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Abstract

We reveal that transformers trained in an autoregressive manner naturally encode
time-delayed causal structures in their learned representations. When predicting
future values in multivariate time series, the gradient sensitivities of transformer
outputs with respect to past inputs directly recover the underlying causal graph,
without any explicit causal objectives or structural constraints. We prove this
connection theoretically under standard identifiability conditions and develop a
practical extraction method using aggregated gradient attributions. On challenging
cases such as nonlinear dynamics, long-term dependencies, and non-stationary
systems, we see this approach greatly surpass the performance of state-of-the-art
discovery algorithms, especially as data heterogeneity increases, exhibiting scaling
potential where structure discovery accuracy improves with data volume, a property
traditional methods lack. This unifying view opens a new paradigm where causal
discovery operates through the lens of foundation models, and foundation models
gain interpretability and enhancement through the lens of causality. 1

1 Introduction

Causality drives scientific progress across domains, e.g., medicine [Doll and Hill, 1950, Popa-Fotea,
2021], economics [Chetty et al., 2015], and neuroscience [Roth, 2016]. As an evolving field, causal
discovery aims to formalize theoretical frameworks for identification criteria and propose search
algorithms to find the true causal structure from observational data [Pearl, 2009, Spirtes et al., 2000].
In this area, causal discovery from time series focuses on identifying temporal causal dynamics by
exploiting the temporal ordering that naturally constrains the direction of causation. Granger causality
[Granger, 1969, Tank et al., 2021, Nauta et al., 2019] formalizes this intuition: a variable X Granger-
causes Y if past values of X contain information that helps predict Y beyond what is available
from past values of Y alone. Additional methods extend this foundation, including constraint-based
approaches like PCMCI and its variants that iteratively test conditional independence to examine the
existence of causal edges [Runge et al., 2017], score-based methods like DYNOTEARS [Pamfil et al.,
2020] that optimize graph likelihood with structural prior regularizations, and functional approaches
like TiMINo and VAR-LiNGAM that leverage structural equation models and non-Gaussianity for
identifiability [Peters et al., 2014, Hyvärinen et al., 2010].
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Real-world systems exhibit complex interactions among many variables. For example, financial
markets are highly non-stationary and involve very large variable sets [Engle, 1982]; neural record-
ings exhibit strongly nonlinear population dynamics [Breakspear, 2017]; climate sensor networks
display long and short-term teleconnections [Wallace and Gutzler, 1981, Newman et al., 2016]; and
unstructured modalities such as video require modeling long-range spatiotemporal dependencies
[Bertasius et al., 2021, Arnab et al., 2021]. Despite rigorous theoretical foundations, prevailing
algorithms are often constrained in practice by complex heuristics. Specifically, constraint-based and
score-based approaches scale poorly: the number of statistical tests grows rapidly with dimension and
lag, and non-parametric tests are computationally expensive [Runge et al., 2017, Chickering, 2002].
Optimization approaches require careful tuning to achieve the right balance between likelihood and
structural regularization [Zheng et al., 2018, Ng et al., 2020a, Pamfil et al., 2020, Zheng et al., 2019].
More fundamentally, these estimators are not scalable representation learners: their learning is not
transferable and thus offers little generalizability for zero- or few-shot adaptation; their effective
capacity and expressiveness are not well-suited for pretraining on diverse systems.

Motivated by the striking performance and scaling behavior of autoregressive foundation models
[Brown et al., 2020, Kaplan et al., 2020, Hoffmann et al., 2022], we ask whether the properties that
make transformers strong forecasters can help causal discovery. Building this connection is valuable in
two directions: for discovery, it promises data efficiency by leveraging pretrained representations and a
scalable learning paradigm suited to complex dependencies; for foundation models, causal principles
offer diagnose limitations in memory and hallucinations, and guide architecture and objective
choices. In this paper, we take a first step toward these goals: we revisit common identifiability
assumptions in lagged data generation processes and show how decoder-only transformers trained for
forecasting, together with input–output gradient attributions via Layer-wise Relevance Propagation
(LRP) [Achtibat et al., 2024, Bach et al., 2015], reveal lagged causal structure. This view turns
modern sequence models into practical, scalable estimators for temporal graphs while opening a path
to analyze and strengthen foundation models through causal perspectives.

2 A Unifying View: Identification inside Robust Next Variables Prediction
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Figure 1: Data generation and transformer-based causal discovery. Left: A decoder-only
transformer trained for next-step prediction. Tokens are lagged observations from t−L to t−1;
the model predicts Xt from Xt−1:t−L. Right: A lagged data-generating process with p= 3 and
window L=3. Each Xi,t depends on selected past values Xj,t−ℓ per the true graph G∗. The trained
transformer learns the process, and relevance attribution help recover the causal structure.

2.1 From Prediction to Causation

Data-generating process. Consider a p-variate time series Xt = (X1,t, . . . , Xp,t)
⊤ and a lag

window L ≥ 1. Each variable follows

Xi,t = fi(Pa(i, t), Ni,t),

where Pa(i, t) ⊆ {Xj,t−ℓ : j ∈ [p], ℓ ∈ [L]} are the lagged parents and Ni,t are independent noises.

