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Abstract

Reinforcement learning (RL) has become an effective approach for fine-tuning
large language models (LLMs), particularly to enhance their reasoning capabilities.
However, RL fine-tuning remains highly resource-intensive, and existing work
has largely overlooked the problem of data efficiency. In this paper, we propose
two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-
targeted online data selection and rollout replay. We introduce the notion of
adaptive difficulty to guide online data selection, prioritizing questions of mod-
erate difficulty that are more likely to yield informative learning signals. To
estimate adaptive difficulty efficiently, we develop an attention-based framework
that requires rollouts for only a small reference set of questions. The adaptive
difficulty of the remaining questions is then estimated based on their similarity
to this set. To further reduce rollout cost, we introduce a rollout replay mecha-
nism inspired by experience replay in traditional RL. This technique reuses recent
rollouts, lowering per-step computation while maintaining stable updates. Ex-
periments across 6 LLM-dataset combinations show that our method reduces
RL fine-tuning time by 23% to 62% while reaching the same level of perfor-
mance as the original GRPO algorithm. Our code repository is available at
https://github.com/ASTRAL-Group/data-efficient-1lm-rl/\

1 Introduction

Reinforcement learning (RL) has emerged as a promising and increasingly adopted paradigm for
fine-tuning large language models (LLMs) toward stronger reasoning capabilities [10, 30} [15} 53].
Despite a steady stream of algorithmic improvements [S1}, 28| |1} I50], relatively little attention has
been paid to improving the data efficiency of LLM RL fine-tuning. This gap is particularly concerning
given that RL fine-tuning for LLMs is notoriously computationally expensiv%

*Equal contribution. fCorrespondence to Yifan Sun <yifan50@illinois.edu> and Huan Zhang
<huan@huan-zhang. com>.

"For example, Luo et al. [30] report that training a relatively small 1.5B-parameter model on just 40K
samples required over 3,800 A100 GPU hours—equivalent to approximately $4,500 in compute cost—even
before scaling to larger models or longer training horizons.
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Figure 1: Overview of our framework combining Difficulty-targeted Online Data Selection and
Rollout Replay. At each training step, the online data selection module selects training questions
with adaptive difficulty near 0.5, requiring rollouts only on a small reference set (§4.1] §4.2). The
rollout replay module combines current rollouts with retrieved recent rollouts from a FIFO buffer,
and the current rollouts are stored into the buffer for future use (§[1;3'[).

In this paper, we present two simple yet effective techniques to improve the data efficiency for LLM
RL fine-tuning: Difficulty-targeted Online Data Selection and Rollout Replay. Our goal is to
reduce both (1) the number of training steps required to match the performance of the original GRPO
algorithm, and (2) the per-step computational cost.

Total RL fine-tuning time = Number of training steps x  Time per step

Reduced by Difficulty-targeted Online Data Selection Reduced by Rollout Replay

Difficulty-targeted Online Data Selection (DOTS) In RL, tasks that are too easy or too difficult
often provide limited learning signal [8}[17]]. Moreover, since the policy evolves during training, it is
crucial to adopt an online and adaptive mechanism for selecting informative data [34,37]]. To this
end, we introduce the notion of adaptive difficulty, which measures how likely the current policy
is to fail on a given question. At each training step, we prioritize questions of moderate adaptive
difficulty, as these are most likely to yield meaningful learning signals.

However, computing adaptive difficulty exactly requires executing multiple rollouts per question,
which is computationally expensive. To address this, we propose an attention-based adaptive
difficulty prediction framework that efficiently estimates difficulty without generating full rollouts
for all questions. At each training step, we generate rollouts only for a small reference set and
compute their ground-truth adaptive difficulty. The difficulty of the remaining questions is estimated
by comparing them to the reference set using similarity-based attention.

Rollout Replay (RR) To further reduce the cost of rollout generation, we introduce a simple rollout
replay mechanism, motivated by experience replay in standard RL [7]]. At each training step, we
generate fewer new rollouts and reuse past rollouts from recent steps. A bounded First-In-First-Out
(FIFO) buffer is maintained to store recent rollouts, from which we retrieve samples to complete
each training batch. Although this makes GRPO slightly off-policy, our modified GRPO loss ensures
stability, and thus RR effectively reduces per-step training time without degrading model performance.

Our key contributions are summarized as follows:

* We propose a novel attention-based adaptive difficulty prediction framework that efficiently esti-
mates how likely a question will be answered incorrectly by the current policy, without requiring full
rollouts for all questions.

* Guided by this difficulty prediction framework, we introduce an adaptive difficulty-targeted online
data selection mechanism (DOTS) for RL fine-tuning, supported by theoretical justifications. DOTS
prioritizes questions of moderate difficulty relative to the current policy, accelerating convergence.

* We develop a rollout replay (RR) mechanism that reuses recently generated rollouts. With a modified
GRPO training loss, RR remains stable and effectively reduces per-step rollout cost.

» Extensive experiments on six LLM—dataset combinations show that our method reduces RL fine-
tuning time by 23% to 62% while achieving the same performance as the original GRPO algorithm.



2 Related Work

Online Data Selection Data selection seeks to accelerate training by focusing computation on the
most informative examples [2]. A key limitation of static data selection methods is their assumption
that the importance of samples remains fixed throughout training. Online methods instead periodically
reselect data during training to reflect the model’s evolving state [46} 152, 129| (16} 20]]. Such adaptability
is particularly important in RL, where non-stationary policy updates and environment dynamics
necessitate continuous re-evaluation of data utility 34} 47, [36].

Experience Replay On-policy algorithms such as Proximal Policy Optimization (PPO) [41] and
Group Relative Policy Optimization (GRPO) [42] have become standard choices for online RL fine-
tuning in LLM reasoning tasks [10]]. However, their reliance on freshly collected rollouts for each
policy update leads to substantial data inefficiency and computational overhead [27} 4]]. Experience
replay mitigates this by maintaining a fixed-size buffer of recent transitions collected by the policy.
Instead of discarding data after a single use, the buffer enables multiple passes over past rollouts,
thereby improving sample efficiency and stabilizing training [7, 154} 39].

