, demonstrate the superior performance of
our method, highlighting its effectiveness in producing diverse and representative
synthetic datasets with minimal computational expense. Our code is available at
https://github.com/AngusDujw/Diversity-Driven-Synthesis.

1 Introduction

With the rapid growth in dataset size and the need for efficient data storage and processing [8, 17,
14, 13], how to condense datasets while preserving their key characteristics becomes a significant
challenge in machine learning community [12, 38]. Unlike previous research [29, 39, 50, 44] that
focuses on constructing a representative subset through selecting from the original data, Dataset
Distillation [43, 31, 20] aims to synthesize a small and compact dataset that retains informative
features from the original dataset. A model trained on the synthetic dataset is thus supposed to
achieve comparable performance as one trained on the original dataset. The development of dataset
distillation reduces data-related costs [7, 34, 49] and helps us better understand how Deep Neural
Networks (DNNs) extract knowledge from large-scale datasets.

Numerous studies dedicate significant effort to synthesizing distilled datasets more effectively.
For example, Zhao et al. employ a gradient-matching approach [52, 54] to guide the synthesis
process. Trajectory-matching methods [1, 2, 5, 6] further align gradient trajectories to optimize
the synthetic data. Additionally, distribution matching [42, 53, 55] and kernel inducing points
methods [28, 25, 23, 24] also contribute to synthesizing representative data. Despite the great
progress achieved by these methods on datasets like CIFAR [16], their extensive computational
overhead (both GPU memory and GPU time) hinders the extension of these methods to large-scale
datasets like ImageNet-1K [3].
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Figure 1: Left: t-SNE visualization of logit embeddings on CIFAR-
100 [16] dataset. The scatter plot illustrates the distribution of syn-
thetic data instances distilled by SRe2L (blue dots) and our DWA
method (red stars). The blue density contours represent the distri-
bution of natural data instances. Our DWA method demonstrates a
more diverse and widespread distribution compared to SRe2L [46],
indicating better generalization and coverage of the feature space.
Right: The consequent performance improvement of DWA in vari-
ous datasets. Experiments are conducted with 50 images per class.

Several recent works [2, 46, 22, 51,
57] have attempted to address the
efficiency issues of dataset distilla-
tion. In particular, Yin et al. [46] pro-
pose a lightweight distillation method,
SRe2L, which successfully condenses
the large-scale dataset ImageNet-1K.
Unlike previous methods [1, 53, 15]
that treat the synthetic set as a unified
entity to utilize the mutual influences
among synthetic instances, SRe2L
synthesizes each synthetic data in-
stance individually. As such, SRe2L
significantly reduces both GPU mem-
ory costs and computational overhead.

Individually synthesizing each data in-
stance can efficiently parallelize opti-

mization tasks, thereby flexibly managing GPU memory usage and computational overhead. However,
this approach may present challenges in ensuring the representativeness and diversity of each instance.
If each instance is synthesized in isolation, there may be a risk of missing the holistic view of the data
characteristics, which is crucial for the training of generalized neural networks. Intuitively, SRe2L
might expect that random initialization of synthetic data would provide sufficient diversity to prevent
homogeneity in the synthetic dataset. Nevertheless, our analysis, as demonstrated in Figure 1, reveals
that this initialization contributes only marginally to diversity. Conversely, the Batch Normalization
(BN) loss [45] in SRe2L plays the practical role in enhancing diversity of the distilled dataset.

Motivated by these findings, we further investigate the factors that enhance the diversity of synthetic
datasets from a theoretical perspective. We reveal that the variance regularizer in the BN loss
is the key factor ensuring diversity. Conversely, the mean regularizer within the same BN loss
unexpectedly constrains diversity. To resolve this contradiction, we suggest a decoupled coefficient
to specifically strengthen the variance regularizer’s role in promoting diversity. Experimental results
validate our hypothesis. We further propose a dynamic mechanism to adjust the weight parameters
of the teacher model. Serving as the sole source of supervision from the original dataset, the
teacher model guides the synthesis comprehensively. Our meticulously designed weight perturbation
mechanism injects randomness without compromising the informative supervision, thereby improving
overall performance. Importantly, our method incurs negligible additional computations (< 0.1%).
Intuitively, our method perturbs the weight in a direction that reflects the characteristics of a large
subset, varying with each batch of synthesized data.

We conduct extensive experiments across various datasets, including CIFAR-10, CIFAR-100, Tiny-
ImageNet, and ImageNet-1K, to verify the effectiveness of our proposed method. The superior
performance of our method not only validates our hypothesis but also demonstrates its ability to en-
hance the diversity of synthetic datasets. This success guides further investigations into searching for
representative synthetic datasets for lossless dataset distillation. Our contribution can be summarized
as follows:

• We analyze the diversity of the synthetic dataset in dataset distillation both theoretically
and empirically, identifying the importance of ensuring diversity in isolated synthesizing
approaches.

• We propose a dynamic adjustment mechanism to enhance the diversity of the synthesized
dataset, incurring negligible additional computations while significantly improving overall
performance. Extensive experiments on various datasets verify the remarkable performance
of our method.

2 Preliminaries

Notation and Objective. Given a real and large dataset T = {(x̃i,yi)}|T |
i=1, Dataset Distillation

aims to synthesize a tiny and compact dataset S = {(s̃i,yi)}|S|
i=1. The samples in T are drawn i.i.d

from a natural distribution D, while the samples in S are optimized from scratch. We use θT and
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θS to represent the converged weight trained on T and S, respectively. We define a neural network
h = g ◦ f , where g acts as the feature extractor and f as the classifier. The feature extractor and the
classifier loaded with the corresponding weight parameters from θ are denoted by gθ and fθ.

