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ABSTRACT

The hidden state threat model of differential privacy (DP) assumes that the
adversary has access only to the final trained machine learning (ML) model,
without seeing intermediate states during training. Current privacy analyses under
this model, however, are limited to convex optimization problems, reducing their
applicability to multi-layer neural networks, which are essential in modern deep
learning applications. Additionally, the most successful applications of the hidden
state privacy analyses in classification tasks have been for logistic regression
models. We demonstrate that it is possible to privately train convex problems
with privacy-utility trade-offs comparable to those of one hidden-layer ReL.U
networks trained with DP stochastic gradient descent (DP-SGD). We achieve
this through a stochastic approximation of a dual formulation of the ReLU
minimization problem which results in a strongly convex problem. This enables
the use of existing hidden state privacy analyses, providing accurate privacy
bounds also for the noisy cyclic mini-batch gradient descent (NoisyCGD) method
with fixed disjoint mini-batches. Our experiments on benchmark classification
tasks show that NoisyCGD can achieve privacy-utility trade-offs comparable to
DP-SGD applied to one-hidden-layer ReLU networks. Additionally, we provide
theoretical utility bounds that highlight the speed-ups gained through the convex
approximation.

1 INTRODUCTION

In differentially private (DP) machine learning (ML), the DP-SGD algorithm (see e.g., |Abadi
et al.| 2016) has become a standard tool obtain ML models with strong privacy guarantees of
the individuals. The (g, §)-guarantees for DP-SGD are obtained by clipping gradients by adding
normally distributed noise scaled with the clipping constant to the randomly sampled mini-batch of
gradients, and by using composition DP analysis (see, e.g.,|Zhu et al., 2022).

One weak point of the composition analysis of DP-SGD is that it is assumes that the adversary has
access to all the intermediate results of the training iteration. This assumption is often unnecessarily
strict as in many practical scenarios only the final model is needs to be revealed. Another weakness
is that it requires either full batch training or random subsampling, and, e.g., accurate privacy
analyses for of many practically relevant algorithms are not available for non-convex problems such
as for training multi-layer neural networks. One example of such algorithms is the noisy cyclic
GD (NoisyCGD) with disjoint mini-batches. Having high privacy-utility ML models trained with
NoisyCGD would give an alternative for DP-SGD that is often difficult to implement in practical
settings (Chua et al., [2024a)).

The so called hidden state threat model of DP considers releasing only the final model of the
training iteration, and existing (e, J)-DP analyses in the literature are only applicable for convex
problems such as the logistic regression which is the highest performing model considered in the
literature (see, e.g., (Chourasia et al., 2021} Bok et al., 2024). When training models with DP-
SGD, however, one quickly finds that the model performance of commonly used convex models is
inferior compared to multi-layer neural networks. A natural question then arises whether convex
approximations of minimization problems for multi-layer neural networks can be made while
preserving model performance. In response, this work explores such an approximation for the
two-layer ReLU minimization problem. To achieve this, we build on the findings of [Pilanci &
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Ergen| (2020), which demonstrate the existence of a convex dual formulation for the two-layer ReLU
minimization problem when the hidden layer is sufficiently wide.

The privacy amplification by iteration analysis for convex private optimization, introduced by
Feldman et al.| (2018), provides privacy guarantees in the hidden state threat model. However, this
and many subsequent analyses (Sordello et al., 2021; |/Asoodeh et al., [2020; (Chourasia et al., 2021}
Altschuler & Talwar, [2022) remain challenging to apply in practice, as it typically requires a large
number of training iterations for obtaining tighter DP guarantees than those of DP-SGD. |Chourasia
et al.| (2021) improved this analysis using Rényi DP for full-batch DP-GD training, while [Ye &
Shokril (2022) offered a similar analysis for shuffled mini-batch DP-SGD. Recently,Bok et al.|(2024)
provided an f-DP analysis for a class of algorithms, which we also leverage to analyze NoisyCGD.

Also from a theoretical standpoint, convex models are advantageous over non-convex ones in

private optimization. State-of-the-art empirical risk minimization (ERM) bounds for private convex

optimization are of the order O(ﬁ + ?‘/3) where n is the number of training data entries, d the

dimension of the parameter space and ¢ the DP parameter (Bassily et al.l 2019). In contrast, the
bounds for non-convex optimization, which focus on finding stability points, are much worse, such
as O(—r + %) (Bassily et al.,2021) and O (L/d> (Arora et al | [2023; Lowy et al.,[2024).

(en)2/3

Our main contributions are the following:

* By integrating two seemingly unrelated approaches, convex reformulation of ReLU
networks and privacy amplification by iteration DP analysis, we show that it is possible
to obtain similar privacy-utility trade-offs in the hidden state threat model of DP as by
applying DP-SGD to two-layer ReLU networks and using composition results.

* We carry out a number of approximations for the convex reformulation to facilitate DP
analysis and show that the resulting strongly convex model has the required properties for
hidden state analysis.

* We give the first high privacy-utility trade-off results for benchmark classification tasks
using a hidden state DP analysis. In particular, we give the first empirical high
privacy-utility trade-off results for NoisyCGD with disjoint mini-batches under the hidden
state threat model which makes it more suitable for practical applications of DP ML.
The experiments also account for the privacy cost of hyperparameter tuning, and we
demonstrate how to conduct it effectively for NoisyCGD.

* We carry out a theoretical utility analysis of DP-SGD applied to the convex approximation
within the random data model.

2 PRELIMINARIES

We denote a dataset containing n data points as D = (21, ..., 2z, ). We say D and D’ are neighboring
datasets if they differ in exactly one element (denoted as D ~ D’). We say that a mechanism
M : X — Ois (e,§)-DP if the output distributions for neighboring datasets are always (,0)-
indistinguishable (Dwork et al.| 2006).