3 Problem Setup

GRPO We focus on the GRPO algorithm [42] with verifiable rewards. For each question ¢, a group
of GG individual responses {oi}iG:1 are sampled from the old policy 7q4. The advantage of the i-th
response is calculated by normalizing the group-level rewards {r,;}iczl, where r; € {0, 1}:

Ay =1 — mean({m}iGzl)~ M

Compared to the original formulation proposed by [42], we remove the standard deviation normaliza-
tion, as it has been shown to introduce bias into the optimization process [28]. Based on this, the
GRPO objective can be formulated as:

Jereo(0) = Eqp, (0,18 ~moy, (1)
o]

G
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represents the probability ratio between the current and old policies. A KL penalty Dy (7 || mrer) is
applied with respect to a fixed reference policy s, weighted by a scalar coefficient (.

The first term represents a clipped policy update, where the ratio term r; ;(0) =

Online Data Selection LetD = {qi}ﬁil denote the full dataset of IV questions. In standard GRPO,
each policy update uses a batch of questions uniformly sampled from D. However, not all questions
contribute equally to learning progress. In particular, questions that are either too easy or too hard
relative to the current policy’s capability may yield weak gradient signals, slowing convergence.

To address this, we consider an online data selection setting [52]]. At each step ¢, a batch B; C D
of fixed size B is selected based on the current policy 7. Unlike static data pruning, this selection
is repeated throughout training and adapts to the evolving policy. While more frequent selection
allows better adaptation, it also increases computational overhead. In practice, when policy updates
are relatively stable, it is often more efficient to perform data selection every u (e.g., 2,4,8...) steps,
selecting a sequence of i batches to be used in the subsequent updates [29, 44].

4 Method

Our proposed method is two-fold: (1) Difficulty-targeted Online Data Selection, which reduces the
number of training steps needed to achieve the same performance as the original GRPO algorithm
by prioritizing questions of moderate difficulty, and (2) Rollout Replay, which reduces the per-step
computational cost by reusing recent rollouts. Full pseudocode is provided in Algorithm|[T}

We propose using adaptive difficulty to guide online data selection. The adaptive difficulty of a
question is defined with respect to the current policy and reflects how challenging the question is for
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Figure 2: Illustration of our attention-based adaptive difficulty prediction framework. For
each unlabeled question, we compute its embedding and attend to reference questions to obtain
similarity scores. The predicted difficulty of the unlabeled question is obtained by computing an
attention-weighted average, where similarities to reference questions serve as attention scores over
their associated difficulties. In this example, the unlabeled question involves inverse trigonometric
functions. The model assigns high attention to a reference question that tests a closely related concept
and has a difficulty of 1.0. As a result, the predicted difficulty is also close to 1.0. All difficulty values
shown correspond to adaptive difficulty scores computed at the same step.

the policy at the current stage of training. Formally, at step ¢, for each question ¢, we sample a group

of G responses {ogt) }$& | from the current policy and obtain their corresponding rewards {rgt)}le.
The adaptive difficulty at step ¢ is then computed as:

G
1
di = = (1~ ry. )
=1

This value represents the average failure rate under the current policy, with higher values indicating
greater difficulty. Unlike static difficulty measures, adaptive difficulty evolves with the policy and
provides a dynamic signal for selecting informative training samples.

Challenge: How to estimate adaptive difficulty efficiently? A key challenge in using adaptive
difficulty is that computing it requires executing multiple rollouts, which is one of the most expensive
components in LLM RL ﬁne-tunin This raises the question: can we estimate adaptive difficulty
efficiently without generating rollouts for all questions? To address this, we propose a lightweight
attention-based adaptive difficulty prediction framework that generates rollouts for only a small
reference subset of questions. The adaptive difficulty of the remaining questions is then estimated by
comparing them to reference questions with known difficulty values using similarity-based attention,
thereby avoiding full rollouts. See Fig.[2|for an illustration.

4.1 Attention-based Adaptive Difficulty Prediction Framework

At each step ¢, given the full training dataset D, we first sample a small subset of K questions (e.g.,
128 or 256) uniformly at random to form the reference set D..¢. For each question in the reference set,

we execute rollouts and compute its adaptive difficulty at step ¢, denoted by {dl(.t) 1K | using Eq.

For the remaining N — K questions, we aim to estimate their adaptive difficulty without performing
rollouts. To this end, we employ a lightweight embedding model Ej to encode questions and capture
similarity. We first compute the embeddings {z; = Fy(g;)}X, for all reference questions. Denote
h as the embedding dimension. Then, for each unlabeled question ¢, we compute its embedding
zq = Fyg(q) and use similarity-weighted averaging to estimate its adaptive difficulty:

eXp(Z;rZ'L/\/E) d(t) - i azd(t)
K T 9 q (A
Zj:l exp(z, Z]/\/E)

a; =
i=1

Calibration To improve the prediction performance, we apply Platt scaling [35] that utilizes
the information of mean and standard deviation of the reference set difficulties. Specifically, let

2For instance, generating rollouts for a batch of 512 samples with maximum sequence length 3072 takes
109.83 seconds on 8 L40S GPUs, nearly half of the total step time.



p® =LK d(t and ¢ = \/% Zfil(dz(-t) — u®)2 denote the mean and standard deviation
of the reference difficulties at step ¢t. These two statistics are passed through a lightweight MLP

to produce scale and bias parameters (w®, b)) = MLP([u®, o(Y)]). We then apply a calibrated
transformation to the predicted difficulty:

ity = (w® - (logdl? ~log(1 —di?)) + ).

where o(-) denotes the sigmoid function. The MLP is optimized using binary cross-entropy loss. Full
training details can be found in §5.1]and Appendix [C.T}

4.2 Adaptive Difficulty-targeted Online Data Selection

At each training step, with the adaptive difficulty prediction framework, we now efficiently obtain the
adaptive difficulty for all questions in the training set. Inspired by prior work on goal curriculum in
RL [8}48]], we prioritize questions whose predicted difficulty is closest to 0.5.