Throughout the paper, we explore the properties of synthesized datasets within the latent space. We
transform both x̃, s̃ ∈ RC×H×W from the pixel space, to the latent space, x, s ∈ Rd, for better
formulation. This transformation is given by x = gθT (x̃) and s = gθT (s̃). The objective of
Dataset Distillation is to ensure that a model h trained on the synthetic dataset S is able to achieve a
comparable test performance as the model trained with T , which can be formulated as,

E
x∼D

[ℓ (hθT ,x)] ≃ E
x∼D

[ℓ (hθS ,x)] , (1)

where ℓ can be an arbitrary loss function. The expression ℓ(hθT ,x) should be interpreted as
ℓ(hθT ,x,y), where y is the ground truth label.

Synthesizing S . A series of previous works mentioned in Section 5 have introduced various methods
to synthesize S. Specifically, SRe2L [46] proposes an efficient and effective synthesizing method,
which optimizes each synthetic instance si by solving the following minimization problem:

argmin
si∈Rd

[ℓ (fθT , si) + λLBN (fθT , si)] , (2)

where LBN denotes the BN loss, and λ is the coefficient of LBN. The detailed definition of LBN

can be found in Equation 3. Minimizing the BN loss LBN significantly enhances the performance
of SRe2L, which is designed to ensure that S aligns with the same normalization distribution as T .
However, we argue that another essential but overlooked aspect of the BN loss LBN is its role in
introducing diversity to S , which also greatly benefits the final performance. In the following section,
we will analyze this issue in greater detail.

3 Methodology

Diversity in the synthetic dataset S is essential for effective use of the limited distillation budget.
This section reveals that the BN loss, referenced in Equation 2, enhances S’s diversity. However,
the suboptimal setting of BN loss limits this diversity. To overcome this, we propose a dynamic
adjustment mechanism for the weight parameters of fθT , enhancing diversity during synthesis.
Finally, we detail our algorithm and theoretically demonstrate its effectiveness. The pseudocode of
our proposed DWA can be found in Algorithm 1.

Algorithm 1 Directed Weight Adjustment (DWA)
Input: Original dataset T ; Number of iterations T ; Image per class ipc; Number of steps K,

magnitude ρ to solve the weight adjustment ∆̃θ; Learning rate η; A network fθT with weight
parameter θT , fθT is well trained on T .

1: Initialize S = {}, ∆θ0 = 0dim(θT )

2: for i = 1 to ipc do
3: Randomly select one instance for each class from T , to initialize Si

0, i.e.,
4: Si

0 = {(xi,yi) | (xi,yi) ∈ T and each yi is unique}
5: ▷ Compute the adjustment of weights ∆θ by solving Equation 11
6: for k = 1 to K do
7: ∆θk = ∆θk−1 + ρ

K∇LSi
0
(fθT +∆θk−1

)

8: ∆̃θ = ∆θK ▷ Directed Weight Adjustment
9: ▷ Optimize Si

10: for t = 1 to T do
11: Si

t = Si
t−1 + η∇SL(fθT +∆̃θ

,Si
t−1) ▷ L is defined in Equation 15

12: S = S ∪ {Si}
Output: Synthetic dataset S

In the actual optimization process, operations occur within the pixel space using the entire network hθT .
However, as we discuss the optimization in the latent space, we only consider solutions within this space. Then,
we transform the solution in latent space back into pixel space as s̃ = g−1

θT
(s).



3.1 Batch Normalization Loss Enhances Diversity of S

The BN loss LBN comprises mean (Lmean) and variance (Lvar) components, defined as follows:

LBN = Lmean + Lvar where Lmean (fθT , si) =
∑

l
∥µl (S)− µl (T )∥2 ,

and Lvar (fθT , si) =
∑

l

∥∥σ2
l (S)− σ2

l (T )
∥∥
2
, (3)

where µl and σ2
l refer to the channel mean and variance in the l-th layer, respectively. si is optimized

within a mini-batch S, where si ∈ S and S ⊂ S. Each component of LBN operates from its own
perspective to enhance dataset distillation. First, the mean component Lmean regularizes the synthetic
data s, ensuring its values align closely with those of the representative centroid of T in latent space.
Second, the variance component Lvar encourages the synthetic data in S to differ from each other,
thereby maintaining the variance σ2

l (S). Thus, this BN loss-driven synthesis can be decoupled as
si = Xc (λLmean, θT ) + ξi, (4)

where Xc can be regarded as an optimal solution to Equation 2 when the variance regularization term
Lvar is not considered, i.e.,

∥∇θℓ (fθT ,Xc)∥2 ≤ α1 and Lmean (fθT ,Xc) =
∑

l
∥µl (Xc)− µl (T )∥2 ≤ α2, (5)

where both α1, α2 > 0 and α1, α2 → 0. ξi represents a small perturbation and ξi ∼
N

(
0, σ2

ξ(λLvar)
)

. Therefore, the variance of the synthetic dataset S is,

Var(S) = Var
(
Xc(λLmean, θT )

)
+Var (ξ) = σ2

ξ (λLvar) . (6)

We have Var
(
Xc(λLmean, θT )

)
= 0 as Xc is deterministic. Unlike other approaches that consider

the mutual influences among synthetic data instances and optimize the dataset collectively, SRe2L [46]
optimizes each synthetic data instance individually. Therefore, the diversity of the synthetic dataset S
is solely determined by λLvar.

