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Abstract

We reveal that decoder-only transformers trained in an autoregressive manner1

naturally encode time-delayed causal structures in their learned representations.2

When predicting future values in multivariate time series, the gradient sensitivities3

of transformer outputs with respect to past inputs directly recover the underly-4

ing causal graph, without any explicit causal objectives or structural constraints.5

We prove this connection theoretically under standard identifiability conditions6

and develop a practical extraction method using aggregated gradient attributions.7

On challenging cases such as nonlinear dynamics, long-term dependencies and8

non-stationary systems, we see this approach greatly surpass the performance of9

state-of-the-art discovery algorithms, especially as data heterogeneity increases, ex-10

hibiting scaling laws where causal accuracy improves with data volume, a property11

traditional methods lack. This unifying view opens a new paradigm where causal12

discovery operates through the lens of foundation models, and foundation models13

gain interpretability and enhancement through the lens of causality.14

1 Introduction15

Causality drives scientific progress across domains, e.g., medicine [Doll and Hill, 1950, Popa-Fotea,16

2021], economics [Chetty et al., 2015], and neuroscience [Roth, 2016]. As an evolving field, causal17

discovery aims to formalize theoretical frameworks for identification criteria and proposing search18

algorithms to find the true causal structure from observational data [Pearl, 2009, Spirtes et al., 2000].19

In this area, causal discovery from time series focuses on identifying temporal causal dynamics by20

exploiting the temporal ordering that naturally constrains the direction of causation. Granger causality21

[Granger, 1969, Tank et al., 2021, Nauta et al., 2019] formalizes this intuition: a variable X Granger-22

causes Y if past values of X contain information that helps predict Y beyond what is available23

from past values of Y alone. Additional methods extend this foundation, including constraint-based24

approaches like PCMCI and its variants that iteratively test conditional independence to examine the25

existence of causal edges [Runge et al., 2017], score-based methods like DYNOTEARS [Pamfil et al.,26

2020] that optimize graph likelihood with structural prior regularizations, and functional approaches27

like TiMINo and VAR-LiNGAM that leverage structural equation models and non-Gaussianity for28

identifiability [Peters et al., 2014, Hyvärinen et al., 2010].29

Real-world systems exhibit complex interactions among many variables. For example, financial30

markets are highly non-stationary and involve very large variable sets [Engle, 1982]; neural record-31

ings exhibit strongly nonlinear population dynamics [Breakspear, 2017]; climate sensor networks32

display long and short-term teleconnections [Wallace and Gutzler, 1981, Newman et al., 2016]; and33

unstructured modalities such as video require modeling long-range spatiotemporal dependencies34

[Bertasius et al., 2021, Arnab et al., 2021]. Despite rigorous theoretical foundations, prevailing35

algorithms are often constrained in practice by the complex heuristics. Specifically, constraint-based36

and score-based approaches scale poorly: the number of statistical tests grows rapidly with dimension37

and lag, and non-parametric tests are computationally expensive [Runge et al., 2017, Chickering,38
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2002]. Optimization approaches require careful tuning to achieve the right balance between likelihood39

and structural regularization [Zheng et al., 2018, Ng et al., 2020, Pamfil et al., 2020, Zheng et al.,40

2019]. More fundamentally, these estimators are not scalable representation learners: their learning is41

not transferable and thus offers little generalizability for zero- or few-shot adaptation; their effective42

capacity and expressiveness are not well-suited for pretraining on diverse systems.43

Motivated by the striking performance and scaling behavior of autoregressive foundation models44

[Brown et al., 2020, Kaplan et al., 2020, Hoffmann et al., 2022], we ask whether the properties that45

make transformers strong forecasters can help causal discovery. Building this connection is valuable in46

two directions: for discovery, it promises data efficiency by leveraging pretrained representations and a47

scalable learning paradigm suited to complex dependencies; for foundation models, causal principles48

offer diagnose limitations in memory and hallucinations, and guide architecture and objective49

choices. In this paper, we take a first step toward these goals: we revisit common identifiability50

assumptions in lagged data generation processes and show how decoder-only transformers trained for51

forecasting, together with input–output gradient attributions via Layer-wise Relevance Propagation52

(LRP) [Achtibat et al., 2024, Bach et al., 2015], reveal lagged causal structure. This view turns53

modern sequence models into practical, scalable estimators for temporal graphs while opening a path54

to analyze and strengthen foundation models through causal perspectives.55

2 A Unifying View: Identification inside Robust Next Variables Prediction56
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Figure 1: Data generation and transformer-based causal discovery. Left: A decoder-only
transformer trained for next-step prediction. Tokens are lagged observations from t−L to t−1;
the model predicts Xt from Xt−1:t−L. Right: A lagged data-generating process with N =3 and
window L=3. Each Xi,t depends on selected past values Xj,t−ℓ per the true graph G∗. The trained
transformer learns the process, and relevance attribution help recover the causal structure.