This selection strategy selects questions that are neither too easy nor too hard for the current policy,
as these are intuitively the most informative for learning. Moreover, in GRPO, when all sampled
rewards for a question are either O or 1, the group-normalized advantage becomes identically zero,
resulting in no gradient signal. By focusing on questions with predicted difficulty near 0.5, we avoid
such degenerate cases and ensure each update contributes meaningfully to policy gradients, thereby
accelerating optimization convergence. We formalize this intuition in Theorem [T} which shows that
the expected gradient magnitude is maximized when the reward success rate is 0.5 (i.e., the adaptive
difficulty is also 0.5). A complete proof is provided in Appendix B}

Theorem 1 (Maximal Gradient Signal at 50% Success Rate). Consider a single question q, where G
responses {0;}$_, are sampled independently from the current policy 7g(- | q). Each response re-
ceives a binary reward r; € {0,1}, sampled i.i.d. from a Bernoulll( ) distribution, where p represents
the reward success rate. Define the group-relative advantage A; as in Eq.|l I We consider the un-
clipped policy gradient estimator for this question without KL penalty g = Y. | A;Vglogm(o; | q).
Under mild assumptions on the reward and the likelihood gradients Vg log m(0; | q) (detailed in
Appendix|B)), the expected squared norm of the gradient satisfies:

Ellgll’] < p(1 —p)- (1 —1/G),

and is maximized when p = 0.5.

Discussion: Our dynamic selection mechanism implicitly promotes diversity. As questions near
the target difficulty are repeatedly selected and trained on, their predicted difficulty gradually deviates
from 0.5. They are then less likely to be sampled again, allowing other under-explored questions
to enter the selection pool. This dynamic prevents overfitting to a small subset of questions and
encourages broader coverage over time.

4.3 Rollout Replay

To further improve data efficiency, we aim to reduce the time cost of each training step. Since
rollout generation is one of the most expensive components, we adopt a rollout replay mechanism,
inspired by experience replay in traditional RL. Specifically, at each training step, we generate new
rollouts for only a fraction 6 B of the batch, where ¢ € (0, 1], and fill the remaining (1 — §) B samples
using recent rollouts sampled from a FIFO replay buffer Diiqy With capacity C.

However, naively reusing past rollouts introduces bias into the policy gradient estimation, as the
data is no longer drawn from the current policy. This mismatch can lead to unstable training and
performance degradation [31]]. Inspired by off-policy variants of PPO [38]], we propose a modified
GRPO loss using importance sampling with respect to the behavior policy 7, ... under which the
rollouts stored in the buffer were originally collected:

Jarrorr () = EQND {0i {1 ~Topepayior (1)

Iel Z 0] & Z (min (7;,¢(0) As, clip(7i+(0),1 —€,1+€)A;) — BDxi(To || Trer))



Algorithm 1 GRPO with DOTS and RR

Require: Initial policy model 79, reward model r, training dataset D, target difficulty o, batch size
B, total steps T', reference set size K, sampling temperature 7, adaptive difficulty prediction
framework DIFFPRED (, fresh rollout fraction § € (0, 1], buffer capacity C

1: Initialize replay buffer R < 0

Set Ty < T

forstep=1,...,7T do
// Adaptive difficulty prediction

4 Sample reference set Dyer C D uniformly at random, where |Dief| = K
5: for each ¢ € Dy do
6: Generate G outputs {0f }& ; ~ 7,.,(- | 9)
7: Compute rewards r{ = r,(o}) for i € [G] and difficulty score d, = & Zil(l —r)
8: end for .
9: Predict adaptive difficulty d,; = DIFFPRED(Dyet, {dg | ¢ € Dret}, ¢') forall ¢ € D\ Dyt
10: Sample rollout batch By 0f size § B from D according to:
exp (—|ch - a|/7')
P(q) = -
S yepexp (~ldy - al/r)
11: for each q € Bigjjouc do
12: Generate G outputs {07} | ~ 7y, (- | q)
13: Compute rewards r{ = r,(of) for i € [G] and group average reward 7, = & Zil rd
14: Obtain advantages A? and policy probabilities mg,, (0! | ¢) for i € [G]

15: end for
// Rollout Replay and update
16: Sample (1 — ¢) B samples from buffer R to complete batch B if |R| > (1 — )B
17: Update policy 7y using modified GRPO objective Jsrpo-rr On batch B
// Store informative rollouts in buffer
18: Add (Q7 {(Oga Agv T Oo1a (03 ‘ Q)) zG:I) to R for qc Brolloutv Fq ¢ {07 1}
19: Remove the oldest samples from R until |R| < C
20: Set mg,,, < o
21: end for

where 7; ,(0) = 70 (0i,¢]9,0i.<t)
it T Opehavior (0,¢ 9,07, <t) *

demonstrate that rollout replay improves sample efficiency while maintaining training stability. For
each newly generated rollout, if the group average reward is neither O nor 1 (i.e., the sample yields
a non-zero gradient signal), we store the question, its sampled rollouts, computed advantages, and
policy probabilities into the buffer. When the buffer is full, the oldest samples are discarded.

By appropriately controlling the buffer size C', we empirically

S Experiments

5.1 Experimental Setup

LLMs and RL training datasets We perform GRPO training on three model scales: Qwen2.5-
Math-1.5B, Qwen2.5-3B, and Qwen2.5-Math-7B [49]. We adopt four open-source datasets for
training: MATH [13]], DeepScaleR-40K [30], Open-Reasoner-Zero-57K (ORZ) [15]] and DeepMath-
103K [12]. For MATH, we include all level 3-5 questions. For the other three datasets, we sample
8K to 10K subsets to construct the training pools. These datasets span diverse mathematical domains
and difficulty levels. In total, we experiment with six LLM-training dataset combinations to assess
the effectiveness of our framework.

Implementation details for adaptive difficulty prediction framework In practice, we observe
that off-the-shelf pretrained embedding models struggle to capture fine-grained similarity between
math questions. To address this, we freeze the Qwen2.5-Math-1.5B-Instruct backbone [49] and train
a 3-layer MLP adapter with a calibration head, using binary cross-entropy loss. We fix the reference
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Figure 3: Average accuracy curves of our method and original GRPO under various
LLM-dataset combinations. The curves show average performance aggregated over four bench-
marks with exponential smoothing for visualization. The error bars represent 95% confidence
intervals across 3 independent runs. Although both methods are trained for the same number of steps
(60), our curve is shorter in duration because RR reduces the wall-clock time per step. Our method
consistently outperforms the original GRPO throughout training and reduces the time required to
match the original GRPO’s final accuracy after 60 training steps by an average of 40.7%.

set size to 256. Additional implementation details are provided in Appendix [C.T]and ablation results
on key components are presented in Appendix [E.T]