However, simply increasing λ contributes marginally to enhancing the diversity of S . This is because
a greater λ will also emphasize the regularization term λLmean, which contradicts the emphasis
on λLvar. We provide a detailed analysis in the Appendix A.1. As a result, we propose using a
decoupled coefficient, λvar, to enhance the diversity of S.

Additionally, the synthetic data instances are optimized individually to approximate the representative
data instance Xc. However, the gaussian initialization N (0, 1) in pixel space does not distribute
uniformly around Xc in latent space, making the converged synthetic data instances to cluster in a
crowed area in latent space, as dedicated in Figure 1. To address this, we propose initializing with
real instances from T inspired by MTT [1], ensuring a uniform projection when synthesizing S.

3.2 Random Perturbation on θT Helps Improve Diversity

In the previous section, we highlighted the often overlooked aspect of the BN loss in introducing
diversity to S, which was also verified through experiments in Section 4.2. Building upon this, we
propose to introduce randomness into θT to further enhance S’s diversity, as it is the only remaining
factor affecting Var(S), as shown in Equation 6.

Let x∗
c = Xc(λLmean, θT ) to be the original optimal solution to Equation 2. We aim to solve the

adjusted optimal solution xc = Xc(λLmean, θT +∆θ) = x∗
c +∆x, where θT is randomly perturbed

by ∆θ, and ∆θ ∼ N (0, σ2
θ). Consequently, we have:

∥∇θℓ (fθT +∆θ,xc)∥2 = ∥∇θℓ (fθT +∆θ,x
∗
c +∆x)∥2 ≤ α1. (7)

To solve for ∆x, we can apply a first-order bivariate Taylor series approximation because
∇θℓ(fθT ,Xc) ≤ α1, where α1 → 0, and both ∆θ and ∆x are small. Thus,∥∥∇θℓ

(
fθT +∆θ

,x∗
c +∆x

)∥∥
2

=
∥∥∇θℓ (fθT ,x

∗
c) +∇2

θℓ (fθT ,x
∗
c)∆θ +∇x [∇θℓ (fθT ,x

∗
c)]∆x

∥∥
2

≤∥∇θℓ (fθT ,x
∗
c)∥2 +

∥∥∇2
θℓ (fθT ,x

∗
c)∆θ +∇x [∇θℓ (fθT ,x

∗
c)]∆x

∥∥
2

≤α1 +
∥∥∇2

θℓ (fθT ,x
∗
c)∆θ +∇x [∇θℓ (fθT ,x

∗
c)]∆x

∥∥
2
, (8)

We disregard the class differences in the following analysis since they are identical across all classes.
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To satisfy Equation 7, we have:

∇2
θℓ (fθT ,x

∗
c)∆θ +∇x [∇θℓ (fθT ,x

∗
c)]∆x = 0, then

∆x = −∇x [∇θℓ (fθT ,x
∗
c)]

−1 ∇2
θℓ (fθT ,x

∗
c)∆θ. (9)

Intuitively, ∆x must compensate for the ∇θ incurred by introducing the random perturbation ∆θ ∼
N (0, σ2

θ) on θT . By Equation 9, Var(∆x) ∝ Var(∆θ) = σ2
θ , then:

Var (S ′) = Var
(
Xc (λLmean, θT +∆θ)

)
+Var (ξ)

= Var (x∗
c +∆x) + Var (ξ)

= βσ2
θ + σ2

ξ (λLvar) ≥ σ2
ξ (λLvar) , (10)

where β is determined by −∇x[∇θℓ(fθT ,x
c)]−1∇2

θℓ(fθT ,x
c), as shown in Equation 9. Therefore,

the variance of the new synthetic dataset S ′ is greater than that of S without perturbing θT .

3.3 Directed Weight Adjustment on θT

Although perturbing θT could significantly increase the variance of the synthetic dataset S , undirected
random perturbation ∆θ can also introduce noise, which in turn degrades the performance. We aim
to address this limitation by directing the random perturbation ∆θ without introducing noise into S.
We propose to obtain directed ∆θ by solving the following maximization problem:

∆̃θ = argmax
∆θ

LB (fθT +∆θ) where LB (fθT +∆θ) =
∑
xi∈B

ℓ (fθT +∆θ,xi) , (11)

where B ⊂ T represents a randomly selected subset of T , and |B| ≪ |T |. As such, ∆̃θ will
not introduce unanticipated noise when synthesizing S. The randomly selected B ensures that the
randomness of ∆̃θ continues to benefit the diversity of S . Next, we will demonstrate this theoretically.

