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Abstract

Large language models exhibit a remarkable ca-
pacity for in-context learning, where they learn to
solve tasks given a few examples. Recent work
has shown that transformers can be trained to per-
form simple regression tasks in-context. This
work explores the possibility of training an in-
context learner for classification tasks involving
spurious features. We propose a novel technique
to train such a learner for a given classification
task. Remarkably, this in-context learner matches
and sometimes outperforms strong methods like
ERM and GroupDRO. However, unlike these al-
gorithms, it does not generalize well to other tasks.
We show that it is possible to obtain an in-context
learner that generalizes to unseen tasks by con-
structing a diverse dataset of synthetic in-context
learning instances.

1. Introduction

Large language models, such as GPT-3, have the ability of
in-context learning (ICL), wherein they learn to solve a task
given a few examples in the context (Brown et al., 2020).
The most significant aspect of in-context learning is that the
learning happens during the forward pass on the context and
query, without updating network parameters. In order to
study in-context learning in isolation, a number of studies
considered training transformers (Vaswani et al., 2017) from
scratch to solve simple learning tasks in-context. In partic-
ular, Garg et al. (2022) show empirically that transformers
can be trained to perform in-context learning of simple re-
gression functions, such as dense or sparse linear functions,
two-layer ReLU neural networks, and small decision trees.

Training on ICL instances can be seen as an instance of meta-
learning (Schmidhuber, 1987; Naik & Mammone, 1992;
Thrun & Pratt, 1998), where the goal is to learn a learning
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algorithm. What exact algorithm is learned when train-
ing transformers on ICL instances is still an open problem.
Akyiirek et al. (2022) and Von Oswald et al. (2023) show
that transformers can implement a single gradient descent
step of ordinary least squares and update the closed-form so-
lution of ridge regression when a new example is added. Ad-
ditionally, they provide evidence that transformers trained
on ICL instances of linear regression learn algorithms that
closely match predictions of the known algorithms, such
as gradient descent on ordinary least squares objective and
ridge regression. However, there is evidence that the learned
algorithm may vary with model scale, depth, and pretraining
task diversity (Akytirek et al., 2022; Raventds et al., 2024).
In particular, Raventos et al. (2024) demonstrate that in the
setting of in-context learning of linear regression tasks with
insufficient pretraining task diversity, the learned algorithm
behaves like a Bayesian estimator with the pretraining task
distribution as the prior, and hence fails to generalize well
to unseen tasks. Yadlowsky et al. (2023) show that when
trained on ICL instances where the regression function be-
longs to a union of distinct function classes, the learned
algorithm fails to generalize beyond the pretraining function
classes. (Ahuja & Lopez-Paz, 2023) show that in-context
learning ability diminishes under strong distribution shifts.

In this work, we explore the limits of in-context learning fur-
ther by testing it on more challenging settings. We deviate
from the existing literature and consider visual classifica-
tion tasks instead of regression tasks with simple function
classes. In particular, we consider classification tasks where
some features are spuriously correlated with the label. Such
features are predictive of the label but are not causally re-
lated to it, due to which their correlation might not hold at
test time. A prominent example is the cow vs camel clas-
sification task, where the background often correlates with
the label, as cows are typically photographed in pastures,
while camels are typically photographed in deserts (Beery
et al., 2018). It’s well-known that neural networks trained
with gradient-based methods to minimize empirical risk can
exploit spurious features, causing performance degradation
under distribution shifts affecting these correlations (Tor-
ralba & Efros, 2011; Ribeiro et al., 2016; Gururangan et al.,
2018; Zech et al., 2018; McCoy et al., 2019; Geirhos et al.,
2019; 2020; Xiao et al., 2021).

We begin by generating in-context learning instances for a
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single task and discuss a few ways of training an in-context
learner that is robust spurious features. We find that the sim-
ple approach of training an in-context learner explored in
the literature leads to models that do classification ignoring
the context. Furthermore, these models lack robustness to
the spurious feature. We show that the first issue can be
mitigated greatly by randomly permuting input embedding
dimensions for each training sequence. To address the sec-
ond issue, we propose a novel way of forming ICL instances
and a suitable transformer architecture. The proposed ap-
proach outperforms strong baselines such as 1-NN, empir-
ical risk minimization (ERM), and GroupDRO (Sagawa*
et al., 2020). However, it does not generalize to new tasks,
as all training instances are derived from a single task.

We next explore training an in-context learner that gener-
alizes to unseen tasks with spurious features. We create a
dataset of in-context learning instances for various binary
classifications tasks with varying spurious features. We
demonstrate the efficacy of the proposed approach on this
dataset too and find that it can be improved further by pass-
ing spurious feature annotations as input and injecting occa-
sional queries requesting the label of a proceeding context
example to promote learning induction heads. The resulting
model generalizes perfectly to unseen tasks, as long as the
data generating process is similar. However, generaliza-
tion to unseen tasks with possibly different data generating
process depends on the severity of the challenge posed by
spurious features, indicating that the learned algorithm is
more brittle to severe distribution shifts than conventional al-
gorithms. The source code for reproducing our experiments
is available at anonymi zed.

2. In-context learning based on a single task

For simplicity, we focus on in-context learning of binary
classification tasks in presence of a single binary spurious
feature. Furthermore, we focus on the case where both
classes are equally represented in the training set, although
everything in subsequent parts of this work applies to class-
imbalanced settings too. Training a transformer to perform
linear regression in-context requires millions of ICL training
instances, even for small dimensional cases. For example,
Garg et al. (2022) use 32 million training instances for 20-
dimensional inputs. To generate so many ICL instances,
we can take an existing classification task with spurious
features and construct many ICL instances from it.