Definition 2.1. Lete > 0 and ¢ € [0, 1]. Mechanism M : X — O is (g, §)-DP if for every pair of
neighboring datasets D, D’ and for every measurable set E C O,

P(M(D) € E) <e°P(M(D') € E) + 6.
We call M tightly (e, §)-DP, if there does not exist ¢’ < § such that M is (e, §’')-DP.
Hockey-stick Divergence and Numerical Privacy Accounting. The DP guarantees can be

alternatively described using the hockey-stick divergence which is defined as follows. For v > 0
the hockey-stick divergence H,, from a distribution P to a distribution () is defined as

H,(P|Q) = / P(t) — a-Q()], dt, @1

where for t € R, [t} = max{0,t}. The (,§)-DP guarantee as defined in Def. 2.1] can be
characterized using the hockey-stick divergence as follows.
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Lemma 2.2 (Zhu et al.[2022). For a given c > 0, tight §(¢) is given by the expression
5(6) = max Ho-(M(D)[.M(D')).

Thus, if we can bound the divergence He- (M (D)||M(D")) accurately, we also obtain accurate
d()-bounds. We also refer to drq(g) := maxp~pr Hee (M(D)||M(D’)) as the privacy profile of
mechanism M. For bounding the hockey-stick divergence of compositions accurately, we need to
so-called dominating pairs of distributions.

Definition 2.3 (Zhu et al.[2022). A pair of distributions (P, Q) is a dominating pair of distributions
for mechanism M (D) if for all neighboring datasets D and D’ and for all o > 0,

Ho(M(D)|[IM(D")) < Ha(PlQ).

If the equality holds for all « for some D,D’, then (P,Q) is a tightly dominating pair of
distributions. We get upper bounds for DP-SGD compositions using the dominating pairs of
distributions using the following composition result.

Theorem 2.4 (Zhu et al|2022). If (P, Q) dominates M and (P', Q") dominates M’, then (P X
P’ Q x Q') dominates the adaptive composition M o M'.

To convert the hockey-stick divergence from P x P’ to @ X Q' into an efficiently computable form,
we consider so called privacy loss random variables (PRVs) and use Fast Fourier Technique-based
methods (Koskela et al.| 2021 |Gopi et al., 2021)) to numerically evaluate the convolutions appearing
when summing the PRVs and evaluating §(¢) for the compositions.

Gaussian Differential Privacy. For the privacy accounting of the noisy cyclic mini-batch GD, we
use the bounds by Bok et al.| (2024) that are stated using the Gaussian differential privacy (GDP).
Informally speaking, a mechanism M is u-GDP, i > 0, if for all neighboring datasets the outcomes
of M are not more distinguishable than two unit-variance Gaussians y apart from each other (Dong
et al.,[2022)). We consider the following formal characterization of GDP.

Lemma 2.5 (Dong et al.|[2022, Cor. 2.13). A mechanism M is u-GDP if and only it is (¢,0)-DP for
all e > 0, where
€ U e U
se)=a(-S+E8)—en(-S-E).
© (u+2> ’ (u 2)

2.1 DP-SGD wWITH POISSON SUBSAMPLING

DP-SGD iteration with Poisson subsampling is given by

1 .
O =05 =y (320, ., ClD(VL(.0,).0) + ;). 22)

where C' > 0 denotes the clipping constant, clip(-, C') the clipping function that clips gradients to
have 2-norm at most C', L the loss function, 6 the model parameters, n); the learning rate at iteration
J, B; the mini-batch at iteration j that is sampled with Poisson subsampling with the subsampling

ratio b/n, b the expected size of each mini-batch and Z; ~ N (0, %Id) the noise vector.
We want to experimentally compare DP-SGD to the noisy cyclic mini-batch gradient descent using
the privacy amplification by iteration analysis [Bok et al.| (2024). To this end, we consider the

substitute neighborhood relation of datasets. To this end, we use to following results by [Lebeda
et al.[(2024).

Lemma 2.6 (Lebeda et al.|2024). Suppose a pair of distributions (P, Q) is a dominating pair of

distributions for a mechanism M and denote the Poisson subsampled mechanism M = M o

S?goisson, where S;Igoisson denotes the Poisson subsampling with subsampling ratio q. Then, for all

neighbouring datasets (under the ~-neighbouring relation) X and Y,

Ho (M(X)[|M(Y)

< H@((l _Q) 'N(an-Q) “qu(l,O'Q)H(l - q) 'N(0702) +Q'N(_1a02))
forall o > 0.

2.3)



Under review as a conference paper at ICLR 2025

Furthermore, using the composition result of Lemma [QZF] and numerical accountants, we obtain
(e, d)-bounds for compositions of DP-SGD with Poisson subsampling the substitute neighborhood
relation of datasets. Alternatively, we could use RDP bounds given by [Wang et al.|(2019), however,
as also illustrated by the Appendix Figure [6] our numerical approach generally leads to tighter
bounds.

2.2 GUARANTEES FOR THE FINAL MODEL AND FOR NOISY CYCLIC MINI-BATCH GD

We next consider privacy amplification by iteration (Feldman et al.||2018) type of analysis that gives
DP guarantees for the final model of the training iteration. We use the recent results by |[Bok et al.
(2024) that are applicable to the noisy cyclic mini-batch gradient descent (NoisyCGD) for which
one epoch of training is described by the iteration

1

where Z; ~ N(0,021,) and the data D, | D| = n, is divided into disjoint batches By, ..., By, each
of size b. The analysis by|Bok et al.[(2024) considers the substitute neighborhood relation of datasets
and central for the DP analysis is the gradient sensitivity.

Definition 2.7. We say that a family of loss functions J has a gradient sensitivity L if

sup [[Vf—Vyg| < L.
f.9eF

As an example relevant to our analysis, for a family of loss functions of the form h; + r, where
h;’s are L-Lipschitz loss functions and r is a regularization function, the sensitivity equals 2L.
We will use the following result for analysing the (e, §)-DP guarantees of NoisyCGD. First, recall
that a function f is S-smooth if V f is S-Lipschitz, and it is A-strongly convex if the function

2.
g(z) = f(z) — 3 ||z is convex.

Theorem 2.8 (Bok et al.|[2024, Thm. 4.5). Consider \-strongly convex, [(3-smooth loss functions
with gradient sensitivity L. Then, for any n € (0,2/M), NoisyCGD is u-GDP for

pe B e 129 L - e
bo (1 —cF)2 1+ ch(E-D
where k = n/b, ¢ = max{|1 — nA|,|1 — nB|} and E denotes the number of epochs.

