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Abstract001

Recent Large Reasoning Models exhibit strong002
reasoning abilities in tasks like mathemat-003
ics and logical inference, notably through004
human-like self-verification and reflection in005
their chain of thought. However, it remains006
unclear whether these reflective statements007
stem from genuine internal mechanisms or are008
merely memorized patterns. From a model009
interpretability perspective, this work investi-010
gates LRMs’ representation space to determine011
whether specific features causally govern reflec-012
tive capabilities. Using a difference-in-means013
approach, we extract Self-Reflection Features014
by contrasting model activations during self-015
reflection versus affirmative answering. Fur-016
ther causal analysis reveals that these features017
strongly influence knowledge parameters asso-018
ciated with reflection words, suggesting that019
such outputs are genuine manifestations of in-020
ternal mechanisms rather than memorization.021
Finally, causal interventions demonstrate that022
modulating these features flexibly adjusts the023
model’s self-reflective intensity.024

1 Introduction025

Recently, the emergence of Large Reasoning Mod-026

els (LRMs) (OpenAI et al., 2024b; DeepSeek-AI027

et al., 2025; Team, 2025) optimized through rein-028

forcement learning, has opened up new possibilities029

and room for advancement in the reasoning capabil-030

ities of language models. These advancements are031

particularly evident in tasks such as mathematics032

(Cobbe et al., 2021; Hendrycks et al., 2021), logi-033

cal reasoning (Luo et al., 2024), and understanding034

scientific questions (Welbl et al., 2017). These Rea-035

soning models excel at deconstructing complex036

problems into simpler, sequential sub-problems037

within their extensive chains of thought. Most038

impressively, they often adopt a human-like rea-039

soning tone (Guo et al., 2025; Yang et al., 2025),040

seemingly engage in self-verification and reflec-041

tion (Gandhi et al., 2025), and evaluate their own042

proposed solutions before summarizing and then 043

recommending the most suitable option to the user. 044

Therefore, this raises a crucial question: do these 045

reflective statements and verification words exe- 046

cuted within the chain of thought represent a gen- 047

uine activation of the models’ internal reflective 048

capabilities, or are they simply reproductions of 049

patterns memorized from their training data? 050

In this work, from a model interpretability per- 051

spective, we delve into the representation space of 052

LRMs. We aim to uncover whether specific exist- 053

ing features genuinely govern the deployment of 054

these reflective capabilities, and to establish if a 055

causal relationship exists between the activation of 056

such features and the reflection words manifested 057

in a reasoning model’s chain of thought. 058

Specifically, in §3, we employ the difference- 059

in-means technique (Marks and Tegmark, 2023; 060

Rimsky et al., 2024) to extract Self-Reflection Fea- 061

tures from four Large Reasoning Models (Guo 062

et al., 2025; Team, 2025) across both mathemat- 063

ical and code datasets by contrasting the internal 064

representations of the models when they engage 065

in self-reflection versus when they provide affir- 066

mative answers. These features were subsequently 067

visualized using Principal Component Analysis. 068

In §4, we conduct a causal analysis of Self- 069

Reflection Features in LRMs from both internal 070

and external perspectives. We identify knowledge 071

parameters within the models that are highly cor- 072

related with reflection words and demonstrate that 073

the presence of Self-Reflection Features amplifies 074

the activation of these parameters in §4.1. This 075

suggests that the reflection words in LRM chain- 076

of-thought are genuine manifestations of these ac- 077

tivated features, not just memorized patterns. Cru- 078

cially, through causal intervention experiments de- 079

tailed in §4.2, we further show that manipulating 080

these extracted Self-Reflection Features allows for 081

flexible modulation of the model’s self-reflection 082

intensity when answering questions. To conclude, 083
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we uncovered and verified that the reflection words084