2.1 From Prediction to Causation57

Data-generating process. Consider a p-variate time series Xt = (X1,t, . . . , Xp,t)
⊤ and a lag58

window L ≥ 1. Each variable follows59

Xi,t = fi(Pa(i, t), Ni,t),

where Pa(i, t) ⊆ {Xj,t−ℓ : j ∈ [p], ℓ ∈ [L]} are the lagged parents and Ni,t are independent noises.60

We write j
ℓ−→ i if Xj,t−ℓ is a direct cause of Xi,t. The lagged graph G∗ contains j

ℓ−→ i iff61

Xj,t−ℓ ∈ Pa(i, t).62

Assumptions for lagged identifiability

A1 Causal sufficiency (no latent confounders).
A2 No instantaneous effects (all parents occur at lags ℓ ≥ 1).
A3 Lag-window coverage (the chosen L includes all true parents).
A4 Causal Markov and Faithfulness [Spirtes et al., 2000, Pearl, 2009].

63

This theorem reduces causal discovery to finding which lagged variables are predictively relevant64

for each target. The identifiability criterion most closed to us is granger causality, where it is65

termed as predictive causation. Analytically, this can be captured by the population gradient energy66
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Gℓ
j,i := E[(∂xj ,t−ℓf

∗(Xi))
2], which is zero exactly for non-parents and positive for parents. In67

practice we approximate Gℓ
j,i by aggregated Layer-wise Relevance G̃

(ℓ)
j,i := E[ |R(ℓ)

ij (X)| ], then68

calibrate to recover G∗. As we show next, decoder-only transformers are well aligned with these69

properties and suitably serve as scalable causal learners. When assumptions are violated (e.g., latent70

confounding, instantaneous effects), we can handle them by adjust masking rules and combining71

traditional causal discovery methods as post-processing procedures. See Appendix §A.1 for the72

identifiability proof and Appendix §A.2 for the LRP–gradient connection.73

Causal Identifiability via Prediction

Theorem 1. Under A1–A4, the lagged causal graph G∗ is uniquely identifiable from conditional
prediction dependencies: edge j

ℓ−→ i exists iff Xj,t−ℓ is informative for predicting Xi,t given
all other lagged variables.

74

2.2 Transformers inherit causal identifiability75

We connect Theorem 1 to decoder-only transformers and make explicit why this architecture aligns76

with the identifiability program in Section 2.1, and how we extract a graph in practice. The connection77

has four parts: (i) alignment with assumptions A1–A4 and the forecasting objective, (ii) scalable78

sparsity and conditional-dependence selection, (iii) contextualized parameters for heterogeneity, and79

(iv) an structure extraction and binarization procedure.80

Alignment with identifiability and objective. We use a decoder-only transformer on a length-L81

window. For each t > L, the input st = [Xt−L, . . . , Xt−1] ∈ RL×p is flattened to L · p tokens. We82

use separate learnable node embedding and time embedding to distinguish temporal dimension and83

node entities. Causal masking and autoregressive decoding enforce temporal precedence (A2); the84

window L bounds the maximum lag (A3). We assume there are no hidden confounders (A1). We85

optimize:86

θ̂ = argmin
θ

− 1

T − L

T∑
t=L+1

log pθ(Xt |Xt−1:t−L) + λΩ(θ), (1)

where pθ(· | ·) denotes the conditional likelihood parameterized by transformer outputs f̂θ : RL×p →87

Rp. For simplicity, we use a Gaussian likelihood (MSE objective), and Ω(θ) is optional (e.g., sparsity88

or entropy regularization; by default we do not use structural penalties).89

Sparsity and scalable dependence selection. While explicit sparsity is not required for identifia-90

bility in the population, finite-sample recovery benefits from sparsity for both accuracy and efficiency.91

Constraint-based and score-based approaches control complexity via combinatorial conditioning and92

structural penalties, which limits scalability in high dimensions and long lags. Transformers implicitly93

sparsify: finite capacity, weight decay compress high-dimensional observations into generalizable94

parameters; softmax attention induces competitive selection among candidates [Martins and Astudillo,95