We could alternatively use the RDP analysis by|Ye & Shokri| (2022), however, as also illustrated by
the experiments of [Bok et al.[(2024), the bounds given by Thm. lead to slightly lower (g, §)-DP
bounds for NoisyCGD.

In order to benefit from the privacy analysis of Thm. [2.8|for NoisyCGD, we add an L,-regularization
term with a coefficient % which makes the loss function A-strongly convex. Finding suitable values
for the learning rate n and regularization parameter A is complicated by the following aspects. The
larger the regularization parameter A and the learning rate 1 are, the faster the model *forgets’ the
past updates and the faster the e-values converge. This is reflected in the GDP bound of Thm. [2.§]
in the constant ¢ which generally equals |1 — n\|. Thus, in order to benefit from the bound of
Thm. the product n\ should not be too small. On the other hand, when 7 is too large, the
*forgetting’ starts to affect the model performance. We experimentally observe that the plateauing
of the model accuracy and privacy guarantees happens approximately at the same time.

Figure [1| illustrates privacy guarantees of NoisyCGD for a range of values for the product nA
where the (e, §)-DP guarantees given by Thm. become smaller than those given by the Poisson
subsampled DP-SGD with an equal batch size b = 1000 when ¢ = 15.0 when training for 400
epochs. For a given value of the learning 7, we can always adjust the value of \ to have desirable
(e,0)-DP guarantees. To put the values of Fig. [l|into perspective, in experiments we observe that
nA = 2-10~% is experimentally found to already affect the model performance considerably whereas
nA = 1-10~* affects only weakly.
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Figure 1: Values of the product of the learning rate 7 and the Lo-regularization constant A that lead
to tighter privacy bounds for the final model using Thm. [2.8]than for the whole sequence of updates
using the DP-SGD analysis. Here the e-values are shown as a function of number of training epochs,
when total number of training samples N = 6-10%, the batch size b = 1000, o = 15.0and § = 1072,

3 CONVEX APPROXIMATION OF TWO-LAYER RELU NETWORKS

We next derive step by step the strongly convex approximation of the 2-layer ReLU minimization
problem and show that the derived problem is amenable for the privacy amplification by iteration
type of (¢, §)-DP analysis. To simplify the presentation, we consider a 1-dimensional output network
(e.g., a binary classifier). It will be straightforward to construct multivariate output networks from
the scalar networks (see also|Ergen et al., 2023al).

3.1 CONVEX DUALITY OF TWO-LAYER RELU PROBLEM

We first consider the convex reformulation of the 2-layer ReLU minimization problem as presented
by Pilanci and Ergen (2020). In particular, consider training a 2-layer ReLU network (with hidden-
widthm) f : R? = R,

fla) =3 _ oz, 3.1
where the weights u; € R ;€ [m] and & € R™, and ¢ is the ReLU activation function, i.e.,
¢(t) = max{0,t}. For a vector z, ¢ is applied element-wise, i.e. ¢(x); = P(x;).

Using the squared loss and Lo-regularization with a regularization constant A > 0, the 2-layer ReLU
minimization problem can then be written as

. 1 m 2 A i 2 2
Wmin I3 exuda;—y| +5 ;(Ilui\\z +ad), (3.2)
where X € R™*4 denotes the matrix of the feature vectors, i.e., X* = [t1 ... zp]andy € R™

denotes the vector of labels.

The convex reformulation of this problem is based on enumerating all the possible activation patterns
of ¢(Xu), u € R? The set of activation patterns that a ReLU output ¢(Xu) can take for a data
feature matrix X € R™*¢ is described by the set of diagonal boolean matrices

Dx = {D = diag(1(Xu > 0)) : u € R},

where for i € [n], (1(Xu > 0)), = 1, if (Xu); > 0 and 0 otherwise. Here |Dx]| is the number

of regions in a partition of R? by hyperplanes that pass through origin and are perpendicular to the
rows of X. We have (Pilanci & Ergen, 2020):

Dx|<2r <e(nr—1))r7

where 7 = rank(X).
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Let |Dx| = M and denote Dx = {Di,...,Dp}. Let A > 0. Next, the parameter space is
partitioned into convex cones C1, ..., Cyr, C; = {u € R? : (2D; — I)Xu > 0}, and we consider
a convex optimization problem with group /5 - ¢; - regularization

1 2
win 5 |3 DX =) =y 42D ) G
such that forall 7, 1 < i < M : v;, w; € C; ie.

Interestingly, for a sufficiently large hidden-width m, the ReLU minimization problem (3.2)) and the
convex problem (3.3)) have equal minima.

Theorem 3.1 (Pilanci & Ergen|2020, Thm. 1). There exists m* € N, m* < d + 1, such that for all
m > m*, the ReLU minimization problem (3.2)) and the convex problem (3.3)) have equal minima.

Moreover, Pilanci & Ergen|(2020) show that for a large enough hidden-width m, the optimal weights
of the ReLU network can be constructed from the optimal solution of the convex problem [3.3]
Subsequent work, such as (Mishkin et al., [2022)), extends the equivalence in Thm. @] to general
convex loss functions £, rather than focusing solely on the squared loss. For simplicity, we
focus on the squared loss in our presentation. We remark that convex formulations have also be
shown for two-layer convolutional networks (Bartan & Pilanci, |2019) and for multi-layer ReLU
networks (Ergen & Pilanci, 2021)).

