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Abstract: We present a scalable approach for learning open-world object-goal nav-1

igation (ObjectNav) – the task of asking a virtual robot (agent) to find any instance2

of an object in an unexplored environment (e.g., “find a sink”). Our approach is3

entirely zero-shot – i.e., it does not require ObjectNav rewards or demonstrations4

of any kind. Instead, we train on the image-goal navigation (ImageNav) task, in5

which agents find the location where a picture (i.e., goal image) was captured.6

Specifically, we encode goal images into a multimodal, semantic embedding space7

to enable training semantic-goal navigation (SemanticNav) agents at scale in8

unannotated 3D environments (e.g., HM3D). After training, SemanticNav agents9

can be instructed to find objects described in free-form natural language (e.g.,10

“sink,” “bathroom sink,” etc.) by projecting language goals into the same multi-11

modal, semantic embedding space. As a result, our approach enables open-world12

ObjectNav. We extensively evaluate our agents on three ObjectNav datasets13

(Gibson, HM3D, and MP3D) and observe absolute improvements in success of14

4.2% - 20.0% over existing zero-shot methods.15

1 Introduction16

Imagine asking a home assistant robot to find a “flat-head screwdriver” or the “medicine case near17

the bathroom sink.” Building such assistive agents is a problem of deep scientific and societal value.18

To study this problem systematically, the embodied AI community has rallied around a problem called19

object-goal navigation ( ObjectNav) [1]. Given the name of an object (e.g., “chair”), ObjectNav20

involves exploring a 3D environment to find any instance of the object. The last few years have21

witnessed the development of new environments [2, 3, 4, 5, 6], annotated 3D scans [7, 8, 9], datasets22

of human demonstrations [10], and approaches for ObjectNav [11, 12, 13, 14, 15, 16], cumulatively23

leading to strong progress. For instance, the entries in the annual Habitat challenge [17] have jumped24

from 6% success (DD-PPO baseline in 2020) to 53% success (in ongoing 2022 Habitat Challenge).25

While this progress is exciting, we believe that a subtle but insidious assumption has snuck into this26

line of work: the closed-world assumption. We started by discussing an open-world scenario where27

a person may describe any object in language (e.g., “flat-head screwdriver”), but ObjectNav is28

currently formulated over a closed predetermined vocabulary of object categories (“chair”, “bed”,29

“sofa”, etc.), with approaches using pre-trained object detectors and segmenters for these categories [10,30

11, 12, 13]. While this assumption may have been essential to get started on this problem, it is now31

important to move beyond it and ask – how can embodied agents find objects in an open-world setting?32

In this work, we develop an approach for ObjectNav that is both zero-shot, i.e., does not require33

any ObjectNav rewards or demonstrations, and open-world, i.e., does not require committing to a34

taxonomy of categories. Our key insight is that we can create a visiolinguistic embedding space to35

decouple two problems – (1) describing and representing semantic goals (“chair”, “brown chair”,36

picture of brown chair) from (2) learning to navigate to semantic goals.37
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Figure 1: We tackle both ImageNav and ObjectNav via a common SemanticNav agent. This agent
accepts a semantic goal embedding (sg), which comes from either CLIP’s visual encoder (CLIPv) in
ImageNav or CLIP’s textual encoder (CLIPt) in ObjectNav.

To represent semantic goals (1), we leverage recent advances in multimodal AI research on learning38

a common embedding space for images and text using large collections of image-captions pairs.39

Specifically, we use CLIP [18], a method for training dual vision and language encoders that40

produce similar representations for paired data such as an image and its caption. We use CLIP to41

transform image-goals (e.g., a picture of the kitchen island) and object-goals (e.g., “bathroom sink”)42

into semantic-goals representing navigation targets. Our main observation is that a semantic-goal43

produced from an image (e.g., a picture of the bathroom sink) should be similar to semantic goals44

produced from descriptions of the same target (e.g, “bathroom sink”). Thus, we hypothesize that45

these modalities (images and language) can be used interchangeably for creating semantic goals.46

Accordingly, for learning to navigate to semantic goals (2), we train agents using image-goals encoded47

via CLIP’s image encoder. Then, we evaluate the learned navigation policy on ObjectNav, where48

goals are specified in language (e.g., “chair”) and encoded via CLIP’s text encoder. As a result, our49

agents perform ObjectNav without ever directly training for the task – i.e., in a zero-shot manner.50

We perform large-scale experiments on three ObjectNav datasets – Gibson [4], MP3D [8], and51

