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Abstract

Recent Large Reasoning Models exhibit strong
reasoning abilities in tasks like mathemat-
ics and logical inference, notably through
human-like self-verification and reflection in
their chain of thought. However, it remains
unclear whether these reflective statements
stem from genuine internal mechanisms or are
merely memorized patterns. From a model
interpretability perspective, this work investi-
gates LRMs’ representation space to determine
whether specific features causally govern reflec-
tive capabilities. Using a difference-in-means
approach, we extract Self-Reflection Features
by contrasting model activations during self-
reflection versus affirmative answering. Fur-
ther causal analysis reveals that these features
strongly influence knowledge parameters asso-
ciated with reflection words, suggesting that
such outputs are genuine manifestations of in-
ternal mechanisms rather than memorization.
Finally, causal interventions demonstrate that
modulating these features flexibly adjusts the
model’s self-reflective intensity.

1 Introduction

Recently, the emergence of Large Reasoning Mod-
els (LRMs) (OpenAl et al., 2024b; DeepSeek-Al
et al., 2025; Team, 2025) optimized through rein-
forcement learning, has opened up new possibilities
and room for advancement in the reasoning capabil-
ities of language models. These advancements are
particularly evident in tasks such as mathematics
(Cobbe et al., 2021; Hendrycks et al., 2021), logi-
cal reasoning (Luo et al., 2024), and understanding
scientific questions (Welbl et al., 2017). These Rea-
soning models excel at deconstructing complex
problems into simpler, sequential sub-problems
within their extensive chains of thought. Most
impressively, they often adopt a human-like rea-
soning tone (Guo et al., 2025; Yang et al., 2025),
seemingly engage in self-verification and reflec-
tion (Gandhi et al., 2025), and evaluate their own

proposed solutions before summarizing and then
recommending the most suitable option to the user.
Therefore, this raises a crucial question: do these
reflective statements and verification words exe-
cuted within the chain of thought represent a gen-
uine activation of the models’ internal reflective
capabilities, or are they simply reproductions of
patterns memorized from their training data?
In this work, from a model interpretability per-
spective, we delve into the representation space of
LRMs. We aim to uncover whether specific exist-
ing features genuinely govern the deployment of
these reflective capabilities, and to establish if a
causal relationship exists between the activation of
such features and the reflection words manifested
in a reasoning model’s chain of thought.
Specifically, in §3, we employ the difference-
in-means technique (Marks and Tegmark, 2023;
Rimsky et al., 2024) to extract Self-Reflection Fea-
tures from four Large Reasoning Models (Guo
et al., 2025; Team, 2025) across both mathemat-
ical and code datasets by contrasting the internal
representations of the models when they engage
in self-reflection versus when they provide affir-
mative answers. These features were subsequently
visualized using Principal Component Analysis.
In §4, we conduct a causal analysis of Self-
Reflection Features in LRMs from both internal
and external perspectives. We identify knowledge
parameters within the models that are highly cor-
related with reflection words and demonstrate that
the presence of Self-Reflection Features amplifies
the activation of these parameters in §4.1. This
suggests that the reflection words in LRM chain-
of-thought are genuine manifestations of these ac-
tivated features, not just memorized patterns. Cru-
cially, through causal intervention experiments de-
tailed in §4.2, we further show that manipulating
these extracted Self-Reflection Features allows for
flexible modulation of the model’s self-reflection
intensity when answering questions. To conclude,



we uncovered and verified that the reflection words
in Large Reasoning Models genuinely reflect the
activation of their internal reflective capabilities.

2 Background and Related Work

2.1 Self-Reflection in Large Reasoning Models

The development of Large Reasoning Models
(LRMs) (OpenAl et al., 2024b; Guo et al., 2025;
Team, 2025) has opened up new prospects for en-
hancing the reasoning paradigms of language mod-
els. Most notably, they demonstrate impressive
human-like self-reflection (Guo et al., 2025; Liu
et al., 2025) and verification capabilities when en-
gaged in the long chain of thoughts (Wei et al.,
2023; Li et al., 2025).

