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Abstract

Instructional videos provide a convenient modality to learn new tasks (ex. cooking a recipe,
or assembling furniture). A viewer will want to find a corresponding video that reflects
both the overall task they are interested in as well as contains the relevant steps they need
to carry out the task. To perform this, an instructional video model should be capable of
inferring both the tasks and the steps that occur in an input video. Doing this efficiently
and in a generalizable fashion is key when compute or relevant video topics used to train
this model are limited. To address these requirements we explicitly mine task hierarchies
and the procedural steps associated with instructional videos. We use this prior knowledge
to pre-train our model, Pivot, for step and task prediction. During pre-training, we also
provide video augmentation and early stopping strategies to optimally identify which model
to use for downstream tasks. We test this pre-trained model on task recognition, step
recognition, and step prediction tasks on two downstream datasets. When pre-training data
and compute are limited, we outperform previous baselines along these tasks. Therefore,
leveraging prior task and step structures enables efficient training of Pivot for instructional
video recommendation.

1 Introduction
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Figure 1: We leverage both task hierarchical data as
well as procedural step information to pre-train our
instructional video model Pivot.

Instructional videos are a quick and convenient way
to visually understand how to carry out tasks such
as cooking a meal, filling out an application, or as-
sembling furniture. A viewer then would want to
find the most relevant video recommendations con-
taining a certain cooking ingredient or a furniture
fixture that they are interested in. However, the
videos may not directly provide explicit annotations
for these different steps. Therefore it is important
that these instructional videos can be categorized
within different tasks, and the distinct steps occur-
ring within the videos can be predicted explicitly.

Even when distinct steps within individual videos
are predicted, the video recommendations must be
contextualized to the user’s preferences. If a user
is looking up recipes with chicken, videos related to Chicken Cesar Salad or Chicken Alfredo are equally
relevant. If we also know the user was looking at Italian recipes, the understanding that Chicken Alfredo
pertains to Italian cuisine would be presented. Similarly, if the user was looking at low-carbohydrate meals,
then the additional categorizing salads and soups videos would lead to the recommendation of the Chicken
Cesar Salad. In addition to individual steps within the videos, we benefit from models that can contextualize
the steps within their video-level tasks.
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Typically video representation models learn task-level representations by implicitly learning the relationships
between different steps in different tasks. We explicitly learn these step and task relationships by mining how-
to procedural steps as well as video hierarchy data, illustrated in Figure 1. For example, a video discussing
Chicken Alfredo would be under the categories: Food and then Italian. A model knowing which tasks and
similar steps belong to food prep and Italian cooking leverages both global task information as well as local
step information.

This leads to more efficient video pre-training for instructional fine-tuning tasks, due to this joint contextu-
alization of video and clip-level features on prior hierarchical knowledge and procedural steps respectively.
If the output video embedding aligns with other videos of Italian cooking, then it provides a strong prior
on the procedural steps expected in the video (ex. cut a chicken breast, boil pasta, add Alfredo sauce, etc.)
for downstream step-wise tasks related to Italian cooking. Similarly, such clips observed in a video would
provide a strong prior for downstream video-level tasks for classification and clustering (ex. find similar
recipes).

By explicitly leveraging these prior procedural steps and hierarchy structure, less pre-training data is required
to train the video model from scratch, beneficial in low-resource settings where time, domain-specific data,
or compute is limited. We incorporate these findings with a Procedural-Hierarchical Integrated Video
Transformer (PHIViT or Pivot) model, with the following contributions:

• Architecture: We infer the video’s task hierarchy path in addition to predicting individual steps to
perform joint video-clip pre-training.

• Training: The model uses different video augmentation procedures during pre-training to identify
salient steps and optimal early stopping strategies.

• Evaluation: The model is evaluated on video, clip, and forecasting tasks on two downstream datasets.
We improve performance over previous methods and show which Pivot pre-training settings work
best.

2 Related Works

Pre-training a video model for clip and video-level representation learning relies on a large amount of un-
structured video data. These datasets, such as HowTo100M (Miech et al., 2019) contain automatic speech
recognition captions over the entire continuous video, thus they do not contain explicit steps occurring
within the videos. If steps occurring with videos are discretized, it provides a method of learning a better
representation of instructional videos.