2016, Sutton et al., 1998]; and multi-head context supports selecting complementary parents. These96

priors make transformers well suited for scalable causal learning and can be complemented with97

explicit sparsity if desired.98

Attention as contextual parameters. Attention matrices are input-conditioned and therefore act as99

contextualized parameters of pairwise dependencies rather than fixed population-level graph weights100

commonly used in optimization-based estimators [Zheng et al., 2018, Pamfil et al., 2020]. Unlike101

methods that learn a single static binary mask, input-conditioned attention adapts to heterogeneity102

and non-stationarity: different contexts (time, regime) induce distinct effective dependency patterns.103

This flexibility is desirable and scalable in practice, enabling a data-driven mixture-of-graphs view104

without committing to a single mask.105

Structure exaction. After training, we recover structure via population gradient energy rather than106

raw attention. We use Layer-wise Relevance Propagation (LRP) [Achtibat et al., 2024] to compute107

relevance scores R(ℓ)
ij that quantify the influence of variable j at lag ℓ on predicting variable i at time108

t:109
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R
(ℓ)
ij =

M∑
m=1

H∑
h=1

LRP(m,h)
(
f̂θ, X

(i)
t , X

(j)
t−ℓ

)
. (2)

We aggregate these attributions across samples to estimate gradient energy G̃
(ℓ)
j,i = E[ |R(ℓ)

ij (X)| ] and110

then calibrate to a sparse graph. Note that we do not use raw attention weights as causal explanations111

since deep token mixing often misaligns attention scores with input and output dependence [Jain and112

Wallace, 2019]. See Appendix §A.2 for implementation and aggregation details.113

Graph binarization. We normalize each row of R to sum to one and propose two rules to binarize114

it: (i) Top-k per target: for each target variable (row), select the k largest entries as parents; this115

directly controls graph density and stabilizes precision. (ii) Uniform-threshold rule: assume a uniform116

baseline over L×p candidates and select entries whose normalized relevance exceeds 1
L×p . The two117

rules behave similarly at small scale; as context length grows, the uniform-threshold rule tends to118

degrade in precision compared to Top-k. See Appendix §A.6.4 for a detailed comparison.119

3 Experiments120
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Figure 2: F1 score analysis across regimes. (A) Mean F1 across all experiments (averages exclude
timeout cases). (B) Long-range dependencies: F1 averaged across max-lag vs. sample size. (C)
Nonlinearity: F1 averaged across function complexity vs. sample size. (D) Non-stationarity:
F1 averaged across regimes vs. sample size. Missing results indicate method timeouts due to
computational limits.

Setup. We evaluate decoder-only transformers for causal discovery using the simulator detailed121

in Appendix §A.3. We compare against PCMCI [Runge et al., 2017], DYNOTEARS [Pamfil et al.,122

2020], VAR-LiNGAM [Hyvärinen et al., 2010, Peters et al., 2014], and pairwise/multivariate Granger123

tests [Granger, 1969] across variations in nonlinearity, maximum lag, dimensionality, noise, and124

non-stationarity. After training, we extract edges with LRP and binarize with a per-target top-k rule.125

General capability and complex dependencies. Transformer recovers lagged parents accurately126

and consistently across settings, achieving comparable or better performance to baseline methods127

(Figure 2A). It maintains strong performance under nonlinearity, long-term dependencies, large128

variable sizes, and non-stationarity (Figure 2B and C; see also Figure 4). Traditional methods129

degrade as dynamics and dimension grow, whereas the transformer remains robust without sensitive130

hyperparameter tuning. Its advantages stem from the model’s expressivity and attention-based131

dependency selection. Performance improves steadily with sample size, making the approach suitable132

for complex real-world scenarios. More detailed results including additional settings and analysis of133

transformer variants are provided in Appendix §A.6.134

Capacity and scaling potential. The transformer effectively leverages additional data to improve135

causal structure modeling accuracy. Unlike traditional methods that are intractable with more data, the136

transformer shows consistent improvement across sample sizes. In non-stationary settings, the model137

learns to handle multiple local mechanisms within a single framework. As sample size increases, the138

transformer better separates and routes different causal structures corresponding to distinct regimes139

(Figure 2D). This scaling behavior mirrors that of large pretrained models and distinguishes our140

approach from traditional causal discovery methods. The results also suggest that hallucinations in141

foundation models may arise when insufficient data prevents accurate regime separation and structure142

routing.143
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A Appendix244

A.1 Identifiability of the causal structure245

We formalize when gradients of the population regression recover the lagged causal parents. Let246