Regarding the human-like expressions in the
chain of thoughts exhibited by LRMs, several stud-
ies have conducted preliminary investigations from
the perspective of Reinforcement Learning training
dynamics (Gandhi et al., 2025; Yang et al., 2025;
Yu et al., 2025b). And in terms of the LRM’s
ability to assess itself’s uncertainty or engage
in self-reflection, existing research has explored
both explicit and implicit ways to estimate the
uncertainty. For explicit uncertainty, prior work
proposed prompting strategies that guide LRMs
to verbalize their confidence levels (Zeng et al.,
2025). To study implicit uncertainty, researchers
have trained probing classifiers on the model’s in-
ternal representations to estimate its confidence
(Zhang et al., 2025; Anthropic). However, there
is still a lack of sufficient interpretability research
exploring whether these explicit reflection patterns
observed in the chain of thoughts genuinely cor-
relate with the models’ actual internal reflective
capabilities.

2.2 Linear semantic features

Recent investigations in model interpretability have
revealed that, for numerous cognitive behaviors
observed in Large Language Models—including
refusal to answer (Arditi et al., 2024), jailbreak-
ing (Yu et al., 2025a), reasoning, and knowledge-
recall (Hong et al., 2025)—the models encode cor-
responding linear semantic features within their
activation space (Park et al., 2024). These linear se-
mantic features have been discovered and extracted
by contrasting inputs that differ primarily in the
target semantic dimension (Marks and Tegmark,
2023). Once these features are pinpointed, they
offer a mechanism for controlling model behavior

through manipulation, which allows for targeted in-
terventions in the generative process (Rimsky et al.,
2024, Stickland et al., 2024). Our work extends
this line of study by identifying linear features that
determine models’ engagement in self-reflection.

3 Self-Reflection Features Extraction

3.1 Methodology for Identifying
Self-Reflection Features

For current Reasoning Models, given a question @,
we can decompose its output into multiple Reason-
ing Segments: {s1, $2, 83, ...,Sn}. Each segment
(except for s1) represents the model’s reflection on
the previous segment’s proposed approach and a
new attempt at solving the target problem. The
final segment, s,, signifies the termination of re-
flection, and the model directly provides its final
answer.

At each Reasoning Segment’s final token posi-
tion during inference, the model can either select
the current answer as its final output and terminate,
or generate another segment to reflect, verify, and
explore alternative solutions. Therefore, based on
whether the model initiates a new reflection after
a segment or directly provides the final answer,
we can categorize the Reasoning Segments into
two groups. The first group, where the model pro-
poses a new reflection after the segment, we call
SCheck-point- The second group, where the model
directly gives the final answer after the segment,
we call Szermination-

Next, for both groups, we extract the hidden
states from the last-token position of each segment
s (excluding s,,) at the model’s I-th layer!, denoted
as h(l)(s). Since this last-token position corre-
sponds to where the model is about to generate the
first token of the subsequent segment, we hypoth-
esize that the hidden states at this crucial juncture
store important information guiding the model’s
decision to either continue with reflection or pro-
ceed to termination in the next segment. Then,
using the difference-in-means technique (Marks
and Tegmark, 2023; Rimsky et al., 2024), we cal-
culate the difference between the mean last-token
hidden states for these two categories of Reasoning
Segments:

> hO() > hi(s)
f(l) — s€ SCheCk'pOim SE€STermination ( 1 )
|SChenk-p0im | ‘STermination ‘

! Assuming the model has L layers, we conduct experi-
ments on each individual layer of it.
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Figure 1: Visualization of the hidden states of four
reasoning models on the GSM8k dataset using 2-D
PCA. The hidden states of datapoints in Scheck-poins and
Stermination are positioned around the boundary (grey
dashed line) fitted via logistic regression. The blue
arrow approximately indicates the direction of the Self-
Reflection Features. Results on other datasets are shown
in §B of the Appendix.

The direction of the vector ") represents the
direction of the Self-Reflection Features that we
extracted. The construction details of Scpeck-point
and Stermination are provided in the next section.

