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Abstract

Mathematical reasoning is a crucial capability for Large Language Models (LLMs),
yet generating detailed and accurate reasoning traces remains a significant chal-
lenge. This paper introduces a novel approach to produce high-quality reasoning
traces for LLM fine-tuning using online learning Flows. Our method employs
an incremental output production Flow, where component LLMs collaboratively
construct solutions through iterative communication. We train the Flow using
online Direct Preference Optimization (DPO) learning with rollouts, generating
DPO pairs for each training example and updating models in real-time. We di-
rectly compare the quality of reasoning traces generated by our method with those
produced through direct model inference, demonstrating the effectiveness of our
approach in improving LLM performance in mathematical reasoning tasks.

1 Introduction

Mathematical reasoning is a fundamental and vital aspect of Large Language Model (LLM) capabili-
ties, as it is intrinsically linked to logical consistency and problem-solving abilities (Yu et al., 2023}
Lu et al.;[2023;|Zhang et al.| [2024c} |Gao et al.| 2024} [Liu et al.| |2024)). This area has gained significant
research interest, partly due to the ease with which results can be verified. Despite the abundance
of datasets containing mathematical questions and answers, generating detailed, accurate, and clear
reasoning steps remains a significant challenge. While human annotators excel at providing correct
answers, their intermediate steps are often too concise or disorganized, rendering the data inadequate
for training LLMs. Consequently, researchers increasingly utilize LLM-generated reasoning traces for
model fine-tuning. Given the limited feedback provided by mere correctness of final answers, there is
growing interest in having the target model generate its own reasoning traces for self-improvement.
This approach is particularly relevant in two scenarios: (1) advancing a frontier model (i.e., enhancing
a model that is already among the best available), and (2) addressing the high costs associated with
using large closed-source models compared to smaller open-source alternatives.

Previous research in this domain has primarily focused on collecting accurate reasoning traces from
the model itself through inference and filtering (Zelikman et al., 2022} |Yuan et al.| 2023 |Singh
et al.;|2023; Hosseini et al., 2024} [Pang et al.,|2024} |Zelikman et al., [2024)), subsequently utilizing
these traces for Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO) (Rafailov,
et al.,|2024). Rejection sampling Fine-Tuning (RFT) (Yuan et al.| 2023), a standard and effective
approach, augments training data by collecting and filtering unique model responses that yield correct
answers. This method is commonly associated with outcome reward, which is based on the final
answer. Consequently, another research avenue explores process reward, aiming to generate superior
reasoning traces through step-by-step verification or reward mechanisms. While human annotation of
each reasoning step has been shown to significantly enhance model performance (Lightman et al.|
2023)), the substantial cost of such annotations has led researchers to approximate process reward by
treating reasoning steps that result in correct answers as preferred steps (Wang et al.|, [2024a; Zhang
et al.| [2024b; [Lai et al.| 2024} Wang et al., 2024b). In essence, given identical training prompts
(questions) and desired outcomes (answers), the research community is actively seeking effective and
efficient methods to generate high-quality reasoning traces for LLM fine-tuning. This process can be
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conceptualized as a two-step approach: the data collection step, which aims to identify a “Better”
operator for trace production, and the SFT step, which “Compiles” the collected data into a single
LLM model in a System 1 fashion.

This paper focuses on designing a novel and improved pipeline for obtaining high-quality reasoning
traces. We directly compare the quality of reasoning traces generated by our method with those
produced through direct model inference, using the same volume of data for SFT, filtering on the
correct answers and comparing the SFT-ed model performances. Our approach proposes the use of
online learning Flows to generate such traces, as opposed to single model inferences. These Flows
comprise a collection of component LLMs based on the same architecture, which collaboratively
construct solutions through iterative communication (Mineirol 2024)). Specifically, we introduce an
incremental productions flow, wherein one LLM generates a limited number of tokens as answer
chunks, while another determines whether the maintained partial answer has reached completion.
Furthermore, we train our Flow using online DPO learning with rollouts, generating a batch of DPO
pairs for each training example at every answer chunk and updating the models as the training data
comes in. This core concept aligns with process reward models (PRMs) (Lightman et al., [2023]),
aiming to generate superior traces incrementally, thus providing denser rewards during fine-tuning.
Our method offers greater flexibility by not constraining itself to predefined “reasoning steps”. Instead,
it allows for adjustable chunk sizes, accommodating fine-grained chunks of mere dozens of tokens
and generalizing to outcome reward models when larger chunk sizes are employed. Lastly, our
approach remains compatible with further enhancements such as data augmentation and DPO.