Let Dy, ain be a set of training examples for the task, where
each example is a triplet (, s, y) of input z € R?, spurious
feature value s € {0, 1}, and label y € {0, 1}. Similarly, let
Drest be a set of test examples. Importantly, we do not make
any assumptions on the data generating process, except that
x has some information about s and s is predictive of y on
the training set, but their correlation does not hold on the test
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Figure 1: In-context learning transformer architectures of
the naive and proposed approaches. The proposed approach
allows arbitrary query tokens after each learning example.
Token positions and attention mask are modified so that
these intermediate queries have no effect on other tokens.

set. For an example (z, s, y), we define its group g = 2y+s.
In a binary classification task with a single binary spurious
feature, there are four groups. Without loss of generality, we
assume that for a majority of training examples we have that
y = z. Hence we refer to groups 0 and 3 as majority groups,
while referring to groups 1 and 2 as minority groups.

2.1. A naive approach of constructing ICL instances

To construct a single ICL instance, we can sample a subset of
n+ 1 examples {(x;, s;, yl)}:’:f from Dy, ain and form a se-
quence S of form: S = (@1, 91, T2, G2, - - - » Ly Yoy Trt1)s
where ; € R? is a fixed random representation of either
y; or g; (this distinction will be elaborated later). Then we
can train a transformer fp : UyR¥*< — [0,1] to predict
y; given S; & (z1,71,.-.,2i_1,Ji_1,2;) (see Figure la)
optimizing the following loss function:

n+1

—— > CB(y, fo(S:), (1)
i=1

where CE(y,y) = —ylogy — (1 — y)log(1 — @) is the
binary cross-entropy loss.

We explore two options of setting ;. In the first option, we
set g; to represent y; with a constant vector or its negative
in R?. In this case we aim to obtain an in-context learner
that is robust to spurious features without receiving spurious
feature annotations as input. ERM is one such learner that
minimizes average loss on training examples and does not
require spurious feature annotations. In the second option,
we set g, to represent g; as a sum of two constant vectors
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Figure 2: Majority-group and worst-group test accuracies
on Waterbirds as a function of context size for the naive
and proposed approaches with or without permuting input
dimensions. Shaded regions show standard deviation across
5 training runs.

in RY, one representing the class and the other representing
the spurious feature. In this case we aim to obtain an in-
context learner that does robust classification with respect
to a specified spurious feature. GroupDRO is one such
learner that minimizes worst-group loss, therefore requiring
spurious feature annotations.

Unfortunately, the simple approach of (1) has several is-
sues. First, as the classification task remains the same from
one ICL instance to another, the model can learn to ignore
context examples and predict y; based solely on x;. Sec-
ond, as all n + 1 examples of a sequence S are sampled
from the training set and the spurious correlation holds
for all of them, there is nothing preventing usage of spuri-
ous features in making predictions. To confirm these two
issues, we consider the Waterbirds dataset (Sagawa*
et al., 2020), which is landbird vs waterbird image clas-
sification task where image background (sea or land) is
correlated with the label in the training set (4,795 exam-
ples), but not in validation and test sets. A robust classifier
should predict waterbird or landbird without relying
on image background. To separate out the representation
learning challenge, we represent images with a pretrained
and frozen DINOv2 ViT-B/14 distilled (Oquab et al., 2023).

This way each image is embedded in R758. While using
powerful pretrained representations increases overall per-
formance under distribution shifts (Radford et al., 2021;
Mehta et al., 2022), we note that it does not eliminate the
problem of spurious correlations. Representations obtained
via large-scale self-supervised pretraining are likely rich
enough to capture information about both the label and spu-
rious feature. Furthermore, many works have indicated that
the main contribution to the out-of-domain generalization
error comes from the classification head (rather than the
representation learning module) and called for designing
better methods of training the classification head (Galstyan
et al., 2022; Menon et al., 2021; Kirichenko et al., 2023;
Izmailov et al., 2022; Shi et al., 2023).

We train a causal decoder-only GPT-J transformer (Wang
& Komatsuzaki, 2021) with 80M parameters on 2M in-
context learning sequence with n = 512 and g, representing
labels, constructed from the training set of Waterbirds.
We use balanced sampling of classes and set the minority
group proportion to 10% within each class. We use the
ADAM optimizer (Kingma & Ba, 2014) (81 = 0.9 and

> = 0.999) with 32 batch size and no weight decay. The
learning rate is selected from {3 -1075,6 - 1072, 10*4}
based on average test performance over 5 runs. Concretely,
we evaluate on 8192 sequences where the context part is
n training examples, while the query is a sampled from
the test set with equal group distribution. Exact metric
definitions and missing details are provided in Appendix A.
Note that with 512 context length and 10% minority group
ratio within each class, the expected value of the number
of context examples from each of the 2 minority groups is
about 25. For reference, the smallest minority-group has
only 56 examples in the Waterbirds training set.

Figure 2 plots majority-group and worst-group test accura-
cies as a function of context size n. We see that naive ap-
proach results in models that ignore context — worst-group
accuracy with 512 context examples is essentially the same
as with 2 examples (see the naive curve). This validates the
first of aforementioned issues. Furthermore, Figure 2 shows
that majority-group test accuracy of the naive approach is
considerably higher compared to worst-group accuracy, con-
firming the second issue.

To address the first issue, we propose to rotate image embed-
dings in each ICL instance independently, making it harder
to memorize individual examples. We found that gener-
ating random rotation matrices on fly is computationally
expensive and slows down training. We tried generating and
storing 10K rotation matrices, but this resulted in less than
50M different training examples that were still possible to
memorize to some extent. A more effective and efficient
alternative is to apply random permutations to image em-
bedding dimensions (for brevity, this technique is denoted
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Figure 3: Majority-group and worst-group test accuracies
on Waterbirds—severe as a function of context size
for the naive and proposed approaches with or without per-
muting input dimensions.

with +P in figures and tables). We found this approach to
be very effective in terms of inducing in-context learning
(see naive + P in Figure 2). We also see that the differ-
ence between majority-group and worst-group accuracies
decreases, although an approximately 5 p.p. gap remains.

