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Abstract

We reveal that decoder-only transformers trained in an autoregressive manner
naturally encode time-delayed causal structures in their learned representations.
When predicting future values in multivariate time series, the gradient sensitivities
of transformer outputs with respect to past inputs directly recover the underly-
ing causal graph, without any explicit causal objectives or structural constraints.
We prove this connection theoretically under standard identifiability conditions
and develop a practical extraction method using aggregated gradient attributions.
On challenging cases such as nonlinear dynamics, long-term dependencies and
non-stationary systems, we see this approach greatly surpass the performance of
state-of-the-art discovery algorithms, especially as data heterogeneity increases, ex-
hibiting scaling laws where causal accuracy improves with data volume, a property
traditional methods lack. This unifying view opens a new paradigm where causal
discovery operates through the lens of foundation models, and foundation models
gain interpretability and enhancement through the lens of causality.

1 Introduction

Causality drives scientific progress across domains, e.g., medicine [Doll and Hill, {1950} Popa-Fotea,
2021]], economics [Chetty et al.|[2015]], and neuroscience [Rothl 2016f]. As an evolving field, causal
discovery aims to formalize theoretical frameworks for identification criteria and proposing search
algorithms to find the true causal structure from observational data [Pearl, 2009| Spirtes et al., 2000].
In this area, causal discovery from time series focuses on identifying temporal causal dynamics by
exploiting the temporal ordering that naturally constrains the direction of causation. Granger causality
[Granger;, (1969, Tank et al.| 2021} [Nauta et al., 2019] formalizes this intuition: a variable X Granger-
causes Y if past values of X contain information that helps predict Y beyond what is available
from past values of Y alone. Additional methods extend this foundation, including constraint-based
approaches like PCMCI and its variants that iteratively test conditional independence to examine the
existence of causal edges [Runge et al.| [2017]], score-based methods like DYNOTEARS [Pam(fil et al.|
2020] that optimize graph likelihood with structural prior regularizations, and functional approaches
like TIMINo and VAR-LiNGAM that leverage structural equation models and non-Gaussianity for
identifiability [Peters et al., 2014} [Hyvirinen et al., [2010]].

Real-world systems exhibit complex interactions among many variables. For example, financial
markets are highly non-stationary and involve very large variable sets [Englel [1982]; neural record-
ings exhibit strongly nonlinear population dynamics [Breakspear,|2017]]; climate sensor networks
display long and short-term teleconnections [Wallace and Gutzler, 1981, Newman et al.,2016]; and
unstructured modalities such as video require modeling long-range spatiotemporal dependencies
[Bertasius et al., 2021} |[Arnab et al.| |2021]]. Despite rigorous theoretical foundations, prevailing
algorithms are often constrained in practice by the complex heuristics. Specifically, constraint-based
and score-based approaches scale poorly: the number of statistical tests grows rapidly with dimension
and lag, and non-parametric tests are computationally expensive [Runge et al.| 2017, |Chickering,
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[2002]. Optimization approaches require careful tuning to achieve the right balance between likelihood
and structural regularization [Zheng et al] [2018| [Ng et alJ, 2020} [Pamfil et al., 2020, [Zheng et al,
[2019]. More fundamentally, these estimators are not scalable representation learners: their learning is
not transferable and thus offers little generalizability for zero- or few-shot adaptation; their effective
capacity and expressiveness are not well-suited for pretraining on diverse systems.

Motivated by the striking performance and scaling behavior of autoregressive foundation models
[Brown et al} 2020} [Kaplan et all, 2020} [Hoffmann et all, 2022, we ask whether the properties that
make transformers strong forecasters can help causal discovery. Building this connection is valuable in
two directions: for discovery, it promises data efficiency by leveraging pretrained representations and a
scalable learning paradigm suited to complex dependencies; for foundation models, causal principles
offer diagnose limitations in memory and hallucinations, and guide architecture and objective
choices. In this paper, we take a first step toward these goals: we revisit common identifiability
assumptions in lagged data generation processes and show how decoder-only transformers trained for
forecasting, together with input—output gradient attributions via Layer-wise Relevance Propagation
(LRP) [Achtibat et al.l 2024}, Bach et al.| [2015]], reveal lagged causal structure. This view turns
modern sequence models into practical, scalable estimators for temporal graphs while opening a path
to analyze and strengthen foundation models through causal perspectives.