in Large Reasoning Models genuinely reflect the085

activation of their internal reflective capabilities.086

2 Background and Related Work087

2.1 Self-Reflection in Large Reasoning Models088

The development of Large Reasoning Models089

(LRMs) (OpenAI et al., 2024b; Guo et al., 2025;090

Team, 2025) has opened up new prospects for en-091

hancing the reasoning paradigms of language mod-092

els. Most notably, they demonstrate impressive093

human-like self-reflection (Guo et al., 2025; Liu094

et al., 2025) and verification capabilities when en-095

gaged in the long chain of thoughts (Wei et al.,096

2023; Li et al., 2025).097

Regarding the human-like expressions in the098

chain of thoughts exhibited by LRMs, several stud-099

ies have conducted preliminary investigations from100

the perspective of Reinforcement Learning training101

dynamics (Gandhi et al., 2025; Yang et al., 2025;102

Yu et al., 2025b). And in terms of the LRM’s103

ability to assess itself’s uncertainty or engage104

in self-reflection, existing research has explored105

both explicit and implicit ways to estimate the106

uncertainty. For explicit uncertainty, prior work107

proposed prompting strategies that guide LRMs108

to verbalize their confidence levels (Zeng et al.,109

2025). To study implicit uncertainty, researchers110

have trained probing classifiers on the model’s in-111

ternal representations to estimate its confidence112

(Zhang et al., 2025; Anthropic). However, there113

is still a lack of sufficient interpretability research114

exploring whether these explicit reflection patterns115

observed in the chain of thoughts genuinely cor-116

relate with the models’ actual internal reflective117

capabilities.118

2.2 Linear semantic features119

Recent investigations in model interpretability have120

revealed that, for numerous cognitive behaviors121

observed in Large Language Models—including122

refusal to answer (Arditi et al., 2024), jailbreak-123

ing (Yu et al., 2025a), reasoning, and knowledge-124

recall (Hong et al., 2025)—the models encode cor-125

responding linear semantic features within their126

activation space (Park et al., 2024). These linear se-127

mantic features have been discovered and extracted128

by contrasting inputs that differ primarily in the129

target semantic dimension (Marks and Tegmark,130

2023). Once these features are pinpointed, they131

offer a mechanism for controlling model behavior132

through manipulation, which allows for targeted in- 133

terventions in the generative process (Rimsky et al., 134

2024; Stickland et al., 2024). Our work extends 135

this line of study by identifying linear features that 136

determine models’ engagement in self-reflection. 137

3 Self-Reflection Features Extraction 138

3.1 Methodology for Identifying 139

Self-Reflection Features 140

For current Reasoning Models, given a question Q, 141

we can decompose its output into multiple Reason- 142

ing Segments: {s1, s2, s3, . . . , sn}. Each segment 143

(except for s1) represents the model’s reflection on 144

the previous segment’s proposed approach and a 145

new attempt at solving the target problem. The 146

final segment, sn, signifies the termination of re- 147

flection, and the model directly provides its final 148

answer. 149

At each Reasoning Segment’s final token posi- 150

tion during inference, the model can either select 151

the current answer as its final output and terminate, 152

or generate another segment to reflect, verify, and 153

explore alternative solutions. Therefore, based on 154

whether the model initiates a new reflection after 155

a segment or directly provides the final answer, 156

we can categorize the Reasoning Segments into 157

two groups. The first group, where the model pro- 158

poses a new reflection after the segment, we call 159

SCheck-point. The second group, where the model 160

directly gives the final answer after the segment, 161

we call STermination. 162

Next, for both groups, we extract the hidden 163

states from the last-token position of each segment 164

s (excluding sn) at the model’s l-th layer1, denoted 165

as h(l)(s). Since this last-token position corre- 166

sponds to where the model is about to generate the 167

first token of the subsequent segment, we hypoth- 168

esize that the hidden states at this crucial juncture 169

store important information guiding the model’s 170

decision to either continue with reflection or pro- 171

ceed to termination in the next segment. Then, 172

using the difference-in-means technique (Marks 173

and Tegmark, 2023; Rimsky et al., 2024), we cal- 174

culate the difference between the mean last-token 175

hidden states for these two categories of Reasoning 176

Segments: 177

f (l) =

∑
s∈SCheck-point

h(l)(s)

|SCheck-point| −

∑
s∈STermination

h(l)(s)

|STermination| (1) 178

1Assuming the model has L layers, we conduct experi-
ments on each individual layer of it.
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Figure 1: Visualization of the hidden states of four
reasoning models on the GSM8k dataset using 2-D
PCA. The hidden states of datapoints in SCheck-point and
STermination are positioned around the boundary (grey
dashed line) fitted via logistic regression. The blue
arrow approximately indicates the direction of the Self-
Reflection Features. Results on other datasets are shown
in §B of the Appendix.