2.2. The proposed approach of constructing ICL
instances

When training an ICL transformer, ideally, we would like
to simulate the situation of making a test prediction based
on a context of training examples. Importantly, we would
like to simulate the case where test distribution has bal-
anced groups (i.e., the spurious correlation does not hold).
Given access to spurious feature annotations for the train-
ing set, we can simulate this scenario using only training
examples. In particular, we can form ICL instances of
form (z1, 31, -, Tn, Un, Tnt+1), Where the context exam-
ples (x1,...,x,) are sampled in a way that the spurious
feature is correlated with the label, while the query z,, 4
is sampled to have a uniform group distribution. However,
if we again optimize the loss of (1), for context lengths
less than n, the network will be allowed to make predic-
tions using the spurious feature. Please refer to Figure 11

of Appendix B for evidence of this. Potential ways of ad-
dressing this issue is upweighting the final prediction loss in
Eq. (1) or upweighting predictions on minority examples. In
our preliminary experiments we found the former approach
ineffective. We did not experiment with the latter approach.

Instead, we propose a novel way of forming in-context learn-
ing instances and a modified transformer architecture that
is suitable for such sequences. In particular, we form se-
quences of form S = (x1,91,91,%2,J2,- -+ Tn, Un, qn)>
where (z;,7;) are context examples as before, while g;
are queries, sampled with replacement from Dy;,i, €X-
cluding context examples. Importantly, g; are sampled
to have a balanced distribution of groups. Redefining
Si = (z1,91, 91, -, %4, Ui, q;), we would like the final
prediction on S; to be the label of ¢;. When making
a prediction on ¢;, we want ¢; (j < ¢) to have no ef-
fect. Thus, we modify the transformer architecture to dis-
allow attending to query tokens (unless a query token is
attending to itself). Furthermore, we modify token posi-
tions to discount query tokens. More formally, for the se-
quence (x1,91,q1, 2, Y2, - -, Tn, Un,Gn), pOsitions are a
setto (0,1,2,2,3,4,4,...,2n — 2,2n — 1,2n). Please re-
fer to Figure 1 for an illustration. This is our main approach
and will be referred to as “proposed approach” hereafter.

Figure 2 compares the proposed and naive approaches with
and without input dimension permutations. Without random
permutations, the proposed approach outperforms the naive
approach marginally. However, the same is not true with
random permutations. We found that image embeddings of
DINOV2 have a bias towards representing objects more than
backgrounds, alleviating the challenge posed by the spuri-
ously correlated background in Waterbirds. For this rea-
son, we create a modified version of Waterbirds by adding a
constant vector s or —s to image embeddings based on the
spurious feature. We scale s to have its norm equal to the
average norm of image embeddings. On this modified wa-
terbirds dataset, which we name Waterbirds—-severe,
we see a large separation between the naive and proposed
approaches (see Figure 3). We also see that without per-
mutations, both naive and proposed approaches perform
identically, indicating no robustness to the spurious correla-
tion. This is expected, because in the absence of in-context
learning, we can think of the naive and proposed approaches,
as standard and reweighted empirical risk minimization with
a complex classification head, respectively. It has been ob-
served that sample reweighting is not effective in overparam-
eterized settings as all training examples will be perfectly
fitted (Byrd & Lipton, 2019; Menon et al., 2021).

2.3. Comparison with conventional learning algorithms

Now that we have established the efficacy of the proposed
approach with permuted input dimensions, we compare
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Figure 4: Majority-group and worst-group test accuracies
on Waterbirds for the proposed approach and baseline
methods such as 1-NN, ERM, and GroupDRO.

it to a few strong algorithms, such as 1-NN, ERM, and
GroupDRO. We follow the evaluation recipe used for the
in-context learners. Namely, we evaluate each baseline
on 8192 sequences by training on the context part of the
sequence and making a prediction on the single query. More
information about hyperparameters and model selection is
presented in Appendix A.

Figures 4 and 5 compare the proposed and baseline ap-
proaches on Waterbirds and Waterbirds—-severe
respectively. On Waterbirds, the proposed method
outperforms ERM and GroupDRO on almost all context
lengths, but is better than 1-NN only for short context
lengths. The good performance of 1-NN is due to the bias in
DINOV2 representations. On Waterbirds-severe, the
proposed method outperforms the baselines at all context
lengths. From these results, we conclude that this in-context
learner implements none of these algorithms.

It is worth noting that baseline worst-group accuracies at
context length n = 512 are actually higher than what we
get when training on the entire dataset. For example, on
Waterbirds, I-NN gets only 90.03 worst-group accuracy,
while ERM gets 84.23 £ 0.17 and GroupDRO gets 92.43
4 0.24. This is due to balanced sampling of classes and
setting the minority ratio to 10% withing each class, which
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Figure 5: Majority-group and worst-group test accuracies
on Waterbirds—severe for the proposed approach and
baseline methods such as 1-NN, ERM, and GroupDRO.

is higher than the minority ratio of ~ 5% in the original
Waterbirds dataset. One can think of the resampling
we do as a weaker form of down-sampling which has been
found to be helpful in presence of spurious correlations (Na-
garajan et al., 2021; Menon et al., 2021; Idrissi et al., 2022).

2.4. Generality of the learned algorithm

Since we train in-context learners on ICL instances of a
single task, a natural question arises whether the learned
algorithm can generalize to unseen tasks. Without permut-
ing input dimensions, the network does not learn to do
in-context learning. Therefore, we can hope for some gen-
erality only when permuting input dimensions. We take a
model trained with the proposed method and permutations,
and probe generality of its in-context learning by evaluating
on various datasets. We start by swapping the two classes in
Waterbirds at evaluation and observe ~ 2 p.p. overall
accuracy drop and ~ 5 worst-group accuracy drop. Despite
the worsened performance, this indicates that the model
treats class labels symbolically, which is remarkable given
that the semantics of labels were constant during training.
When during evaluation we switch the task to predicting
background (now the class becomes a spurious feature), the
overall test accuracy drops to 54.4%, while the worst-group
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accuracy drops to 9.3%. More interestingly, when we evalu-
ate on Waterbirds-severe, it gets 100% accuracy on
the majority groups and 0% accuracy on minority groups.