HM3D [19]. Our zero-shot agent (that has not seen a single 3D semantic annotation or ObjectNav52

training episode) achieves a 31.3% success in Gibson environments, which is a 20.0% absolute53

improvement over previous zero-shot results [20]. In MP3D, our agent achieves 15.3% success, a54

4.2% absolute gain over existing zero-shot methods[21]. For reference, these gains are on par or55

better than the 5% improvement in success between the Habitat 2020 and 2021 ObjectNav challenge56

winners. On HM3D, our agent’s zero-shot SPL matches a state-of-the-art ObjectNav method [16]57

that trains with direct supervision from 40k human demonstrations.58

2 Related Work59

Zero-Shot ObjectNav. Two recent works [20, 21] directly address our motivation (zero-shot60

ObjectNav) and are most related. First, ZER [20] proposes a two-stage framework in which an61

image-goal navigation (ImageNav) agent is first trained from scratch. Then, independent encoders62

are trained to map from various modalities (including language) into the image-goal embedding63

space. A key challenge with this approach is that image-goal embeddings may not capture semantic64

information because semantic annotations are not used in ImageNav training. Instead, an ImageNav65

agent trained from scratch may learn to pattern match visual observations and goal image embeddings.66

By contrast, our approach reverses these two stages, with CLIP pretraining representing stage one.67

Thus, our approach uses a goal embedding space that captures semantics by design. We empirically68

demonstrate the benefits of our proposed approach in Section 4.69

In concurrent work, CLIP-on-Wheels (CoW) [21] uses a gradient-based visualization technique70

(GradCAM [22]) with CLIP to localize objects in the agent’s observations. This is combined with a71
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heuristic exploration policy to enable zero-shot object-goal navigation. In contrast, we demonstrate72

that learning a navigation policy can substantially outperform the heuristic exploration approach73

proposed in [21] without using explicit object localization techniques.74

3 Approach75

This section describes our framework for training visual navigation agents. We use CLIP [18] to76

produce semantic goal embeddings of image-goals (e.g., a picture of the sink) and object-goals (e.g.,77

“sink”). This allows training semantic-goal navigation agents at scale using image-goals in HM3D78

environments [19], then deploying these agents for object-goal navigation in a zero-shot manner. In79

other words, our agents execute object-goal navigation without ever directly training for the task.80

Learning Semantic-Goal Navigation As illustrated in Fig. 1 (top-left), given an image-goal vg,81

we use a CLIP visual encoder CLIPv to generate a semantic goal embedding sgv = CLIPv(vg) that82

is used to guide navigation. Conceptually, encoding image-goals with CLIP preserves semantic83

information about the goal, such as visual concepts that might be described in image captions (e.g.,84

“a sofa in a living room”). However, semantic goal embeddings are less likely to include low-level85

features (e.g., the exact patterns in a wood floor) that do not correlate with web-scraped captions.86

While removing low-level information might make the pretraining task more difficult, our goal is87

to learn a policy that transfers to ObjectNav in which agents only receives high-level goals (e.g.,88

“Find a sofa”). As an added benefit, generating semantic goal embeddings as a pre-processing step89

substantially improves training time (by ∼3.5x).90

Our agent architecture is shown in Fig. 1. At each timestep t, our agent receives an egocentric91

RGB observation vt and a goal representation sgv . The observation is processed by a ResNet-50 [23]92

encoder, which is pretrained on the Omnidata Starter Dataset (OSD) [24] using self-supervised93

learning (DINO [25]) following the pretraining recipe presented in OVRL [16]. The output from the94

ResNet-50 encoder is concatenated with the goal representation sgv and an embedding of the agent’s95

previous action at−1 and then passed to the policy network composed of a two-layer LSTM. The96

policy network outputs a distribution over the action space. We train our SemanticNav agent with97

reinforcement learning (RL). Specifically, we train with DD-PPO [26] using two data augmentation98

techniques: color jitter and random translation (adapted from [16]).99

Zero-Shot Object-Goal Navigation In ObjectNav [1], agents are given a target category (e.g.,100

“sofa” or “chair”) and must locate any instance of that object (i.e., “any sofa” or “any chair”). Similar101

to ImageNav, ObjectNav requires exploring new environments that the agent has never seen before.102

However, in ObjectNav, the goal (e.g., “sofa”) provides a minimal amount of information about103

where the agent must go and it requires recognizing any version of the goal object in the new scene.104

To address this task, we transform object-goals og (e.g., “sofa”) into semantic goal embeddings using105

the CLIP text encoder CLIPt, which results in the semantic goal sgo = CLIPt(og). CLIP aligns image106

and text, thus the semantic goals from text sgo should be close (in terms of cosine similarity) to the107