2 Method
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appended. This partial answer is then evaluated by the Stop LLM to determine whether the com-
plete response has been achieved. This iterative process continues until the Stop LLM signals the
completion of the final answer. Thus, the Flow incrementally constructs the response, with smaller
chunk sizes enabling more granular control and larger chunk sizes approximating single-pass model
generation. Notably, both the Answer LLM and Stop LLM start from the same base model but are
fine-tuned with distinct LoRA adaptors to specialize in their respective tasks.
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Online Flow Learning with Rollouts. We further enhance the Flow through online DPO learning,
incorporating random rollouts at each output node. Figure[2]illustrates this training process. For each
input question, the Flow initiates with the Answer LLM generating an answer chunk, continuing
until a complete response is produced. Given this output chain, we then perform a random rollout
at each output node. For instance, after the initial answer chunk generation and the Stop agent’s
"No" determination, we allow the Flow to generate an alternative answer chunk, building upon the
previous partial answer. This process continues until a second complete answer is reached. If the
two answers differ in correctness, we consider them a DPO pair for the Answer LLM, with the
chunk leading to the correct answer chosen as the preferred response. Importantly, both the Answer
LLM and the Stop LLM are involved in these rollouts and subsequent fine-tuning, with the latter
being evaluated on its stopping decisions. For each training instance comprising a question and an
answer, we generate a batch of DPO pairs to train both LLMs. This approach enables an online
training scheme, updating the models incrementally as new data is processed. This methodology
shares similar intuition with the concurrent MCTS-based approaches (Zhang et al., [2024alb), which



traverses the tree of reasoning steps by selecting the most promising child steps until an answer is
reached. From each newly expanded step, they perform a random rollout to estimate the reward of
that step. However, we only perform one random rollout at each node without traversing through a
tree for better efficiency. Additionally, rather than optimizing over pre-defined reasoning steps, we
perform online DPO learning on fine-grained answer chunks.
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Figure 2: Illustration of the DPO training with rollouts. At each node of the initial generation, we do
a random rollout that is different from the original node and continue generation to a final answer. A
pair that leads to different answers (correct and incorrect) is considered a DPO training data.

3 Results
3.1 Experiment Setup.

In our experiments, we consider one LLM model for the entire Flow (Answer LLM and Stop LLM) as
well as the Compile step. For the model, we employ two recent and competitive models of different
scales: Llama-3-8B-Instruct and Phi-3-medium-128k-instruct (14B). To investigate the
effectiveness of our method, we utilize MetaMath (Yu et al.,[2023) as the training dataset. MetaMath
is derived from the training data of GSMS8K (Cobbe et al.|[2021) and MATH (Hendrycks et al.| 2021)),
enhanced through data augmentation techniques. We evaluate the quality of reasoning traces during
the Compile step on both GSM8K and MATH datasets. In the Flow learning phase, we use separate
LoRA adapters for the Answer LLM and Stop LLM to specialize their capabilities during DPO
training. In the Compile phase, we collect an equal amount of data with traces that lead to correct
answers from the flow and the baseline, enabling an independent assessment of reasoning quality by
examining how it enhances a single model’s performance through SFT. We uniformly used a subset
of 1, 500 data from MetaMath for all baselines in Compile. For consistency across all baselines, we
maintain identical hyperparameters and system prompts in both the SFT process and evaluation.