2 A Unifying View: Identification inside Robust Next Variables Prediction
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Figure 1: Data generation and transformer-based causal discovery. Left: A decoder-only
transformer trained for next-step prediction. Tokens are lagged observations from ¢t — L to t —1;
the model predicts X; from X; ;... Right: A lagged data-generating process with N =3 and
window L =3. Each X ; depends on selected past values X ;_, per the true graph G*. The trained
transformer learns the process, and relevance attribution help recover the causal structure.

2.1 From Prediction to Causation

Data-generating process. Consider a p-variate time series X; = (X14,...,Xp.)' and a lag
window L > 1. Each variable follows

Xir = fi(Pa(i,t), Niy),
where Pa(i,t) C{X;_¢:j € [p], { € [L]} are the lagged parents and NN, ; are independent noises.

We write j L dif X t—¢ is a direct cause of X; ;. The lagged graph G* contains j Ly G iff
Xj7t_g S Pa(z,t)

Assumptions for lagged identifiability

A1l Causal sufficiency (no latent confounders).
A2 No instantaneous effects (all parents occur at lags £ > 1).
A3 Lag-window coverage (the chosen L includes all true parents).

A4 Causal Markov and Faithfulness [Spirtes et al.}, 2000}, [Pearl, 2009].

This theorem reduces causal discovery to finding which lagged variables are predictively relevant
for each target. The identifiability criterion most closed to us is granger causality, where it is
termed as predictive causation. Analytically, this can be captured by the population gradient energy
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G?i := E[(0a, 1—ef*(X;))?], which is zero exactly for non-parents and positive for parents. In

practice we approximate Gﬁz by aggregated Layer-wise Relevance Gﬁ) = E| \Rg) (X)|], then
calibrate to recover G*. As we show next, decoder-only transformers are well aligned with these
properties and suitably serve as scalable causal learners. When assumptions are violated (e.g., latent
confounding, instantaneous effects), we can handle them by adjust masking rules and combining
traditional causal discovery methods as post-processing procedures. See Appendix §A.T| for the
identifiability proof and Appendix §A.7|for the LRP-gradient connection.

Causal Identifiability via Prediction

Theorem 1. Under AI-A4, the lagged causal graph G* is uniquely identifiable from conditional

prediction dependencies: edge j Ly i exists iff X ¢+—¢ is informative for predicting X; ; given
all other lagged variables.

2.2 Transformers inherit causal identifiability

We connect Theorem I]to decoder-only transformers and make explicit why this architecture aligns
with the identifiability program in Section[2.1] and how we extract a graph in practice. The connection
has four parts: (i) alignment with assumptions A1-A4 and the forecasting objective, (ii) scalable
sparsity and conditional-dependence selection, (iii) contextualized parameters for heterogeneity, and
(iv) an structure extraction and binarization procedure.

Alignment with identifiability and objective. We use a decoder-only transformer on a length-L
window. For each t > L, the input s; = [X;—p1,...,X¢—1] € RE*P is flattened to L - p tokens. We
use separate learnable node embedding and time embedding to distinguish temporal dimension and
node entities. Causal masking and autoregressive decoding enforce temporal precedence (A2); the
window L bounds the maximum lag (A3). We assume there are no hidden confounders (Al). We
optimize:
T
f = arg min S Z log pg(X; | X ) + AQ(0) (1)
g ! T_1 = EPo\ At | At—1:t—L )

where pg(- | -) denotes the conditional likelihood parameterized by transformer outputs fg :REXP
RP. For simplicity, we use a Gaussian likelihood (MSE objective), and €2(#) is optional (e.g., sparsity
or entropy regularization; by default we do not use structural penalties).