However, it is worth noting that the learned algorithm is
not completely useless for other tasks and works well when
there are no spurious features, even on unseen tasks. For
example, evaluating on binary classification tasks derived
from the CUB-200 (Welinder et al., 2010) dataset, from
where the bird images of Waterbirds were taken, we get
99.7% accuracy at context size 100 (the accuracy is so high
because most pairs of classes are easy to distinguish). We
also tested on binary classification tasks derived from classes
belonging to Amphibia and Mammalia supercategories of
the iNaturalist (Van Horn et al., 2018) dataset. At
context length 512, the overall accuracy is 98.5%.

These OOD evaluation results indicate that the learned al-
gorithm does something specific to the spurious feature of
Waterbirds. We hypothesize that it learns to ignore this
particular spurious feature. To test this, we evaluate on
group-balanced Waterbirds sequences, with the task set
to predicting background, and get 58.5% overall accuracy
and 41.3% worst-group accuracy. One potential way of im-
proving generality and possibly also performance, is passing
example groups as input, i.e., setting y; to represent g;. We
did not observe performance improvements and increase
of generality of the learned algorithm when passing groups
as input (see the complete results in Tables 1 and 2 of Ap-
pendix B). Thus, we conclude that when all ICL instances
are derived from the task, the learned algorithm is inherently
tied to the spurious feature of that task.

3. In-context learning based on a diverse set of
tasks

In Section 2, we showed that it is possible to obtain a good
in-context learner for a given task, but it fails to generalize
to tasks with different spurious features. A better in-context
learner should detect spurious features from context and
make predictions without employing them. In this section,
we explore the possibility of obtaining such a learner by
training on a diverse set of ICL tasks. Since there exist
few suitable datasets, we synthesize binary classification
tasks with a single binary spurious feature, aiming to cap-
ture “structure” present in existing datasets. In short, given
a standard binary classification task, say cat vs dog classi-
fication, for a sampled minority of cats we overwrite some
of their features with those of random dogs. Similarly, we
do an analogous operation for a sampled minority of dogs.
This way some cats share dog features and vice versa. To
create a diverse pool of in-context learning instances, we
vary the two classes and the subset of grafted features.

More concretely, we consider the iNaturalist
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Figure 6: Majority-group and minority-group accuracies
on the OOD test set of iNaturalist for the proposed
approaches with or without permuting input dimensions and
promoting induction heads.

dataset (Van Horn et al., 2018), which contains images
from 5,089 natural fine-grained categories and filter out cat-
egories that have less than 500 images. For testing purposes,
from remaining 239 categories we set apart categories that
belong to the super-categories Amphibia and Mammalia,
along with 10% of random categories. We denote the set
of these 48 categories as Cyoq, and the set of remaining
191 categories as Ciq, which we use to create in-context
learning instances for training. For each category in Ciq, we
hold out half of the examples as in-distribution validation
set. To generate a single in-context learning instance, we
sample two distinct classes from Ciq randomly and sample
n/2 images from the training split of each class uniformly
at random without replacement. We then do the grafting
operation, setting minority group ratio within each class to
10%. We select the grafted features randomly, by first pick-
ing subset size £ uniformly at random from O to 199, and
then sampling a random subset of embedding dimensions
of size k. With this we get n examples that form the context
part of the instance. Abandoning the naive approach and
focusing on the proposed one, for each class we sample n/2
queries from the remaining examples uniformly at random
with replacement and do the grafting operation with 50%
minority group ratio.



In-context learning in presence of spurious correlations

99 —e— Proposed + P + |
Proposed + G + P + |

o O O VU o
A U O N

Minority-group accuracy

o
w

e}
N

2 4 8 16 32 64 128
Number of context examples

256 400

Figure 7: Minority-group accuracy on the OOD test set
of iNaturalist for the best proposed approach with or
without passing group information as input.

Following the experiments in Section 2, we train the same
decoder-only transformer with the proposed architecture on
4M ICL instances with n = 400 context examples. We
use the same optimizer and sweep the learning rate in the
same range, selecting the best value based on the average
minority-group accuracy (defined exactly in Appendix B)
on instances where both categories belong to C,q and thus
were not observed during training. The results presented in
Figure 6 indicate a major difference compared to the results
in the single-task regime — namely, the proposed approach
learns to do in-context learning to some extent without per-
muting embedding dimensions. As expected, we see much
better performance with permuted embedding dimensions.
Notably, comparing majority-group and minority-group ac-
curacies of the proposed approach with permutations, we
see almost no sign of reliance on spurious features.

Promoting emergence of induction heads. In-context
learning ability has been linked to induction heads, which
are specific type of circuits found within large language
models that implement the operation of looking back over
the sequence for finding previous instances of the current to-
ken and copying what comes after that (Olsson et al., 2022).
Inspired by this, we propose a data preparation technique
that promotes learning of induction heads. With probability
p, we replace each intermediate query independently with
a random example from the proceeding part of the context.
Note that this type of “hinting” is not possible in the naive
approach and is enabled by the introduction of intermedi-
ate queries. In all experiments with this technique enabled,
we just set p = 0.25. We observed that training of typical
runs escapes the initial loss plateau faster with this tech-
nique (in about 3k iterations compared instead of about 10k
iterations). Moreover, we see modest performance gains
in iNaturalist experiments (see Figure 6, where +/
stands for this technique).
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Figure 8: Minority-group accuracy on the OOD test set of
iNaturalist for the best variant of proposed approach
and baseline methods such as 1-NN, ERM, and GroupDRO.
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Figure 9: Worst-group test accuracy on Waterbirds
for the best variant of proposed approach trained on
iNaturalist and for methods such as 1-NN, ERM, and
GroupDRO.