3.2 Progressive Validation Accuracy

We begin by examining the progressive validation accuracy of the Flow during online DPO training
with rollouts. Progressive validation accuracy is defined as the cumulative accuracy of the model on
incoming training data prior to training:

N
1 .
ACC;YOg = N E H(@(Zil) (Xi) = yz),
i=1

where NV is the number of seen training data, represents the language model fine-tuned on the first i —1
data points, x; is the ¢-th question in data and y; is the correct answer. This metric serves as a reliable
indicator of the Flow’s generalization performance throughout the training process. Figures [3]and f]
illustrate the progressive validation accuracy of our Flow, both with and without training, alongside
the zero-shot performance of a single LLM generating reasoning and answers in one step. Without
training, the Flow’s inference accuracy marginally underperforms that of the standalone model. This
discrepancy indicates the Flow’s initial inefficiency in managing task-specific requirements, such as
explicitly determining when to conclude reasoning or continue based on partial answers. These results
highlight the importance of the training process in optimizing the Flow’s performance for complex
reasoning tasks. Meanwhile, online DPO training effectively enhances the Flow’s ability to generalize
to new data during online learning across various LLM models. For the L1ama-3-8B-Instruct
model, online DPO learning significantly improves the Flow’s performance by 20% within just 2,000
training instances. Similarly, for the Phi-3-medium-128k-instruct model, which demonstrates



strong initial performance in mathematical reasoning with a 79% zero-shot accuracy on the training
data, online DPO learning yields a notable improvement of 4 percentage points, reaching nearly
83% accuracy. We note that, the online training scheme enables us to use the progressive validation
accuracy as a good indicator for early stopping.
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3.3 Compile

To assess the quality of flow-generated reasoning traces, we compare them with model-generated
traces produced in the Compile step, where we use the collected reasoning traces for SFT on a single
LLM. We establish baselines using the model’s zero-shot accuracy and its performance after SFT with
ground truth traces from the dataset. Additionally, we consider model-generated correct traces for
SFT as a strong and widely-used self-training baseline (Yuan et al., {2023} [Singh et al.| 2023} |[Hosseini
et al.,|2024)). To ensure a fair comparison of trace quality, we maintain consistent data volumes across
all baselines, focusing exclusively on traces that lead to correct answers. The comparative results are
presented in Table

Table 1: Main results of comparing the quality of traces used for SFT. We report the accuracy (%) for
each model fine-tuned on an identical set of prompts, but with varying answer sources. For Phi-3, we
does not include GSMS8K due to its already optimized performance on the dataset.

Model Method GSMSK MATH
0-shot 48.9 22.3
SFT (ground-truth) 67.2 25.1
SFT (self-generated) 68.8 24.2
SFT (Flow-generated) 71.3 27.8

Llama-3-Instruct (8B)

0-shot - 354

. . SFT (ground-truth) - 36.3
Phi-3-Medium (14B)

SFT (self-generated) - 36.5

SFT (Flow-generated) - 38.6

3.4 Qualitative Analysis.

We present a qualitative analysis comparing the reasoning traces generated by our proposed flow
method with the ground-truth annotations from the dataset. Through examination of example
questions, we demonstrate that while both approaches arrive at correct answers, the flow-generated
reasoning traces provide more detailed instructional guidance. To validate these observations, we
employed GPT-40 to conduct a systematic qualitative evaluation of response quality. The evaluation
results align with our observations, indicating that flow-generated responses (Response B) have better
quality. Specifically, it emphasized that flow-generated reasoning traces provides clearer instructional
guidance by emphasizing key concepts, such as the negative reciprocal relationship between the
slopes of perpendicular lines, while maintaining a logical, step-by-step solution process. The response
avoids unnecessary complexity, focusing on essential steps, which improves accessibility and ease of
understanding. We provide an additional example in Appendix



Reasoning Traces Example

Question:
The graph of the equation = + 2y + 3 = 0 is perpendicular to the graph of the equation
ax + 2y + 3 = 0. What is the value of a?