3.2 STOCHASTIC APPROXIMATION

Since |Dx| is generally an enormous number, stochastic approximations to the problem have
been considered (Pilanci & Ergenl [2020; |Wang et al., [2022; [Mishkin et al., 2022; | Kim & Pilancil
2024). In this approximation, vectors u; ~ N (0,14),1 € [P], P < M, are sampled randomly to
construct the boolean diagonal matrices Dy, ..., Dp, D; = diag(1(Xu; > 0)), and the problem

(3:3) is replaced by

o1 P
min —
Vi, Wi

2 P
Di X (vi —wi),y|| + Azizl(llvilb + [Jwilly) (3.4)
2

i=1
such that for all ¢ € [P] : v;, w; € Cy, i.e.,

(2D; — D Xw; > 0, (2D; — I)Xwv; > 0. (3.5)
For practical purposes we consider a stochastic approximation of this kind. However, the
constraints [3.5] are data-dependent which potentially makes private learning of the problem (3.4)
difficult. Moreover, the overall loss function given by Eq. 3.4] is not generally strongly convex

which prevents us using privacy amplification results such as Theorem [2.8| for NoisyCGD. We next
consider a strongly convex problem without constraints of the form[3.3]

3.3 STOCHASTIC STRONGLY CONVEX APPROXIMATION

Motivated by experimental observations and also the formulation given in (Wang et al., 2022)), we
consider global minimization of the loss function (denote v = {v; }1;)

L(v, X LIS~ pox CIAS 2 (3.6)
(v, ,y)—% Zi:l XV — Y 2+§Zi:1”vi||2, :
where the diagonal boolean matrices Dy, ..., Dp € R™*™ are constructed by taking first P i.i.d.
samples uy, ..., up, u; ~ N (0, I), and then setting the diagonal elements of D;’s as above as

(D;);; = max (0, sign(a:?ui)).
Note that we may also write the loss function of Eq. in the summative form

1 n
Zj:l E(U"r.ﬁyj)? (37)

n

L(U,X,y)

where

1 P T
Uv,zj,95) = 5 Hzizl(Di)jjxj v = Yj

2
A P ) .
9 3 Zi:l [villa,  (Di)j; = L(2jui 2 0). (3.8)
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Inference Time Model. At the inference time, having a data sample = € RY, using the P vectors
u1,...,up that were used for constructing the boolean diagonal matrices D;, i € [P], used in the
training, the prediction is carried out similarly using the function

P
glz,v) = Zi:l 1(ulz > 0) - 2Tv;.

Practical Considerations. In experiments, we use cross-entropy loss instead of the mean square
loss for the loss functions £;. Above, we have considered scalar output networks. In case of
k-dimensional outputs and k-dimensional labels, we will simply use k independent linear models
parallely meaning that the overall model has a dimension d x P x k, where d is the feature dimension
and P the number of randomly chosen hyperplanes.

3.4 MEETING THE REQUIREMENTS OF DP ANALYSIS

From Eq. (3.8) it is evident that each loss function (v, z;,y;), j € [n], depends only on the data
entry (z;,y,). By clipping the data sample-wise gradients V,h(v,z;,y;), where h(v,z;,y,;) =
2
P
3 Hzizl(Di)jj%TUi - yj‘ ,
explicitly show in Appendix @ the loss function ¢(v, x;,y;) is a loss function of a generalized

linear model and thus we are allowed to use the analysis of Bok et al.|(2024) also when clipping the
gradients since then the clipped gradients are gradients of another convex loss (Song et al., [2021])).
For the DP analysis, we also need to analyze the convexity properties of the loss function (3.8). We
have the following Lipschitz-bound for the gradients.

, the loss function ¢ becomes 2L-sensitive (see Def. [2.7). As we

Lemma 3.2. The gradients of the loss function ((v,x;,y;) given in Eq. (3.8) are (-Lipschitz
continuous for § = ||xj||§ + A

Due to the Lo-regularization, the loss function (3.8)) is clearly A-strongly convex. The properties
of A-strong convexity and S-smoothness are preserved when clipping the sample-wise gradients
Voh(v,z;,y;) (Section E.2, Redberg et al.,|2024). Thus, the DP accounting Thm. is applicable
with the same convexity parameters also when clipping the gradients V,h(v, x;, y;).

4 THEORETICAL UTILITY BOUNDS IN THE RANDOM DATA MODEL

Using classical results from private empirical risk minimization (DP-ERM) we illustrate the
improved convergence rate when compared to private training of 2-layer ReLU networks. In
addition to having the classical convergence rate of DP-ERM, we have the approximability of ReLU
networks: the minimum loss £(6*, D) goes to zero. We emphasize that a rigorous analysis would
require a priori bounds for the gradient norms. In future work, it will be interesting to see whether
techniques from private linear regression (Liu et al., 2023; Avella-Medina et al., 2023} |Varshney
et al.| 20225 |Cai et al.,|2021)) could be used to get rid of the assumption on bounded gradients.

We consider for the problem (3.6) utility bounds with random data. This data model is also
commonly used in the analysis of private linear regression (see, e.g., |Varshney et al., [2022).
Recently, [Kim & Pilanci| (2024) have given several results for convex problem (3.6) under the
assumption of random data, i.e., when X;; ~ A(0,1) i.i.d. Their results essentially tell that

taking d and n large enough (s.t. n > d), we have that with P = O(M) random hyperplane

arrangements we get zero global optimum for the stochastic problem with probability at least

lffyfﬁ. IfwechooseP:O(nl#d"/A’

dimension p = d - P = O(nlog ) and directly get the following corollary of Thm.

Theorem 4.1. Consider applying the private gradient descent (Alg. |I)) to the practical stochastic
strongly convex problem (3.6) and assume the gradients stay bounded by a constant L > 0. Let the

ratio c = %5 > 1 be fixed. For any ~y > 0, there exists dy such that for all d > dy, with probability at

least 1 — vy — ﬁ,

) hyperplane arrangements, we have an ambient

L™, D) <O <1> ;

Vne

where O omits the logarithmic factors.
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5 DP HYPERPARAMETER TUNING FOR DP-SGD AND NOISYCGD

When comparing experimentally DP optimization methods, it is crucial to take into account the
effect of the hyperparameter tuning on the privacy costs. The most relevant to our work are the
randomized tuning methods given by |Papernot & Steinke|(2022) and the subsequent privacy profile-
based analysis by [Koskela et al.| (2024). These results hold for a tuning algorithm that outputs
the best model of the K alternatives, where K is a random variable. We consider the case K
is Poisson distributed, however mention that also other alternatives exist that allow adjusting the
balance between compute cost of training, privacy and accuracy. The DP bounds in this case can be
described as follows. Let Q(y) the density function of the quality score of the base mechanism (y
denoting the score) and A(y) the density function of the tuning algorithm that outputs the best model
of the K alternatives. Let A and A’ denote the output distributions of the tuning algorithm evaluated
on neighboring datasets D and D’, respectively. Then, the hockey-stick divergence between A and
A’ can be bounded using the following result.