X = (X1, . . . , Xd) collect all covariates formed by stacking all variables over lags 1:L at time t, and247

let Y := Yt. Write S ⊆ {1, . . . , d} for the index set of the direct time-lagged parents Pa(Y ) inside248

X .249

Assumptions and definitions. We work under the following standard conditions (definitions250

inlined; references in parentheses):251

• Causal sufficiency: all common causes of the modeled variables are observed; no latent252

confounders [Pearl, 2009, Spirtes et al., 2000].253

• No instantaneous effects: edges from time t to t are absent; all parents of Yt live at lags254

ℓ ≥ 1 (time-lagged SCM; see, e.g., Peters et al., 2013, Runge et al., 2017).255

• Lag-window coverage: the constructed design vector X contains all true lagged parents of256

Yt (the chosen maximum lag L is at least the causal horizon).257

• Causal Markov, and Faithfulness: Yt ⊥ (Past \ Pa(Yt)) | Pa(Yt) (Causal Markov258

property), and the distribution is faithful to the underlying time-lagged graph so that no259

independences arise from measure-zero cancellations [Pearl, 2009, Spirtes et al., 2000,260

Peters et al., 2013].261

• Support and regularity: the law of X admits a density supported on a rectangle Ω ⊂ Rd262

(no deterministic constraints/collinearity), and the population regression263

f∗(x) := E[Y | X = x ]

lies in W 1,2
loc (Ω), i.e., is weakly differentiable with square-integrable partial derivatives264

[Evans, 2022, Adams and Fournier, 2003].265

Define the gradient energy of coordinate j by266

Gj := E
[(
∂xj

f∗(X)
)2]

, j = 1, . . . , d.

Lemma 1 (Markov projection). Under the Causal Markov property and no instantaneous effects,267

there exists a measurable g such that for all x ∈ Ω,268

f∗(x) = g(xS), S = indices of Pa(Yt).

In particular, E[Y | X = x] = E[Y | XS = xS ].269

Proof. By the Causal Markov property and the absence of instantaneous effects, Y ⊥ XSc | XS .270

Therefore E[Y | X = x] = E[Y | XS = xS ] for all x ∈ Ω. Let g(u) := E[Y | XS = u].271

Then f∗(x) = g(xS). The function g is measurable by standard properties of regular conditional272

expectations.273

Lemma 2 (Zero weak partial implies no dependence). Let f ∈ W 1,1
loc (Ω) on a rectangle Ω ⊂ Rd.274

If ∂xj
f = 0 almost everywhere on Ω, then there exists a measurable h with f(x) = h(x−j) almost275

everywhere. Conversely, if f does not depend on xj , then ∂xj
f = 0 almost everywhere.276

Proof. Assume ∂xj
f = 0 almost everywhere. Fix x−j . For almost every line t 7→277

(t, x−j), the one-dimensional fundamental theorem of calculus yields f(t2, x−j) − f(t1, x−j) =278 ∫ t2
t1

∂xj
f(s, x−j) ds = 0, so f(t, x−j) is (a.e.) constant in t. Thus there is a measurable h with279

f(x) = h(x−j) a.e. Conversely, if f does not depend on xj , then its weak partial ∂xj
f is 0 almost280

everywhere.281
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Connecting dependence and gradients. By Lemma 1, f∗ depends only on the parent coordinates282

XS . For any coordinate j, “f∗ does not depend on xj” is equivalent to “∂xjf
∗(x) = 0 almost283

everywhere,” by Lemma 2. Hence Gj = E[(∂xjf
∗(X))2] equals 0 exactly when f∗ ignores xj .284

Under Faithfulness, this happens precisely for non-parents and not for true parents.285

Theorem 1 (Gradient characterization of lagged parents). Under the assumptions in this subsection,286

for each coordinate j ∈ {1, . . . , d},287

Gj = 0 ⇐⇒ j /∈ S.