Sparsity and scalable dependence selection. While explicit sparsity is not required for identifia-
bility in the population, finite-sample recovery benefits from sparsity for both accuracy and efficiency.
Constraint-based and score-based approaches control complexity via combinatorial conditioning and
structural penalties, which limits scalability in high dimensions and long lags. Transformers implicitly
sparsify: finite capacity, weight decay compress high-dimensional observations into generalizable
parameters; softmax attention induces competitive selection among candidates [Martins and Astudillo|
2016, [Sutton et al.} [T998]]; and multi-head context supports selecting complementary parents. These
priors make transformers well suited for scalable causal learning and can be complemented with
explicit sparsity if desired.

Attention as contextual parameters. Attention matrices are input-conditioned and therefore act as
contextualized parameters of pairwise dependencies rather than fixed population-level graph weights
commonly used in optimization-based estimators [Zheng et al 2018} [Pamfil et al,[2020]. Unlike
methods that learn a single static binary mask, input-conditioned attention adapts to heterogeneity
and non-stationarity: different contexts (time, regime) induce distinct effective dependency patterns.
This flexibility is desirable and scalable in practice, enabling a data-driven mixture-of-graphs view
without committing to a single mask.

Structure exaction. After training, we recover structure via population gradient energy rather than
raw attention. We use Layer-wise Relevance Propagation (LRP) [[Achtibat et all 2024]] to compute

relevance scores Rl(f) that quantify the influence of variable j at lag £ on predicting variable ¢ at time
t:
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We aggregate these attributions across samples to estimate gradient energy G;lz =E| |R£f) (X)|] and
then calibrate to a sparse graph. Note that we do not use raw attention weights as causal explanations
since deep token mixing often misaligns attention scores with input and output dependence [Jain and
Wallace, [2019]]. See Appendix §A.2|for implementation and aggregation details.

Graph binarization. We normalize each row of R to sum to one and propose two rules to binarize
it: (i) Top-k per target: for each target variable (row), select the k largest entries as parents; this
directly controls graph density and stabilizes precision. (ii) Uniform-threshold rule: assume a uniform
baseline over L x p candidates and select entries whose normalized relevance exceeds L%p. The two
rules behave similarly at small scale; as context length grows, the uniform-threshold rule tends to
degrade in precision compared to Top-k. See Appendix §A.6.4|for a detailed comparison.

3 Experiments

F1 Score Analysis: Average Performance and Sample Size Effects

Average Performance Long-range Dependencies Nonlinearity Non-stationai
(All Experiments) (Averaged across max-lag) (Averaged across complexity) (Averaged across regimes)
065 60
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Figure 2: F1 score analysis across regimes. (A) Mean F1 across all experiments (averages exclude
timeout cases). (B) Long-range dependencies: F1 averaged across max-lag vs. sample size. (C)
Nonlinearity: F1 averaged across function complexity vs. sample size. (D) Non-stationarity:
F1 averaged across regimes vs. sample size. Missing results indicate method timeouts due to
computational limits.

Setup. We evaluate decoder-only transformers for causal discovery using the simulator detailed
in Appendix §A.3] We compare against PCMCI [Runge et al., 2017], DYNOTEARS [Pamfil et al,
2020], VAR-LiNGAM [Hyvérinen et al., 2010, |Peters et al.,|2014]], and pairwise/multivariate Granger
tests [[Granger, [1969] across variations in nonlinearity, maximum lag, dimensionality, noise, and
non-stationarity. After training, we extract edges with LRP and binarize with a per-target top-k rule.