Theorem 5.1 (Koskela et al.[2024). Let K ~ Poisson(m) for some m € N, and let §(e1), e1 € R,
define the privacy profile of the base mechanism Q. Then, for all € > 0 and for all e; > 0,

He: (Al|A") <m-6(8), (5.1
where€ = —m - (€' —1) —m - §(e1).

Theorem ﬂ says that the hyperparameter tuning algorithm is (€, m - §(€))-DP in case the base
mechanism is (1, d(e1)-DP. If we can evaluate the privacy profile for different values of e, we
can also optimize the upper bound (5.1). When comparing DP-SGD and NoisyCGD, we use the
fact that DP-SGD privacy profiles are approximately those of the Gaussian mechanism for large
compositions (Sommer et al 2019) as follows. Suppose DP-SGD is (¢*, §*)-DP for some values
of the batch size b noise scale o and number of iterations 7'. Then, we fix the value of the constant
¢ = n - A for NoisyCGD such that it is also (¢*,5*)-DP for the same hyperparameter values b, o
and 7T, giving some GDP parameter p*. Along the GDP privacy profile determined by p*, we find
(e1,0(e1)) that optimizes the bound of Eq. , and then evaluate the DP-SGD-§ using that same

~

value €1, giving some value d(¢;). Taking the maximum of (e;) and (e ) for the evaluation of
£ in the bound of Eq. (3.1) will then give a privacy profile that bounds the DP-guarantees of the
hyperparameter tuning of both DP-SGD and NoisyCGD.

6 EXPERIMENTAL RESULTS

We compare the methods on standard benchmark image datasets: MNIST (LeCun et al.| [1998)),
FashionMNIST (Xiao et al.l [2017) and CIFAR-10 (Krizhevsky et al., [2009). The MNIST datasets
have a training dataset of 6 - 10* samples and a test dataset of 10* samples and CIFAR-10 has a
training dataset size of 5 - 10 and a test dataset of 10* samples. All samples in MNIST datasets
are 28 x 28 size gray-level images and in CIFAR-10 32 x 32 color images (with three channels
each). We experimentally compare three alternatives: DP-SGD applied to a one-hidden layer ReLU
network, DP-SGD applied to the stochastic convex model (3.6) without regularization (A = 0) and
NoisyCGD applied to the stochastic convex model with A > 0. We use the cross-entropy loss
for all the models considered. In order to simplify the comparisons, we fix the batch size to 1000 for
all the methods and train all methods for 400 epochs. We compare the results on two noise levels:
o =5.0and o = 15.0.

Although one hidden-layer networks with tempered sigmoid activations (Papernot et al.| [2021)
would likely yield improved results, we focus on ReLU networks as baselines for consistency as
this allows us to compare the methods in the context of ReLU-based architectures. Also, this does
not affect our main finding that we are able to find improved models for the hidden state analysis.

Unlike in the experiments of, e.g., (Abadi et al., 2016), we do not use pre-trained convolutive layers
for obtaining higher test accuracies in the CIFAR-10 experiment, as we experimentally observe
that the DP-SGD trained logistic regression gives similar accuracies as the DP-SGD trained ReLU
network. Thus, we consider the much more difficult problem of training the models from scratch
using the vectorized CIFAR-10 images as features.

The hyperparameter tuning of NoisyCGD is simplified by the fact that bound of Thm. (2.8)) depends
monotonoysly on the parameter ¢ = 1 — 7 - A\. In case the hyperparameters b noise scale o are
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fixed, fixing the GDP parameter p will also fix the value of c. Thus, if we have a grid of learning
rate candidates those will also determine the values of \’s as well. Overall, in case the batch size,
number of epochs and o are fixed, in addition to the learning rate 1, we have in all alternatives
only one hyperparameter to tune: the hidden-layer width W for the ReLU networks and the number
of hyperplanes P for the convex models. The hyperparameter grids used in the experiments are
depicted in Appendix [H]

We generally find that P = 128 is not far from the optimum for the convex model (see Appendix [E.2]
for comparisons using MNIST). Appendix[E.T]also shows that in the non-private case, the stochastic
problem approximates the ReLU problem better as P increases.

6.1 RESULTS ON DP HYPERPARAMETER TUNING

Tables [T] and [2] show the accuracies of the best models obtained using the DP hyperparameter tuning
algorithm depicted in Section [5| With the noise scale values 0 = 5.0 and o = 15.0, the DP-SGD
trained models are (1.33,107°)-DP and (4.76,10~°)-DP, respectively. To have similar privacy
guarantees for the base models trained using NoisyCGD, we adjust the regularization constant
A accordingly (as depicted in Secion [5)) which leads to equal final (g,0)-DP guarantees for the
hyperparameter tuning algorithms. We see from tables [I| and 2] that the convex models are on par in
accuracy with the ReLU network. Notice also from the results of Section [6.2] that the learning rate
tuned logistic regression cannot reach similar accuracies as the NoisyCGD trained convex model.

Table 1: MNIST model accuracies vs. e-values for the DP hyperparameter tuning algorithm when
d = 107°. The number of candidate models K is Poisson distributed with mean 20. Results are
means of 5 Runs.

€ NoisyCGD + Convex Approx.  DP-SGD + Convex Approx. DP-SGD + ReLU
2.88 0.927 0.929 0.916
8.91 0.944 0.949 0.944

Table 2: CIFAR-10 model accuracies vs. e-values for the DP hyperparameter tuning algorithm when
§ = 1075. The number of candidate models K is Poisson distributed with mean m = 20. Results
are means of 5 Runs.