2.1 Mining Procedural Knowledge

Existing works aim to obtain these discrete steps directly from videos. Earlier works aim to first identify
the relevant scenes of the videos by clustering video embeddings to identify the salient steps across videos
to use (Shah et al., 2023). Rohrbach et al. (2022) extracts salient steps by finding repeat steps occurring
across multiple videos and are demonstrated verbally. Similarly Wang et al. (2023) performs this using an
inverse optimal transport problem between text and visual semantic embeddings. Given key steps in the
video, a hypergraph can be created that links the common steps between the videos (Bansal et al., 2024).
This provides a video-oriented approach to mining step-by-step procedures. Paths, consisting of chains of
steps, along these graphs are used to predict the step-by-step actions required. Here smaller thus more
common sub-paths are a more reliable indicator of subsequent steps than any path between two steps (Li
et al., 2023). This is further developed by Zou et al. (2024) through adding ordering constraints of steps. To
generalize the variance of clips representing the same discrete steps, Yang & Silberer (2023) learn a model
with affordance knowledge to identify equivalent entities and behaviors from HowTo100M.

Beyond the video data itself, external sources contain step-by-step procedures for a variety of instructional
tasks, such as wikiHow (Koupaee & Wang, 2018). Zhou et al. (2023b) learns how to convert a linear chain
of steps to create graphs, containing steps that are interchangeable or optional. Works leveraging distant
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Figure 2: Our model, Pivot, pre-trains on instructional videos to predict: a) which procedural steps belong
to each video clip (left), b) where in the video hierarchy the current video belongs to (center), and c) video clip
augmentation and training procedures to learn the joint clip-video representations most effectively (right).

supervision (LwDS) in Lin et al. (2022) and in Narasimhan et al. (2023) Video Taskformer (VideoTF) align
the wikiHow step captions to the clip speech transcripts to provide step pseudo-labels per video clip. Zhou
et al. (2023a) leverages these pseudo-labels to create a Procedural Knowledge Graph (PKG) of step labels
across aligned video clips, therefore leveraging both external knowledge as well as video data to create the
step-by-step instructions for HowTo100M video tasks. These discrete structures can then be used to pre-train
instructional video models.

2.2 Procedural Pre-training

The contrastive pre-trained model (MIL-NCE) Miech et al. (2019) is used to align step description embed-
dings to the video captions embeddings for clip-level tasks, such as step prediction. Zhou et al. (2023a) uses
the PKG to learn a clip lightweight procedural-aware model (Paprika) tuned on multiple video-level and
clip-level pseudo-labels. This model is then used to efficiently contextualize clip embedding inputs into a
shallow Transformer (Vaswani, 2017) for downstream tasks.

Instead of only clip-level inputs, the entire video context consisting of multiple clips can be used for pre-
training. LwDS pre-trains a video-level Transformer to infer the distribution of step pseudo-labels for each
video clip input. VideoTF builds on top of this by testing a masking objective to recover the predicted
steps for random clips. These models learn video-level information implicitly through clip-step prediction
objectives. With Pivot, we jointly learn procedural steps in addition to video-level representations explicitly
within a Transformer.

3 Method

The goal of our approach is to use both prior procedural step-level information as well as task-level hierarchy
metadata to efficiently pre-train video representations for downstream instructional tasks. This involves
inferring the clip-level step labels given a set of prior procedural steps as done in prior work (§3.1). Our
novel contributions involve video-level hierarchical task prediction (§3.2), video clip ordering and selection
(§3.3), and analytical early stopping strategies (§3.4) to efficiently pre-train a video representation model.
These contributions lead to improved downstream performance in task recognition, step recognition, as well
as step forecasting objectives, which are important in recommending the correct instructional videos to users.

3.1 Clip to Procedural Steps Alignment

The first pre-training task involves aligning the clip-level representations with steps associated with that
task occurring in the instructional video. These associated steps can be derived from the videos themselves
to identify a common subset of narrated steps (ex. cut the chicken, boil pasta) along the same video task
(ex. making Chicken Alfredo). Similarly, the steps required for that task can be found on a how-to tutorial
website, such as an online recipe or wikiHow. For each of these instructional tasks T ∈ T , we leverage
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procedural knowledge by using the task steps s ∈ S provided in a sequential order Ti = {s1, s2, . . . , sk}.
Here each s is a text description of that step. The steps may occur in more than one task T and each task
may have a different number of steps.