Implementation details for RL training We employ the verl framework [43] to perform GRPO
training. We use a batch size of 512 and a mini-batch size of 64 in verl’s configuration, resulting in
8 gradient steps per training step. Across all experiments, we train for 60 training steps, yielding a
total of 480 gradient steps. For each prompt, we generate 8 rollouts. The maximum rollout length is
set to 3072 tokens for the Qwen2.5-Math series models (due to max position embedding limits) and
4096 tokens for Qwen2.5-3B. For reward computation, we use a simple rule-based function based
solely on answer correctness, without incorporating any format-related signals. The 1.5B and 3B
models are trained on 8 L40S GPUs, while the 7B model is trained on 8 A100 GPUs. For DOTS, data
selection is performed every 2 steps. For RR, we choose the fresh rollout ratio § as 0.5 and buffer
capacity C' € {256,512}. All RL training hyperparameters are detailed in Appendix

Evaluation We adopt the official Qwen2.5-Math evaluation implementation [49]], setting the
maximum generation length to 3072 tokens for Qwen2.5-Math series models and 4096 tokens for
Qwen2.5-3B. Following [[10, 30, 28]], we evaluate RL model performance on standard mathematical
reasoning benchmarks, including GSMS8K [3]], MATHS00 [25]], Minerva Math [22] and Olympiad-
Bench [11]]. Accuracy is measured using a sampling temperature of 0.6, top-p of 0.95, and the
standard prompt template, consistent with [[10]. We exclude benchmarks with very few questions,
such as AIME 24 (30 questions) and AMC 23 (40 questions), as their small size results in high
evaluation variance and unreliable performance comparisons on smaller models [[14]]. We report the
final performance as the average accuracy across the four benchmarks to mitigate benchmark-specific
variance. As the baseline, we use the original GRPO algorithm with uniform batch selection.

5.2 Main Results

The total training costs can be decomposed into two components: the number of steps required to
reach a target performance and the average wall-clock time per step. Each training step involves



Table 1: Percentage of training steps saved, per-step time saved, and total training time saved.
Results are averaged over four mathematical reasoning benchmarks and reported relative to the
original GRPO baseline. All timing measurements are conducted on the same computational devices.

Model Dataset Steps Saved (%) Time Saved/Step (%) Total Time Saved (%)
MATH 16.67 11.71 26.25
Qwen2.5-Math-1.5B  DeepScaleR 43.33 11.69 49.85
ORZ 13.33 11.66 23.30
DeepScaleR 26.67 11.52 35.10
Qwen2.5-3B DeepMath 56.67 11.35 61.65
Qwen2.5-Math-7B DeepScaleR 40.00 13.39 48.03

processing a fixed-size batch, consisting primarily of rollout generation and policy update. To ensure
a fair comparison, each set of experiments is run on the same type and number of GPU devices.

Our method reaches the same performance as the original GRPO with fewer steps. Tab.
reports the number of training steps required by DOTS+RR to match the final performance of the
original GRPO at 60 steps. Across all LLM—dataset combinations, our method consistently reaches
the same performance with substantially fewer steps, achieving reductions ranging from 13.33% to
56.67%. These results demonstrate that DOTS significantly accelerates convergence by prioritizing
informative training samples.

Our method reduces per-step cost. In our experiments, rollout generation accounts for approxi-
mately 47%, 46%, and 54% of the total per-step time for the 1.5B, 3B, and 7B models, respectively,
with the remaining time primarily spent on policy updateﬂ By reducing the number of fresh rollouts
per step, our RR strategy leads to a 11%—13% reduction in per-step training time, as shown in Tab. [T}

Our method significantly reduces total training cost. As shown in Fig. [3] DOTS+RR ( )
consistently outperforms the original GRPO (blue) throughout training, maintaining higher accuracy
at almost every step. Across all six settings, DOTS+RR reduces total training time by an average of
40.7%, with the largest improvement observed on Qwen2.5-3B trained on DeepMath (61.65%).

5.3 Effectiveness of Adaptive Difficulty Prediction Framework

To better understand why our method acceler- Table 2: Average Pearson correlation (p) be-
ates training effectively, we examine whether tween predicted and ground-truth adaptive dif-
the attention-based prediction framework can ficulties. Reported as mean =+ standard deviation
accurately estimate adaptive difficulty and con- over 60 training steps.

sistently prioritize informative training signals

throughout learning. Model Dataset p
R . . . MATH  0.7843 + 0.0243
The adaptive difficulty prediction aligns with Qwen2.5-Math-1.5B  DeepScaleR ~ 0.7244 + 0.0318
evolving training dynamics. To assess the fit- ORZ 0.7153 £ 0.0257
ness of online predictions, we collect ground- Qwen2.5-3B DeepScaleR  0.7789 % 0.0191

DeepMath ~ 0.7029 + 0.0082

truth adaptive difficulty labels from training
Qwen2.5-Math-7B DeepScaleR  0.7076 = 0.0195

batches and compute the Pearson correlation
between these labels and the predicted difficulty scores. As shown in Tab. 2] our framework con-
sistently achieves strong Pearson correlation (p > 0.7) across settings, demonstrating its ability to
effectively track policy behavior throughout training. Additional qualitative examples are provided in
Appendix [C.2]to offer further insight into our attention-based prediction mechanism.

Our prediction framework effectively filters out uninformative samples. As discussed in
questions with adaptive difficulty values of 0 or 1 correspond to cases where all rollouts receive
identical reward. In such cases, the group-normalized advantage becomes zero, yielding no gradient
signal. We define effective questions as those with adaptive difficulty strictly between 0 and 1. As
shown in Fig.[4] on average across all LLM-dataset combinations, DOTS selects 25.4% more effective

3In practice, for longer generation lengths, such as 8K and 16K, rollout time increases substantially, making
it the dominant computational bottleneck. In such settings, our rollout replay mechanism can yield even greater
wall-clock savings.
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Figure 4: Ratio of effective questions (i.e., questions with adaptive difficulties strictly between 0
and 1) during training across various LLM-training dataset combinations. Annotated percent-
ages indicate the per-step increase in effective question ratio achieved by DOTS compared to original
GRPO, averaged across the training process. Our adaptive prediction framework consistently selects
more informative samples throughout training.

questions than the original GRPO, demonstrating a clear advantage in selecting more informative
questions throughout training, thereby accelerating convergence.