Effective dataset distillation should provide concise and critical guidance from the original dataset
T when synthesizing the distilled dataset. Here, this guidance is introduced primarily through the
converged weight parameters θT , i.e.,

θT = argmin
θ

LT (fθT ) where LT (fθT ) =
∑
xi∈T

ℓ (fθT ,xi) , (12)

where θT contains informative features of T because it achieves minimized training loss over T . We
demonstrate that ∆̃θ, obtained from Equation 11, decreases the training loss computed over T \ B,
which, in fact, highlights the features of T \B. By applying a first-order Taylor expansion, we obtain:

LT \B

(
f
θT +∆̃θ

)
≈ LT \B (fθT ) +∇θLT \B (fθT ) ∆̃θ. (13)

Since θT is optimized until reaching a local minimum with respect to the loss function computed
over the training set T , we have:

∇θLT (fθT ) = ∇θLB (fθT ) +∇θLT \B (fθT ) = 0 thus ∇θLT \B (fθT ) = −∇θLB (fθT ) ,

where 0 is the tensor of zeros with the same dimension as θT . Substitute it back into Equation 13, we
have:

LT \B

(
f
θT +∆̃θ

)
− LT \B (fθT ) ≈∇θLT \B (fθT ) ∆̃θ

=−∇θLB (fθT ) ∆̃θ

≈−
(
LB

(
f
θT +∆̃θ

)
− LB (fθT )

)
≤ 0, (14)

LB(fθT +∆̃θ
) will clearly be greater than LB(fθT ), as indicated by Equation 11. Thus, we demonstrate

that the directed ∆̃θ results in less noise and improved performance. In summary, after resolving ∆̃θ
as in Equation 11, our proposed method synthesizes data instance si by solving:

s̃i = argmin
s∈Rd

L where L =
[
ℓ
(
f
θT +∆̃θ

, si

)
+ λLmean (fθT , si) + λvarLvar (fθT , si)

]
. (15)
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4 Experiments

To evaluate the effectiveness of the proposed method, we have conducted extensive comparison
experiments with SOTA methods on various datasets including CIFAR-10/100 (32 × 32, 10/100
classes) [16], Tiny-ImageNet (64 × 64, 200 classes) [18], and ImageNet-1K (224 × 224, 1000
classes) [3] using diverse network architectures like ResNet-(18, 50, 101) [11], MobileNetV2 [33],
ShuffleNetV2 [26], EfficientNet-B0 [37], and VGGNet-16 [35]. We conduct our experiments on the
server with one Nvidia Tesla A100 40GB GPU.

Solving ∆̃θ. Before we conduct our experiments, we propose to use a gradient descent approach to
solve ∆̃θ in Equation 11. There are two coefficients, K and ρ, used in the gradient descent approach.
K represents the number of steps, and ρ normalizes the magnitude of the directed weight adjustment.
The details for solving ∆̃θ can be found in Line 7 of Algorithm 1.

Experiment Setting. Unless otherwise specified, we default to using ResNet-18 as the backbone
for distillation. For ImageNet-1K, we use the pre-trained model provided by Torchvision while for
CIFAR-10/100 and Tiny-ImageNet, we modify the original architecture under the suggestion in [10].
More detailed hyper-parameter settings can be found in Appendix A.2.1.

Baselines and Metrics. We conduct comparison with seven Dataset Distillation methods including
DC [54], DM [53], CAFE [42], MTT [1], TESLA [2], SRe2L [46], and DataDAM [32]. For all
the considered comparison methods, we assess the quality of the distilled dataset by measuring the
Top-1 classification accuracy on the original validation set using models trained on them from scratch.
Blue cells in all tables highlight the highest performance.

4.1 Results & Discussions

CIFAR-10/100. As shown in Table 1, our DWA exhibits superior performance compared to conven-
tional dataset distillation methods, particularly evident on CIFAR-100 with a larger distillation budget.
For instance, our DWA yields over a 10% performance enhancement compared to MTT [1] with
ipc = 50. Leveraging a more robust distillation backbone like ResNet-18, our approach surpasses
the SOTA method SRe2L [46] across all considered settings. Specifically, we achieve more than 5%
and 8% accuracy improvement on CIFAR-10 and CIFAR-100, respectively.

Table 1: Comparison with SOTA dataset distillation baselines on CIFAR-10/100. Unless otherwise specified, we
use the same network architecture for distillation and validation. Following the settings in their original papers,
DC [54], DM [53], CAFE [42], MTT [1], and TESLA [2] use ConvNet-128 (small model). For SRe2L [46],
ResNet-18 (large model) is used for synthesis and validation.

Dataset ipc
ConvNet ResNet-18

DC [54] DM [53] CAFE [42] MTT [1] TESLA [2] DWA (ours) SRe2L [46] DWA (ours)

CIFAR-10 10 44.9±0.5 48.9±0.6 46.3±0.6 65.4±0.7 66.4±0.8 45.0±0.4 27.2±0.4 32.6±0.4

50 53.9±0.5 63.0±0.4 55.5±0.6 71.6±0.7 72.6±0.7 63.3±0.7 47.5±0.5 53.1±0.3

CIFAR-100 10 25.2±0.3 29.7±0.3 27.8±0.3 40.1±0.4 41.7±0.3 47.6±0.4 31.6±0.5 39.6±0.6

50 - 43.6±0.4 37.9±0.3 47.7±0.2 47.9±0.3 59.0±0.1 52.2±0.3 60.9±0.5

Table 2: Comparison with SOTA dataset distillation baselines on Tiny-ImageNet and ImageNet-1K. Unless
otherwise specified, we use the same network architecture for distillation and validation. Following the settings
in their original papers, MTT [1], and TESLA [2] use ConvNet-128 (small model). For SRe2L [46], ResNet-18
(large model) is used for synthesis, and the distilled dataset is evaluated on ResNet-18, 50, and 101. † indicates
MTT is performed on a 10-class subset of the full ImageNet-1K dataset.