These steps then have to be aligned with clips x in a video X, where segments for pre-training are not
previously annotated. In this case, each video is segmented into 9.6 second clips. Each clip is further made
out of 3.2 second segments, where 32 frames are fed into the HowTo100M pre-trained MIL-NCE video branch
(Miech et al., 2019) at 10 fps to produce each segment. Then 3 segments are mean pooled to generate each
9.6 second clip representation Xi = {x1, x2, . . . , xn}, as done in Zhou et al. (2023a).

For the alignment, we select the top-scoring pair alignment between the clip and any steps S. The
embeddings are obtained using MPNet (Song et al., 2020), where cosine similarity (sim(·, ·)) is calcu-
lated between each corresponding ASR caption Ci = {c1, c2, . . . , cn} of the 9.6 second clips and each
task step in S. These top scoring pairs constitute pseudo-labels used per clip during pre-training yi =
top-k sim(MPNet(ci), MPNet(s)) ∀s ∈ S corresponding to each clip xi ∈ X. Therefore we have yi ∈ Y as
the complete set of labels for all clips in the video, where |Y | = |X|.

To train Pivot the base architecture is a standard single Transformer encoder layer (TF-Enc). The input
to the model is the entire sequence of mean pooled embeddings X. Then each positional output Pivot(X)i

corresponding to clip xi is fed into a task head, which consists of a two layer MLP with a ReLU activation
function in between. The task head predicts that clip’s distribution over all task steps S to compute a binary
cross entropy (BCE) loss Lstep =

∑
X

∑
yi∈Y BCE(MLP(TF-Enc(X)i), yi). Recall that each yi may contain

multiple step pseudo-labels, depending on our top-k setting.

3.2 Video to Hierarchy Alignment

For the video-level objective, we predict the video’s categorization path within a larger hierarchy. These
paths are categorized by users or are automatically tagged on platforms such as YouTube when a video is
uploaded. We take the hierarchy paths and use our model to predict each node within the hierarchy path
for that video (ex. Food → Italian → Chicken Alfredo). The model that can predict these coarse-to-fine
video topics guides the step-level predictions required, and vice versa.

We define this hierarchy as H and containing nodes n ∈ H. These hierarchy nodes n are associated with a
single parent node and children node(s). At the first level, the hierarchy contains root node(s), which have no
parents. Each level may also contain leaf nodes that have parents, but no subsequent children. Each video
X is already associated with a corresponding hierarchy leaf node nl at level l ∈ [1, L] in the hierarchy, where
L is the max depth of the hierarchy. Therefore, each video X has a corresponding path in the hierarchy
P = {n1, n2, . . . , nl}. This starts with the highest level root node n1 and goes down to the leaf node nl

associated with the video.

Predicting the path P is done by first pooling the position-wise clip outputs TF-Enc(X)i to leverage the
contextualized clip-level representations to generate a video-level embedding v. We test two pooling mech-
anisms. The first is average pooling the positional outputs v = 1

|X|
∑

i TF-Enc(X)i. The second is to stack
another Transformer layer on top of the first one and use the first position classification output embedding
v = TF-Enc(TF-Enc(X))1. Using the single video-level embedding produced from either method, we use
MLP task heads Hi for each level of our hierarchy to predict the correct node at each level of the path using
a cross-entropy loss (CE) Lpath =

∑
v

∑
ni∈P CE(Hi(v), ni).

3.3 Clip Selection and Ordering

During step prediction, Lin et al. (2022) and Narasimhan et al. (2023) reported better results when predicting
over all the steps S across all tasks. However, we study clip selection in the context of our video-level
alignment as well. In this context, we want to ensure that the clips associated with each hierarchy path are
semantically meaningful to infer the video’s topic T . To do so we remove and reorder the clips from the
original sequence of clips by leveraging the procedural steps metadata.
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3.3.1 Clip Thresholding and Filtering

To filter down which clips xi ∈ X are used, we first threshold any associated video captions ci ∈ C and
steps s ∈ S with a dot product above 1.0. This threshold works well in practice when using different
magnitude embeddings from the captions and steps using MPNet. The new subset of clips can be defined
as X ′ = {xi ∈ X | MPNet(ci) · MPNet(s) > 1.0}. This improves the precision of the clips used and avoids
any filler content unrelated to the video topic.