3.2 Experimental Setups

Models We utilize two categories of reasoning
models trained under different settings to investi-
gate Self-Reflection Features. The first category in-
cludes DeepSeek-R1-Distill-Llama-8B, DeepSeek-
R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-
Qwen-14B. These models are obtained by perform-
ing supervised fine-tuning on the base Llama-3.1
(Meta, 2024) or Qwen2.5 (Qwen et al., 2025) mod-
els using high-quality reasoning data generated by
the DeepSeek-R1 model (Guo et al., 2025). The
second category comprises the QwQ-32B model
(Team, 2025), which is trained using reinforcement
learning. The inference details are provided in §D.

Datasets We focus on analyzing LRMs on math-
ematical and coding tasks to facilitate the extrac-
tion of Self-Reflection Features and analyze their
influence. For the mathematical tasks, we use
the GSM8k (Cobbe et al., 2021) and MATH-500
datasets (Lightman et al., 2023). For the coding
tasks, we select the MBPP dataset (Austin et al.,
2021).

3.3 Visualization for Self-Reflection Features

Following the methodology outlined in §3.1, we
first perform inference on the datasets using the
target reasoning models to collect their responses.
We then employ GPT-40 (OpenAl et al., 2024a) to
automatically segment each response into multiple
reasoning segments”, where each segment indepen-
dently represents an attempt by the model to solve
the problem. Subsequently, based on the segmen-
tation results, we categorize the segments into two
groups, Scheck-point AN Sterminarion- We then extract
the hidden states from the corresponding positions
and compute the Self-Reflection Features by apply-
ing Eq. (1). To more clearly visualize the direction
of the Self-Reflection Features, we apply Principal
Component Analysis (PCA) to the hidden states
of data points in the Scyeck-point A0d Stepmination SEts.
The results on GSM8k dataset are shown in Figure
1. From this, we can observe that the two groups
of data points are clearly divisible into two clusters
by the logistic regression line, explicitly revealing
the presence of Self-Reflection Features.

4 Internal and External Causal Analysis
of Self-Reflection Features in LRMs

In this section, we will investigate from both inter-
nal (model parameter activation) and external (run-
time behavior) perspectives, to verify the genuine
causal relationships connecting Self-Reflection
Features with: (a) the presence of reflection words
within chain-of-thought processes in §4.1, and (b)
the intensity of the model’s self-reflection during
actual inference in §4.2.

4.1 Parameter Storing Human-like Reflection
words

By applying the Logit Lens method (nostalgebraist,
2020)3, we identified value vectors within the MLP
module’s value matrix of the large reasoning mod-
els that highly contain these reflection tokens. Spe-
cific examples are presented in Table 1. We can
observe that the vector projections at correspond-
ing positions in both models each contain a certain
number of reflection tokens. Moreover, when the
hidden states are in Scheck-poins — that is, when they
exhibit stronger self-reflection features — we ob-

The exact prompts used, along with human verification
results, are provided in §A of the appendix.

3More descriptions of this method and relevant background
knowledge are provided in §C of the appendix.



Model Example Top-scoring tokens Activation values Activation values Activation values
Vector in STermination in SCheck—point SMore-Reﬂection
DeepSeek-R1- Videaa Is, Let, OK, So, Next, If, Now, 0.15 2.13 2.71
Distill-Llama-8B What,First, See, However, Like,
Check, Right, Wait, Again
DeepSeek-R1- V%%%Q hi, well, its, hey, nah, its, Im, 0.22 1.94 2.40

Distill-Qwen-7B
notifies, thanks, Ye,waits, WAIT

ye, alternative, _ok,, oh, Hello,

Table 1: Example value vectors identified in two LRMs via the Logit Lens method, showcasing top-scoring tokens
related to Self-Reflection Features and their activation values in different reflection stages.
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Figure 2: Accuracy and acceleration on GSMSK
and MATH-500 after intervening in the hidden states
of DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-
Distill-Qwen-7B using different 3 values in Eq. (2).
Acceleration is measured as the percentage reduction in
inference tokens

serve a significant increase in the activation* of the
target value vector. When we follow Eq. (2) to fur-
ther enhance the strength of self-reflection features
in the model representations (i.e., transitioning to
SMore-Reflection @S shown in Table 2), we similarly
observe a further increase in their activation.