The direction of the vector f (l) represents the179

direction of the Self-Reflection Features that we180

extracted. The construction details of SCheck-point181

and STermination are provided in the next section.182

3.2 Experimental Setups183

Models We utilize two categories of reasoning184

models trained under different settings to investi-185

gate Self-Reflection Features. The first category in-186

cludes DeepSeek-R1-Distill-Llama-8B, DeepSeek-187

R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-188

Qwen-14B. These models are obtained by perform-189

ing supervised fine-tuning on the base Llama-3.1190

(Meta, 2024) or Qwen2.5 (Qwen et al., 2025) mod-191

els using high-quality reasoning data generated by192

the DeepSeek-R1 model (Guo et al., 2025). The193

second category comprises the QwQ-32B model194

(Team, 2025), which is trained using reinforcement195

learning. The inference details are provided in §D.196

Datasets We focus on analyzing LRMs on math-197

ematical and coding tasks to facilitate the extrac-198

tion of Self-Reflection Features and analyze their199

influence. For the mathematical tasks, we use200

the GSM8k (Cobbe et al., 2021) and MATH-500201

datasets (Lightman et al., 2023). For the coding202

tasks, we select the MBPP dataset (Austin et al.,203

2021).204

3.3 Visualization for Self-Reflection Features 205

Following the methodology outlined in §3.1, we 206

first perform inference on the datasets using the 207

target reasoning models to collect their responses. 208

We then employ GPT-4o (OpenAI et al., 2024a) to 209

automatically segment each response into multiple 210

reasoning segments2, where each segment indepen- 211

dently represents an attempt by the model to solve 212

the problem. Subsequently, based on the segmen- 213

tation results, we categorize the segments into two 214

groups, SCheck-point and STermination. We then extract 215

the hidden states from the corresponding positions 216

and compute the Self-Reflection Features by apply- 217

ing Eq. (1). To more clearly visualize the direction 218

of the Self-Reflection Features, we apply Principal 219

Component Analysis (PCA) to the hidden states 220

of data points in the SCheck-point and STermination sets. 221

The results on GSM8k dataset are shown in Figure 222

1. From this, we can observe that the two groups 223

of data points are clearly divisible into two clusters 224

by the logistic regression line, explicitly revealing 225

the presence of Self-Reflection Features. 226

4 Internal and External Causal Analysis 227

of Self-Reflection Features in LRMs 228

In this section, we will investigate from both inter- 229

nal (model parameter activation) and external (run- 230

time behavior) perspectives, to verify the genuine 231

causal relationships connecting Self-Reflection 232

Features with: (a) the presence of reflection words 233

within chain-of-thought processes in §4.1, and (b) 234

the intensity of the model’s self-reflection during 235

actual inference in §4.2. 236

4.1 Parameter Storing Human-like Reflection 237

words 238

By applying the Logit Lens method (nostalgebraist, 239

2020)3, we identified value vectors within the MLP 240

module’s value matrix of the large reasoning mod- 241

els that highly contain these reflection tokens. Spe- 242

cific examples are presented in Table 1. We can 243

observe that the vector projections at correspond- 244

ing positions in both models each contain a certain 245

number of reflection tokens. Moreover, when the 246

hidden states are in SCheck-point — that is, when they 247

exhibit stronger self-reflection features — we ob- 248

2The exact prompts used, along with human verification
results, are provided in §A of the appendix.

3More descriptions of this method and relevant background
knowledge are provided in §C of the appendix.
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Model Example
Vector

Top-scoring tokens Activation values
in STermination

Activation values
in SCheck-point

Activation values
SMore-Reflection

DeepSeek-R1-
Distill-Llama-8B

v31
10644 Is, Let, OK, So, Next, If, Now,

What,First, See, However, Like,
Check, Right, Wait, Again

0.15 2.13 ↑2.0 2.71 ↑2.6

DeepSeek-R1-
Distill-Qwen-7B

v23
11862 hi, well, its, hey, nah, its, Im,

ye, alternative, _ok,, oh, Hello,
notifies, thanks, Ye,waits, WAIT

0.22 1.94 ↑1.7 2.40 ↑2.2

Table 1: Example value vectors identified in two LRMs via the Logit Lens method, showcasing top-scoring tokens
related to Self-Reflection Features and their activation values in different reflection stages.
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Figure 2: Accuracy and acceleration on GSM8K
and MATH-500 after intervening in the hidden states
of DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-
Distill-Qwen-7B using different β values in Eq. (2).
Acceleration is measured as the percentage reduction in
inference tokens

serve a significant increase in the activation4 of the249

target value vector. When we follow Eq. (2) to fur-250

ther enhance the strength of self-reflection features251

in the model representations (i.e., transitioning to252

SMore-Reflection as shown in Table 2), we similarly253

observe a further increase in their activation.254

This provides further support for the idea that255

the human-like reflection words appearing in the256

chain-of-thought processes of LRMs are not merely257

a result of memorizing training data. Instead, they258

are a reflection of the genuine activation of Self-259

Reflection Features.260

4.2 Modulating Self-Reflection Intensity via261

Linear Feature Intervention262

Building upon the Linear Reflection Features ex-263

tracted from LRMs in §3, in this part, we explore264

4Activation refers to the coefficient corresponding to each
value vector in Eq. (4).