The second filtering method only keeps clips that have step pseudo-labels belonging to the wikiHow steps
of the video’s associated topic T . To do this we find the closest topic that belongs to the video’s node
category. This is done as the hierarchical node names nl (Chicken Alfredo) and the external how-to task
names T (Grandma’s Favorite Italian Alfredo) may not align. Concretely the topic is determined through
arg maxT ∈T sim(MPNet(nl), MPNet(T )). Then we take the complete set of pseudo-labels Y containing
task steps computed for the entire video X, as well as the steps associated with the topic T . From these
pseudo-labels, we only keep the clips whose pseudo-label steps occur in the procedural steps of that topic
X ′ = {xi ∈ X | yi ∈ T}. While the first level of filtering considers similar steps across all possible tasks, this
further refines the selection of relevant clips for that topic.

3.3.2 Clip Reordering

Instructional videos often contain sequences with long temporal gaps between a relevant sequence of clips.
For example, when prepping Chicken Alfredo, one video may present cleaning and cutting the chicken at
the start, while in another video this occurs right before seasoning and cooking. To efficiently learn the
visual alignment between task steps and video clips, we reorder the clips chronologically using the pseudo-
labels Y based on the order present in the task steps T . We augment the reordering by randomly swapping
neighboring clips with a probability of 0.15.

The reordered clips often don’t contain all the steps present in wikiHow and usually contain repeat clips of
a step that occurs over a long duration. In cases with repeat steps, we experiment with randomly selecting
a single step, such that the video contains unique steps.

Note that this selection and reordering augmentations are performed on the sequence of MIL-NCE input
features X before passing them into Pivot for pre-training.

3.4 Pre-training and Early Stopping

Pivot is trained jointly with the clip-level pseudo-labels and the video-level path labels Ljoint = Lstep+Lpath,
where the clips are filtered and reordered based on our selection strategy. The goal is to train generalized
embeddings for auxiliary downstream tasks. These tasks may not share the same pre-training attributes
(tasks, steps, and hierarchy) used during the pre-training procedure. In this case, we want to ensure that
our model learns a generalized representation that does not overfit to our pre-training attributes.

Traditionally, we could keep track of the loss and stop the training once the improvement stops after a
certain number of epochs. However, at this point, the model would have already overfit to our pre-training
attributes. Instead, we observe if the model is capturing the general structure of our pre-training attributes.
This is done by monitoring the model’s accuracy on the clip-to-step prediction task, as these steps are
more likely to overlap with downstream tasks than broader video hierarchy nodes in H or how-to topics
T . However, we do not want to overfit on the step predictions when the downstream steps are different.
Therefore we identify an inflection point of this step accuracy, up to which point the most generalizable
features are learned.

To determine this inflection point, the accuracy metric M = {m1, m2, . . . , m|M |} of step prediction per epoch
number is recorded. From these discrete points, we first fit a polynomial p(e) = a0 + a1e + · · · + anen to
estimate the functional form of the accuracy metric given the epoch by minimizing the least squares error:
arg minp

∑|M |
e=1 |p(e) − me|2. In practice, we set our n = 10. Given this function, we compute the first

derivative and find the epoch that leads to the local maximum p: e∗ = maxe∈[1,K] p′(e). The model from
this epoch e∗ is used for downstream fine-tuning.
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4 Experimental Setup

4.1 Pre-training Setup

We pre-train our model on the HowTo100M dataset, where we use a subset of the data used in Bertasius
et al. (2021). Out of those videos, 30k videos were still available to download, which we use in all of our
baselines, experiments, and ablations.

To obtain the tasks T and instructional steps S, we use the wikiHow corpus (Koupaee & Wang, 2018). We
select the articles following Zhou et al. (2023a), where each article contains a task name and contains high
level step descriptions.

For video hierarchy matching, we extract the hierarchy paths from the HowTo100M dataset (Miech et al.,
2019), where each video is classified within a hierarchy L = 3 levels deep. This consists of the root nodes,
child nodes which are subcategories of the root node, and task (leaf) nodes nl which are subcategories of the
child nodes. The root, child, and task nodes consisted of 17, 105, and 1059 nodes respectively. These are
also the corresponding output prediction sizes for our MLP classifier heads H1, H2, and H3 when training
our Lpath objective.

We jointly train the video and clip level objectives given the clip selection and ordering augmentations
Ljoint = Lstep + Lpath. We used an Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e−4,
a decay of 1e−3, and a batch size of 256. For our proposed method, pre-training for 2000 epochs took 27
hours using four A40 GPUs and 16 CPU threads. The clip-to-step metric was tracked to determine an early
stopping checkpoint. The epoch e∗ that maximized the first derivative function was used for downstream
fine-tuning.