Passing example groups as input. In contrast to the find-
ings in the single-task setting of Section 2, we observed
that setting ¥; to represent group improves the proposed
approach, even on top of permitting input dimensions and
promoting induction heads. One case of this is presented in
Figure 7, while more cases can be found in the complete re-
sults presented in Appendix B. For brevity, we mark passing
groups as inputs with +G in figures and tables.

Comparison with conventional learning algorithms.
Similar to the experiments in Section 2, we compare the
best variant of the proposed approach (G + P + 1) to 1-NN,
ERM, and GroupDRO. Results presented in Figure 8 show
that the learned algorithm is on-par with or outperforms
the baselines starting at context length 32. The results at
context lengths below 20 are not as informative, because the
way we implemented the grafting operation implies that no
examples are grafted when there are less than 10 examples
in a class.



In-context learning in presence of spurious correlations

80 o Proposed + G + |

70 Proposed + G + P + |
> —— 1-NN
% 60 —— ERM
o

§50 —»— GroupDRO
©
240
o
© 30
%
520
=

10

0

2 4 8 16 32 64 128 256
Number of context examples
Figure 10: Worst-group  test accuracy on

Waterbirds-severe for the best variant of pro-
posed approach trained on iNaturalist and for
methods such as 1-NN, ERM, and GroupDRO.

Generality of the learned algorithm. To test the gener-
ality of the learned algorithm, we report evaluation results
on Waterbirds (Figure 9) and Waterbirds-severe
(Figure 10). We see that the learned algorithm outperforms
baselines on Waterbirds and is as good as we got by
training on Waterbirds itself. However, the learned algo-
rithm fails completely on Waterbirds—-severe, while
the baselines give meaningful results starting at context
length 32. We hypothesize that the challenge posed by
the spurious features in Waterbirds—severe is signif-
icantly more severe compared to that in iNaturalist.
Another likely cause is the mismatch between the ways that
spurious features are encoded in embeddings. Interpolating
between Waterbirds and Waterbirds-severe (by
varying the norm of the added background vector), we find
that there is a good generalization till the norm of the added
vector is about 40% of the average embedding norm (see
Figure 12 of Appendix B).

4. Discussion and conclusion

We have shown that it is possible to train an in-context
learner tailored to one particular classification task with
spurious features. To achieve this we introduced two key
techniques: (a) permuting input embedding dimensions and
(b) forming in-context learning sequences with intermedi-
ate queries simulating distribution shift. We have provided
evidence that the learned algorithm is highly competitive on
the task it was trained on. However, we found that while it
generalizes to other tasks without spurious features, it does
not work for tasks with other spurious features. Understand-
ing this failure mechanistically and exploring techniques
for enabling better generalization are key future research
directions.

We next explored training on ICL synthetic instances of

diverse tasks and showed that it is possible to obtain an
in-context learner that generalizes to unseen tasks, even
with a different data generating process. We established the
usefulness of two more techniques: (c) passing example
groups as input and (d) promoting learning of induction
heads by occasionally querying past context examples. We
believe there is a room for improving in-context learning via
improved strategies of choosing intermediate queries and
possibly optimizing worst-group loss. Understanding why
the learned algorithm fails under extreme distribution shifts
and why variants with permutations fail more (see Figure 12)
is an interesting question to explore. Another interesting
direction to explore is to find out what exact algorithm is
learned in the process of training on diverse tasks. Based
on the results presented in this work, we conclude that the
learned algorithm is neither 1-NN, ERM, or GroupDRO.

One ancillary finding of this work is that transformers can be
trained to do in-context learning of classification tasks when
good image embeddings are provided. This is remarkable
because the input dimensionality we considered is much
larger compared to that considered in the pioneering works
of Garg et al. (2022) and Akyiirek et al. (2022) (784 vs
20). Furthermore, we explored much larger context sizes
(up to 512 examples instead of less than 100 examples) and
observed improved performance with context size.

Our work has several important limitations. First of all,
training a transformer-based in-context learner with high-
dimensional image embeddings is computationally costly
(see Appendix A for information on compute resources),
although it is faster than the baselines at inference. For this
reason, we did not explore more datasets and pretrained im-
age embeddings. While we believe main conclusions of our
work will be unchanged, the ranking of methods can vary
with datasets and image embeddings. Indeed, we observed
that 1-NN is unusually effective when applied on DINOv2
embeddings. Second, we compared in-context learners with
limited number of methods among the multitude of them
designed for robustness to spurious correlations. Third,
we experimented with only one model size, width, and
depth. Larger models might behave differently. Fourth, in
our iNaturalist experiments, we considered only one
“type” of spurious features. It is likely that this choice has
significant effect on the learned algorithm and its generality.
Future research should explore more ways of synthesizing
spurious features and consider varying severity of the chal-
lenge posed by spurious features. The latter can be done
by considering multiple spurious features, introducing la-
bel imbalance, varying magnitude of spurious correlations,
and varying the margin spurious features provide. Finally,
we acknowledge that the proposed approach requires spuri-
ous feature annotations which is typically costly to obtain.
Fortunately, as we showed, it is possible to mitigate this
limitation by creating synthetic data.
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A. Further experimental details

Baselines. For empirical risk minimization as a baseline, we tune 2 hyperparameters: learning rate (0.01 or 0.001) and
number of epochs (100 or 200). For GroupDRO we additionally tune its parameter that controls adaptiveness of group
weights (0.01, 0.1, or 1) and we also try an optional strong L2 regularization (1.0 weight decay), as it has been observed to
be useful for small datasets (Sagawa* et al., 2020).