In particular, if k ∈ S then Gk > 0.288

Proof. (⇐) If j /∈ S, then by Lemma 1 f∗(x) = g(xS) and thus it does not depend on xj . Lemma 2289

gives ∂xjf
∗ = 0 a.e., so Gj = 0.290

(⇒) If Gj = 0, then ∂xjf
∗ = 0 a.e., so by Lemma 2 f∗ does not depend on xj . Hence Y ⊥ Xj | X−j .291

By Faithfulness, this is impossible for a true parent, so j /∈ S. For any k ∈ S, the contrapositive292

implies ∂xk
f∗ is nonzero on a set of positive measure, and therefore Gk > 0.293

A.2 Attention LRP as a surrogate for gradient energy294

Layer-wise Relevance Propagation (LRP) decomposes a model’s output f(x) into relevance scores295

assigned to input coordinates. For efficiency and simplicity, we adopt the Input×Gradient formulation296

of ε-LRP, which expresses LRP as a single chain of Jacobian–vector products (one backward pass)297

with small, local modifications to the backward rule at nonlinearities and at attention/normalization298

layers. This implementation is equivalent to ε-LRP up to a layer-wise rescaling and closely follows299

the efficient Attention-LRP formulation used for transformers [Achtibat et al., 2024].300

Concretely, for a trained forecaster f̂ and a scalar prediction z := f̂(x) (e.g., the mean for regression301

or a logit/probability for classification), we define per-sample relevance by302

R(x) := x ⊙ ∇̃xz,

where ∇̃x denotes a gradient computed with the modified local Jacobians described below. Aggregat-303

ing coordinates gives a global score304

G̃j := E
[
|Rj(X)|

]
,

used as a monotone proxy for Gj = E[(∂xj
f∗(X))2].305

Core (Input×Gradient) LRP equations. For computation efficiency, we use the gradient-input306

formalization of LRP [Achtibat et al., 2024]. We backpropagate from a chosen scalar component zi307

by setting a one-hot seed ei at the output. Let Jℓ denote the local Jacobian used in the backward pass308

at layer ℓ.309

R(x) = x ⊙
(
J1 J2 · · · JL ei

)
(Input×Gradient with modified local Jacobians). (IG-1)

The same chain-of-Jacobian idea applies to attention and normalization layers in transformers. In310

practice this yields LRP attributions in a single backward pass, after which token-level relevances are311

aggregated to G̃j as above.312

A.3 Experiment setups313

Data Generation and Simulation314

Simulator. We use the CDML-NeurIPS2020 structural time-series simulator to sample datasets315

[Lawrence et al., 2020]. We use a linear baseline and multiple variants in different dimensions such316

as number of variables, maximum lag, noise type, non-stationarity, latent variables. For the variants,317

we only vary the interested property of the data generation process compared to the linear baseline,318

and use multiple sample sizes to see how the performance changes with the sample size (5e4, 1e5,319

1e6, 5e6).320
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Variables and lags. For a system with N observed variables and maximum lag K. We disable321

instantaneous effects and set the transition probability of 0.3. Latent and noise autoregression are set322

to 0 unless noted.323

Control graph density via expected in-degree. To obtain comparable sparsity across N and K,324

we specify an expected in-degree Ein = 3 per node (aggregated across all parent candidates).325

Structural functions and nonlinearity. We control the nonlinearity complexity by employing326

functional forms as follows (first 3 are additive noise models): (1) piecewise: mixture of linear, piece-327

wise linear, and monotonic (sum-of-sigmoids) functions (2) periodic: mixture of linear, piecewise328

linear, monotonic, and sinusoidal (periodic) functions (3) MLP (add): multi-layer perceptron (MLP)329

with additive noise injection (4) MLP (concat): MLP aggregation with noise concatenation.330

Noise types. We consider three noise types: Gaussian (in linear baseline), Uniform, and Mixed.331

The mixed noise is a fixed mixture over distributions [Gaussian, Uniform, Laplace, Student’s t].332

Non-stationarity. To study how different approaches behave under time-varying causal structure,333

we partition the sequence into S contiguous segments (S ∈ {2, 5, 10}) and independently generate334

each segment with a random sampled graph.335

Latent variables. We examine the robustness of discovery methods in the presence of latent336

variables. We set the number of latent variables to L ∈ {3, 5, 10}.337

A.4 Training details and model architecture338

We train autoregressive Transformers on lag-K windows, after per-variable z-score normalization.339

We use embedding dimension 64, 4 attention heads, and either 1 (“shallow”) or 4 (“deep”) layers with340

pre-LayerNorm, residual connections, and a 2-layer ReLU feed-forward; causal masking, node/time341

embeddings. Models are optimized with Adam (learning rate 1e-3, batch size 256) under an MSE342

objective, gradient clipping at 1.0.343

A.5 Compute resources344

All transformer experiments are implemented in PyTorch and executed in FP32 precision on a single345

NVIDIA A100 GPU with actual memory usage below 24GB. Experiments that exceed 6 hours of346

runtime, including both our transformer approach and baseline methods, are terminated and classified347

as timeouts.348

A.6 Complete experiment results349
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Figure 3: Performance overview and comparison across different exogenous noise types. Left:
Average performance of transformer and baselines (timeout results are excluded). Right: Performance
comparison across different exogenous noise types (Gaussian, Uniform, Mixed).
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Figure 4: More experiment results on different settings. We report the F1 scores of our approach
and baselines on different settings of multiple dimensions including maximum lag, nonlinearity,
sample size, latent variables, variable size, and non-stationarity.