This provides further support for the idea that
the human-like reflection words appearing in the
chain-of-thought processes of LRMs are not merely
a result of memorizing training data. Instead, they
are a reflection of the genuine activation of Self-
Reflection Features.

4.2 Modulating Self-Reflection Intensity via
Linear Feature Intervention

Building upon the Linear Reflection Features ex-
tracted from LRMs in §3, in this part, we explore

*Activation refers to the coefficient corresponding to each
value vector in Eq. (4).

their application in adjusting the intensity of the
model’s self-reflection ability. Specifically, we aim
to modulate their intensity within the model’s repre-
sentational space during inference for specific tasks,
thereby addressing the potential issues of insuffi-
cient reflection (Aggarwal and Welleck, 2025) or
"overthinking" (Cuadron et al., 2025; Zhang et al.,
2025) that current LRMs may exhibit in practical
scenarios.

Specifically, we follow the Eq. (2) below, at-
tempting to control the extent of Self-reflection
ability in LRMs by intervening with Self-reflection
Features through adjusting the hyperparameter (3
in the model’s hidden states:

W'V (s) « hO(s) = g )

Figure 2 shows the intervention effects on
GSMS8K and MATH-500 for both DeepSeek-R1-
Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-
7B. Starting from 8 = 0, increasing the value of
5 leads to improved acceleration for the LRMs.
However, accuracy does not immediately degrade.
Once ( reaches around 0.2, further acceleration
comes at the cost of a noticeable drop in accuracy.
Conversely, decreasing S—thereby increasing the
influence of Self-Reflection Features—slightly im-
proves accuracy at the expense of slower inference,
which aligns with our hypothesis.

5 Discussion and Conclusion

This work aimed to determine if reflective language
in Large Reasoning Models reflects genuine inter-
nal processes or learned patterns. By extracting
Self-Reflection Features from their representation
space, we found a causal link to reflective words
in their chain of thought. Crucially, manipulating
these features allowed us to modulate LRM self-
reflection intensity. These findings confirm that
LRMs’ reflective statements stem from discernible,
governable internal mechanisms, signifying true
reflective activation.



Limitations

In this study, while we have identified the pres-
ence of Self-Reflection features within reasoning
models, a comprehensive investigation into their
origins was not conducted. Specifically, it remains
to be clarified whether these features emerge pri-
marily from the pre-training phase or are intro-
duced during subsequent reinforcement learning
post-training. Furthermore, the characteristics of
the training data that facilitate the encoding of these
Self-Reflection features into the model’s represen-
tational space are yet to be identified. A deeper
understanding of these aspects would provide a
critical foundation for the future development of
more robust and effective reasoning models. We
plan to explore these questions in our future work.

Additionally, owing to resource constraints, we
were unable to extend our experimental research to
larger-scale reasoning models, such as DeepSeek-
R1.
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Figure 3: Visualization of the hidden states of two rea-
soning models on the MATH-500 and MBPP dataset us-
ing 2-dimensional PCA. The hidden states of datapoints
in Scheck-point ANd Stepminarion are positioned around the
boundary (grey dashed line) fitted via logistic regression.
The blue arrow approximately indicates the direction of
the Self-Reflection Features. To make the image presen-
tation clearer, we sampled 300 data points from each of
Scheck-point AN Stermination for presentation. Results on
other datasets are shown in §B of the Appendix.
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A Prompt used for Reasoning Responses
Segmentation

Table 2 presents the prompt we used to query GPT-
40 to segment the model’s responses into Reason-
ing Segments.

B Additional PCA Visualizations on
MATH-500 and MBPP

Here, we present additional PCA results for the
Self-Reflection Features on MATH-500 and MBPP
in Figure 3.

C Foundations for Logit Lens Analysis

Here, we provide a brief introduction to the Logit
Lens method and the background knowledge it in-
volves.

C.1 MLP in Transformers

In transformer-based language models, the MLP
is a crucial component for storing the model’s fac-
tual knowledge, and its sub-layers can be viewed
as key-value memories (Geva et al., 2021). To
be specific, the first layer’ of MLP sublayers can
be viewed as a matrix Wy formed by key vectors
{ki,ko,...,ky,}, used to capture a set of patterns
in the input sequence, and ultimately outputting
the coefficient scores. The second layer can be
viewed as a matrix Wy formed by value vectors
{v1,va,...,v,}, with each value vector contain-
ing the corresponding factual knowledge.