Dataset ipc
ConvNet ResNet-18 ResNet-50 ResNet-101

MTT [1] DataDAM [32] TESLA [2] SRe2L [46] DWA (ours) SRe2L DWA (ours) SRe2L DWA (ours)

Tiny-ImageNet 50 28.0±0.3 28.7±0.3 - 41.1±0.4 52.8±0.2 42.2±0.5 53.7±0.2 42.5±0.2 54.7±0.3

100 - - - 49.7±0.3 56.0±0.2 51.2±0.4 56.9±0.4 51.5±0.3 57.4±0.3

ImageNet-1K
10 64.0±1.3

† 6.3±0.0 17.8±1.3 21.3±0.6 37.9±0.2 28.4±0.1 43.0±0.5 30.9±0.1 46.9±0.4

50 - - 27.9±1.2 46.8±0.2 55.2±0.2 55.6±0.3 62.3±0.1 60.8±0.5 63.3±0.7

100 - - - 52.8±0.3 59.2±0.3 61.0±0.4 65.7±0.4 62.8±0.2 66.7±0.2
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Figure 2: Visualization of distilled images for the goldfish class. Panels (a) and (b) show the synthesized
results by SRe2L [46] and our DWA, respectively. The synthetic data instances generated by our DWA method
exhibit significantly greater diversity compared to those produced by SRe2L, highlighting the effectiveness of
our approach in capturing a broader range of features.

Figure 3: Analysis of decoupled Lvar coefficient. We vary λvar across a wide range of (0.01 ∼ 0.23).
‘decoupled var’ indicates λvar is changing individually with a fixed mean component whose weight defaults
to 0.01. ‘coupled var’ represents the weight of the mean and λvar change in tandem. (a) and (b) illustrate the
performance of the original SRe2L [46] and our DWA in these two scenarios, respectively. This analysis is
conducted on CIFAR-100 using ResNet-18. Each λvar undergoes five independent experiments, with variance
indicated by lighter color shades.

Figure 4: Normalized feature distance of decoupled
variance component with λvar = 0.11 (the weight of
mean component defaults to 0.01) and coupled variance
component with λBN = 0.11. ResNet-18’s last con-
volutional layer outputs are used for feature distance
calculation (see Appendix A.2.2). Ten classes are ran-
domly chosen from CIFAR-100 distilled dataset.

Tiny-ImageNet & ImageNet-1K. Compared
with CIFAR-10/100, ImageNet datasets are
more closely reflective of real-world scenar-
ios. Table 2 lists the related results. Due
to the limited scalability capacity of conven-
tional distillation paradigm, only a few methods
have conducted evaluation on ImageNet datasets.
Here we provide a comprehensive comparison
with SRe2L [46], which has been validated as
the most effective one for distilling large-scale
dataset. It is obvious that our method signifi-
cantly outperforms SRe2L on all ipc settings
and validation models. For instance, our DWA
surpasses SRe2L by 16.6% when ipc = 10 on
ImageNet-1K using ResNet-18. Figure 2 further
provides the visualization results, the enhanced
diversity is the key driver behind the substantial
performance improvement.

4.2 Ablation Study

Decoupled Lvar Coefficient. We first test our hypothesis, as outlined in Section 3.1, positing that
strengthening Lmean conflicts with the emphasis on Lvar, which is critical for ensuring diversity in
synthetic datasets. Therefore, we compare the synthetic dataset distilled with an emphasis on LBN

(which strengthens both Lmean and Lvar) against one that emphasizes Lvar alone. As depicted in
Figure 3, focusing solely on Lvar outperforms the combined emphasis on λBN in both SRe2L [46] and
our proposed Directed Weight Adjustment (DWA). These experimental results verify our hypothesis
in Section 3.1, indicating the optimal value of the decoupled coefficient Lvar is 0.11. We also employ
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Table 3: An ablation study of DWA was conducted using various network architectures. The synthetic dataset
was distilled by ResNet-18 from the CIFAR-100 dataset. We use ✘ to denote the distilled dataset without weight
adjustment, ⃝ to denote the distilled dataset with random weight adjustment, and ✔ to represent Directed
Weight Adjustment (DWA).

ipc = 10 ipc = 50

Perturbation ✘ ⃝ ✔ ✘ ⃝ ✔

ResNet-18 30.6±0.7 14.9±0.1 39.6±0.6 56.1±0.4 56.2±0.6 60.3±0.5

ResNet-50 26.5±1.1 15.0±0.2 35.2±0.7 55.7±0.9 57.1±0.5 60.6±0.8

MobileNetV2 18.2±0.5 14.4±1.2 27.8±0.7 46.9±0.9 50.7±0.6 53.6±0.2

ShuffleNet 10.3±0.7 10.7±0.1 19.4±0.9 30.9±1.1 39.1±0.1 41.7±0.8

EfficientNet 11.8±0.4 11.1±0.7 20.2±0.4 28.6±1.0 38.8±1.0 40.7±0.3

the normalized feature distance as a metric to comprehensively evaluate our emphasis. This metric
measures the mutual feature distances between instances, as defined in Appendix A.2.2. By randomly
selecting 10 classes from CIFAR-100, we calculate the normalized feature distances between synthetic
datasets emphasized by the decoupled Lvar and the coupled LBN. The findings, illustrated in Figure 4,
validate our hypothesis from a different perspective.

Directed Weight Adjustment. We clarify the necessity of restricting the direction of weight
adjustment in Section 3.3. To test its effectiveness, we apply a random ∆θ, sampled from a Gaussian
Distribution, to θT . As shown in Table 3, we assess synthetic datasets derived from three scenarios:
no weight adjustment, random weight adjustment, and our directed weight adjustment (DWA) method,
using the CIFAR-100 dataset. The results, examined across various architectures, underscore the
importance of directing weight adjustments in distillation processes. Notably, we observe performance
degradation in the synthetic dataset optimized with random weight adjustment at ipc = 10 compared
to those without weight adjustment. This decline occurs because, at smaller ipc values, the noise
introduced by random weight adjustment outweighs the benefits of diversity. However, as the number
of synthetic instances increases, diversity becomes more effective in capturing a broader range of
features, leading to improved performance, as reflected at ipc = 50.