Our prediction framework incurs minimal computational overhead and scales efficiently to
large datasets. By caching question embeddings and using a lightweight encoder, our prediction
framework remains highly efficient—processing 10K samples in just 1.71 seconds at deployment.

5.4 Analysis and Discussion

We further investigate three important questions: (Q1) What are the individual contributions of DOTS
and RR to training efficiency? (Q2) How does DOTS compare to an online data selection method based
on external difficulty labels? (Q3) Do DOTS and RR remain effective in non-mathematical domains?

DOTS accelerates convergence, while RR reduces per-step cost. As shown in Fig. [5(a), training
guided by DOTS alone yields a steeper learning curve compared to original GRPO. Fig.[5(b) shows that
incorporating RR further reduces training time by approximately 20% without sacrificing performance.
These results show that DOTS and RR improve RL training efficiency in complementary ways.

DOTS outperforms online data selection method based on external difficulty labels. We com-
pare DOTS with an online data selection baseline that relies on external difficulty annotations (e.g.,
annotated by GPT-40-mini), where training questions are selected at different stages based on static
difficulty labels, gradually shifting from easier to harder questions over time.

Specifically, we use the DeepScaleR dataset and label each question with GPT-40-mini, following the
difficulty annotation prompt introduced in [30]. Each question is annotated 32 times, and the average
score is used as its final difficulty. We then follow a staged curriculum: in the first third of training
steps, batches are sampled from the easiest third of the dataset; in the middle third, from the medium-
difficulty third; and in the final third, from the hardest third. To ensure a fair comparison of online
data selection strategies, we compare this baseline with DOTS (without RR). As shown in Fig. [6[a), our
DOTS method consistently outperforms this baseline on both Qwen2.5-Math-1.5B and Qwen2.5-3B.
Moreover, such methods require expensive external labeling and offer limited adaptability, as they
typically follow hand-crafted curricula that demand extensive manual design and tuning. In contrast,
by leveraging adaptive difficulty, DOTS automatically adjusts to the model’s learning progress without
relying on external supervision, enabling more scalable and efficient training.

DOTS and RR improve RL data efficiency beyond mathematics. To further examine the generality
of our approach beyond the math domain, we apply the full training and evaluation pipeline to the
science domain using the curated SCP-25K dataset [26], which mostly contains advanced physics,
chemistry, and biology questions. We adopt the Qwen2.5-3B model and train a new adaptive difficulty
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Figure 5: Average accuracy curves of (a) DOTS vs. Original GRPO, and (b) DOTS+RR vs. DOTS
on the Qwen2.5-Math-1.5B model. The curves show average performance aggregated over four
benchmarks with exponential smoothing. Note that the x-axis is the number of steps (rather than
time). (a) DOTS consistently outperforms the original GRPO and leads to faster convergence. (b)
Incorporating RR reduces training time by 20% while preserving the performance of DOTS.
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Figure 6: Comparison of DOTS with external difficulty-based curriculum baseline (left) and
generalization to non-math domain (right).

predictor, while keeping all other RL settings unchanged. We evaluate performance on the science
subsets of MMLU, including questions in the fields of physics, chemistry, and biology. As reported in

Fig. [f[b), our method continues to significantly improve RL data efficiency in this non-math domain,
demonstrating its broader applicability.

6 Conclusion

In this paper, we propose two techniques to improve the data efficiency of LLM RL fine-tuning:
Difficulty-targeted Online Data Selection and Rollout Replay. We hope these effective techniques
will encourage future work to explore data-centric approaches to improving LLM RL fine-tuning.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
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(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.
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a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).
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closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We release our code repository in Appendix A and use only publicly-available datasets.
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¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
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6. Experimental setting/details

Question: Does the paper specity all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
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* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: The main results in Section [5.2]are accompanied by error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Section[5.1]and Section[5.2]report the GPU type and execution time.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.
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10.

11.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed the Code and found no conflicts.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

18


https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: All third party models and datasets are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: We do not release new datasets or models.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

¢ The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are used only for writing and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Discussions

A.1 Limitations and Future Work

Our adaptive difficulty prediction framework currently relies on randomly sampling a reference set of K
questions at each selection step. While effective, the quality of the reference set can influence prediction
performance. In principle, one could improve prediction performance by selecting a more diverse reference set
that better covers the training set. Building on this idea, a natural extension is to fix a shared set of K reference
questions (with sufficient coverage) across training, re-evaluating their adaptive difficulty at each selection step.

Moreover, while we demonstrate the effectiveness of experience replay in the GRPO setting, our current strategy
is relatively straightforward: we randomly replay rollouts associated with questions whose average reward across
all rollouts is neither 0 nor 1. A promising direction for further improving efficiency is to incorporate more
principled replay strategies, such as those inspired prioritized experience replay [40, 54].

Another potential extension of our method lies in the construction of input embeddings for difficulty prediction.
Specifically, instead of relying solely on the question text, one could incorporate reference solutions to enrich
the representation. Preliminary experiments suggest that including reference solutions can slightly improve the
accuracy of adaptive difficulty prediction. However, this approach may have limited applicability in practice, as
reference solutions are not available for all datasets (e.g., DeepScaler and ORZ).

Finally, we note that generating rollouts for the reference set can introduce nontrivial computational overhead,
especially when the reference size is large. To mitigate this, we reuse rollouts from reference questions whose
predicted difficulty is near 0.5, effectively incorporating them into training. This strategy reduces rollout
generation cost by 4—12% per step while maintaining final performance.

A.2 Extended Related Work

RL fine-tuning for LLMs (with verifiable rewards) has recently attracted significant attention, driven in part by
the success of DeepSeek-R1 [10]. Compared to the original GRPO algorithm [42], recent work has proposed
several algorithmic improvements: DAPO [51] introduces techniques such as clip-higher, dynamic sampling,
token-level policy gradient loss, and overlong reward shaping, while Dr. GRPO [28] removes the length and
standard deviation normalization terms to improve stability. Beyond these algorithmic enhancements, [45}|33]]
provide theoretical insights into GRPO, while [53} [50]] conduct large-scale empirical studies across models,
identifying key design choices that enable effective RL fine-tuning.