Transformer-based methods. In all transformer-based approaches, we train a causal decoder-only GPT-J transformer
with 80M parameters that has 6 transformer layers with 8 multi-head attention, 768 model dimensionality, and 3072 hidden
dimensionality. When training on iNaturalist, we add a layer normalization (Ba et al., 2016) on transformer input, as
we expect input norms to change when we evaluate on Waterbirds-based datasets. The transformer input sequence in
the proposed approach consists of 3 types of tokens: context image embeddings, query image embeddings, and label/group
annotations. While the network can rely on positions and content to distinguish image embeddings from annotations, we
found it to be helpful to encode token types explicitly. We do this by setting the first 3 dimensions of a token to be a
one-hot vector representing token type (context image embedding, query image embedding, or annotation). When permuting
dimensions, we do the permutation before encoding token types to keep the location of token-type information consistent.
In our preliminary experiments and development, we used n = 128 context length. Apart from improved performance, we
did not observe significant qualitative differences when we switched to larger context lengths for final experiments.

Evaluation and model selection. For all transformer-based approaches and baselines, we do a grid search to find the best
combination of hyperparameters. In particular, we train each configuration with 5 different random seeds and selected one
with the highest average test performance. Importantly, for baseline methods model selection is done for each context length
independently, while for transformer-based methods model selection is done once with respect to the test performance at
maximum context length observed during training. All evaluations are done on 8192 sequences, where the first n examples
are sampled from the corresponding train set while the query is sampled from the test set with a balanced group distribution.
Finally, even when training transformers on permuted image embeddings, we do not apply permutations during evaluation.
In all figures throughout this work, shaded regions show standard deviation across the 5 training runs.

Note that the most principled model selection approach would be selecting models based on a metric calculated on a dataset
similar to the training set (e.g., a held-out part of training set), rather than the test set. For example, in the case of experiments
on Waterbirds or Waterbirds—severe, the principled approach would be to select based on performance on
sequences where the context part is sampled from the training set, while the final query is sampled from a held-out validation
set with balanced group distribution. We tried this way of model selection and did not observe significant changes. In the
case of experiments on iNaturalist, the principled approach would be to select based on performance on sequences
where the context part is sampled from the training set, while the final query is sampled from the hold-out part the training
set. We observed that this in-distribution metric is always around 99.5%-100%, and can be non-informative for model
selection. This is a typical scenario in OOD generalization (see for example (Gulrajani & Lopez-Paz, 2021) or (Wenzel
etal., 2022)).

Definitions of metrics. Given a set of predictions on Waterbirds or Waterbirds-severe, worst-group accuracy
is defined as the lowest accuracy of predictions among the 4 groups. Note that worst-group accuracy is not applicable to
iNaturalist, as different ICL sequences correspond to different classification tasks and hence form different groups.
For this reason, we introduce minority-group and majority-group accuracies. Given a triplet (C, ¢, 7), where C'is a context,
q is query, and ¥ is a prediction on ¢, we call i a minority (majority) prediction, if ¢ is among the least (most) represented
group(s) of the context C'. Given a list of triplets (C, ¢, ), we define minority (majority) group accuracy as the accuracy
among minority (majority) predictions.

Compute resources. We used NVIDIA A100 GPUs with 40GB memory to train transformer-based methods. The network
we considered is small enough to fit on one GPU with batch size 32 when n = 400 (iNaturalist experiments) and
batch size 24 when n = 512 (Waterbirds and Waterbirds—-severe experiments). We did mixed 16-bit training
to save compute and did not notice any quality degradation. A single training takes around 12 hours for iNaturalist
experiments and around 18 hours for Waterbirds experiments. We used a mix of CPUs and weaker GPUs to train
baselines, as they are not computationally as demanding.
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Figure 11: Majority-group and worst-group test accuracies on Waterbirds—severe as a function of context size for the
naive approach with a single modification of making the last example (query) group-balanced. As expected, at intermediate
context lengths this method performs similar to the naive approach, but is much better at the training context length.
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Figure 12: Majority-group and worst-group test accuracies of a proposed model (G + P +I) trained on iNaturalist, but
evaluated on a modified variants of Waterbirds where we add a vector representing the spurious feature (background).
The x-axis is the relative norm of the added vector compared to the average Waterbirds image embedding norm. Relative
norm of 0 corresponds to Waterbirds, while relative norm of 1 corresponds to Waterbirds—severe.

B. Additional results

In addition to the figures presented in the main text, here we provide the exact experimental resources for multiple
transformer-based and baseline approaches, some of which were not included in the main text due to space constraints.
Recall that +P means permuting input dimensions, +I means promoting learning of induction heads, and +G means passing
example groups as input to in-context learning transformers.

Table 1 presents worst-group accuracies on the test set of Waterbirds for 3 sets of approaches: (a) in-context learners
trained on Waterbirds itself, (b) in-context learners trained on iNaturalist, and (c) baselines. Similarly, Table 2
presents worst-group accuracies on the test set of Waterbirds—-severe for 3 sets of approaches: (a) in-context learners
trained on Waterbirds-severe itself, (b) in-context learners trained on iNaturalist, and (c) baselines. As RoPE-
based transformers are not good at length extrapolation (Press et al., 2021), we do not attempt evaluating models trained
on iNaturalist with context size 400 on 512-long sequences of Waterbirds or Waterbirds—-severe. Finally,
Table 3 presents minority-group accuracy on out-of-distribution classes of iNaturalist for two sets of approaches: (a)
in-context learners trained on iNaturalist itself and (b) baselines.
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Table 1: Complete results on Waterbirds. Reported numbers are average worst-group test accuracies, along with the
their standard deviation. The top half of in-context learners were trained on Waterbirds itself, while the ones in the
bottom half were training on iNaturalist.