Table 4: Cross-architecture performance of distilled dataset of CIFAR-100 using ResNet-18 and ConvNet-128.

ipc Methods MobileNetv2 ShuffleNet EfficientNet VGG-16 ResNet-50 ConvNet-128

SRe2L 16.1±0.5 11.8±0.7 11.1±0.3 19.2±0.2 22.4±1.3 19.4±0.210 DWA (ours) 27.8±0.7 19.4±0.9 20.2±0.4 30.0±0.5 35.2±0.7 27.3±0.3

SRe2L 43.2±0.2 27.5±1.1 24.9±1.7 40.4±1.2 52.8±0.7 19.4±0.2
ResNet-18

50 DWA (ours) 53.6±0.2 41.7±0.8 40.7±0.3 51.6±0.4 60.6±0.8 37.0±0.3

SRe2L 28.7±1.3 25.3±0.4 18.0±0.9 21.5±1.6 41.8±0.2 -10 DWA (ours) 37.3±0.1 25.3±0.4 24.5±0.4 29.6±1.3 47.1±0.3 47.6±0.4

SRe2L 48.8±0.4 49.3±0.7 45.7±0.8 38.9±0.5 53.4±0.5 -ConvNet-128
50 DWA (ours) 53.5±0.3 44.37±0.4 45.7±0.8 38.9±0.5 56.3±0.3 59.0±0.1

Figure 5: Performance grid of ResNet-18 with changes
in perturbation steps K and magnitude ρ.

Parameters Study on K and ρ. Apart from di-
rection, the number of steps K and magnitude ρ
of perturbation also influence the distillation pro-
cess. Figure 5 illustrates the grid search for these
two hyper-parameters and demonstrates the pos-
itive impact of perturbation, which is achieved
effortlessly, requiring no meticulous manual pa-
rameter tuning. In our experiments, we set
K = 12 and ρ = 15e−3 for all the datasets.
Readers can adjust these hyper-parameters ac-
cording to their specific circumstances (different
datasets and networks) to obtain better results.

Cross-Architecture Generalization. The gen-
eralizability across different architectures is a
key feature for assessing the effectiveness of the distilled dataset. In this section, we evaluate the
surrogate dataset condensed by different backbones (ResNet-18 and ConvNet-128) on various archi-
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tectures including MobileNetV2 [33], ShuffleNetV2 [26], EfficientNet-B0 [37], and VGGNet-16 [35].
The experimental results are reported in Table 4 and Table 5. It is evident that our DWA-synthesized
dataset can effectively generalize across various architectures. Notably, for ipc = 50 on CIFAR-100
with ShuffleNetV2, EfficientNet-B0, and ConvNet-128—three architectures not involved in the data
synthesis phase—our method achieves impressive classification performance, with accuracies of
41.7%, 40.7%, and 37.0%, respectively, outperforming the latest SOTA method, SRe2L [46], by
14.2%, 15.8%, and 17.6%. In Appendix A.2.3, we further extend the proposed method to a vision
transformer-based model, DeiT-Tiny [40].

5 Related Works

Table 5: Cross-architecture performance of distilled
dataset of ImageNet-1K using ResNet-18.

ipc Methods MobileNetv2 ShuffleNet EfficientNet

SRe2L 15.4±0.2 9.0±0.7 11.7±0.210 DWA (ours) 29.1±0.3 11.4±0.6 37.4±0.5

SRe2L 48.3±0.5 9.0±0.6 53.6±0.450 DWA (ours) 51.6±0.5 28.5±0.5 56.3±0.4

Dataset Distillation [43] emerges as a deriva-
tive of Knowledge Distillation (KD) [9], em-
phasizing data-centric efficiency over tradi-
tional model-centric one. Previous studies
have explored various strategies to condense
datasets, including performance matching, gra-
dient matching [54, 52, 19] distribution match-
ing [42, 53, 55, 48, 4], and trajectory match-
ing [1, 2, 5, 6, 21, 41].

What distinguishes DD from KD is the bi-level
optimization, which considers both model parameters and image pixels. The consequent complexity
and computational burden intricate optimization significantly diminish the effectiveness of the
aforementioned methods. To address this issue, SRe2L [46] introduced a three-step paradigm known
as Squeeze-Recover-Relabel. This approach relies on the highly encoded distribution prior, i.e., the
running mean and running variance in the BN layer, to circumvent supervision provided by model
training. With this decoupled optimization, SRe2L is able to extend DD to high-resolution and
large-scale datasets like ImageNet-1K.

Another critical challenge in dataset compression, not limited to distillation, is how to represent the
original dataset distribution with a scarcity of synthetic data samples [36]. Previous research claims
that the diversity of a dataset can be evaluated by spatial distribution [27], the maximum dispersion
or convex hull volume [47], and coverage [56]. Conventional dataset distillation [49, 15] treats the
synthetic compact dataset as an integrated optimizable tensor without specialized guarantees for
diversity and relies entirely on the matching objectives mentioned above. Recognizing this limitation,
Dream [23] proposed using cluster centers to induce synthesis and ensure adequate diversity. Besides,
SRe2L resorts to the second-order statistics, i.e., variance of representations in pre-trained weights to
provide diversity.