Response A (Ground-truth):

The graph of the equation x + 2y + 3 = 0 has a slope of f%. Since the graphs are
perpendicular, the slope of the graph of ax + 2y + 3 = 0 must be the negative reciprocal of
—%, which is 2. So, the equation ax + 2y + 3 = 0 has a slope of 2. To find a, we can rewrite
the equation as 2y = —az — 3 and divide both sides by 2 to get y = — 5z — % Comparing this

to the slope-intercept form y = mx + b, we see that the slope m is —5. Since we know the

slope is 2, we have —% = 2. Multiplying both sides by —2, we get a = . The answer is: -4

Response B (Flow-generated):

To solve this problem, we need to understand the concept of perpendicular lines in the
context of linear equations. When two lines are perpendicular, their slopes are negative
reciprocals of each other.

Let’s start by rewriting the given equation x + 2y + 3 = 0 in the slope-intercept form, which

isy = —éT = 5 This tells us that the slope of the line is —%.
Now, we need to find the slope of the line represented by the equation ax + 2y + 3 = 0. We
can do this by rewriting the equation in the slope-intercept form, which is y = — Sz — %

This tells us that the slope of this line is —3.
Since the two lines are perpendicular, their slopes are negative reciprocals of each other.
This means that —% - (—%) = 1, which simplifies to a = —4.

Therefore, the value of a is .

GPT-40 Evaluation:
Response B is better, and here’s why:

1. Conceptual Explanation

Response A correctly identifies that the two lines are perpendicular and correctly uses the
negative reciprocal relationship between the slopes to solve for a. However, it jumps into
the algebra without much explanation of why the slopes should be negative reciprocals of
each other. Response B takes the time to explicitly explain the concept of perpendicularity,
emphasizing that the slopes of perpendicular lines are negative reciprocals. This makes the
response more educational and ensures the reader understands the reasoning behind the
math.

2. Clarity in Solving

Response A derives the correct equation and solves it correctly but introduces some
unnecessary steps. For instance, the intermediate steps involving rewriting the equation
as 2y = —ax — 3 and dividing both sides by 2 are more complicated than necessary.
Response B simplifies the approach by immediately focusing on the slope-intercept form
of both equations. It efficiently explains how to extract the slope and directly compares
the slopes of the two equations, making the process more straightforward and easier to follow.

Conclusion:

Response B provides a clearer and more thorough explanation, focusing on both the concept
and the algebra, while avoiding unnecessary complications. Its step-by-step approach makes
it more accessible and easier to follow.

4 Conclusion

We present an effective approach for generating high-quality reasoning traces using a given LLM,
thereby enhancing its mathematical reasoning capabilities. Our method introduces Flow, a multi-agent
conversation framework that leverages multiple LLMs to collaboratively solve complex problems
through iterative communication. We further refine this framework using online DPO learning with
rollouts. Empirical evaluations across various LLM scales on widely-used mathematical benchmarks
demonstrate the efficacy of our method, revealing that Flow-generated traces exhibit superior quality
compared to both ground-truth and model-generated correct traces. The adaptability of our approach
in accommodating different chunk sizes and its applicability to diverse complex reasoning tasks
underscore its potential scalability across various scenarios and domains. Future research directions
may include optimizing the training process, investigating the impact of increased data, and extending
our methodology to other fields requiring sophisticated reasoning capabilities.
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A Experiment Details
A.1 Additional Qualitative Analysis

In the example below, we show an additional qualitative example, which similarly indicates that
flow-generated responses (Response B) have better quality. The GPT-40 evaluation emphasized
that flow-generated reasoning traces provides structured, step-by-step explanations that enhance
comprehensibility. Furthermore, the evaluation highlighted the notable improvement in both clarity
and explanatory depth within individual reasoning steps generated by our flow method.

Reasoning Traces Example

Question:
Riku has 25 times more stickers than Kristoff. If Kristoff has x stickers, Riku has 2210
stickers. What is the value of unknown variable x?