We write j
ℓ−→ i if Xj,t−ℓ is a direct cause of Xi,t. The lagged graph G∗ contains j

ℓ−→ i iff
Xj,t−ℓ ∈ Pa(i, t).
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Assumptions for lagged identifiability

A1 Causal sufficiency (no latent confounders).
A2 No instantaneous effects (all parents occur at lags ℓ ≥ 1).
A3 Lag-window coverage (the chosen L includes all true parents).
A4 Causal Markov and Faithfulness [Spirtes et al., 2000, Pearl, 2009].

This theorem reduces causal discovery to finding which lagged variables are predictively relevant
for each target. The identifiability criterion most closely related to ours is Granger causality, where
it is termed as predictive causation. Analytically, this can be captured by the population gradient
energy Gℓ

j,i := E[(∂xj ,t−ℓf
∗(Xi))

2], which is zero exactly for non-parents and positive for parents.

In practice, we approximate Gℓ
j,i by aggregated Layer-wise Relevance (LRP) G̃(ℓ)

j,i := E[ |R(ℓ)
ij (X)| ],

then calibrate to recover G∗. As we show next, decoder-only transformers are well aligned with
these properties and suitably serve as scalable causal learners. When assumptions are violated
(e.g., latent confounding, instantaneous effects), we can handle them by adjusting masking rules
and combining traditional causal discovery methods as post-processing procedures. We illustrate
straightforward ways to handle latent confounders and instantaneous relationships in Section 3 and
Subsection A.7.8. Identifiability proof and LRP–gradient connection are provided in Appendix §A.1
and Appendix §A.2.

Causal Identifiability via Prediction

Theorem 1. Under A1–A4, the lagged causal graph G∗ is uniquely identifiable from conditional
prediction dependencies: edge j

ℓ−→ i exists iff Xj,t−ℓ is informative for helping to predict
Xi,t given all other lagged variables.

2.2 Transformers inherit causal identifiability

We connect Theorem 1 to decoder-only transformers and make explicit why this architecture aligns
with the identifiability program in Section 2.1, and how we extract a graph in practice. The connection
has four parts: (i) alignment with assumptions A1–A4 and the forecasting objective, (ii) scalable
sparsity and conditional-dependence selection, (iii) contextualized parameters for heterogeneity, and
(iv) a structure extraction and binarization procedure.

Alignment with identifiability and objective. We use a decoder-only transformer on a length-L
window. For each t > L, the input st = [Xt−L, . . . , Xt−1] ∈ RL×p is flattened to L · p tokens. We
use separate learnable node embedding and time embedding to distinguish temporal dimension and
node entities. Causal masking and autoregressive decoding enforce temporal precedence (A2); the
window L bounds the maximum lag (A3). We assume there are no hidden confounders (A1). Unlike
traditional structure learning approaches, which use a fixed input length to predict only the last token,
our autoregressive training uses every token as a training signal via teacher forcing. We optimize:

min
θ

− 1

(T − L)L

T−L∑
i=1

L∑
k=1

log pθ(Xi+k |Xi:i+k−1) + λΩ(θ). (1)

where pθ(· | ·) denotes the conditional likelihood parameterized by transformer outputs f̂θ : RL×p →
Rp. For simplicity, we use a Gaussian likelihood (Mean Square Error objective), and Ω(θ) is optional
(e.g., sparsity or entropy regularization; by default, we do not use structural penalties).

Selectivity and scalable dependence selection. While explicit sparsity is not required for identifia-
bility in the population, finite-sample recovery benefits from sparsity for both accuracy and efficiency.
Constraint-based and score-based approaches control complexity via combinatorial conditioning
and structural penalties, which limits scalability in high dimensions and long lags. Transformers
exhibit implicit sparsification: finite capacity, weight decay, and the implicit bias of gradient descent
favor low-complexity solutions; softmax attention induces competitive selection among candidates
[Martins and Astudillo, 2016, Sutton et al., 1998]; and multi-head context supports selecting comple-
mentary parents. These priors make transformers well suited for scalable causal learning and can be
complemented with explicit sparsity if desired.
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Attention as contextual parameters. Attention matrices are input-conditioned and therefore act as
contextualized parameters of pairwise dependencies rather than fixed population-level graph weights
commonly used in optimization-based estimators [Zheng et al., 2018, Pamfil et al., 2020]. Unlike
methods that learn a single static binary mask, input-conditioned attention adapts to heterogeneity
and non-stationarity: different contexts (time, regime) induce distinct effective dependency patterns.
This flexibility is desirable and scalable in practice, enabling a data-driven mixture-of-graphs view
without committing to a single mask.

Structure extraction. After training, we recover structure via population gradient energy rather
than raw attention. We use Layer-wise Relevance Propagation (LRP) [Achtibat et al., 2024] to
compute relevance scores R(ℓ)

ij that quantify the influence of variable j at lag ℓ on predicting variable
i at time t:

R
(ℓ)
ij =

M∑
m=1

H∑
h=1

LRP(m,h)
(
f̂θ, X

(i)
t , X

(j)
t−ℓ

)
. (2)

We aggregate these attributions across samples to estimate gradient energy G̃
(ℓ)
j,i = E[ |R(ℓ)

ij (X)| ]
and then calibrate to a sparse graph. We do not use raw attention weights as causal explanations
since deep token mixing often misaligns attention scores with input and output dependence [Jain and
Wallace, 2019]. See Appendix §A.2 for implementation and aggregation details.