4.2 Fine-tuning Setup

We evaluate our pre-training setup on two datasets: COIN (Tang et al., 2019) and CrossTask (Zhukov et al.,
2019). COIN contains 11.8k videos across 180 tasks arranged in a hierarchical fashion, where the hierarchy
was manually curated (different from HowTo100M). Each clip within the video is annotated with a step
belonging to the video task. CrossTask contains videos across 83 tasks. For evaluation purposes, we tested
18 subtasks with clip-level step annotations with 2.3k videos.

For each dataset, we evaluate over three tasks:

• Task Recognition: Predict the task label from the video using the pooled video-level outputs v.

• Step Recognition: Predict the step associated with each clip, where the position-wise clip embed-
dings from the base Transformer layer are fed directly into a task head for prediction.

• Step Forecasting: Predict the step for the clip, where the input clip embedding is masked. We
ensure that there is always at least one prior clip in the forecasting history.

Each dataset and task is split for training and evaluation following Zhou et al. (2023a). Note that the task
heads used in fine-tuning are newly initialized since they cover different tasks than those in pre-training.
The Adam optimizer settings are kept the same as in pre-training, with a reduced batch size of 16.

4.3 Baseline Methods

We compare our pre-training approach against several baselines. The first baseline is observing the perfor-
mance using the original HowTo100M MIL-NCE embeddings (Miech et al., 2019) in our architecture without
any pre-training.

We also test Paprika (Zhou et al., 2023a), which leverages the relationships between steps across different
tasks within its mined procedural knowledge graph as pseudo-labels. These pseudo-labels are used to define
four different objectives to train a lightweight MLP Procedure-Aware Model on individual clip inputs during
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Table 1: Percentage accuracy for task recognition (TR), step recognition (SR), and step forecasting (SF)
within the COIN and CrossTask datasets across different pre-training methods. All methods were pre-trained
on the same subset of 30k videos. Best performances are in bold while runner-ups are underlined.

Method Pre-Training Task Step COIN CrossTask
Architecture Loss Loss SF SR TR SF SR TR

MIL-NCE - 36.87 38.73 78.30 58.07 57.70 89.43
Paprika MLP ✔ ✔ 42.54 45.57 84.40 59.49 60.01 93.90

LwDS (SC)

Transformer

✔ 37.05 43.42 81.02 59.49 59.84 92.07
LwDS (DM) ✔ 40.60 48.41 85.39 61.04 61.31 94.31

VideoTF (SC) ✔ 37.74 42.05 84.12 57.95 57.58 94.11
VideoTF (DM) ✔ 37.35 38.08 84.87 59.28 60.06 94.92

Pivot (Ours) Transformer ✔ 42.31 46.78 86.70 62.18 62.20 94.72
✔ ✔ 42.68 49.89 87.42 62.00 62.62 94.92

Table 2: The model performances across different pre-training dataset sizes are compared.

Method Pre-Training COIN CrossTask
Videos SF SR TR SF SR

Pivot 30k 42.68 49.89 87.42 62.00 62.62
Paprika 85k 42.65 50.48 85.31 61.42 62.38
Paprika

1.2M
43.22 50.99 85.84 62.63 63.53

LwDS (DM) 39.4 54.1 90.0 - -
VideoTF (DM) 42.4 54.8 91.0 - -

pre-training. This MLP model is used to contextualize the input clip embeddings before feeding them into
the Transformer for the downstream tasks.

Transformer-based baselines are also trained with LwDS (Lin et al., 2022), which also performs clip step
prediction. For the output labels, it computes the similarity between the clip and all wikiHow steps S.
It tests two different label strategies: taking the top-3 scoring discrete labels for step classification (SC)
and continuous probability labels for distribution matching (DM). For fine-tuning it uses a second layer
Transformer to pool the clip representations for inference.

Another method is VideoTF (Narasimhan et al., 2023), which builds on top of LwDS by inferring masked
clip labels instead of inferring all clip labels unmasked inputs. During pre-training it uses a two layer Trans-
former for step prediction. During fine-tuning it further tunes the corresponding task heads for downstream
evaluation.

All baselines used the same pre-training and fine-tuning optimization settings as our method. For pre-
training, each baseline was trained for 2000 epochs. We refer back to the original papers for further imple-
mentation details regarding these baselines.