Overall, the line plots in Fig. 4 show that our Transformer+LRP (top-k) approach is accurate and350

stable across settings. Performance remains strong as the maximum lag and the number of nodes351

increase, whereas classical baselines (PCMCI, VAR-LiNGAM, Granger variants) degrade markedly.352

Under increased nonlinearity and non-additive fusion, our method shows only a modest dip for353

MLP(add) and recovers for MLP(concat); in contrast, the baselines drop sharply. Larger sample354

sizes further improve scores and reduce variance. Increasing the number of regimes in non-stationary355

data lowers all curves. We also observe limitations when data are scarce and latent confounders356

are present. Future work includes developing natural, implicit sparsity regularization to reduce data357

requirements, and explicit latent modeling.358

A.6.1 Attention and Gradient Attribution359

We also evaluate non-gradient proxies, such as raw attention scores, for recovering causal structure.360

Prior work reports mixed evidence: some positive results [Rohekar et al., 2023, Lu et al., 2023], but361

many studies find that attention weights alone are noisy and do not reliably capture token relationships362

[Jain and Wallace, 2019, Achtibat et al., 2024]. In our experiments, attention scores help only in the363

shallow (single-layer) transformer. This aligns with findings in the large language model literature:364

as depth increases, repeated attention routing and residual MLP updates mix token representations.365

A single layer’s attention matrix reflects intra-layer routing rather than the final output’s functional366

dependence on the original inputs. Cross-layer composition entangles paths through value vectors,367

and marginalizing these paths makes raw attention a poor proxy for causal influence; many heads368

are also redundant or prunable. Empirically, prior work reports weak correlations between attention369

weights and counterfactual importance, and shows that faithfulness improves only when accounting370

for cross-layer attention flow or using gradient-/relevance-based methods [Jain and Wallace, 2019,371

Serrano and Smith, 2019, ?, Michel et al., 2019, Abnar and Zuidema, 2020, Chefer et al., 2021,372

Achtibat et al., 2024].373

In short, attention scores work substantially better in the shallow transformer than in the deep one,374

consistent with prior findings. Although the deep model learns the data-generating process well,375
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Figure 5: Transformer variants performance comparison on challenging regimes. Left: F1
scores on linear and nonlinear dynamics. Middle: F1 scores on non-stationary dynamics. Right: F1
scores on long-range dependencies.

attention alone does not reveal the causal structure. The mixing of token information across layers376

makes attention unreliable in either setting.377

A.6.2 Effect of model depth378

The depth of the transformer primarily affects capacity and the ability to capture complex long-term379

dependencies. With more layers, the transformer can model more complex structures and longer-380

range effects. In our nonlinear and long-range settings, deeper transformers achieve slightly higher381

accuracy in recovering causal structure and show clear advantages on non-stationary dynamics. This382

highlights the potential of deep transformers for highly heterogeneous, long-range dynamics, echoing383

the success of pretrained large language and vision models.384

A.6.3 Effect of sample size scaling385

In nonlinear and non-stationary settings, we study how sample size affects causal discovery. As386

the sample size increases, the deep transformer more accurately recovers regime-specific causal387

structure and implicitly learns to route gradients to the appropriate regime. This trend aligns with the388

zero-shot generalization observed in large pretrained transformers. Such models are promising causal389

discoverers when fine-tuned or used as foundation models. We expect cross-domain pretraining to390

further improve the modeling of stable, mechanistic dynamics.391

A.6.4 Effect of graph binarization392

Different binarization rules can lead to different causal graphs. We compare thresholding and top-k.393