Graph binarization. We propose two rules to binarize it: (i) Top-k per target: for each target
variable (row), select the k largest entries as parents; this directly controls graph density and stabilizes
precision. (ii) Uniform-threshold rule: assume a uniform baseline over L×p candidates and select
entries whose normalized relevance exceeds 1

L×p . The two rules behave similarly at small scale; as
context length grows, the uniform-threshold rule tends to degrade in precision compared to Top-k.

3 Experiments
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Figure 2: F1 score analysis across regimes. (A) Mean F1 across all experiments (averages exclude
timeout cases). (B) High-dimensional input: F1 averaged across scales and seeds vs. the number
of nodes. (C) Long-range dependencies: F1 averaged across scales and seeds vs. maximum lag.
(D) Nonlinearity: F1 averaged across scales and seeds vs. different types of functional forms. (E)
Non-stationarity: F1 averaged across scales and seeds vs. the number of domains. We run each
method with three seeds. Missing results indicate method timeouts due to computational limits. DOT
stands for Decoder-only Transformer. PL and M stand for piecewise linear and monotonic functions.

Setup. We evaluate decoder-only transformers for causal discovery using the simulator detailed
in Appendix §A.3. We compare against PCMCI [Runge et al., 2017], DYNOTEARS [Pamfil et al.,
2020], VAR-LiNGAM [Hyvärinen et al., 2010, Peters et al., 2014], NTS-NOTEARS [Sun et al.,
2021], TCDF [Nauta et al., 2019] and pairwise/multivariate Granger tests [Granger, 1969] across
variations in nonlinearity, maximum lag, dimensionality, noise type, and non-stationarity (see more
discussions in Appendix §A.6.

General capability and complex dependencies. The transformer recovers lagged parents ac-
curately and consistently across settings, achieving comparable or better performance to baseline
methods (Figure 2). It maintains strong performance under nonlinearity, long-term dependencies,
large variable sizes, and non-stationarity. Traditional methods degrade as dynamics and dimension
grow, whereas the transformer remains robust without sensitive hyperparameter tuning. Its advantages
stem from the model’s expressivity and attention-based dependency selection. Performance improves
steadily with sample size, making the approach suitable for complex real-world scenarios. More
detailed results including additional settings, case studies, and analysis of transformer variants, are
provided in Appendix §A.7.
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Capacity and scaling potential. The transformer effectively lever-
ages additional data to improve causal structure modeling accu-
racy (see Figure 6 and 7). Unlike traditional methods that are
intractable with more data, the transformer shows consistent im-
provement across sample sizes. In non-stationary settings, the model
learns to handle multiple local mechanisms within a single frame-
work. As sample size increases, the transformer better separates and
routes different causal structures corresponding to distinct regimes.
This scaling behavior mirrors that of large pretrained models and dis-
tinguishes our approach from traditional causal discovery methods.
The results also suggest that hallucinations in foundation models
may arise when insufficient data prevents accurate regime separation
and structure routing.

The potential of handling latent confounders. Transformer per-
formance degrades under latent confounding, and its architecture
cannot generally model latent variables (see Figure 9). We show that it is possible to handle this
by post-processing with a latent-aware causal discovery method: run L-PCMCI [Gerhardus and
Runge, 2020] constrained by the transformer’s predicted edges to refine the graph. Starting from
the transformer’s graph sharply reduces the expensive search space of latent-aware causal discovery
methods. The combined pipeline is robust to latent confounders and yields substantially higher
accuracy than the transformer alone (see Figure 3).
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Figure 4: Integrating with domain indi-
cators helps structure learning in non-
stationary settings. Integrating domain index
as a surrogate consistently improves data effi-
ciency in both linear and nonlinear settings.

Integration with known domain indicators in non-
stationary settings. Exploiting variation across en-
vironments and distributions helps identify causal
structure and representations [Huang et al., 2020,
Khemakhem et al., 2020]. Providing domain indi-
cators lets the model separate cross-domain changes
from invariants. We encode a domain index, proxying
distribution shifts, as an additional input to a decoder-
only transformer, improving data efficiency in both
standard and highly complex settings (Figure 4) and
helping disentangle structure within representations.

Uncertainty analysis. Statistical causal discovery
outputs a population-level graph and estimates uncertainty via resampling (e.g., bootstrap). With
transformers, we can aggregate per-sample point estimates and use their standard deviation to gauge
consistency. Because larger mean relevance scores often have larger raw score variance, we rank
each target’s candidate parents within every sample and summarize these ranks by their mean and
standard deviation. True edges show higher mean rank and lower rank standard deviation, indicating
greater confidence (Figure 5). This offers a pragmatic way to surface the most reliable edges when
precision is prioritized. In graphs with varied degrees, combining the mean and variance of ranks
with a global top-k yields more accurate structures than using the mean of raw scores with row-wise
top-k in both linear and nonlinear settings. More results are provided in Appendix §A.7.9.
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Figure 5: Uncertainty analysis of causal structure estimation. Mean and variance of relevance
score rankings across samples for potential parents of target variables. Larger mean rankings tend
to have a lower variance in rankings, indicating the model’s confidence in identifying true causal
relationships. The top-left red triangle means that model predicts there is a causal edge and top-right
green triangle means that there is a true edge between the two variables.
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A Appendix

A.1 Identifiability of the causal structure

We formalize when gradients of the population regression recover the lagged causal parents. Let
X = (X1, . . . , Xd) collect all covariates formed by stacking all variables over lags 1:L at time t, and
let Y := Yt. Write S ⊆ {1, . . . , d} for the index set of the direct time-lagged parents Pa(Y ) inside
X .