€ NoisyCGD + Convex Approx.  DP-SGD + Convex Approx. DP-SGD + ReLLU
2.88 0.416 0.417 0.427
8.91 0.455 0.459 0.471

6.2 RESULT WITH THE BEST MODELS

Figures [2] and [3] show the accuracies of the hyperparameter tuned models along the the training
iteration of 400 epochs for the MNIST and CIFAR-10 experiment, when the privacy cost of the
tuning is not taken into account. We give results for the FashionMNIST experiment in Appendix [I}
Figures[2]and[3]include additionally the accuracies for the learning rate optimized logistic regression
models. We observe that the proposed convex model significantly outperforms logistic regression,
which has been the most accurate model considered in the literature for hidden state DP analysis up
to now.

Figure [2]show that the convexification helps in the MNIST experiment: both DP-SGD and the noisy
cyclic mini-batch GD applied to the stochastic dual problem lead to better utility models than DP-
SGD applied to the ReLLU network. Notice also that the final accuracies for DP-SGD are not far
from the accuracies obtained by |Abadi et al.| (2016) using a three-layer network for corresponding
e-values which can be compared using the fact that there is approximately a multiplicative difference
of 2 between the two relations: the add/remove neighborhood relation used by (Abadi et al., [2016)
and the substitute neighborhood relation used in our work.

Results of figures [2] 3] and [[ and are averaged over 5 trials and the error bars on both sides of the
mean values depict 1.96 times the standard error.
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Figure 2: MNIST Comparisons: Test accuracies vs. the spent privacy budget ¢, when § = 107

and each model is trained for 400 epochs. The ReL.U network is a one hidden-layer fully connected
network, and the batch size equals 1000 for all methods considered.
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Figure 3: Cifar-10 Comparisons: Test accuracies vs. the spent privacy budget €, when § = 107°
and each model is trained for 400 epochs. The model is a one hidden-layer fully connected ReLU
network and the batch size equals 1000 for all methods considered.

7 CONCLUSIONS AND OUTLOOK

We have shown how to privately approximate the two-layer ReL.U network and we have given the
first high privacy-utility trade-off results using the hidden state DP analysis. In particular, we have
given the first high privacy-utility trade-off results for the noisy cyclic mini-batch GD which makes it
more suitable for practical applications of DP ML model training. As shown by our experiments on
benchmark image classification datasets, the results for the convex problems have similar privacy-
utility trade-offs as those obtained by applying DP-SGD to a one hidden-layer ReL.U network and
using the composition analysis. Theoretically, an interesting future task is to carry out end-to-end
utility analysis for private optimization of ReLU networks via the dual form. The recent results
by Kim & Pilanci| (2024) could be helpful for this as they show connections between the stochastic
approximation of the dual form and the ReL.U minimization problem. Also, an interesting general
question is, whether it is possible to obtain still better privacy-utility trade-offs for the final model
in the hidden state threat model by using the privacy amplification by iteration type of analysis
of, for example, DP-SGD. In order to get a better understanding of this question, tighter privacy
amplification by iteration analysis for, e.g., DP-SGD or Noisy-CGD would be needed, as the
composition analysis of DP-SGD cannot likely be improved a lot. Furthermore, developing DP
convex models that approximate deeper neural networks (Ergen et al.,[2023a)), including those with
convolutional layers (Ergen & Pilancil [2020) and different activation functions (Ergen et al.| 2023b),
is an intriguing direction for future research.

10
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A  FORMULATING THE STRONGLY CONVEX APPROXIMATION AS A GLM

We first show that the strongly convex loss function given in Eq. (3.7) corresponds to a loss function
of a convex generalized linear model. The loss function in Eq. (3.7) is of the form

n

L(vaa y) = % Zj:l Zj(vvxjﬁyj)a
where
1]|& ) —
bi(v,5,y5) = 5 > (D)) vi — ;|| + 5 S lwilly, (Di)j; = (] u; > 0)
i=1 =1

and u;’s are the randomly sampled vectors that determine D;’s (and the functions ;) and where
U1
v=1|:.|€ RP,
vp
This is actually a generalized linear model: if we denote
(D1)j;;
L= : )
(Dp)jjz;
we see that ) )
~ 2 2
li(v,m5,y;) = B H’JU]TU - yjHQ + 9 HU||2,

which shows that we are actually minimizing a loss function of a GLM when we are minimizing the
loss £(v, X, y) w.r.t. v. By the results of (Song et al., 2021), we know that the clipped gradients
are gradients of an auxiliary convex loss which allows using the privacy amplification by iteration
analysis by Bok et al.|(2024).

Moreover, the convexity properties of the GLM loss function are preserved under gradient clipping.
This is shown in Appendix E.2 of (Redberg et al.,[2024). Thus, for the privacy analysis we can use
the convexity properties shown in our Section [3.4}

B PROOF OF LEMMA [3.2]

Lemma B.1. The gradients of the loss function

A =P )
+ o3 Il

(v, x5, y5) sz 1 ij Vi —Yj

are [3-Lipschitz continuous for 8 = ||x; ||2 + A

Proof. For the quadratic function
2

H Z’ 1 j] j oY 2
the Hessian matrix is of the diagonal block form
V2h = diag (A;,...,Ap),

where A; = :ch2 = :Ele-ij. Since for all ¢ € [P], a:jDixf < :ijjT, V2h < :le’T and
furthermore for the spectral norm of V>h we have that ||V2h||, < ||z;z] ||, = (B 0O
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C REFERENCE ALGORITHM FOR THE UTILITY BOUNDS

Algorithm 1 Differentially Private Gradient Descent (Song et al., 2021}

1: Input: dataset D = {D;}? ,, loss function £ : R? x X — R, gradient £2-norm bound L,
constraint set C C RP, number of iterations 7', noise variance o2, learning rate 7.

2: 90 0.

3: fort=0,...,T—1do

4 @™ 1579500, d;) + by, where by ~ N(0,0215).
=1

priv

Oi11 <+ Il (Qt —n- g ), where Il¢(v) = argming e |6 — v, -
6: end for

T
7: return P = L 3" 6.
=1

D UTILITY BOUND WITHIN THE RANDOM DATA MODEL

We give a convergence analysis for the minimization of the loss function

2
without any constraints. Kim & Pilanci| (2024)) have recently given several results for the stochastic
approximations of the convex problem (3.3). The analysis uses the condition number « defined as
_ /\max (X X T)
B >\min (M ) ’
where
M = By 0,1, ldiag[1(Xg > 0)] X X diag[1(Xg > 0)]).