General capability and complex dependencies. Transformer recovers lagged parents accurately
and consistently across settings, achieving comparable or better performance to baseline methods
(Figure 2JA). It maintains strong performance under nonlinearity, long-term dependencies, large
variable sizes, and non-stationarity (Figure 2B and C; see also Figure [). Traditional methods
degrade as dynamics and dimension grow, whereas the transformer remains robust without sensitive
hyperparameter tuning. Its advantages stem from the model’s expressivity and attention-based
dependency selection. Performance improves steadily with sample size, making the approach suitable
for complex real-world scenarios. More detailed results including additional settings and analysis of
transformer variants are provided in Appendix

Capacity and scaling potential. The transformer effectively leverages additional data to improve
causal structure modeling accuracy. Unlike traditional methods that are intractable with more data, the
transformer shows consistent improvement across sample sizes. In non-stationary settings, the model
learns to handle multiple local mechanisms within a single framework. As sample size increases, the
transformer better separates and routes different causal structures corresponding to distinct regimes
(Figure 2D). This scaling behavior mirrors that of large pretrained models and distinguishes our
approach from traditional causal discovery methods. The results also suggest that hallucinations in
foundation models may arise when insufficient data prevents accurate regime separation and structure
routing.
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A Appendix

A.1 Identifiability of the causal structure

We formalize when gradients of the population regression recover the lagged causal parents. Let
X = (Xy,...,Xy) collect all covariates formed by stacking all variables over lags 1:L at time ¢, and
letY :=Y;. Write S C {1, ...,d} for the index set of the direct time-lagged parents Pa(Y") inside
X.

Assumptions and definitions. We work under the following standard conditions (definitions
inlined; references in parentheses):

¢ Causal sufficiency: all common causes of the modeled variables are observed; no latent
confounders [Pearl} 2009, [Spirtes et al., 2000].

* No instantaneous effects: edges from time ¢ to ¢ are absent; all parents of Y; live at lags
£ > 1 (time-lagged SCM; see, e.g., [Peters et al., 2013} |Runge et al.,[2017).

* Lag-window coverage: the constructed design vector X contains all true lagged parents of
Y} (the chosen maximum lag L is at least the causal horizon).

* Causal Markov, and Faithfulness: Y; | (Past \ Pa(Y;)) | Pa(Y;) (Causal Markov
property), and the distribution is faithful to the underlying time-lagged graph so that no
independences arise from measure-zero cancellations [Pearl, 2009, Spirtes et al., 2000,
Peters et al.,[2013]].

+ Support and regularity: the law of X admits a density supported on a rectangle 2 C R?
(no deterministic constraints/collinearity), and the population regression

f(z) == EY | X =x]

lies in I/Vl(l)’c2 (), i.e., is weakly differentiable with square-integrable partial derivatives

[Evans} 2022l |]Adams and Fournier, 2003|].

Define the gradient energy of coordinate j by
* 2 .
G, = E[(ax].f (X)) ] j=1,....d.

Lemma 1 (Markov projection). Under the Causal Markov property and no instantaneous effects,
there exists a measurable g such that for all x € €,

ff(x) = g(zs), S = indices of Pa(Yy).
In particular, E[Y | X = 2] = E[Y | Xg = zs].

Proof. By the Causal Markov property and the absence of instantaneous effects, Y 1 Xge | Xg.
Therefore E[Y | X = z] = E[Y | Xg = zg] forall z € Q. Let g(u) := E[Y | Xg = u].
Then f*(z) = g(xg). The function g is measurable by standard properties of regular conditional
expectations. O

Lemma 2 (Zero weak partial implies no dependence). Let f € Wlf)cl () on a rectangle 2 C R,
If O, f = 0 almost everywhere on Q, then there exists a measurable h with f(x) = h(x_;) almost

everywhere. Conversely, if f does not depend on x;, then O, f = 0 almost everywhere.

Proof. Assume O, f = 0 almost everywhere. Fix x_;. For almost every line ¢
(t,x_;), the one-dimensional fundamental theorem of calculus yields f(t2,x_;) — f(t1,2_;) =

:12 Oz; f(s,2_j)ds = 0, so f(t,x_;) is (a.e.) constant in ¢. Thus there is a measurable h with

f(x) = h(z_;) a.e. Conversely, if f does not depend on x;, then its weak partial J,, f is 0 almost
everywhere. O
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Connecting dependence and gradients. By Lemmal[l] /* depends only on the parent coordinates
Xs. For any coordinate j, “f* does not depend on x;” is equivalent to “0,, f*(x) = 0 almost
everywhere,” by Lemma Hence G; = E[(,, f*(X))?] equals 0 exactly when f* ignores ;.
Under Faithfulness, this happens precisely for non-parents and not for true parents.