6 Conclusion

In this work, we hypothesize that ensuring diversity is crucial for effective dataset distillation. Our
findings indicate that the random initialization of synthetic data instances contributes minimally to
ensuring that each instance captures unique knowledge from the original dataset. We validate our
hypothesis through both theoretical and empirical approaches, demonstrating that enhancing diversity
significantly benefits dataset distillation. To this end, we propose a novel method, Directed Weight
Adjustment (DWA), which introduces diversity in synthesis by customizing weight adjustments for
each mini-batch of synthetic data. This approach ensures that each mini-batch condenses a variety of
knowledge. Extensive experiments, particularly on the large-scale ImageNet-1K dataset, confirm the
superior performance of our proposed DWA method.

Limitations and Future work. While DWA provides a straightforward and efficient approach to
introducing diversity in dataset distillation, its reliance on the sampling of a random distribution to
adjust weight parameters presents limitations. Increasing the variance of the random distribution can
introduce unexpected noise, thereby bottlenecking overall performance. Future investigations could
explore synthesizing data instances in a sequential manner, encouraging later instances to consciously
distinguish themselves from earlier ones, thereby further enhancing diversity.
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A Appendix

A.1 Minimizing Lmean and Lvar can be contradictory

To prove that minimizing Lmean and Lvar can result in contradictory objectives for some existing
instances, we will demonstrate that the gradients required to minimize Lmean and Lvar, respectively,
may point in opposite directions. Specifically, for any arbitrary instance si ∈ S, our goal is to
establish:

∂Lmean

∂si
· ∂Lvar

∂si
< 0, (16)

For ∂Lmean

∂si
, we have

∂Lmean

∂si
=

∂ [µ(S)− µ (T )]
2

∂si
=

∂ [µ (S)− µ (T )]
2

∂µ (S)
· ∂µ (S)

∂si

= 2 [µ (S)− µ (T )] · 1

|S|
, (17)

because µ(S) = 1
|S|si +

∑
j ̸=i

1
|S|sj , thus ∂µ(S)

∂si
= 1

|S| . For ∂Lvar

∂si
, we have

∂Lvar

∂si
=

∂
[
σ2 (S)− σ2 (T )

]2
∂si

=
∂
[
σ2 (S)− σ2 (T )

]2
∂σ2 (S)

· ∂σ
2 (S)
∂si

= 2
[
σ2 (S)− σ2 (T )

]
· ∂σ

2 (S)
∂si

= 2
[
σ2 (S)− σ2 (T )

]
·
∂
[

1
|S| (si − µ (S))2 +

∑
j ̸=i

1
|S| (sj − µ (S))2

]
∂si

= 2
[
σ2 (S)− σ2 (T )

]
· 1

|S|
∂ (si − µ (S))2

∂si

= 2
[
σ2 (S)− σ2 (T )

]
· 1

|S|
· 2 (si − µ (S)) · ∂ (si − µ (S))

∂si

= 2
[
σ2 (S)− σ2 (T )

]
· 1

|S|
· 2 (si − µ (S)) ·

(
1− 1

|S|

)
. (18)

Substitute Equation 17 and Equation 18 back into Equation 16,

∂Lmean

∂si
· ∂Lvar

∂si

=2 [µ (S)− µ (T )] · 1

|S|
· 2

[
σ2 (S)− σ2 (T )

]
· 1

|S|
· 2(si − µ(S)) · (1− 1

|S|
)

=

[
2

|S|

]3
(|S| − 1) [µ (S)− µ (T )] ·

[
σ2 (S)− σ2 (T )

]
· (si − µ (S)) , (19)

Let R = [µ(S) − µ(T )] · [σ2(S) − σ2(T )], where R is a constant that can be either positive or
negative, depending on the values of µ(S), µ(T ), σ2(S), and σ2(T ). Suppose R > 0. In this
scenario, instances for which (si−µ(S)) < 0 will encounter contradictory objectives in optimization.
Conversely, if R < 0, instances where (si − µ(S)) > 0 will face similar contradictions.

A.2 Experiments

A.2.1 Hyper-parameter Settings

Table 6, Table 7, and Table 8 list the hyper-parameter settings of our method on experimental datasets.
We maintain consistency with SRe2L for a fair comparison.
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Table 6: Hyper-parameter settings for CIFAR-10/100.

Distillation Validation

#Iteration 1000 #Epoch 400
Batch Size 100 Batch Size 128
Optimizer Adam with {β1, β2} = {0.5, 0.9} Optimizer AdamW with weight decay of 0.01

Learning Rate 0.25 using cosine decay Learning Rate 0.001 using cosine decay

Augmentation - Augmentation RandomCrop
RandomHorizontalFlip

λvar 11 Tempreture 30
ρ,K 15e−3, 12

Table 7: Hyper-parameter settings for Tiny-ImageNet.

Distillation Validation

#Iteration 2000 #Epoch 200
Batch Size 100 Batch Size 128
Optimizer Adam with {β1, β2} = {0.5, 0.9} Optimizer SGD with weight decay of 0.9

Learning Rate 0.1 using cosine decay Learning Rate 0.2 using cosine decay

Augmentation RandomResizedCrop
RandomHorizontalFlip Augmentation RandomResizedCrop

RandomHorizontalFlip
λvar 11 Tempreture 20
ρ,K 15e−3, 12

Table 8: Hyper-parameter settings for ImageNet-1K.