Assumptions and definitions. We work under the following standard conditions (definitions
inlined; references in parentheses):

• Causal sufficiency: all common causes of the modeled variables are observed; no latent
confounders [Pearl, 2009, Spirtes et al., 2000].

• No instantaneous effects: edges from time t to t are absent; all parents of Yt live at lags
ℓ ≥ 1 (time-lagged SCM; see, e.g., Peters et al., 2013, Runge et al., 2017).

• Lag-window coverage: the constructed design vector X contains all true lagged parents of
Yt (the chosen maximum lag L is at least the causal horizon).

• Causal Markov, and Faithfulness: Yt ⊥ (Past \ Pa(Yt)) | Pa(Yt) (Causal Markov
property), and the distribution is faithful to the underlying time-lagged graph so that no
independences arise from measure-zero cancellations [Pearl, 2009, Spirtes et al., 2000,
Peters et al., 2013].

• Support and regularity: the law of X admits a density supported on a rectangle Ω ⊂ Rd

(no deterministic constraints/collinearity), and the population regression

f∗(x) := E[Y | X = x ]

lies in W 1,2
loc (Ω), i.e., is weakly differentiable with square-integrable partial derivatives

[Evans, 2022, Adams and Fournier, 2003].

Define the gradient energy of coordinate j by

Gj := E
[(
∂xj

f∗(X)
)2]

, j = 1, . . . , d.

Lemma 1 (Markov projection). Under the Causal Markov property and no instantaneous effects,
there exists a measurable g such that for all x ∈ Ω,

f∗(x) = g(xS), S = indices of Pa(Yt).

In particular, E[Y | X = x] = E[Y | XS = xS ].

Proof. By the Causal Markov property and the absence of instantaneous effects, Y ⊥ XSc | XS .
Therefore E[Y | X = x] = E[Y | XS = xS ] for all x ∈ Ω. Let g(u) := E[Y | XS = u].
Then f∗(x) = g(xS). The function g is measurable by standard properties of regular conditional
expectations.

Lemma 2 (Zero weak partial implies no dependence). Let f ∈ W 1,1
loc (Ω) on a rectangle Ω ⊂ Rd.

If ∂xj
f = 0 almost everywhere on Ω, then there exists a measurable h with f(x) = h(x−j) almost

everywhere. Conversely, if f does not depend on xj , then ∂xj
f = 0 almost everywhere.

Proof. Assume ∂xj
f = 0 almost everywhere. Fix x−j . For almost every line t 7→

(t, x−j), the one-dimensional fundamental theorem of calculus yields f(t2, x−j) − f(t1, x−j) =∫ t2
t1

∂xj
f(s, x−j) ds = 0, so f(t, x−j) is (a.e.) constant in t. Thus there is a measurable h with

f(x) = h(x−j) a.e. Conversely, if f does not depend on xj , then its weak partial ∂xj
f is 0 almost

everywhere.
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Connecting dependence and gradients. By Lemma 1, f∗ depends only on the parent coordinates
XS . For any coordinate j, “f∗ does not depend on xj” is equivalent to “∂xjf

∗(x) = 0 almost
everywhere,” by Lemma 2. Hence Gj = E[(∂xjf

∗(X))2] equals 0 exactly when f∗ ignores xj .
Under Faithfulness, this happens precisely for non-parents and not for true parents.

Theorem 1 (Gradient characterization of lagged parents). Under the assumptions in this subsection,
for each coordinate j ∈ {1, . . . , d},

Gj = 0 ⇐⇒ j /∈ S.

In particular, if k ∈ S then Gk > 0.

Proof. (⇐) If j /∈ S, then by Lemma 1 f∗(x) = g(xS) and thus it does not depend on xj . Lemma 2
gives ∂xj

f∗ = 0 a.e., so Gj = 0.

(⇒) If Gj = 0, then ∂xj
f∗ = 0 a.e., so by Lemma 2 f∗ does not depend on xj . Hence Y ⊥ Xj | X−j .

By Faithfulness, this is impossible for a true parent, so j /∈ S. For any k ∈ S, the contrapositive
implies ∂xk

f∗ is nonzero on a set of positive measure, and therefore Gk > 0.

A.2 Attention LRP as a surrogate for gradient energy

Layer-wise Relevance Propagation (LRP) decomposes a model’s output f(x) into relevance scores
assigned to input coordinates. For efficiency and simplicity, we adopt the Input×Gradient formulation
of ε-LRP, which expresses LRP as a single chain of Jacobian–vector products (one backward pass)
with small, local modifications to the backward rule at nonlinearities and at attention/normalization
layers. This implementation is equivalent to ε-LRP up to a layer-wise rescaling and closely follows
the efficient Attention-LRP formulation used for transformers [Achtibat et al., 2024].

Concretely, for a trained forecaster f̂ and a scalar prediction z := f̂(x) (e.g., the mean for regression
or a logit/probability for classification), we define per-sample relevance by

R(x) := x ⊙ ∇̃xz,

where ∇̃x denotes a gradient computed with the modified local Jacobians described below. Aggregat-
ing coordinates gives a global score

G̃j := E
[
|Rj(X)|

]
,

used as a monotone proxy for Gj = E[(∂xj
f∗(X))2].