CLIP visual embeddings sgv used in training. To keep our approach simple and easily reproducible,108

we do not use any prompt engineering (e.g., using a template such as “A photo of a <>”). Instead,109

we simply use the object name (e.g., “sofa”) as the object-goal input og .110

4 Experiments111

Experimental Setup We training our SemanticNav agents using the 800 training environments112

from HM3D [19], and measure performance on one ImageNav and three ObjectNav datasets. This113

requires using two different agent embodiments termed configuration A and B below. We compare114

with, to the best of our knowledge, the only two existing zero-shot methods for object-goal navigation115

(ObjectNav): (1) Zero Experience Required (ZER) [20] and(2) CLIP on Wheels (CoW) [21].116
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Table 1: Zero-shot ObjectNav performance on Gibson [4], HM3D [19], and MP3D [8] validation.
Our approach (ZSON) substantially improves on previous zero-shot methods and narrows the gap to
SOTA fully-supervised methods such as OVRL [16], which is provided for reference.

ImageNav
(Gibson)

ObjectNav
(Gibson)

Method SPL SR SPL SR

OVRL [16] 27.0% 54.2% - -

ZER [20] 21.6% 29.2% - 11.3%
ZSON (ours) 28.0% 36.9% 12.0% 31.3%

(a) Configuration A

ObjectNav
(HM3D)

ObjectNav
(MP3D)

Method SPL SR SPL SR

OVRL [16] 12.3%∗ 32.8%∗ 7.0% 25.3%

CoW [21] (w/depth) - - 6.3% 11.1%
ZSON (ours) 12.6% 25.5% 4.8% 15.3%

(b) Configuration B

Zero-Shot Object-Goal Navigation Results In Table 1a, we compare with ZER [20] using117

configuration A. Notice that our agent is stronger on ImageNav, the base pretraining task before118

ObjectNav can be studied. Specifically, we observe a 7.7% improvement in success rate SR (29.2%119

→ 36.9%). This improvement results from (1) learning to navigate to semantic goal embeddings (as120

proposed in this work) instead of navigating to image-goal embeddings that are learned from scratch121

(as done in ZER), (2) using more diverse training environments, and (3) from using a pretrained visual122

encoder. We ablate factors (2) and (3) in the next, and observe improved performance from factor (1)123

alone. In Table 1a, we see even larger improvements in ObjectNav SR of 20.0% (11.3% → 31.3%).124

These results indicate that our design decisions are particularly useful for zero-shot ObjectNav.125

In Table 1b we compare with CoW [21] using configuration B. On MP3D, we observe that ZSON126

improves ObjectNav SR by 4.2% absolute and 37.8% relative (11.1% → 15.3%). These results127

demonstrate that learning a navigation policy improves zero-shot ObjectNav SR over the hand-128

designed exploration strategy proposed by CoW. Moreover, we expect further improvements in129

zero-shot ObjectNav performance from scaling our approach (e.g., by collecting more training130

environments). On HM3D we find that our agent achieves a strong SR of 25.5% and SPL of 12.6%.131

Impressively, this zero-shot SPL matches OVRL [16], which is directly trained on 40k human132

demonstrations [10] for the ObjectNav task with imitation learning.133

Table 2: Comparison with ZER [20] using a ResNet-9 and the Gibson dataset with our approach.
Learning SemanticNav (Ours) outperforms learning ImageNav then language grounding (ZER [20]).

ImageNav
(Gibson)

ObjectNav
(Gibson)

Method Visual
Encoder

Training
Dataset SPL SR SPL SR

ZER [20] ResNet-9 Gibson 21.6% 29.2% - 11.3%
Ours ResNet-9 Gibson 22.8% 33.3% 7.4% 15.3%

Comparison with ZER without encoder pretraining or diverse training environments. In Ta-134

ble 2, we train in Gibson environments (instead of HM3D) and do not use a pretrained observation135

encoder. These settings match ZER [20], allowing for a direct comparison between the two methods.136

We observe that our approach results in a 4.0% absolute and 35% relative improvement in zero-137

shot ObjectNav success (11.3% → 15.3%). These results demonstrate that learning to navigate to138

semantic-goal embeddings outperforms the inverse approach proposed by ZER of first training for139

ImageNav, then learning a mapping from object categories into the image-goal embedding space.140

Discussion. We present a zero-shot method for learning open-world object-goal navigation141

(ObjectNav). Our approach involves projecting image-goals into a semantic-goal embedding space142

using an image-and-text alignment model (CLIP). This creates a semantic-goal navigation task that143

does not require annotated 3D environments or collecting human demonstrations. Thus, our method144

is easy to use for large-scale pretraining of visual navigation agents.145
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