Theorem 1 (Gradient characterization of lagged parents). Under the assumptions in this subsection,
for each coordinate j € {1,...,d},

Gj=0 < j¢65.
In particular, if k € S then Gy, > 0.

Proof. («<)1f j ¢ S, then by Lemmal[l] f*(x) = g(xs) and thus it does not depend on z;. Lemma 2]
gives 0, f* = 0ae.,s0G; = 0.

(=)IfG; = 0,then &, f* = O a.e., so by Lemma[2] f* does not depend on ;. Hence Y 1 X | X_;.
By Faithfulness, this is impossible for a true parent, so j ¢ S. For any k € S, the contrapositive
implies d,, f* is nonzero on a set of positive measure, and therefore G, > 0. O

A.2 Attention LRP as a surrogate for gradient energy

Layer-wise Relevance Propagation (LRP) decomposes a model’s output f(z) into relevance scores
assigned to input coordinates. For efficiency and simplicity, we adopt the Input x Gradient formulation
of e-LRP, which expresses LRP as a single chain of Jacobian—vector products (one backward pass)
with small, local modifications to the backward rule at nonlinearities and at attention/normalization
layers. This implementation is equivalent to e-LRP up to a layer-wise rescaling and closely follows
the efficient Attention-LRP formulation used for transformers [Achtibat et al., 2024].

Concretely, for a trained forecaster f and a scalar prediction z := f (z) (e.g., the mean for regression
or a logit/probability for classification), we define per-sample relevance by

R(z) =z © Va2,

where V,, denotes a gradient computed with the modified local Jacobians described below. Aggregat-
ing coordinates gives a global score

G; = E[|R;(X)|],
used as a monotone proxy for G; = E[(9,, f*(X))?].

Core (Inputx Gradient) LRP equations. For computation efficiency, we use the gradient-input
formalization of LRP [Achtibat et al.,|2024]]. We backpropagate from a chosen scalar component z;
by setting a one-hot seed e; at the output. Let .JJ, denote the local Jacobian used in the backward pass
at layer /£.

R(z) =z © (Jl Jo oo Jp ei) (Inputx Gradient with modified local Jacobians). (IG-1)

The same chain-of-Jacobian idea applies to attention and normalization layers in transformers. In
practice this yields LRP attributions in a single backward pass, after which token-level relevances are

aggregated to G ; as above.

A.3 Experiment setups
Data Generation and Simulation

Simulator. We use the CDML-NeurIPS2020 structural time-series simulator to sample datasets
[Lawrence et al.,[2020]. We use a linear baseline and multiple variants in different dimensions such
as number of variables, maximum lag, noise type, non-stationarity, latent variables. For the variants,
we only vary the interested property of the data generation process compared to the linear baseline,
and use multiple sample sizes to see how the performance changes with the sample size (5e4, 1e5,
le6, 5e6).
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Variables and lags. For a system with /N observed variables and maximum lag K. We disable
instantaneous effects and set the transition probability of 0.3. Latent and noise autoregression are set
to 0 unless noted.

Control graph density via expected in-degree. To obtain comparable sparsity across N and K,
we specify an expected in-degree L;, = 3 per node (aggregated across all parent candidates).

Structural functions and nonlinearity. We control the nonlinearity complexity by employing
functional forms as follows (first 3 are additive noise models): (1) piecewise: mixture of linear, piece-
wise linear, and monotonic (sum-of-sigmoids) functions (2) periodic: mixture of linear, piecewise
linear, monotonic, and sinusoidal (periodic) functions (3) MLP (add): multi-layer perceptron (MLP)
with additive noise injection (4) MLP (concat): MLP aggregation with noise concatenation.

Noise types. We consider three noise types: Gaussian (in linear baseline), Uniform, and Mixed.
The mixed noise is a fixed mixture over distributions [Gaussian, Uniform, Laplace, Student’s t].