Core (Input×Gradient) LRP equations. For computational efficiency, we use the gradient-input
reformulation in attention-aware LRP [Achtibat et al., 2024]:

R(x) = x ⊙
(
J1 J2 · · · JL ei

)
(Input×Gradient with modified local Jacobians). (IG-1)

The same chain-of-Jacobian idea applies to attention and normalization layers in transformers. In
practice, this yields LRP attributions in a single backward pass, after which token-level relevances
are aggregated to G̃j as above.

A.3 Experiment setups

Data Generation and Simulation

Simulator. We use the CDML-NeurIPS2020 structural time series simulator to sample datasets
[Lawrence et al., 2020]. We use a linear baseline and multiple variants in different dimensions such
as the number of variables, maximum lag, noise type, non-stationarity, and latent variables. For the
variants, we vary only the property of interest of the data generation process compared to the linear
baseline and use multiple sample sizes to see how the performance changes with the sample size (5e4,
1e5, 1e6).
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Variables and lags. For a system with N observed variables and maximum lag K. We disable
instantaneous effects and set the transition probability to 0.3. Latent and noise autoregression are set
to 0 unless noted. We use the number of variables 10, 25, 50 to study the high-dimensional cases.

Control graph density via expected in-degree. To obtain comparable sparsity across N and K,
we specify an expected in-degree Ein = 3 per node (aggregated across all parent candidates).

Structural functions and nonlinearity. We control the nonlinearity complexity by employing
functional forms as follows (first 3 are additive noise models): (1) piecewise linear (PL): mixture of
linear, piecewise linear, (2) and monotonic (sum-of-sigmoids) functions (3) MLP (add): multi-layer
perceptron (MLP) with additive noise injection (4) MLP (concat): MLP aggregation with noise
concatenation.

Noise types. We consider three noise types: Gaussian (in linear baseline), Uniform, and Mixed.
The mixed noise is a fixed mixture over distributions [Gaussian, Uniform, Laplace, Student’s t]. We
also study non-equal variance noise, with a small range from 0.5 to 5 and a large range from 0 to 10.

Non-stationarity. To study how different approaches behave under time-varying causal structure,
we partition the sequence into S contiguous segments (S ∈ {2, 5, 10}) and independently generate
each segment with a randomly sampled graph. We construct two settings here; the first is the regular
setting where each domain has the same maximum lag (5) and the data generation process is all linear.
In the extreme setting, each domain might not have the same maximum lag (up to 5) and the data
generation process is composed of random functions (from linear and nonlinear function set).

Latent variables. We examine the robustness of discovery methods in the presence of latent
variables. We set the number of latent variables to L ∈ {3, 5, 10}.

A.4 Training details and model architecture

We train autoregressive Transformers on lag-K windows, after per-variable z-score normalization.
We use an embedding dimension of 64, 4 attention heads, and either 1 (“shallow”) or 4 (“deep”)
layers with pre-LayerNorm, residual connections, and a 2-layer ReLU feed-forward; causal masking,
node/time embeddings. Models are optimized with Adam (learning rate 1e-3, batch size 256) under an
MSE objective, with gradient clipping at 1.0. We use the official implementations for PCMCI [Runge,
2020], VAR-LiNGAM [Hyvärinen et al., 2010], TCDF [Nauta et al., 2019], NTS-NOTEARS [Sun
et al., 2021] and Granger causality implementations from a collection repository of time series causal
discovery algorithms (https://github.com/ckassaad/causal_discovery_for_time_series). We use the
default hyperparameters from the official implementation.

A.5 Compute resources

All transformer experiments are implemented in PyTorch and executed in FP32 precision on a single
NVIDIA A100 GPU with actual memory usage below 24GB. Experiments that exceed 6 hours of
runtime, including both our transformer approach and baseline methods, are terminated and classified
as timeouts.

A.6 More Discussions

The difficulty of non-convex optimization. Traditional continuous-optimization approaches to
causal discovery struggle with non-convex loss landscapes. Even under identifiability and with
the correct objective, nonconvexity from unequal noise variances and nonlinearities can make
structure recovery nearly intractable; outcomes hinge on fragile initialization, especially with limited,
homogeneous data [Ng et al., 2024]. By contrast, large-scale transformer pretraining operates in a
different regime: overparameterized networks have benign landscapes with many global minima [Du
et al., 2019]; in high dimensions, bad local minima are rare while saddle points dominate [Kawaguchi,
2016]; and the stochasticity of SGD helps escape saddles and favors flatter, more generalizable
regions [Jin et al., 2017]. This geometry enables transformers to function as scalable causal learners,
effectively sidestepping the non-convex barriers constraining classical methods.
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The role of prediction objective. A Gaussian likelihood (MSE) is convenient and coherent with
a Gaussian noise prior, but richer likelihoods can better capture heteroskedastic or multimodal
dynamics and sharpen attribution. Objectives should match the data distribution and exogenous
noise. For instance, adding degrees of freedom can accommodate unequal noise variances in highly
heteroskedastic data. Promising alternatives include flow-matching and diffusion objectives, as well
as quantile and energy-based losses; these better model stochasticity and complex distributions. As
predictive fidelity improves, the implicitly learned structure should become more accurate.