5 Results

5.1 Baseline Performance

We compare our method against previous works in Table 1. Without any task pre-training, MIL-NCE
provides us with a baseline performance for both COIN and CrossTask. Paprika substantially improves upon
this basis using only a shallow pre-trained embedding model. This further demonstrates that leveraging prior
knowledge within the PKG and well defined objectives leads to efficient pre-training. With Transformer-
based pre-trained models, LwDS improves upon Paprika using the distribution matching strategy over all
step labels. In comparison, VideoTF had lower performance due to its masking learning strategy over our
smaller basis of 30k videos.
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Table 3: Each video input augmentation is tested for Pivot where the relevant step-clips are selected by
a threshold (Thresh), belong the video task (In Task), are in order by the how-to steps (Sort), are unique
steps (Unique), and are randomly swapped with neighboring steps (Swap).

Pooling Thresh In Task Sort Unique Swap COIN CrossTask
SF SR TR SF SR TR

Mean
✔ 37.24 49.05 87.02 62.28 62.43 94.11
✔ ✔ 36.68 49.66 86.9 62.62 62.71 94.31
✔ ✔ ✔ 36.89 49.82 86.94 62.83 62.79 94.11

TF-Enc

✔ 41.59 49.98 87.53 62.21 62.68 94.31
✔ ✔ 41.77 50.25 86.90 62.49 62.65 93.5
✔ ✔ ✔ 42.68 49.89 87.42 62.0 62.62 94.92
✔ ✔ ✔ ✔ 42.28 49.82 86.54 62.18 62.68 93.7
✔ ✔ ✔ ✔ 41.81 49.57 86.38 62.62 63.29 92.89
✔ ✔ ✔ ✔ ✔ 41.33 49.82 86.82 62.65 62.82 93.7

We test our framework initially with just the video hierarchy path alignment objective Lpath using the
Transformer pooling layer to compute the video level embedding v. In this setting, we see improvements
over the baseline results, even when we do not leverage the clip-level labels. This indicates that the right
model architecture and video-level hierarchical data provides the largest improvement in downstream model
performance.

When we use our full model with clip step alignment, we improve the performance further. For the augmen-
tations we: 1) keep clips with dot product similarities above 1.0, 2) are part of the linked task steps, and 3)
are ordered by the step order. We ablate these choices in §5.2.

To understand the data efficiency of Pivot we report the performances of the baseline models given their
original pre-training dataset sizes in Table 2. Compared to Paprika with 85k samples, Pivot outperforms
it with 30k samples. While using the full 1.2M samples, Pivot still has comparable results, with strong
task recognition performance. For LwDS and VideoTF reported with 1.2M samples, improvements are seen
in the step and task recognition methods when simpler step prediction objectives have access to more pre-
training data. An interesting observation is that by leveraging task-level objectives, Pivot and Paprika
add significant gains in forecasting tasks. This is true even when step-objective only LwDS and VideoTF
methods leverage the full data.

5.2 Method Ablations

We ablate the design choices used for our task and clip-level objectives in Table 3. For the task-level objective,
we ablate using a mean or a Transformer encoder (TF-Enc) pooler to predict the hierarchy path steps. For
clip-level designs, we first test thresholding clips whose MPNet dot product between the caption top step
instruction is greater than 1.0. We then test filtering steps that only belong to that video’s task. The clips
can also be sorted by the order in which the steps appear in the task wikiHow. Unique clips based on the
step labels can also be chosen, and finally, neighboring clips can be randomly swapped to increase the input
variance order of the steps per video.

From the task-level pooling, using a second Transformer layer to compute a contextualized video embedding
improves downstream performance using the same clip-level settings.

For clip-level performance, just thresholding the clips already provides comparable performance to other clip
ablation setups. This shows that even a minimum filtering effort of the video segments used during pre-
training can have a large impact on our joint video-clip training. Note that the setting without thresholding
would be the same setup as the LwDS baseline. Using thresholding, task steps and sorting provides similar
performance to thresholding only. However, this setup speeds up pre-training by 2-3x due to the fewer clip
samples required per video input, thus larger batch sizes available (256 versus 92). We observe that adding
unique steps and swapping clips leads to diminishing returns. We hypothesize that this is due to drastic
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Table 4: We test using our analytical early stopping epoch e∗ across all baseline methods. The difference
values are calculated by subtracting the pre-trained model saved at the last epoch (2000) from the optimal
stopping epoch (accuracy epoch e∗ - accuracy epoch 2000).