Non-stationarity. To study how different approaches behave under time-varying causal structure,
we partition the sequence into .S contiguous segments (S € {2,5,10}) and independently generate
each segment with a random sampled graph.

Latent variables. We examine the robustness of discovery methods in the presence of latent
variables. We set the number of latent variables to L € {3,5, 10}.

A.4 Training details and model architecture

We train autoregressive Transformers on lag- K windows, after per-variable z-score normalization.
We use embedding dimension 64, 4 attention heads, and either 1 (“shallow”) or 4 (“deep”) layers with
pre-LayerNorm, residual connections, and a 2-layer ReLU feed-forward; causal masking, node/time
embeddings. Models are optimized with Adam (learning rate le-3, batch size 256) under an MSE
objective, gradient clipping at 1.0.

A.5 Compute resources

All transformer experiments are implemented in PyTorch and executed in FP32 precision on a single
NVIDIA A100 GPU with actual memory usage below 24GB. Experiments that exceed 6 hours of
runtime, including both our transformer approach and baseline methods, are terminated and classified
as timeouts.

A.6 Complete experiment results

F1 Score Comparison
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Figure 3: Performance overview and comparison across different exogenous noise types. Left:
Average performance of transformer and baselines (timeout results are excluded). Right: Performance
comparison across different exogenous noise types (Gaussian, Uniform, Mixed).
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Figure 4: More experiment results on different settings. We report the F1 scores of our approach
and baselines on different settings of multiple dimensions including maximum lag, nonlinearity,
sample size, latent variables, variable size, and non-stationarity.

Overall, the line plots in Fig. ff] show that our Transformer+LRP (top-k) approach is accurate and
stable across settings. Performance remains strong as the maximum lag and the number of nodes
increase, whereas classical baselines (PCMCI, VAR-LiNGAM, Granger variants) degrade markedly.
Under increased nonlinearity and non-additive fusion, our method shows only a modest dip for
MLP(add) and recovers for MLP(concat); in contrast, the baselines drop sharply. Larger sample
sizes further improve scores and reduce variance. Increasing the number of regimes in non-stationary
data lowers all curves. We also observe limitations when data are scarce and latent confounders
are present. Future work includes developing natural, implicit sparsity regularization to reduce data
requirements, and explicit latent modeling.

A.6.1 Attention and Gradient Attribution

We also evaluate non-gradient proxies, such as raw attention scores, for recovering causal structure.
Prior work reports mixed evidence: some positive results [Rohekar et al.,[2023| [Lu et al.,[2023]], but
many studies find that attention weights alone are noisy and do not reliably capture token relationships
[Jain and Wallace, |2019, |Achtibat et al.|[2024]. In our experiments, attention scores help only in the
shallow (single-layer) transformer. This aligns with findings in the large language model literature:
as depth increases, repeated attention routing and residual MLP updates mix token representations.
A single layer’s attention matrix reflects intra-layer routing rather than the final output’s functional
dependence on the original inputs. Cross-layer composition entangles paths through value vectors,
and marginalizing these paths makes raw attention a poor proxy for causal influence; many heads
are also redundant or prunable. Empirically, prior work reports weak correlations between attention
weights and counterfactual importance, and shows that faithfulness improves only when accounting
for cross-layer attention flow or using gradient-/relevance-based methods [Jain and Wallace, [2019,
Serrano and Smithl 2019) ?, Michel et al., 2019, |Abnar and Zuidemal, 2020, |Chefer et al., 2021}
Achtibat et al., [2024].

In short, attention scores work substantially better in the shallow transformer than in the deep one,
consistent with prior findings. Although the deep model learns the data-generating process well,
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Figure 5: Transformer variants performance comparison on challenging regimes. Left: F1
scores on linear and nonlinear dynamics. Middle: F1 scores on non-stationary dynamics. Right: F1
scores on long-range dependencies.

attention alone does not reveal the causal structure. The mixing of token information across layers
makes attention unreliable in either setting.