The need of better structure priors. Our experiments indicate that vanilla decoder-only trans-
formers are sample-hungry for recovering correct structures from a single nonlinear generator, and
heterogeneous mixtures are harder—evidence of weak inductive bias for causal structure. Causal
theory offers mature priors to close this gap. Independent Causal Mechanisms and minimality enforce
mechanism independence and modular factorization, yielding cross-environment invariances and im-
proved sample efficiency [Peters et al., 2017, Huang et al., 2020]. Sparsity further reduces the search
space, making learning more tractable in noisy settings [Ng et al., 2020b, Zheng et al., 2018, Perry
et al., 2022]. Recent large-language-model architectures echo these ideas: gated and block-sparse
attention instantiate sparsity and modularity, mitigating spurious context coupling and improving
long-context retrieval and robustness to distribution shift [Yuan et al., 2025, Lu et al., 2025]. Finally,
scalable, native modeling of latent variables and instantaneous effects broadens the class of structures
beyond lagged processes. Integrating such priors should improve efficiency, generalizability, and
robustness.

Context with prior findings on Transformers for time series. A growing body of work has
argued that transformers are not uniformly superior for time series forecasting, and that simple
linear baselines can be competitive or even stronger under common settings [Zeng et al., 2023]. We
view these results less as evidence against the architecture and more as a representation bottleneck:
unlike language (byte-pair encoding) and vision (patches), time series still lacks a widely adopted,
structure-aware tokenization that has a high compression rate and exposes salient inductive biases.
In the absence of such tokens, architectural capacity is under-utilized and empirical gains hinge
on data preprocessing and normalization choices, precisely the phenomenon documented by prior
analyses [Chen et al., Liang et al., 2025]. Moreover, recent time series foundation models pretrained
on large, heterogeneous corpora have demonstrated strong zero-shot forecasting performance [Ansari
et al., 2025, Das et al., 2024, Liu et al., 2025], indicating the scaling potential of Transformer-based
backbones for temporal data. The scalability demonstrated in language and vision, where model
size and data scale reliably translate into better representation learning, suggests that the limiting
factor for time series is the input representation, not the backbone. Our findings echo this perspective
from a causal angle. Decoder-only Transformers trained autoregressively possess the capacity and
expressivity to encode complex and diverse temporal causal graphs in a scalable way. We should
expect that with better time series tokenization, the same machinery that powers foundation models
can also serve as a practical, extensible vehicle for forecasting and causal discovery.

A.7 Complete experiment results

A.7.1 Sample scaling behavior in nonlinear settings

We examine the capability of the transformer in learning nonlinear interactions, considering settings
from simple to complex: additive noise models with linear, monotonic, mixture of piecewise linear and
monotonic, and multi-layer perceptron (MLP) as nonlinear functions, and non-additive noise models
with MLP as mixing functions of variables and noise. We observe a trade-off between data efficiency
and expressivity. While traditional methods employing simple estimators and search heuristics from
human prior (e.g., DYNOTEARS, VAR-LiNGAM, PCMCI) can achieve good performance efficiently
in simple cases like linear settings, a decoder-only transformer generally works better when the data
scales and shows a consistent accuracy improvement as data increases.

A.7.2 Sample scaling behavior in non-stationary settings

Here we construct two kinds of non-stationarity: the regular setting randomly samples linear structures
with a fixed maximum lag for each domain, and the extreme setting randomly samples structure
and random functions (from linear and nonlinear function set) for each domain, within a range
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Figure 6: Nonlinear dependencies. F1 scores averaged across seeds vs. sample size in different
nonlinear settings.

of maximum lags. Unlike traditional methods that are intractable with more data, the transformer
shows consistent improvement across sample sizes. In non-stationary settings, the model learns to
handle multiple local mechanisms within a single framework. As the sample size increases, the
transformer better separates and routes different causal structures corresponding to distinct regimes
(Figure 2E). This scaling behavior mirrors the remarkable zero-shot generalization of large language
models and the rich world knowledge and rules they learned [Kaplan et al., 2020, Brown et al., 2020].
The pretraining provides the model chances to learn such diverse causal structures and find deeper
cross-domain patterns by connecting them. On the other hand, these learning curves along with
nonlinearity experiment results show the limitation of weak model prior and data hungriness. When
the number of domains increases, learning to accurately model and switch between them becomes
much harder and requires much more data. It implies the structure learning of foundation models
might be limited because of data insufficiency; thus, they often rely on imperfect structures (spurious
correlations) and induce hallucinations.
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Figure 7: Non-stationary dependencies. F1 scores averaged across seeds vs. sample size in different
non-stationary settings.

A.7.3 Performance under non-stationary settings with realistic minimal changes.

In real world settings, the changes across domains are often minimal and gradual. We construct a
setting where a small part of the structure is rewired randomly compared to the previous regime. We
see that the data efficiency is much higher compared to the randomly sampled setting in both regular
and extreme settings (see paragraph A.7.2). Note that here we do not inject any prior and constraint
about minimal changes to the architecture, and we should expect it to be much more data-efficient
when we incorporate such prior knowledge natively into the transformer.

A.7.4 Noise and latent variable robustness.