Method Stop COIN CrossTask
Epoch SF SR TR SF SR TR

Paprika 400 41.61 (-0.93) 42.82 (-2.75) 82.53 (-1.87) 56.46 (-3.03) 55.89 (-4.12) 93.7 (-0.20)
LwDS (SC) 1000 37.77 (+0.72) 43.05 (-0.37) 81.54 (+0.52) 59.18 (-0.31) 60.4 (+0.56) 91.67 (-0.40)
LwDS (DM) 200 39.24 (-1.36) 44.39 (-4.02) 86.98 (+1.59) 62.12 (+1.08) 62.62 (+1.31) 94.11 (-0.20)

VideoTF (SC) 800 37.75 (+0.01) 43.46 (+1.41) 83.8 (-0.32) 60.11 (+2.16) 60.81 (+3.23) 94.11 (+0.00)
VideoTF (DM) 500 38.01 (+0.66) 42.7 (+4.62) 84.52 (-0.35) 59.12 (-0.16) 60.26 (+0.20) 94.72 (-0.20)

Pivot 150 42.68 (+0.18) 49.89 (+2.17) 87.42 (+0.77) 62.00 (-0.65) 62.62 (+0.53) 94.92 (+0.20)
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Figure 3: Pre-trained models from different epochs are tested on downstream COIN task recognition (red
line) and step recognition (blue line) tasks. The derivative of the clip step accuracy p′(x) is also plotted
(black line), where the max value represents the analytical early stopping point (dashed line). The saturation
based early stopping with no improvements over 50 epochs is also presented as a reference (dotted line).

reduction in the number of clips per video, where the variance in the steps and their natural order in videos
is lost.
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5.3 Early Stopping Results

During the evaluation of our method, we took the early stopping pre-training checkpoint associated with
the clip step prediction accuracy. We also test using the same early stopping approach for the baseline
methods and report them in Table 4. Here the average accuracy performance change from epoch 2000 to
our analytical stopping checkpoint is -0.30 across all baseline methods and a change of 0.53 for our Pivot
method. This indicates that the downstream performance is preserved even when running on average for
508 out of 2000 epochs. Note that during our experiments we saved the model checkpoint every 50 epochs,
while the epoch metrics were kept every epoch.

We also visualize the early stopping criterion versus downstream performance of COIN step and task recog-
nition experiments in Figure 3. The general trend across different pre-training setups is that downstream
performance peaks around a certain epoch. This epoch is typically closer to our analytically computed early
stopping point than a typical saturation-based stopping, which is determined by no step accuracy improve-
ment over 50 epochs. We can observe here that in our post hoc evaluation of neighboring epochs, that
optimal checkpoints may vary but remain close to the analytical epoch, under different pre-training settings.
During our experimentation, we selected the saved checkpoint closest to this optimal epoch.

Here it is also shown that using our selected method of thresholding, in task, and sorting methods for
clip tasks also have a faster convergence time while providing comparable performance to thresholding only
augmentations. This adds to our previous motivation of using fewer clips during pre-training, to allow for
faster training and faster stopping. Removing the sorting leads to more variance for the model to learn, and
doubles the epochs required. Using only thresholding requires the greatest number of epochs for convergence
since each video may contain steps from different tasks and in different orders. In general, we show that
it is possible to identify optimal stopping points when learning clip-level representations, thereby reducing
computational costs.

6 Conclusion

Instructional videos provide viewers with a convenient way of learning new tasks based on their interests
and the materials they have available to carry out the task. Therefore it is important to identify these video
topics and the intermediate steps that pertain to them. We leverage two levels of prior knowledge through
these how-to steps corresponding to videos in addition to the video’s task in a larger task hierarchy structure.
Leveraging these explicit knowledge structures allows our model to pre-train across different video topics
more efficiently. This differs from implicitly learning task-level representations from individual clips, which
requires more data, time, and compute to pre-train.

This is demonstrated by pre-training Pivot on 30k instructional videos and testing its capabilities on three
downstream tasks involving task recognition, step recognition, and step forecasting across two different
datasets. In these settings, Pivot outperforms previous procedural pre-training methods as it efficiently
incorporates step and task-level supervision within a Transformer encoder. We also present practical pre-
training augmentation strategies as well as early stopping analysis to improve the compute as well as per-
formance efficiencies of our pre-training method. With this work, we push to further understand how to
mine, and leverage structured data within models of complex modalities, such as video, in a generalizable
manner.
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