Distillation Validation

#Iteration 2000 #Epoch 300

Batch Size 100 Batch Size 128

Optimizer Adam with {β1, β2} = {0.5, 0.9} Optimizer AdamW with weight decay of 0.01

Learning Rate 0.25 using cosine decay Learning Rate 0.001 using cosine decay

Augmentation RandomResizedCrop
RandomHorizontalFlip Augmentation RandomResizedCrop

RandomHorizontalFlip

λvar 2 Tempreture 20

ρ,K 15e−3, 12

A.2.2 Feature Distance Calculation

In Figure 4, we use feature distance Dfea to measure the diversity of distilled dataset. The following
is how the class-wise feature distance is calculated,

Dc
fea =

ipc∑
i=1

ipc∑
j=1

∥gθT (s̃ci )− gθT (s̃
c
j)∥2, (20)

where gθT (s̃
c
i ) and gθT (s̃

c
j) are the latent representations of i-th and j-th synthetic instances of class

c, specifically the outputs from the last convolutional layer.

A.2.3 Generalization to Vision Transformer-based Models

We acknowledge that our proposed approach cannot be directly applied to models without BN
layers, such as Vision Transformers (ViTs). Our baseline solution, SRe2L, involves developing a
ViT-BN model that replaces all LayerNorm layers with BN layers and adds additional BN layers
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between the two linear layers of the feed-forward network. We followed their solution and conducted
cross-architecture experiments with DeiT-Tiny [40] on the ImageNet-1K dataset. The results are
listed in Table 9. The results demonstrate that our approach can be applied to ViT-BN with superior
performance compared to the baseline.

Table 9: Generalization to a vision transformer-based model DeiT-Tiny.

Methods DeiT-Tiny ResNet-18 ResNet-50 ResNet-101

SRe2L 15.41 46.80 55.60 60.81ResNet-18 DWA (ours) 22.72 55.20 62.30 63.3

SRe2L 25.36 24.69 31.15 33.16DeiT-Tiny-BN DWA (ours) 37.0 32.64 40.77 43.15

A.2.4 Application to Downstream Tasks

We evaluate our proposed DWA on a continual learning task, based on an effective continual learning
method GDumb [30]. Class-incremental learning was performed under strict memory constraints
on the CIFAR-100 dataset, with 20 images per class (ipc = 20). CIFAR-100 was divided into five
tasks, and a ConvNet was trained on our distilled dataset, with accuracy measured as new classes
were incrementally introduced. As shown in Table 10, DWA significantly outperforms SRe2L across
all class-incremental stages, demonstrating superior retention of knowledge throughout the learning
process.

Table 10: Application to continual learning task.

Class 20 40 60 80 100

SRe2L 15.7 10.6 9.0 7.9 6.9
DWA (ours) 34.6 25.7 22.5 20.2 18.1

A.2.5 Computational Overhead of Distillation

We compare the average time required to generate one ipc using ResNet-18 on CIFAR-100. As
shown in Table 11, our proposed DWA incurs only a 7.32% increase in computational overhead while
significantly enhancing the diversity of the synthetic dataset. This additional overhead arises from the
K-step directed weight perturbation applied before generating each ipc, as detailed in lines 6-7 of
Algorithm 1,

For k = 1 to K do

∆θk = ∆θk−1 +
ρ

K
∇LSi

0

(
fθT+∆θk−1

)
.

Since each ipc requires 1000 iterations of forward-backward propagation for generation, the ad-
ditional K = 12 forward-backward propagations required by DWA are negligible in the overall
distillation process.

Table 11: Computational overhead of distillation on CIFAR-100 with ResNet-18.

Methods Avg. time for generating one ipc

SRe2L 116.58 s (100%)
DWA (ours) 125.12 s (107.32%)
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are not attained by the paper.

2. Limitations
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sumptions, scope of claims, performance factors, computational efficiency, privacy, fairness,
and honesty.
Guidelines:
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3. Theory Assumptions and Proofs

17



Question: For each theoretical result, does the paper provide the full set of assumptions and
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to make their results reproducible or verifiable.
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to reproduce that algorithm.
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reproduction. We also release our codes for reproduction in camera-ready version.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to reproduce the
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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meticulously reported both the mean values and standard deviations for each experimental
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper comprehensively details compute resources in both the experiments
section and supplementary materials, covering GPU type, memory, and storage specifics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research aligns with the NeurIPS Code of Ethics, ensuring ethical standards
are upheld throughout the study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is foundational research, and therefore, it does not have direct
societal impacts to discuss.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of data or models that have a high risk
for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The paper provides proper credit to asset creators, citing relevant papers and
explicitly mentioning license and terms of use. URLs are included where possible, and all
licenses are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well-documented, providing com-
prehensive details alongside the assets, including training procedures, licenses, limitations,
and consent processes, ensuring transparency and reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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applicable), such as the institution conducting the review.

23


	Introduction
	Preliminaries
	Methodology
	Batch Normalization Loss Enhances Diversity of S
	Random Perturbation on T Helps Improve Diversity
	Directed Weight Adjustment on T

	Experiments
	Results & Discussions
	Ablation Study

	Related Works
	Conclusion
	Appendix
	Minimizing Lmean and Lvar can be contradictory
	Experiments
	Hyper-parameter Settings
	Feature Distance Calculation
	Generalization to Vision Transformer-based Models
	Application to Downstream Tasks
	Computational Overhead of Distillation