Formally, the output of the MLP in the trans-
former’s /-th layer, given an input hidden state x°,
can be defined as:

M’ = f(W -y(x" + AD) W) = m'W,, (3)

where W}, W{, € R"™ . The function f and
~ represent a non-linearity® and layer normaliza-
tion, respectively. In the transformer’s ¢-th layer,
m’ € R" denotes the coefficient scores, and A’
represents the output of the attention component.
The hidden state dimension is d, while the inter-
mediate MLP has a dimension of n. Then, by de-
noting V? as the j-th column (which will be called
the value vector or parameter vector in the follow-
ing sections) of Wf, and m? as the j-th element in
the coefficients produced by the first layer of the
MLP, we can view MLP’s output M’ as a linear
combination of the value vectors in Wé, with their
corresponding coefficients m*:

e _\N " el
M=) mivi “)

Each m§ here also represents the activation value
of the value vector we mentioned in Table 1. Fi-
nally, the hidden states at the ¢-th layer of the lan-
guage model can be defined as:

Xé—i-l :XZ—FME—FAE, (5)

where X ¢, M¢ and A¢ represent the hidden states,
MLP’s output, and the attention component’s out-
put in the transformer’s ¢-th layer, respectively.

>In most decoder-only models, such as GPT-2 (Radford
et al., 2019) and GPT-J (?), the MLP component consists
of two layers, whereas in LLaMA (Touvron et al., 2023), it
comprises three layers. However, we can still regard LLaMA’s
first two layers collectively as the key matrices, with their
output representing the coefficient scores.

®For brevity, the bias term is omitted.
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Prompt

* Analyze the model response and divide into reasoning segments. Return:

1. Labeled segments with independent solution attempts
2. Each segment must include:

— A new full solution pathway

— Alternative interpretations (if applicable)

— Verification/error-checking steps (if applicable)

Format Requirements:

— Use Segment N headers
— Mutual exclusivity between segments
— Avoid single-step fragmentation

Examples:

Problem: “Natalia sold clips to 48 of her friends in April, and then she
sold half as many clips in May. How many clips did Natalia sell altogether
in April and May?”

Model Response: “[Full model response here...]”

Segmentation:

1. Standard Calculation:

Segment 1: Direct arithmetic approach
April: 48 clips (given)
May: 48/2 = 24 clips
Total: 48 + 24 = 72

- Verification: 40 + 20 + 8 + 4 = 72
2. Algebraic Reformulation:

Segment 2: Symbolic representation
Let A =48 (April sales)

Define M = A/2 (May sales)
Total T=A+ M =1.5A

- Compute 1.5 x 48 = 72

3. Semantic Analysis:

Segment 3: Ambiguity resolution

- Challenge: "sold to friends"” interpretation
- Reject per-friend vs. total sales hypotheses
- Confirm 48 = total clips (not friends count)

Current Problem: {Problem}
Current Model Response: {Response}

Segmentation:

Table 2: Prompt for segmenting mathematical reasoning processes.
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C.2 Logit Lens

nostalgebraist (2020); Geva et al. (2021) proposed
that the hidden states or module parameters of a
transformer-based model can be directly decoded
into the vocabulary space using the model’s pre-
trained unembedding matrix, enabling an investiga-
tion into the information they encode:

Projection = Evg, 6)

Here, E denotes the model’s pretrained unem-
bedding matrix, and the result of the projection,
which lies in RV, is a vector assigning a score to
each token in the vocabulary V. The set of the top-
k highest-scoring tokens in this projection, denoted
by 7}%, often reveals a clear pattern that corre-
sponds to a specific knowledge being promoted by
vf during inference (Geva et al., 2022b,a).

D Implementation Details of the LRMs

For the inference settings of all four Large Reason-
ing Models, we use a temperature of 0.6, a top-p
value of 0.95, and set the maximum generation
length to 32,768 tokens, following the default set-
tings.

All the experiments in this work were conducted
on four 80GB NVIDIA A800 GPUs.
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