Thresholding performs comparably to top-k when the number of variables and the lag window are394

moderate, but its precision degrades as the context length grows. The importance of variables varies395

non-uniformly across lags with longer contexts. Top-k provides a simple, effective way to control the396

precision–recall trade-off. Similar to max-depth limits in classical methods (PC, GES, etc.), choosing397

k with domain knowledge lets us control edge density (e.g., use a small k when the goal is to recover398

only the most important interactions).399

A.7 More Discussions400

A.7.1 The role of prediction objective.401

While a Gaussian likelihood (MSE) is a convenient objective and matches a Gaussian noise prior,402

richer likelihoods can better fit complex, heteroskedastic, or multi-modal dynamics and thereby403

sharpen attribution quality. Promising directions include flow-matching and diffusion-based objec-404

tives, as well as quantile and energy-based losses; these can improve calibration of gradients in scarce405

and highly heterogeneous regimes. In parallel, scalable implicit sparsity regularization techniques406

may further stabilize edge selection without sacrificing scalability. Together, improved objectives and407

sparsity control directly affect the fidelity of recovered causal structure—and may offer causal insights408

for mitigating memory limits and hallucinations in foundation models by steering representations409

toward stable, mechanistic dependencies.410
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Figure 6: Sample scaling effects on challenging regimes. Sample scaling effects on three chal-
lenging regimes: nonlinear dynamics, long-term dependencies, and non-stationary dynamics. The
transformer generally improves in these challenging scenarios with more data.

A.7.2 Limitations on small samples and latent confounders.411

When data are scarce, attributions are noisy and edge selection becomes challenging in nonlinear412

and non-stationary settings (see Fig. 4). With latent confounders, the method can learn spurious413

links. It can be mitigated by methods that account for latent confounding; for example, one can414

post-process the learned Markov blanket using FCI [Spirtes et al., 2000]. Complementary remedies415

include explicit latent modeling and stronger structural priors within the forecasting-to-discovery416

pipeline.417

13



Linear Piecewise Periodic MLP(add) MLP(concat)
Complexity

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Threshold vs Top-k (Baseline+Nonlinear)

5 10 25 50
Maximum Lag

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Threshold vs Top-k (Context Length)

deep-lrp-topk deep-lrp-threshold

Figure 7: Graph binarization methods comparison. Left: F1 scores comparing threshold vs.
top-k binarization across different complexity levels for baseline and nonlinear settings. Right:
Performance degradation of threshold method vs. stable top-k performance as maximum lag increases,
showing top-k’s robustness to longer context lengths.
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Guidelines:599

• The answer NA means that the paper does not include experiments.600

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,601

or cloud provider, including relevant memory and storage.602

• The paper should provide the amount of compute required for each of the individual603

experimental runs as well as estimate the total compute.604

• The paper should disclose whether the full research project required more compute605

than the experiments reported in the paper (e.g., preliminary or failed experiments that606

didn’t make it into the paper).607

9. Code of ethics608
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Question: Does the research conducted in the paper conform, in every respect, with the609

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?610

Answer: [Yes]611

Justification: The work uses only synthetic data and public baselines, involves no human612

subjects or sensitive data, and adheres to the NeurIPS Code of Ethics.613

Guidelines:614

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.615

• If the authors answer No, they should explain the special circumstances that require a616

deviation from the Code of Ethics.617

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-618

eration due to laws or regulations in their jurisdiction).619

10. Broader impacts620

Question: Does the paper discuss both potential positive societal impacts and negative621

societal impacts of the work performed?622

Answer: [NA]623

Justification: There is no societal impact of the work performed.624

Guidelines:625

• The answer NA means that there is no societal impact of the work performed.626

• If the authors answer NA or No, they should explain why their work has no societal627

impact or why the paper does not address societal impact.628

• Examples of negative societal impacts include potential malicious or unintended uses629

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations630

(e.g., deployment of technologies that could make decisions that unfairly impact specific631

groups), privacy considerations, and security considerations.632

• The conference expects that many papers will be foundational research and not tied633

to particular applications, let alone deployments. However, if there is a direct path to634

any negative applications, the authors should point it out. For example, it is legitimate635

to point out that an improvement in the quality of generative models could be used to636

generate deepfakes for disinformation. On the other hand, it is not needed to point out637

that a generic algorithm for optimizing neural networks could enable people to train638

models that generate Deepfakes faster.639

• The authors should consider possible harms that could arise when the technology is640

being used as intended and functioning correctly, harms that could arise when the641

technology is being used as intended but gives incorrect results, and harms following642

from (intentional or unintentional) misuse of the technology.643

• If there are negative societal impacts, the authors could also discuss possible mitigation644

strategies (e.g., gated release of models, providing defenses in addition to attacks,645