Response A (Ground-truth):

To solve this problem, we need to determine the value of x, which represents the number of
stickers Kristoff has. We know that Riku has 25 times more stickers than Kristoff. Therefore,
Riku has x 4+ 25x = 26x stickers. We also know that Riku has 2210 stickers. We can set up
the equation as follows: 26x = 2210 Let’s solve for x: x = 2210 / 26 x = 85 The value of x
is 85. #### 85 The answer is: 85

Response B (Flow-generated):

Let’s break this problem down step by step.

We know that Riku has 25 times more stickers than Kristoff. This means that Riku’s sticker
count is 25 times Kristoff’s sticker count.

We are also given that Riku has 2210 stickers. So, we can set up an equation:
Riku’s stickers = 25 x Kristoff’s stickers + Kristoff’s stickers

Since Riku has 2210 stickers, we can substitute this value into the equation:
2210 = 25 x Kristoff’s stickers + Kristoft’s stickers

Now, let’s simplify the equation by combining the terms:

2210 = 26 x Kristoff’s stickers

To solve for Kristoft’s stickers, we can divide both sides of the equation by 26:

GPT-40 Evaluation:
Response B is better, and here’s why:

1. Clarity and Structure

Response A jumps straight into the math, stating the equation and solving it quickly.
However, it lacks the step-by-step breakdown, which is important when explaining the
reasoning behind the solution. Response B explains the problem in a more detailed and
structured manner. It starts by clarifying the relationship between the number of stickers
Riku and Kristoff have and then carefully sets up the equation. This approach is more
instructional, making it easier for the reader to follow the logic behind the solution.

2. Correct Interpretation of the Problem

Both responses solve the problem correctly by deriving the equation 26z = 2210 and solving
for x = 85. Response A has an issue in wording, where it states, “Riku has x 4+ 25x =
26x stickers.” While the math is correct, the way it’s worded is slightly misleading because
saying “25 times more” is interpreted differently than “25 times as many.” Response B
clarifies this better by stating “Riku’s sticker count is 25 times Kristoff’s sticker count.”

3. Educational Value

Response B takes the time to simplify the equation and explain each step, making it more
effective for a student or learner to understand the process. It also uses better terminology
like “simplify the equation” and breaks down the division, which enhances the educational
quality of the response.

Conclusion:
Response B provides a more thorough, structured, and pedagogically sound explanation. It
guides the user through the problem, making it easier to understand each step.

A.2 Hyperparameters

Experiments were conducted on NVIDIA RTX A100 (80G) GPU clusters. The online DPO fine-
tuning process for reasoning trace generation takes approximately 36-48 hours on 4 GPUs. The
Compile (SFT) process takes approximately 1 hour on 1 GPU.



A.3 Prompts

Table 2: Online DPO Fine-tuning hyperparameters.

Learning rate
Optimizer
Global batch size
DPO coefficient 3
Gradient clipping
lora_r
lora_alpha
lora_dropout
lora_target
Maximum steps (chunks)
Chunk size

5e-6
Adam
32
1.0
1.0
8
8
0.05
all
6
160

Table 3: Comiple (SFT) hyperparameters.

Learning rate 2e-4
Optimizer Adam
Global batch size 16
Gradient clipping 1.0
gradient_accumulation_steps 2
warmup_ratio 0.1
lora_r 16
lora_alpha 16
lora_dropout 0.05
lora_target all
Training epochs 3

Prompt for Answer LLM

<System>

<User>
{Input Question}

You are a helpful mathematical assistant. Explain your reasoning and then solve the problem.

<System>

<User>

Prompt for Stop LLM

You are an assistant that replies with Yes or No only. In the following task, you are given a
Problem and a Candidate Solution. Decide if the Candidate Solution is correct.

Problem: {problem}
Candidate Solution: {solution}

Is the Candidate Solution correct? Reply with Yes or No only.

is better.

User: <Question>

Prompt for GPT-40 Evaluation

Review the user’s question and the corresponding two responses. Determine which response

Response A: <response A>
Response B: <response B>

After examining the original question, response, and both judgments:
- Explain which response is better and why.
- Conclude with a clear statement of which response is better.
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