their application in adjusting the intensity of the 265

model’s self-reflection ability. Specifically, we aim 266

to modulate their intensity within the model’s repre- 267

sentational space during inference for specific tasks, 268

thereby addressing the potential issues of insuffi- 269

cient reflection (Aggarwal and Welleck, 2025) or 270

"overthinking" (Cuadron et al., 2025; Zhang et al., 271

2025) that current LRMs may exhibit in practical 272

scenarios. 273

Specifically, we follow the Eq. (2) below, at- 274

tempting to control the extent of Self-reflection 275

ability in LRMs by intervening with Self-reflection 276

Features through adjusting the hyperparameter β 277

in the model’s hidden states: 278

h′(l)(s)← h(l)(s)− β ∗ r(l) (2) 279

Figure 2 shows the intervention effects on 280

GSM8K and MATH-500 for both DeepSeek-R1- 281

Distill-Llama-8B and DeepSeek-R1-Distill-Qwen- 282

7B. Starting from β = 0, increasing the value of 283

β leads to improved acceleration for the LRMs. 284

However, accuracy does not immediately degrade. 285

Once β reaches around 0.2, further acceleration 286

comes at the cost of a noticeable drop in accuracy. 287

Conversely, decreasing β—thereby increasing the 288

influence of Self-Reflection Features—slightly im- 289

proves accuracy at the expense of slower inference, 290

which aligns with our hypothesis. 291

5 Discussion and Conclusion 292

This work aimed to determine if reflective language 293

in Large Reasoning Models reflects genuine inter- 294

nal processes or learned patterns. By extracting 295

Self-Reflection Features from their representation 296

space, we found a causal link to reflective words 297

in their chain of thought. Crucially, manipulating 298

these features allowed us to modulate LRM self- 299

reflection intensity. These findings confirm that 300

LRMs’ reflective statements stem from discernible, 301

governable internal mechanisms, signifying true 302

reflective activation. 303
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Limitations304

In this study, while we have identified the pres-305

ence of Self-Reflection features within reasoning306

models, a comprehensive investigation into their307

origins was not conducted. Specifically, it remains308

to be clarified whether these features emerge pri-309

marily from the pre-training phase or are intro-310

duced during subsequent reinforcement learning311

post-training. Furthermore, the characteristics of312

the training data that facilitate the encoding of these313

Self-Reflection features into the model’s represen-314

tational space are yet to be identified. A deeper315

understanding of these aspects would provide a316

critical foundation for the future development of317

more robust and effective reasoning models. We318

plan to explore these questions in our future work.319

Additionally, owing to resource constraints, we320

were unable to extend our experimental research to321

larger-scale reasoning models, such as DeepSeek-322

R1.323
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Figure 3: Visualization of the hidden states of two rea-
soning models on the MATH-500 and MBPP dataset us-
ing 2-dimensional PCA. The hidden states of datapoints
in SCheck-point and STermination are positioned around the
boundary (grey dashed line) fitted via logistic regression.
The blue arrow approximately indicates the direction of
the Self-Reflection Features. To make the image presen-
tation clearer, we sampled 300 data points from each of
SCheck-point and STermination for presentation. Results on
other datasets are shown in §B of the Appendix.
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A Prompt used for Reasoning Responses782