The transformer demonstrates robust performance across different noise distributions, maintaining
consistent accuracy regardless of noise type or the variance properties of noise (see Figure 9). While
we observe a performance drop of continuous optimization methods like DYNOTEARS and TCDF
in non-equal noise variance settings aligned with Ng et al. [2024], the decoder-only transformer
remains stable and accurate. However, due to the lack of a latent variable modeling mechanism,
transformers are prone to learn spurious links and degrade as the number of latent variables increases,
while traditional methods considering sparsity alleviate this influence.
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A.7.5 Attention and gradient attribution.

We also evaluate non-gradient proxies, such as raw attention scores, for recovering causal structure
(see Figure 11). We see the relevance between attention scores and gradient attributions is different for
deep and shallow transformers. In deep transformers, attention scores barely reveal any information
about the structure model learned, while in one-layer transformers, structures extracted from attention
scores are much more accurate and aligned with the LRP’s outputs. This aligns with findings that
as depth increases, repeated attention routing and residual MLP updates mix token representations,
making the attention not faithfully represent token dependency [Serrano and Smith, 2019, Jain and
Wallace, 2019].

A.7.6 The effect of model depth.
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The depth of the transformer primarily affects capacity and the
expressivity to capture complex dependencies. With more layers, the
transformer can model more complex structures and longer-range
effects. In our nonlinear and long-range settings, deeper transformers
achieve higher accuracy in recovering causal structure and show
clear advantages with LRP readout. This highlights the potential of
deep transformers for highly heterogeneous, long-range dynamics,
echoing the success of pretrained large language and vision models.

A.7.7 The effect of graph binarization.

Different binarization rules can lead to distinct causal graphs. We
compare thresholding and top-k. Thresholding performs similarly
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to top-k when the number of variables and the lag window are
moderate, but its precision degrades as the context length grows.
The importance of variables varies non-uniformly across lags with
longer contexts. Top-k provides a simple, effective way to control the precision–recall trade-off.
Similar to max-depth limits in classical methods (PC, GES, etc.), choosing k with domain knowledge
lets us control edge density (e.g., use a small k when the goal is to recover only the most important
interactions).
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Figure 11: Transformer variants performance comparison on challenging regimes. Left: F1
scores on long-range dependencies. Middle: F1 scores on linear and nonlinear dynamics. Right: F1
scores on non-stationary dependencies.

A.7.8 The potential of handling instantaneous relationships.

Decoder-only transformer lacks the ability to model instantaneous relationships due to its autoregres-
sive nature. We can take a similar approach as the one for latent confounders to handle instantaneous
relationships, by separating the instantaneous parts to a statistical causal discovery method [Shimizu
et al., 2011, Spirtes et al., 2000]. We apply NOTEARS [Zheng et al., 2018] to the output residuals
of the transformer to estimate the instantaneous causal structure and combine it with the lagged
part from the transformer. This procedure improves the accuracy when encountering instantaneous
relationships. However, it is not a native capability of the transformer and the instantaneous part
is largely limited by the prediction accuracy of the transformer. We leave the native instantaneous
relationship and latent variable modeling in transformer for future work.

A.7.9 More results on uncertainty analysis.

Here we show additional results on uncertainty analysis. We use a linear gaussian dataset and a
nonlinear dataset (sigmoid) with 5 variables and 2 lags for the ease of analysis and simplicity of
visualization. We take two measures here, original relevance scores and the ranking of relevance
scores. The second quantized measure is more stable and comparable across different pairs of
variables. The mean over standard deviation of the ranking is introduced as a more general metric,
considering the uncertainty and strength of the edges at the same time. We also show two different
kinds of top-k for binarization, the row-wise top-k (choose the top-k variables with largest relevance
scores for each child variable as its parents, mainly used in the main experiments) and the global
top-k (consider the edges with top-k largest relevance scores across all rows/child variables as causal
edges). For the row-wise top-k, we take top-3 for each child variable as its parents, and for the global
top-k, we take top-15 across all rows as the true edges.

The standard deviation of the original scores is not straightforward to interpret, and we cannot directly
compare them across different pairs of variables. It presents an overall trend that larger mean scores
are more likely to have larger variance. We use the row-wise ranking of the original relevance
scores to compute standard deviation, which is clear and aligns with our intuition that the true causal
connections should be more stable than the false ones. We see that the model tends to have a higher
consistency for the edges with stronger strengths. These high confidence (low standard deviation
and high mean ranking) edges are often the true edges. Based on the ranking, we propose another
metric, mean over standard deviation of the ranking, as a more general measure of edge existence.
Furthermore, we find for the graph with varied degrees of different nodes, row-wise top-k is a hard
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truncation and more focused on local structures that might miss and add some edges without any
reason. In such circumstances, global top-k is more robust as it considers the most predominant edges
in the whole system as true edges. By quantizing the original scores with row-wise rankings, it can
also recognize the local structures even when their original strengths are weak. We surprisingly find
that the ranking measure is less noisy and gives better results than the original continuous scores, in
both linear and nonlinear settings. However, we do not observe any advantages of using the combined
metric with global top-k and row-wise top-k compared to only using the mean of rankings, with
respect to identification accuracy. We leave the precise calibration and more structure extraction
strategies based on uncertainty for future work.
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Figure 12: Mean and standard deviation of relevance scores in the linear setting: (A) Heatmap
showing the mean of edge attributions across all samples. (B) Heatmap showing the standard deviation
of edge attributions across all samples. The top-left red triangle means that model predicts there is a
causal edge and top-right green triangle means that there is a true edge between the two variables.
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Figure 13: Mean and standard deviation of row-wise rankings in the linear setting: (A) Heatmap
showing the mean of the ranking of the edge attributions across all samples. (B) Heatmap showing
the standard deviation of the ranking of the edge attributions across all samples. The top-left red
triangle means that model predicts there is a causal edge and top-right green triangle means that there
is a true edge between the two variables.