In contrast, relatively little attention has been paid to data-centric approaches, despite their demonstrated potential
in other areas of LLM training [18L|19]16]]. LIMR [24] explores a static data selection strategy for RL fine-tuning
by prioritizing samples based on their alignment with the policy’s learning trajectory. However, it requires a full
training run over the entire dataset beforehand, limiting its practicality. Our online data selection method DOTS
is more efficient and applicable in realistic settings. In addition, prior work has not explored the use of rollout
replay in LLM RL fine-tuning, which we show can further reduce training costs.

B Proofs

Proof of Theorem 1. We restate Theorem 1 and provide a complete proof below.

Theorem 1 (Maximal Gradient Signal at 50% Success Rate). Consider a single question q, where G responses
{oi}iGzl are sampled independently from the current policy wo(- | q). Each response receives a binary reward
r; € {0,1}, sampled i.i.d. from a Bernoulli(p) distribution, where p represents the reward success rate. Define
the group-relative advantage A; as in Eq. 1. We consider the unclipped policy gradient estimator for this

question without KL penalty:
G

g= Z AZVQ 10g7T9(0i ‘ q)

i=1
Under mild assumptions on the reward and the likelihood gradients Vg log wg(0; | q), the expected squared
norm of the gradient satisfies:

E[llg)*] o< p(1 = p) - (1 = 1/G),
and is maximized when p = 0.5.

Proof. Letr; € {0, 1} be the binary reward for response o;, sampled i.i.d. from a Bernoulli(p) distribution.
Define the group-relative advantage as:
G
A 1
Ai =T — a Z Tj.
j=1
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We aim to analyze the expected squared norm of the gradient estimator
a
g= ZAZ'VQ log mg(0s | q).
=1

Assume that the gradients Vg log mg(0; | ¢) have bounded second moment:

E[||Ve logme(oi | ¢)]|°] < C < 0.

We compute the full second moment of the gradient estimator, where the expectation is taken with respect to 7g:

BllglPl = > & [4:;] - E [Valogma(oi | a) Valogma(o; | q)]

i,j=1

Ty

G
+ Z Cov (ALAJ, Vo logmg(oi | q) " Vo logma(o; | q))

i,j=1

T2

We intrcﬁiuce a weak-dependence assumption that the correction term 7% is negligible compared to the leading
term 77|

15

1.
T <

Therefore, it suffices to focus our analysis on the leading term 7.

By assumption, the log-likelihood gradients are zero-mean, independent, and identically distributed across <:

vV, 1=},

E[Vglogme(oi | q) " Velogme(o; | q)] = {o i

So,

Elllgl*] =V - ) E[A].

i=1

We now compute E[A?]. Let 7 := = E;’Gﬂ r;, then:
E[A?] = E[(r; — 7)?] = Var(r; — 7) = Var(r;) 4+ Var(7) — 2 Cov(r;, 7).
Since r; ~ Bernoulli(p) and r; are i.i.d.,
1-— 1-—
Var(r;) = p(1 —p), Var(F) = rl—p) p), Cov(ri,7) = rl—p) p).

Substitute in:

Therefore,
E[lg|*]=V -G -p(1—p)[1-=
lgll*l=V-G-p( p)< G>,

which is maximized when p = 0.5.

O

T>
T
Specifically, we randomly sample 512 questions for each dataset, generate 8 rollouts per question, and evaluate
the ratio. The results (mean + standard deviation) are: Qwen2.5-Math-1.5B + MATH: 0.081 4+ 0.0065, and
Qwen2.5-3B + DeepMath: 0.081 4 0.0051. These consistently low ratios empirically validate the weak-
dependence assumption.

*To support this assumption empirically, we compute the ratio on two LL.M-dataset combinations.
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Remark: Extension to Multi-component Rewards. Theorem|[I|focuses on binary rewards for simplicity,
following standard practice in recent RLVR literature. Its core derivation—computing the second central moment

of group-normalized rewards E[A?]—extends naturally to more complex reward formulations.

For example, consider a reward composed of two independent components: a correctness term ¢; ~ Bern(«)
and a format term f; ~ Bern(3), where the total reward is r; = ¢; + f;. Then,

- 1
BLAH) = (a1 - a)+ 80— ) (1- 5 ).
which is maximized when both @ = 0.5 and 5 = 0.5. This demonstrates that our insight applies naturally to
multi-component rewards and highlights the generality of the result.

C Details of Adaptive Difficulty Prediction Framework

C.1 Design and Implementation Details

The core of our adaptive difficulty prediction framework lies in obtaining proper embeddings to enable attention-
based weighted prediction, as described in Section[d.1] To achieve this efficiently, we freeze the Qwen2.5-Math-
1.5B-Instruct model as the backbone and augment it with a lightweight adapter and a calibration head.

The adapter is a GELU-activated MLP with three hidden layers, each containing 896 units and a dropout rate of
0.1. A LayerNorm is applied to the projection output to stabilize training. The calibration head is a two-layer
MLP that takes the mean and standard deviation of reference set difficulties as input. The first output passes
through a Softplus activation to yield the scale parameter w®, while the second is transformed by a Tanh
activation to produce a bounded bias term b,

We collect training data from a set of LLMs that are disjoint from our policy models. These include Qwen2.5-
Instruct and Qwen2.5-Math-Instruct series [49]], Eurus-2-7B-PRIME [5]], Mathstral-7B-v0. lﬂ DeepSeek-R1-
Distill-Qwen-1.5B [10], DeepScaleR-1.5B-Preview [30], and Qwen2.5-7B-SimpleRL-Zoo [53]]. For each model,
we sample query questions and reference questions from math datasets and compute their adaptive difficulty as
supervision labels. Specifically, each training instance consists of a query question g, a reference set with known
difficulty scores { (g, d;)}<,, and a ground-truth difficulty label d,. Repeating this procedure across models
yields the training dataset Dpred-train-

We train the adapter and calibration head using the standard binary cross-entropy loss:

1 A .
Locp = — 3 [dq log dg.cal + (1 — dy) log(1 — dq’cal)} ,

|Dpred-train ‘ K
(a,{(qi,d; >}i:1 ydq) erred—lrain

where ciq,cal is the calibrated predicted difficulty for the query question.

C.2 Qualitative Examples

Tab. [3] presents a qualitative example from the DeepScaler dataset using Qwen2.5-3B as the policy model,
showing one unlabeled question along with the reference questions receiving the highest and lowest attention
scores. The example demonstrates that our difficulty prediction framework assigns higher attention to reference
questions that share key mathematical topics and structures (e.g., rthombus, incircle), while down-weighting
unrelated questions.