Segmentation783

Table 2 presents the prompt we used to query GPT-784

4o to segment the model’s responses into Reason-785

ing Segments.786

B Additional PCA Visualizations on787

MATH-500 and MBPP788

Here, we present additional PCA results for the789

Self-Reflection Features on MATH-500 and MBPP790

in Figure 3.791

C Foundations for Logit Lens Analysis792

Here, we provide a brief introduction to the Logit793

Lens method and the background knowledge it in-794

volves.795

C.1 MLP in Transformers 796

In transformer-based language models, the MLP 797

is a crucial component for storing the model’s fac- 798

tual knowledge, and its sub-layers can be viewed 799

as key-value memories (Geva et al., 2021). To 800

be specific, the first layer5 of MLP sublayers can 801

be viewed as a matrix WK formed by key vectors 802

{k1,k2, . . . ,kn}, used to capture a set of patterns 803

in the input sequence, and ultimately outputting 804

the coefficient scores. The second layer can be 805

viewed as a matrix WV formed by value vectors 806

{v1,v2, . . . ,vn}, with each value vector contain- 807

ing the corresponding factual knowledge. 808

Formally, the output of the MLP in the trans- 809

former’s ℓ-th layer, given an input hidden state xℓ, 810

can be defined as: 811

Mℓ = f
(
W ℓ

K · γ(xℓ +Aℓ)
)
W ℓ

V = mℓW ℓ
V , (3) 812

where W ℓ
K ,W ℓ

V ∈ Rn×d. The function f and 813

γ represent a non-linearity6 and layer normaliza- 814

tion, respectively. In the transformer’s ℓ-th layer, 815

mℓ ∈ Rn denotes the coefficient scores, and Aℓ 816

represents the output of the attention component. 817

The hidden state dimension is d, while the inter- 818

mediate MLP has a dimension of n. Then, by de- 819

noting vℓ
j as the j-th column (which will be called 820

the value vector or parameter vector in the follow- 821

ing sections) of W ℓ
V and mℓ

j as the j-th element in 822

the coefficients produced by the first layer of the 823

MLP, we can view MLP’s output Mℓ as a linear 824

combination of the value vectors in W ℓ
V , with their 825

corresponding coefficients mℓ: 826

Mℓ =
∑n

j=1
mℓ

jv
ℓ
j , (4) 827

Each mℓ
j here also represents the activation value 828

of the value vector we mentioned in Table 1. Fi- 829

nally, the hidden states at the ℓ-th layer of the lan- 830

guage model can be defined as: 831

Xℓ+1 = Xℓ +Mℓ +Aℓ, (5) 832

where Xℓ, Mℓ and Aℓ represent the hidden states, 833

MLP’s output, and the attention component’s out- 834

put in the transformer’s ℓ-th layer, respectively. 835

5In most decoder-only models, such as GPT-2 (Radford
et al., 2019) and GPT-J (?), the MLP component consists
of two layers, whereas in LLaMA (Touvron et al., 2023), it
comprises three layers. However, we can still regard LLaMA’s
first two layers collectively as the key matrices, with their
output representing the coefficient scores.

6For brevity, the bias term is omitted.
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Prompt

• Analyze the model response and divide into reasoning segments. Return:

1. Labeled segments with independent solution attempts

2. Each segment must include:

– A new full solution pathway

– Alternative interpretations (if applicable)

– Verification/error-checking steps (if applicable)

Format Requirements:

– Use Segment N headers

– Mutual exclusivity between segments

– Avoid single-step fragmentation

Examples:

Problem: “Natalia sold clips to 48 of her friends in April, and then she
sold half as many clips in May. How many clips did Natalia sell altogether
in April and May?”

Model Response: “[Full model response here...]”

Segmentation:

1. Standard Calculation:

Segment 1: Direct arithmetic approach
- April: 48 clips (given)
- May: 48/2 = 24 clips
- Total: 48 + 24 = 72
- Verification: 40 + 20 + 8 + 4 = 72

2. Algebraic Reformulation:

Segment 2: Symbolic representation
- Let A = 48 (April sales)
- Define M = A/2 (May sales)
- Total T = A+M = 1.5A
- Compute 1.5× 48 = 72

3. Semantic Analysis:

Segment 3: Ambiguity resolution
- Challenge: "sold to friends" interpretation
- Reject per-friend vs. total sales hypotheses
- Confirm 48 = total clips (not friends count)

Current Problem: {Problem}

Current Model Response: {Response}

Segmentation:

Table 2: Prompt for segmenting mathematical reasoning processes.
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C.2 Logit Lens836

nostalgebraist (2020); Geva et al. (2021) proposed837

that the hidden states or module parameters of a838

transformer-based model can be directly decoded839

into the vocabulary space using the model’s pre-840

trained unembedding matrix, enabling an investiga-841

tion into the information they encode:842

Projection = Evℓ
j , (6)843

Here, E denotes the model’s pretrained unem-844

bedding matrix, and the result of the projection,845

which lies in R|V|, is a vector assigning a score to846

each token in the vocabulary V . The set of the top-847

k highest-scoring tokens in this projection, denoted848

by T ℓ
j,k, often reveals a clear pattern that corre-849

sponds to a specific knowledge being promoted by850

vℓ
j during inference (Geva et al., 2022b,a).851

D Implementation Details of the LRMs852

For the inference settings of all four Large Reason-853

ing Models, we use a temperature of 0.6, a top-p854

value of 0.95, and set the maximum generation855

length to 32,768 tokens, following the default set-856

tings.857

All the experiments in this work were conducted858

on four 80GB NVIDIA A800 GPUs.859
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