A.6.2 Effect of model depth

The depth of the transformer primarily affects capacity and the ability to capture complex long-term
dependencies. With more layers, the transformer can model more complex structures and longer-
range effects. In our nonlinear and long-range settings, deeper transformers achieve slightly higher
accuracy in recovering causal structure and show clear advantages on non-stationary dynamics. This
highlights the potential of deep transformers for highly heterogeneous, long-range dynamics, echoing
the success of pretrained large language and vision models.

A.6.3 Effect of sample size scaling

In nonlinear and non-stationary settings, we study how sample size affects causal discovery. As
the sample size increases, the deep transformer more accurately recovers regime-specific causal
structure and implicitly learns to route gradients to the appropriate regime. This trend aligns with the
zero-shot generalization observed in large pretrained transformers. Such models are promising causal
discoverers when fine-tuned or used as foundation models. We expect cross-domain pretraining to
further improve the modeling of stable, mechanistic dynamics.

A.6.4 Effect of graph binarization

Different binarization rules can lead to different causal graphs. We compare thresholding and top-k.
Thresholding performs comparably to top-k when the number of variables and the lag window are
moderate, but its precision degrades as the context length grows. The importance of variables varies
non-uniformly across lags with longer contexts. Top-k provides a simple, effective way to control the
precision—recall trade-off. Similar to max-depth limits in classical methods (PC, GES, etc.), choosing
k with domain knowledge lets us control edge density (e.g., use a small k when the goal is to recover
only the most important interactions).

A.7 More Discussions
A.7.1 The role of prediction objective.

While a Gaussian likelihood (MSE) is a convenient objective and matches a Gaussian noise prior,
richer likelihoods can better fit complex, heteroskedastic, or multi-modal dynamics and thereby
sharpen attribution quality. Promising directions include flow-matching and diffusion-based objec-
tives, as well as quantile and energy-based losses; these can improve calibration of gradients in scarce
and highly heterogeneous regimes. In parallel, scalable implicit sparsity regularization techniques
may further stabilize edge selection without sacrificing scalability. Together, improved objectives and
sparsity control directly affect the fidelity of recovered causal structure—and may offer causal insights
for mitigating memory limits and hallucinations in foundation models by steering representations
toward stable, mechanistic dependencies.
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transformer generally improves in these challenging scenarios with more data.

A.7.2 Limitations on small samples and latent confounders.

When data are scarce, attributions are noisy and edge selection becomes challenging in nonlinear

and non-stationary settings (see Fig. ). With latent confounders, the method can learn spurious
links. It can be mitigated by methods that account for latent confounding; for example, one can
post-process the learned Markov blanket using FCI [Spirtes et al.,|2000]. Complementary remedies
include explicit latent modeling and stronger structural priors within the forecasting-to-discovery

pipeline.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction align with our scope: theoretical identifiabil-
ity for decoder-only transformers and empirical validation; see Section [2] Section [3]and
supplementary results in Appendix.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss small-sample and latent-confounding limitations and mitigations
in Appendix [A] ("Limitations on small samples and latent confounders").

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions A1-A4 and Theorem [I]are stated in §2.T} detailed lemmas and
proofs are provided in Appendix ("Identifiability of the causal structure").

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe simulator settings, attribution/binarization, and evaluation proto-
cols (Appendix[A]), as well as the model architecture and optimization objective in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Currently we do not provide open access to the data and code, but we plan to
release them with instructions in the supplemental material in the camera-ready version.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: We include the simulator design, candidate functions, noise types, regime
setup in Appendix [A.3] as well as the model architecture and optimization objective in

Appendix [A.4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report overall standard deviation and the error bars across different sample
sizes given certain experimental conditions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report compute resources for our approach and baselines in Appendix [A.5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses only synthetic data and public baselines, involves no human
subjects or sensitive data, and adheres to the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release high-risk models or scraped datasets; the paper uses
simulated data and a standard methodology.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all external assets and respect the license and terms of use.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new datasets, models, or code artifacts in this submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not an important or non-standard component of the core methods in
this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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