METHOD / CONTEXT SIZE 4 8 16 32 64 128 256 512
87.02 84.52 85.14 84.82 83.41 84.45 85.08 84.82

NAIVE (0.79)  (1.00)  (0.42)  (0.89) (0.75) (1.04) (1.15)  (1.26)
NAIVE 4 P 70.92 7532  80.66  83.24 86.87 89.87 91.94 92.60
(1.18)  (1.11)  (0.68) (0.35) (0.62) (0.85) (0.75)  (0.59)
8701 8563 8651 8542 85.12 8586 8672  86.89
PROPOSED

(1.29) (2200  (2.17)  (1.73)  (2.34) (2.22)  (1.89) (1.82)
88.18  85.89 86.68 86.01 8482 8592 86.07 86.46
(1.07)  (1.31)  (1.02)  (1.39) (1.02) (1.23) (1.27) (1.57)
68.44  73.46 80.00 83.71 87.30 90.02 92.11 _ 91.95
(2.40)  (2.53)  (2.06) (2.15) (1.79) (1.16)  (1.65)  (1.20)
68.05  72.47 7897 82.58 86.39 90.00 91.78  92.17
(1.51)  (1.80) (1.12)  (0.68) (0.69)  (0.60)  (0.56)  (0.86)
88.74 87.00 87.62 86.86 86.18 8691 87.26  86.95
(1.01)  (1.60)  (1.58) (1.31) (1.33) (0.98) (1.11) (1.21)
88.80 8749 87.70 86.90 86.03 86.64 87.29  87.35
0.53)  (0.69) (0.74)  (0.95) (0.71) (0.72)  (0.77)  (1.00)
68.47  73.74 7921 82.85 86.55 89.98 92.00  93.05
(2.32)  (2.00) (1.68) (1.33) (1.17) (0.72)  (0.82)  (0.40)
68.24  73.78  80.23 _ 83.02 86.94 8989 92.46 92.60
(1.88)  (1.67)  (0.94) (1.22) (1.31) (0.91) (1.00) (1.15)

PROPOSED + 1

PROPOSED + P

PROPOSED + P + 1

PROPOSED + G

PROPOSED + G + 1

PROPOSED + G + P

PROPOSED + G + P + 1

65.29 72.53 79.15 82.81 87.49 90.00 91.96 93.40

I-NN (1.23)  (1.11)  (1.16) (0.63) (1.18) (1.05) (0.51)  (0.27)
— 63.04 7076 7732 83.04 8505 8720 88.10 88.4%
(1.22)  (1.01) (1.16) (1.09) (1.38) (0.77) (0.98)  (0.45)
CROUPDRO 6461 7152 7781 8345 8734 8830 8979 9.1
(1.79)  (0.73)  (1.19)  (1.57) (1.42) (0.91) (0.81) (0.62)
NAIVE 69.77 7798 7923 8120 8257 83.85 842l ]
(137)  (1.51)  (0.83) (1.35) (1.52) (1.56) (1.19)
NAvm D 6647 7312 7785 8176 8636 83.02  89.68 ]
(1.17)  (1.44)  (1.74)  (1.49)  (0.86) (1.25)  (0.77)
6075 7751 7920 8139 82.04 8351  84.63
PROPOSED -

(5.51) (3.01) (2.11) (1.49) (1.29) (0.97) (0.80)

PROPOSED + I 70.73  77.10  78.90 80.86  82.22  84.22  84.69
(1.42)  (1.76)  (1.49)  (1.74)  (1.72)  (1.45)  (1.47) -

PROPOSED + P 66.09 73.71 78.33 82.75 86.32 88.85 89.98
(1.49) (1.17)  (0.69)  (0.83) (0.52) (0.72)  (1.35) )

PROPOSED + P + 1 65.51 70.91 75.94 81.51 86.41 89.39 91.08
(2.16) (2.32)  (3.04) (1.90) (1.50) (0.98) (0.75) )

PROPOSED + G 70.98  78.41  79.67 81.59 82.42 8391  84.31
(2.52)  (1.25)  (1.26)  (1.42) (1.28) (1.64) (1.31) -

PROPOSED + G + I 71.94 78.56 80.62 82.31 83.52 84.52 85.35
(2.70) (1.65) (1.66) (1.76) (1.57) (1.32) (1.20) )

PROPOSED + G + P 67.55 73.79 78.32 82.56 86.01 89.40 90.99
(0.78) (0.33) (0.93) (1.31) (1.09) (1.22) (1.15) )

PROPOSED + G 4 P 4 1 69.18  74.13  79.18  83.17 87.25 90.67 92.23
(2.76)  (2.06) (1.81)  (0.85) (0.37) (0.80)  (0.69) -
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Table 2: Complete results on Waterbirds—severe. Reported numbers are average worst-group test accuracies, along
with the their standard deviation. The top half of in-context learners were trained on Waterbirds-severe itself, while
the ones in the bottom half were training on iNaturalist.

METHOD / CONTEXT SIZE 4 8 16 32 64 128 256 512
83.04 80.78 80.78 79.43 80.50 80.29 81.67 82.02

NAIVE (1.92)  (1.58)  (1.85) (2.77)  (2.43)  (2.30) (2.25) (2.72)
NAIVE 4 P 10.89 28.61 4623  58.40  67.13 7428  77.18 77.49
(2.71)  (4.98)  (4.17)  (2.46)  (2.34)  (2.25)  (3.11)  (4.08)
82.64 81.01 8100 8136 8194 81.70 8235  82.09
PROPOSED

(1.56)  (2.23)  (1.80)  (1.69)  (1.91) (1.62) (1.72) (2.15)
83.23 80.76  81.65  81.46  81.63  81.34  81.46 82.24
(1.30)  (1.93)  (2.38)  (2.11)  (2.40)  (2.01) (2.32) (3.49)
61.94  68.23 7594  81.93  85.76 _ 88.36  90.01 _ 90.20
(8.91) (5.53) (3.13)  (1.53)  (2.03) (1.30)  (1.98) (2.65)
64.01 7222  78.45  82.00 8586  88.13 _ 90.09  90.59
(4.05)  (4.43)  (2.79)  (2.20)  (1.64)  (1.39)  (1.73)  (1.54)
82.02 SI.15  83.11 81.22  81.30 8190  82.48 82.44
(3.37)  (3.56)  (1.84)  (2.08) (1.72)  (1.62)  (1.62) (1.34)
82.61 8048  81.20 80.13  81.09 80.84  81.61 81.84
(3.42)  (2.69)  (3.55) (3.18) (2.86) (2.47) (2.36) (2.51)
50.11  64.44 7130  79.46  85.21 88.60  90.65 91.38
(2.89)  (5.67) (3.74)  (0.83)  (1.54)  (1.36)  (1.01) (1.14)
6426  70.05  77.76 _ 82.38 _ 86.56 _ 89.09  90.75  90.82
(5.81)  (4.01)  (1.77)  (1.66)  (0.88)  (1.02)  (0.96)  (0.73)