Lemma D.1 (Kim & Pilanci 2024, Proposition 2). Suppose we sample P > 2r1og % hyperplane
arrangement patterns and assume M is invertible. Then, with probability at least 1 — 6, for any
y € R™, there exist vy, ... ,vp € R such that

P
> DiXvi=y. (D.1)
1=1

Furthermore, if we assume random data, i.e., X;; ~ N (0,1) i.i.d., then for sufficiently large d we
have the following bound for x.

Lemma D.2 (Kim & Pilanci|[2024, Corollary 3). Let the ratio ¢ = % > 1 be fixed. For any v > 0,

there exists dy such that for all d > dy with probability at least 1 — v — ﬁ

K <10v2 (Ve +1)°.

There results together tell that taking d and n large enough (such that n > d), we have that with
n log
P = O

7 %) hyperplane arrangements we get the zero global optimum with high probability,
i.e., there exists u € R*" such that Eq. (D-I) holds with probability at least 1 — — 5.

In case d and n are large enough and we choose P = O (%) hyperplane arrangements, we

have thatp = d - P = O(nlog %) and we directly get the following corollary.

We can directly apply the following classical result from ERM for the DP-GD (Alg. [T) to the
stochastic problem (3.4) or (3.6).
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Theorem D.3 (Bassily et al[2014} [Talwar et al|2014)). If the constraining set C is convex, the data
sample-wise loss function ((0, z) is a convex function of the parameters 6 € RP, ||Vyl(0, z)||, < L
forall € Cand z € D = (21, ..., z,), then for the objective function L(, D) = L 377" £(6, ;)
under appropriate choices of the learning rate and the number of iterations in the gradient descent
algorithm (Alg.[I), we have with probability at least 1 — 3,

< Llloo =071, V/plog(1/)log(1/B)

ne

L(6"™, D) — £(6*, D)

Assuming the gradients stay bounded by a constant L, this result gives utility bounds for the
stochastic problems (3:4) or (3.6) with p = d x P.
Theorem D.4. Let the ratio c = % > 1 be fixed. For any v > 0, there exists dy such that for all

d > dy, with probability at least 1 — v — ﬁ

L™, X) sé(l )

Vne

where O omits logarithmic factors.

Proof. By Lemrna with with probability at least 1 — v — ﬁ forp=d- P = O(nlog %)

we have that £(6*, X)) = 0. Substituting this p to the claim of Theorem|D.3] the claim follows. [

E ILLUSTRATIONS OF THE STOCHASTIC APPROXIMATION

E.1 ILLUSTRATION WITH SGD APPLIED TO MNIST

Figure []illustrates the approximability of the stochastic approximation for the dual problem in the
non-private case, when the number of random hyperplanes P is varied, for the MNIST classification
problem described in Section [ We apply SGD with batch size 1000 to both the stochastic dual
problem and to a fully connected ReLLU network with hidden-layer width 200, and for each model
optimize the learning rate using the grid {10~%/2}, i € Z. This comparison shows that the
approximabilty of the stochastic dual problem increases with increasing P.

0.99
0984 mm=-TTTTEoTTTITII I T
1
1
!
1
=097 e
g I -
5 i
< 0961 Ill —-—- SGD, Convexified, P=16
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=0.95 i —-— SGD, Convexified, P=64
\_f\._, """" 77 ——- SGD, Convexified, P=128
0.944 | —-—- SGD, Convexified, P=256
: ---- SGD, ReLU network
0.93 —— T T . :
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epochs

Figure 4: Test accuracies vs. number of epochs, when all models are trained using SGD with batch
size 1000. The number of random hyperplanes P is varied for the stochastic dual problem. The
ReLU network is a one hidden-layer fully connected ReLU network with hidden-layer width 200.
Cross-entropy loss is used for all models.
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E.2 ILLUSTRATION WITH DP-SGD APPLIED TO MNIST

Figure [3]illustrates the approximability of the stochastic approximation for the dual problem in the
private case, when the number of random hyperplanes P is varied, for the MNIST classification
problem described in Section[6] We apply DP-SGD with batch size 1000 to both the stochastic dual
problem and to a fully connected ReLLU network with hidden-layer width 200, and for each model
optimize the learning rate using the grid {10‘“ 2}, € Z. Based on these comparisons, we conclude
that P = 128 is not far from optimum, as increasing the dimension starts means that the adverse
effect of the DP noise becomes larger.
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Figure 5: Test accuracies vs. number of epochs, when all models are trained using DP-SGD with
batch size 1000, for two different noise levels o. The number of random hyperplanes P is varied
for the stochastic dual problem. The ReLU network is a one hidden-layer fully connected ReLU
network with hidden-layer width 200.

F COMPARISON OF PLD AND RDP ACCOUNTING FOR SUBSAMPLING
WITHOUT REPLACEMENT

Instead of using the numerical approach described in Section [J] of the main text, we could
alternatively compute the (g, §)-DP guarantees for DP-SGD with subsampling without replacement
using the RDP bounds given by [Wang et al.| (2019). Fig. [6]illustrates the differences when o = 5.0
and ratio of the batch size and total dataset size m /n equals 0.01. The RDP parameters are converted
to (e, §)-bounds using Lemma|[F.1]

Lemma F.1 (Canonne et al.|2020). Suppose the mechanism M is (a, ¢ )-RDP. Then M is also
(e,8(€))-DP for arbitrary € > 0 with

5o = O ((a =1)(¢ =) <1 3 1>a1 . E1

(% (&%
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Figure 6: (&, 0)-DP guarantees for DP-SGD with subsampling without replacement, computed using
the RDP bound of [Wang et al.|(thm. 9,[2019) and the numerical dominating pair computed using the
privacy profile bound of [Zhu et al.|(2022) and the numerical algorithm by |Doroshenko et al.| (2022]).
The parameter o = 5.0 and ratio of the batch size and total dataset size m/n equals 0.01.