D Implementation Details

D.1 Training Datasets and Models

Our experiments involve three model sizes: Qwen2.5-Math-1.5B, Qwen2.5-3B, and Qwen2.5-Math-7B [49]].
We adopt four open-source mathematical reasoning datasets for RL fine-tuning:

e MATH [13]: This dataset contains 12,500 competition-level problems from sources such as AMC and
AIME, spanning seven mathematical subjects and five difficulty levels. Following [24}53], we merge
the train and test splits and retain only Level 3—-5 questions. These are guaranteed to have no overlap
with the MATHS00 benchmark to prevent data contamination.

* DeepScaleR-40K [30]: A collection of approximately 40,000 curated mathematical problems from
AMC (pre-2023), AIME (1984-2023), Omni-MATH [9], and Still [32]. Deduplication is performed

https://huggingface.co/mistralai/Mathstral-7B-v0.1
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Table 3: Qualitative example illustrating the similarity-based attention mechanism in adaptive
difficulty prediction. The table shows one unlabeled question along with its top- and bottom-ranked
reference questions by attention score. High-attention references (red) typically share similar concepts
and difficulty with the target question (e.g., thombus and incircle geometry), while low-attention
references (blue) diverge in topic and are substantially easier.

Data Source: DeepScaleR
Unlabeled Question [ground truth adaptive difficulty = 1.000, predicted difficulty = 0.907]

In the rhombus ABCD, point Q divides side BC' in the ratio 1 : 3 starting from vertex B, and point E is the
midpoint of side AB. Tt is known that the median C'F of triangle CEQ is equal to 2v/2, and EQ = /2. Find
the radius of the circle inscribed in rhombus ABCD.

# Attention Score  Adaptive Difficulty Reference Question

1 0.487 1.000 Rhombus ABC'D has ZBAD < 90°. There is a point P
on the incircle of the rhombus such that the distances from
P to the lines DA, AB, and BC are 9, 5, and 16,
respectively. Find the perimeter of ABCD.

2 0.093 1.000 Circle w; with radius 3 is inscribed in a strip S having
border lines a and b. Circle wo within S with radius 2 is
tangent externally to circle wy and is also tangent to line a.
Circle w3 within S is tangent externally to both circles w
and wo, and is also tangent to line b. Compute the radius of
circle ws.

255 0.000 0.125 A package of milk with a volume of 1 liter cost 60 rubles.
Recently, for the purpose of economy, the manufacturer
reduced the package volume to 0.9 liters and increased its
price to 81 rubles. By what percentage did the
manufacturer’s revenue increase?

256 0.000 0.125 Given tan (o — 5 ) = 2, find the value of sin (2oc — %).

using embedding-based retrieval, and ungradable problems are filtered to ensure high-quality reward
signals. We randomly sample 10,240 problems for training.

¢ Open-Reasoner-Zero-57K (ORZ) [15]: This dataset includes 57,000 high-quality reasoning problems
sourced from AIME (up to 2023), AMC, MATH, Numina-MATH [23]], and Tulu3 MATH [21].
Extensive cleaning via rule-based and LLM-based filters ensures evaluability and difficulty balance.
We sample 8,192 problems for training.

DeepMath-103K [12]: A large-scale dataset focused on high-difficulty mathematical problems,
constructed with rigorous data decontamination procedures to support reliable benchmark evaluation.
We sample 8,192 problems for training.

D.2 RL Fine-tuning Details

Tab. 4 summarizes the hyperparameters used in our GRPO training. We adopt the same configuration across all
experiments. Following [511[15], we remove the KL regularization terms. For reward computation, we use a
simple rule-based function based solely on answer correctness, without incorporating any format-related signals.
Specifically, a reward of 1 is assigned for exact matches with the reference answer, and 0 otherwise. Answer
matching is implemented using the Math-Verify 1ibraryﬂ We adopt a standard chain-of-thought (CoT) prompt
template, provided in Tab. 3]

D.3 Implementation Details of DOTS and RR

We present the detailed hyperparameter settings of Algorithm 1 in Tab.[f] For DOTS, data selection is performed
every two steps during RL fine-tuning.

Shttps://github.com/huggingface/Math-Verify
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Table 4: Detailed RL fine-tuning recipes.

Optimizer AdamW
Total Batch Size 512
Mini Batch Size 64
Learning Rate le-6
LR Schedule Constant
Weight Decay 0
Warm-up Ratio 0
Number of Training Steps 60
Number of Gradient Steps 480
Max Prompt Length 1024
Max Rollout Length 3072/4096
Number of Rollouts Per Prompt 8
Rollout Sampling Temperature 0.6
Rollout Sampling Top-p 0.95
GPU Hardware 8x NVIDIA L40S/8x NVIDIA A100

Table 5: Prompt template used for RL fine-tuning and evaluation. The placeholder <question> is
replaced with the actual mathematical question during fine-tuning and evaluation. Special tokens
"<lim_start/>" and "<lim_end|>" are omitted for clarity.

system

Let’s think step by step and output the final answer within \boxed{}.
user

<question>

assistant

D.4 Evaluation Details

Consistent with RL fine-tuning, we use a sampling temperature of 0.6, top-p of 0.95, and the same prompt
template. We evaluate model performance on four commonly-used mathematical reasoning benchmarks and
report the average accuracy to mitigate benchmark-specific variance.

* GSMSK [3]: A test set of 1,319 grade school math word problems from the GSM8K dataset, requiring
multi-step arithmetic reasoning.

« MATHSO00 [25]: A widely used subset of the MATH test split [[13]. These problems are excluded
from our MATH training data.

* Minerva Math [22]: A set of 272 undergraduate-level science and math questions from MIT Open-
CourseWare.

OlympiadBench [11]: A benchmark of 675 problems from international math olympiads and physics
contests.

We exclude benchmarks with very few questions, such as AIME 24 (30 questions) and AMC 23 (40 questions),
as their limited size leads to high evaluation variance and unreliable performance comparisons for smaller
models [14]. We further justify this exclusion by evaluating the original GRPO on AIME 24 across various
LLM-dataset combinations. Specifically, each of the 30 AIME 24 questions is evaluated 8 times, and the average
accuracy (avg@8) is computed at regular intervals during training. As shown in Table[J} the accuracy fluctuates
considerably across training steps without a clear upward trend. This high variance across steps underscores the
difficulty of obtaining reliable evaluation signals on such small-scale datasets, especially for smaller models
with limited reasoning capacity.