PROPOSED + |

PROPOSED + P

PROPOSED + P + 1

PROPOSED + G

PROPOSED + G + 1

PROPOSED + G + P

PROPOSED + G+ P + 1

1NN 5.44 4.50 3.49 27.92 45.04 52.58 61.74 71.20
(0.60) (0.43) (0.21) (0.54) (0.88) (1.39) (0.48) (0.58)

ERM 6.81 4.35 1.87 35.30 29.52 45.84 65.35 75.69
(0.44) (0.26) (0.24) (1.55) (1.49) (1.00) (0.53) (0.88)

GROUPDRO 7.42 5.26 2.75 17.62 45.47 65.13 78.57 86.89
(0.57) (0.35) (0.29) (0.65) (1.18) (1.06) (0.77) (0.57)

NAIVE 48.18 49.39 48.71 52.58 54.10 56.41 56.86 )
(3.52) (3.28) (6.49) (4.56) (6.04) (5.03) 4.75)

NAIVE + P 0.88 0.06 0.00 0.13 0.19 0.13 0.02 )
(0.45) (0.05) (0.00) (0.29) (0.43) (0.29) (0.04)
49.04 53.39 54.82 59.44 61.04 62.26 63.77

PROPOSED

(2.76)  (4.74) (8.82)  (10.75) (12.23) (12.31) (12.38)

PROPOSED + 1 4845 5244 5474  58.67 6037 6242  63.27
(6.15)  (11.15)  (10.69) (11.38)  (9.19)  (8.69)  (9.15) .

PROPOSED + P 1.88 0.27 0.06 0.08 0.30 0.15 0.03 }
(0.56)  (0.21) (0.10) (0.13) (0.60) (0.28) (0.06)
PROPOSED + P + I 2.27 0.66 0.15 1.18 2.50 1.14 0.50 }
(0.74)  (0.49) (0.14) (1.09) (2.49) (0.88) (0.20)
50.00 52.31 53.69 57.87 59.11 60.33 62.30

PROPOSED + G (5.03)  (5.05) (4.54) (3.33) (3.16) (3.36) (3.01) -

PROPOSED + G + I 51.78 53.87 55.07 60.15 60.73 62.40 61.86
(5.76)  (6.15) (6.20) (7.40) (8.02) (8.01) (7.77) )

PROPOSED + G + P 1.52 0.16 0.00 0.10 0.04 0.03 0.36
(0.69)  (0.13) (0.00) (0.20) (0.05) (0.05) (0.73) )
1.59 0.23 0.08 0.50 1.91 2.19 2.34

PROPOSED + G + P + 1 (0.17)  (0.16)  (0.10)  (0.69)  (3.05)  (3.67)  (4.00) i
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Table 3: Complete results on iNaturalist. Reported numbers are average minority-group accuracies on the OOD test
setof iNaturalist, along with the their standard deviation.

METHOD / CONTEXT SIZE 4 8 16 32 64 128 256 400

91.80 93.20 93.71 94.58 95.01 95.27 95.30 94.89
0.39)  (0.29)  (0.35)  (0.22)  (0.42)  (0.42)  (0.40)  (0.27)
92.88 93.82 94.61 95.36 95.76 95.90 95.94 95.06
0.31)  (0.37)  (0.56)  (0.45) (0.40) (0.44)  (0.18)  (0.54)
92.04 92.90 94.80 96.64 97.65 98.39 98.49 98.55
0.22)  (0.30)  (0.32)  (0.30) (0.20)  (0.27)  (0.14)  (0.23)
92.15 9297 94.67 96.86 97.80 98.46 98.54 98.61
0.28)  (0.30)  (0.28)  (0.21)  (0.29)  (0.20)  (0.11)  (0.25)
92.48 93.27 93.88 94.91 94.99 95.29 95.13 94.64
0.45)  (0.72)  (0.43)  (0.63)  (0.38)  (0.45)  (0.33)  (0.43)
92.59 93.80 94.18 95.50 95.82 95.83 95.82 95.28
0.33)  (0.23)  (0.38)  (0.33)  (0.41) (0.34)  (0.55)  (0.60)
91.90 92.84 94.69 97.28 98.29 98.70 98.85 99.00
0.17)  (0.19)  (0.15)  (0.31)  (0.13)  (0.19)  (0.19)  (0.11)
92.28 93.25 94.93 97.73 98.44 98.99 99.04 99.06
0.10)  (0.09)  (0.22)  (0.07)  (0.20)  (0.09)  (0.14)  (0.07)

PROPOSED

PROPOSED + 1

PROPOSED + P

PROPOSED + P + 1

PROPOSED + G

PROPOSED + G + 1

PROPOSED + G + P

PROPOSED + G+ P +1

92.08 94.56 95.84 97.17 97.84 98.49 98.55 98.80

I-NN (0.64) (0.39) (0.16) (0.23) (0.12) (0.20) (0.23) (0.21)
ERM 89.67 9298 94.65 96.17 96.88 97.70 98.15 98.43
(0.43)  (0.30)  (0.17) (0.24)  (0.23)  (0.21)  (0.17)  (0.11)
91.20 93.79 9533 97.39 97.85 98.46 98.91 99.01
GROUPDRO

(0.55) (0.39) (0.18) (0.20) (0.20) (0.13) (0.20) (0.18)
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