G REFORMULATION TOWARDS A DUAL FORM FOR THE PRACTICAL MODEL

An interesting question is whether we can interpret the loss function (3.6) suitable for DP analysis
as a stochastic approximation of a dual form of some ReL.U minimization problem, similarly as
the stochastic problem (3:4) approximates the convex problem (3.3). We have the following result
which is analogous to the reformulation behind the non-strongly convex dual form (3.3). We leave
as a future work to find out whether we can state the loss function (3.6)) as an approximation of some
dual form.

Theorem G.1. For a data-matrix X € R"*9, label vector y € R™ and a regularization parameter
A > 0, consider the ReLU minimization problem

. 1 m 20 m 4 4
i, szzl ¢(Xuj)a; — sz +3 (ijl il + ozj) : (G.1)

Then, the problem (G.1)) and the problem

1 m 2 m
min — Xusi)o; — H —|—)\( 042»)
{0, <137 |, ViEm] 2 szzlgb( 28 5 Zy‘zl J

have equal minima.

Proof. From Young’s inequality Hx||§ + ||y\|§ > 2{(a, b) it follows that

A m 4 4 m 2 2
5 Ol +ad) =AD" sl - o,

We see that the problem (G.)) is scaling invariant, i.e., for any solution {7}, a}}7, and for any

¥i > 0,4 € [m], also {u] -y, aj [y}, gives asolution. Choosing for every i € [m], v; = [T

2112
gives an equality in Young’s inequality. Since this scaling does not affect the solution, we must have
for the global minimizer {u}, o}, of the ReLU minimization problem (G.TJ) that

1 m 2 >\ m
S22 exupa; =+ 5 (0 il + (@5?)

=3 [ sxuia; ol (0 s @3)7).

Again, due to the scaling invariance, we see that the minimizing the right-hand-side of (G.2) w.r.t.
{uj, a;}7L, is equivalent to the problem (G.T)).

(G.2)

U

O
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H HYPERPARAMETER GRIDS USED FOR THE EXPERIMENTS

The hyperparameter grids for the number of random hyperplanes P for the convex model and the
hidden width W for the ReLU network are chosen based on the GPU memory of the available
machines. For MNIST and FashionMNIST we tune the number of random hyperplanes using the
grid

{64, 128,256}

and for CIFAR10 using the grid
{16, 32,64}.

For MNIST and FashionMNIST we tune the hidden width W of the ReLU network using the grid
{200, 500, 800}

and for CIFAR10 using the grid
{200, 400, 600}.

The learning rate 7 is tuned in all alternatives using the grid
{10—3.07 10—2.57 10—2.0’ 10—1.5, 10—1.0’ 10—0.5}.
I ADDITIONAL EXPERIMENTAL RESULTS ON FASHIONMNIST

Figure [7] shows the accuracies of the best models along the the training iteration of 400 epochs for
the FashionMNISTS experiment.

FashionMNIST (0=5.0) FashionMNIST (0=15.0)
0.84 0.821 |
0.801
£ 082 50.781
3 é’ 0.76 1
2 0.801 b7
& & 0.74
0781 —— Convex Model, DP-SGD 0.72 1 —}— Convex Model, DP-SGD
’ ; Convex Model, NoisyCGD Convex Model, NoisyCGD
i - ReLU Network, DP-SGD 0.701 | - ReLU Network, DP-SGD
1 2 3 4 5 02 04 06 08 10 12

€ €

Figure 7: FashionMNIST Comparisons: Test accuracies vs. the spent privacy budget €, when § =
105 and each model is trained for 400 epochs. The model is a one hidden-layer fully connected
ReLU network and the batch size equals 1000 for all methods considered.

J FURTHER MOTIVATION FOR NOISYCGD ANALYSIS

When using disjoint batches of data, currently the best option for obtaining rigorous guarantees is
to use data shuffling and shuffling amplification (Feldman et al., [2021)), however it has been shown
in |Chua et al.| (2024aZb) that the data-shuffling combined with disjoint batches leads to an inferior
privacy-utility trade-off compared to random mini-batch sampling. And we experimentally show
that the method we propose (strongly convex approximation of ReLU problem + NoisyCGD) has
similar privacy-utility trade-off as random mini-batch sampling applied to one hidden-layer ReLU
networks. Although we do not explicitly show comparisons against the shuffled DP-SGD, we believe
that our approach would be better than the shuffling approach. To illustrate this, we compute the
shuffling amplification bounds by [Feldman et al.| (2021)) by considering the setting in one of our
experiments, where we use noise parameter o = 5.0. Similarly to the experiments of |Chua et al.
(2024b), we use the numerical method presented in [Feldman et al| (2021)) to accurately compute
the shuffling upper bounds. In our experiments of Section [6] we use 50 or 60 disjoint batches per
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epoch. When computing the shuffling bounds, one quickly finds that this is a too few number of
batches for the conditions of the analysis of |[Feldman et al.| (2021)) to hold. The shuffling privacy
guarantee clearly improves the number of batches per epoch grows (see, e.g., the comparisons of
Chua et al, 2024b), and to obtain a lower bound for the upper bound, we consider 1000 bathces
per epoch. The comparison to the bounds of the Gaussian mechanism (i.e., no amplification) are
depicted in Fig. [8] This shows that the privacy guarantees in case we use shuffling amplification
bounds instead of NoisyCGD analysis in our experiments are worse than the privacy bounds of the
Gaussian mechanism which further indicates that the privacy-utility trade-offs would be inferior
when using data shuffling to amplify the DP guarantees.

1074+
1076,
1078,
e
10710,
] T Shuffle Bound (Feldman et al., 2021)
10 —o— Gaussian Mechanism (No Amplification) N

08 09 10 11 12 13 14

€

Figure 8: (g, )-DP guarantees for a single epoch of training when using 1000 disjoint batches and
noise parameter c = 5.0 obtained using the shuffling amplification of (Thm 3.8, [Feldman et al.,
2021). In experiments we use 50 or 60 batches per epoch in which case the DP guarantees of the
shuffling would be even worse.
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