E Additional Experimental Results

E.1 Ablation Study on the Adaptive Difficulty Prediction Framework

Off-the-shelf embeddings fail to capture difficulty structure. We evaluate a baseline that directly
uses frozen embeddings from the Qwen2.5-Math-1.5B-Instruct model without any further training or calibration.
In contrast, our framework incorporates trained adapter layers and a calibration head. As shown in Tab.[§] our
framework consistently achieves significantly higher Pearson correlation with the ground-truth adaptive difficulty
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Table 6: Hyperparameters of DOTS and RR.

Target Difficulty « 0.5
Reference Set Size K 256
Data Sampling Temperature 7 le-3
Fresh Rollout Fraction ¢ 0.5
Buffer Capacity C' 256/512

Table 7: Accuracy of original GRPO on AIME 24 across training steps. Each of the 30 questions
is evaluated 8 times, and avg@8 accuracy is reported every 10 training steps. The results show high
variance without clear trends, which limits evaluation reliability especially for smaller models.

Steps Qwen2.5-Math-1.5B + DeepScaler Qwen2.5-3B + DeepScaler Qwen2.5-Math-7B + DeepScaler

10 10.42 7.50 20.42
20 15.83 6.25 24.17
30 15.83 8.75 24.17
40 11.67 9.17 23.33
50 16.67 7.50 25.42
60 13.75 5.42 20.00

across all settings. The poor performance of the off-the-shelf baseline highlights the necessity of further adapter
layers and calibration for accurately predicting question difficulty.

Table 8: Ablation study on training with adapter and calibration. Comparison of average Pearson
correlation (p) between predicted scores and ground-truth adaptive difficulties, reported as mean
=+ standard deviation over 60 training steps. Results show that training with adapter layers and
calibration significantly improves prediction performance.

Model Dataset Off-the-shelf Our Method
ode atase Embedding (With Adapter Layers + Calibration)

MATH 0.2682 + 0.0207 0.7843 + 0.0243
Qwen2.5-Math-1.5B  DeepScaleR  0.2064 £ 0.0518 0.7244 + 0.0318
ORZ 0.1598 + 0.0266 0.7153 + 0.0257
Qwen2.5-3B DeepScaleR  0.2688 + 0.0369 0.7789 + 0.0191
T DeepMath  0.0671 + 0.0168 0.7029 + 0.0082
Qwen2.5-Math-7B DeepScaleR  0.1983 + 0.0254 0.7076 £ 0.0195

DOTS is robust to the size of reference set. We further investigate the impact of the reference set size K
in RL fine-tuning. Fig. [7]compares the performance of the original GRPO and DOTS under reference set sizes of
128 and 256, using Qwen2.5-Math-1.5B and Qwen2.5-3B on the DeepScaleR dataset. The results show that a
reference set size of 128 yields RL performance comparable to that of 256. This indicates that DOTS is robust to
smaller reference sets, enabling more efficient rollout collection without sacrificing RL fine-tuning quality.

E.2 Additional Experiment with Extended Training Horizon

To further verify the stability of our findings, we extend training to 100 training steps (600 gradient steps) under
two settings: Qwen2.5-Math-1.5B + DeepScaleR and Qwen2.5-3B + DeepMath. Notably, our method continues
to outperform the original GRPO baseline.

E.3 Additional Results under Different Evaluation Views

In the main text, Fig. 3] presents performance over wall-clock time, while Fig. [5] uses training steps. For
completeness, we provide alternate versions: Fig. []shows the step-based view corresponding to Fig.[3] and
Fig.[10]shows the time-based view for Fig.[3]

Across both views—training steps and wall-clock time—DOTS+RR and DOTS consistently demonstrate strong
performance, confirming the robustness of our improvements regardless of presentation format. Interestingly, as
shown in Fig.[I0] although DOTS (without RR) incurs a small overhead from reference rollouts and difficulty
prediction, it requires substantially fewer training steps to reach the same final accuracy as the original GRPO.
As aresult, the overall training time is often reduced despite the per-step overhead.
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Figure 7: Average accuracy curves of DOTS (Ref Size = 256), DOTS (Ref Size = 128), and Original
GRPO on Qwen2.5-Math-1.5B and Qwen2.5-3B. The curves show average performance aggregated
over four benchmarks with exponential smoothing for visualization. Note that the x-axis is the number
of steps (rather than time). The results show that a reference set size of 128 achieves performance
comparable to that of 256, indicating the robustness of our method to smaller reference sets.
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Figure 8: Extended training to 100 training steps for two settings: Qwen2.5-Math-1.5B +

DeepScaleR and Qwen2.5-3B + DeepMath. Our method consistently outperforms the original
GRPO baseline.

27



Qwen2.5-Math-1.5B + MATH

53

52 3
&51 i
350 '
3 :
549 16.67% | |
;j 48 Fewer Steps i* —
®47 i
<46 3

45 i

44 20 0 60

Training Steps
51 Qwen2.5-3B + DeepScaleR
s rozc=s=

w
o O o

~

26.67%
Fewer Steps

o

Avg Accuracy (%)
P T

0 20 40
Training Steps

S b v U1 U
o 0 O N B

Avg Accuracy (%)

IS
IS

49

I
©

IS
)

Avg Accuracy (%)
o
<

—}— DOTS+RR (Ours)

Qwen2.5-Math-1.5B + DeepScaleR

20 40
Training Steps

Qwen2.5-3B + DeepMath

20
Training Steps

40

i
i

1

i

|

i
.
| Fewer Steps

i

i

i

i

i

i

i

i

i

i

60

60

Qwen2.5-Math-1.5B + ORZ

54
<52 3
< :
> |
9’50 :
S 13.33% | !
< i
= i
< 46 |
44 3
0 20 40 60
Training Steps
Qwen2.5-Math-7B + DeepScaleR
60
=58 ‘
) :
356 i
o i
3 ] 40.00%
52
50 i
0 20 40 60

Training Steps

—}— Original GRPO

Figure 9: Performance curves with training steps as x-axis. Replot of Fig. using training steps.
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Figure 10: Performance curves with wall-clock time as x-axis. Replot of Fig. using wall-clock

time.
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