0 2 4 6 8
Lags × Nodes (from far to near)

0

1

2

3

4

No
de

s (
t)

1.5 1.4 4.4 5.5 1.3 1.6 1.4 1.5 1.5 3.8

1.4 1.4 4.2 3.3 1.2 1.6 1.6 1.7 5.2 1.2

4.1 3.2 1.6 4.1 1.2 3.7 1.3 1.6 1.3 1.2

1.4 1.5 1.6 1.8 1.2 6.0 1.7 6.1 1.7 1.4

1.5 1.5 4.4 1.7 1.2 1.5 3.7 1.6 1.5 1.6

mean over std (row-wise rankings) - linear, row-wise top-k

2

3

4

5

6

0 2 4 6 8
Lags × Nodes (from far to near)

0

1

2

3

4

No
de

s (
t)

1.5 1.4 4.4 5.5 1.3 1.6 1.4 1.5 1.5 3.8

1.4 1.4 4.2 3.3 1.2 1.6 1.6 1.7 5.2 1.2

4.1 3.2 1.6 4.1 1.2 3.7 1.3 1.6 1.3 1.2

1.4 1.5 1.6 1.8 1.2 6.0 1.7 6.1 1.7 1.4

1.5 1.5 4.4 1.7 1.2 1.5 3.7 1.6 1.5 1.6

mean over std (row-wise rankings) - linear, global top-k

2

3

4

5

6

Figure 14: Row-wise top-k and global top-k in the linear setting: (A) Heatmap showing the mean
over standard deviation of the ranking of the edge attributions across all samples. (B) Heatmap
showing the standard deviation of the ranking of the edge attributions across all samples. The global
top-k select more accurate causal edges than the row-wise top-k. The top-left red triangle means
that model predicts there is a causal edge and top-right green triangle means that there is a true edge
between the two variables.
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Figure 15: Global top-k based on mean of rankings and mean over standard deviation of
rankings in the linear setting: (A) Heatmap showing the mean of the ranking of the edge attributions
across all samples and predictions selected by the global top-k. (B) Heatmap showing the mean over
standard deviation of the ranking of the edge attributions across all samples and predictions selected
by the global top-k. The top-left red triangle means that model predicts there is a causal edge and
top-right green triangle means that there is a true edge between the two variables.
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Figure 16: Mean and standard deviation of relevance scores in the nonlinear setting: (A)
Heatmap showing the mean of edge attributions across all samples. (B) Heatmap showing the
standard deviation of edge attributions across all samples. The top-left red triangle means that model
predicts there is a causal edge and top-right green triangle means that there is a true edge between the
two variables.
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Figure 17: Mean and standard deviation of row-wise rankings in the nonlinear setting: (A)
Heatmap showing the mean of the ranking of the edge attributions across all samples. (B) Heatmap
showing the standard deviation of the ranking of the edge attributions across all samples. The top-left
red triangle means that model predicts there is a causal edge and top-right green triangle means that
there is a true edge between the two variables.
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Figure 18: Row-wise top-k and global top-k in the nonlinear setting: (A) Heatmap showing the
mean over standard deviation of the ranking of the edge attributions across all samples. (B) Heatmap
showing the standard deviation of the ranking of the edge attributions across all samples. The global
top-k select more accurate causal edges than the row-wise top-k. The top-left red triangle means
that model predicts there is a causal edge and top-right green triangle means that there is a true edge
between the two variables.
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Figure 19: Global top-k based on mean of rankings and mean over standard deviation of
rankings in the nonlinear setting: (A) Heatmap showing the mean of the ranking of the edge
attributions across all samples and predictions selected by the global top-k. (B) Heatmap showing the
mean over standard deviation of the ranking of the edge attributions across all samples and predictions
selected by the global top-k. The top-left red triangle means that model predicts there is a causal edge
and top-right green triangle means that there is a true edge between the two variables.

We show the histograms of edge strengths in both linear and nonlinear settings. Predictions in both
linear and nonlinear settings miss a small part of edges with low strengths. In nonlinear settings, the
prediction strengths are less uniform, and this over-concentration makes it wrongly identify some
edges and miss some true ones. We also find that the ratio of medium-strength edges (0.1 - 0.3) in lag
1 is higher than in the other lags. It shows that the transformer is prone to assign more weights on the
last time stamps and pay less attention to the further part, even though they might be true parents. It
is largely due to the self-attention mechanism and causal masking that the transformer is more likely
to attend to the last time stamps.
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Figure 20: Histograms of edge strengths in the linear setting: (A) Histogram of edge strengths in
the linear setting. (B) Histogram of edge strengths in the linear setting with lag 1. (C) Histogram of
edge strengths in the linear setting with lag > 1.
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Figure 21: Histograms of edge strengths in the nonlinear setting: (A) Histogram of edge strengths
in the nonlinear setting. (B) Histogram of edge strengths in the nonlinear setting with lag 1. (C)
Histogram of edge strengths in the nonlinear setting with lag > 1.
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