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from646

feedback over time, improving the efficiency and accessibility of ML).647

11. Safeguards648

Question: Does the paper describe safeguards that have been put in place for responsible649

release of data or models that have a high risk for misuse (e.g., pretrained language models,650

image generators, or scraped datasets)?651

Answer: [NA]652

Justification: We do not release high-risk models or scraped datasets; the paper uses653

simulated data and a standard methodology.654

Guidelines:655

• The answer NA means that the paper poses no such risks.656

• Released models that have a high risk for misuse or dual-use should be released with657

necessary safeguards to allow for controlled use of the model, for example by requiring658

that users adhere to usage guidelines or restrictions to access the model or implementing659

safety filters.660
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• Datasets that have been scraped from the Internet could pose safety risks. The authors661

should describe how they avoided releasing unsafe images.662

• We recognize that providing effective safeguards is challenging, and many papers do663

not require this, but we encourage authors to take this into account and make a best664

faith effort.665

12. Licenses for existing assets666

Question: Are the creators or original owners of assets (e.g., code, data, models), used in667

the paper, properly credited and are the license and terms of use explicitly mentioned and668

properly respected?669

Answer: [Yes]670

Justification: We cite all external assets and respect the license and terms of use.671

Guidelines:672

• The answer NA means that the paper does not use existing assets.673

• The authors should cite the original paper that produced the code package or dataset.674

• The authors should state which version of the asset is used and, if possible, include a675

URL.676

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.677

• For scraped data from a particular source (e.g., website), the copyright and terms of678

service of that source should be provided.679

• If assets are released, the license, copyright information, and terms of use in the680

package should be provided. For popular datasets, paperswithcode.com/datasets681

has curated licenses for some datasets. Their licensing guide can help determine the682

license of a dataset.683

• For existing datasets that are re-packaged, both the original license and the license of684

the derived asset (if it has changed) should be provided.685

• If this information is not available online, the authors are encouraged to reach out to686

the asset’s creators.687

13. New assets688

Question: Are new assets introduced in the paper well documented and is the documentation689

provided alongside the assets?690

Answer: [NA]691

Justification: We do not introduce new datasets, models, or code artifacts in this submission.692

Guidelines:693

• The answer NA means that the paper does not release new assets.694

• Researchers should communicate the details of the dataset/code/model as part of their695

submissions via structured templates. This includes details about training, license,696

limitations, etc.697

• The paper should discuss whether and how consent was obtained from people whose698

asset is used.699

• At submission time, remember to anonymize your assets (if applicable). You can either700

create an anonymized URL or include an anonymized zip file.701

14. Crowdsourcing and research with human subjects702

Question: For crowdsourcing experiments and research with human subjects, does the paper703

include the full text of instructions given to participants and screenshots, if applicable, as704

well as details about compensation (if any)?705

Answer: [NA]706

Justification: The paper does not involve crowdsourcing nor research with human subjects.707

Guidelines:708

• The answer NA means that the paper does not involve crowdsourcing nor research with709

human subjects.710
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• Including this information in the supplemental material is fine, but if the main contribu-711

tion of the paper involves human subjects, then as much detail as possible should be712

included in the main paper.713

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,714

or other labor should be paid at least the minimum wage in the country of the data715

collector.716

15. Institutional review board (IRB) approvals or equivalent for research with human717

subjects718

Question: Does the paper describe potential risks incurred by study participants, whether719

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)720

approvals (or an equivalent approval/review based on the requirements of your country or721

institution) were obtained?722

Answer: [NA]723

Justification: The paper does not involve human subjects.724

Guidelines:725

• The answer NA means that the paper does not involve crowdsourcing nor research with726

human subjects.727

• Depending on the country in which research is conducted, IRB approval (or equivalent)728

may be required for any human subjects research. If you obtained IRB approval, you729

should clearly state this in the paper.730

• We recognize that the procedures for this may vary significantly between institutions731

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the732

guidelines for their institution.733

• For initial submissions, do not include any information that would break anonymity (if734

applicable), such as the institution conducting the review.735

16. Declaration of LLM usage736

Question: Does the paper describe the usage of LLMs if it is an important, original, or737

non-standard component of the core methods in this research? Note that if the LLM is used738

only for writing, editing, or formatting purposes and does not impact the core methodology,739

scientific rigorousness, or originality of the research, declaration is not required.740

Answer: [NA]741

Justification: LLMs are not an important or non-standard component of the core methods in742

this research.743

Guidelines:744

• The answer NA means that the core method development in this research does not745

involve LLMs as any important, original, or non-standard components.746

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)747

for what should or should not be described.748
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