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Abstract

Existing studies on reinforcement learning (RL) for sepsis management have1

mostly aggregated patient data into 4-hour time steps. Although this coarseness2

may distort patient dynamics and lead to suboptimal policies, the extent to which3

this is a problem in practice remains unexplored. In this work, we conducted4

controlled experiments of four time-step sizes (∆t = 1, 2, 4, 8 h), following an5

identical offline RL pipeline to quantify effects on state representation learning,6

behavior cloning, policy training, and off-policy evaluation. Under our model-7

selection criteria, 1 h time-step size yielded the highest estimated returns; however,8

we caution that this naive comparison is not “fair” because the evaluation makes9

different assumptions about the underlying problem. Our work highlights that10

time-step size is a core design choice in offline RL for healthcare and emphasizes11

the importance of thoughtful evaluation.12

1 Introduction13

Reinforcement learning (RL) has shown promise for sequential decision-making in healthcare,14

enabling data-driven sepsis treatment policies [1]. Unlike typical RL problems with discrete steps,15

electronic health record (EHR) data are often recorded at irregular time intervals. This irregularity16

poses challenges for the direct application of RL to such data. A common workaround is a fixed-17

length discretization of time. For example, the landmark work by Komorowski et al. [1] used 4 hour18

time-steps. However, such discretization may introduce biases and obscure physiological changes,19

negatively impacting policy learning and evaluation [2]. So far this bias has been studied only in20

theory; almost all empirical work on this domain has adhered to the 4-hour time step and has not21

systematically explored the impact of other time-step sizes on the entire RL pipeline.22

In this work, we applied RL to the MIMIC-III sepsis management domain with four time-step23

sizes (∆t=1, 2, 4, 8 h). While this may seem like a simple change in preprocessing, it also alters24

the problem formulation, the cohort, and action space definition, posing challenges for a “fair”25

comparison. To facilitate analysis across different time step sizes, we used the same cohort, designed26

normalized action spaces, and learned and evaluated policies separately for each ∆t following an27

identical offline RL pipeline. Our results show that the 1-h time-step size yielded the highest estimated28

returns. However, because changing ∆t induces a different MDP used during evaluation, such a naive29

comparison is not fair. Our work highlights that time-step size is a core design choice for healthcare30

RL that affects both learning and evaluation.31

2 Related Works32

Table 4 in Appendix A.1 summarizes recent studies on RL for sepsis. Nearly all adopted ∆t = 4 h,33

inherited from the seminal work by Komorowski et al. [1]. Jeter et al. [3] criticizes the coarse ∆t34

for potentially failing to capture rapid physiological changes. Lu et al. [4] found that using 1 h time35

steps altered the learned policy, suggesting that a 4 h step might obscure decision timing. To our36

knowledge, no controlled study has been done to compare different ∆t values.37
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3 Formulations38

Suppose the timeline starts at an anchor time t0 and ends at an ending time T . We discretize the39

continuous timeline into non-overlapping windows of size ∆t. We define the boundaries between40

consecutive windows tk = t0 + k∆t, k = 0, . . . , L, where L = ⌈(T − t0)/∆t⌉ is the total number41

of time steps. The k-th time step is the half-open interval [tk, tk+1) for k = 0, . . . , T − 1.42

Typically, we model healthcare RL problems as partially observable Markov decision processes43

(POMDPs). All information recorded within the window [tk, tk+1) is aggregated into a (raw)44

observation vector ok. A learned encoder f(·) is used to derive the state at step k from the history,45

sk = f(o0:k). Based on sk, the action selected and executed within the subsequent window46

[tk+1, tk+2) is denoted as ak, yielding a reward rk [5]. This action affects the transition to the next47

state sk+1. When a terminal state sT is reached, the process terminates, generating a trajectory48

τ = (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ).49

4 Experimental Setup50

We applied an identical offline RL pipeline (Fig. 1) to data discretized at ∆t ∈ 1, 2, 4, 8 h, including51

the following stages: Pre-processing → Approximate Information State (AIS) → Behavior Cloning52

(BC) → Batch-Constrained Q-learning (BCQ) → Weighted Importance Sampling (WIS) (OPE).53

Raw MIMIC-III Data
1. Pre-processing

Extract Sepsis Cohort for ∆t ∈ {1, 2, 4, 8}
Split Train / Validation / Test Set

2. AIS
sk = f (o0:k)

3. KNN
Behavior Cloning

Learn πb

4. Batch-Constrained
Q-learning (BCQ)

Learn πµ

5. Off-Policy Evaluation (OPE)
Weighted Importance Sampling

Report WIS, ESS
Model selection

6. Test Final Policy
Reporting Test WIS ± CI, ESS

Plots per ∆t

πb

πb

Figure 1: Overview of the offline RL pipeline.

4.1 Dataset & Cohort Construction54

We used MIMIC-III v1.4 database [6], focusing on the adult ICU patients with sepsis following [7].55

For each hospitalization, we kept the first ICU stay and extracted demographic data and time-series56

data. We then estimated the sepsis onset using the Sepsis-3 criteria [8]. For each stay we assembled57

trajectories from 28 h pre-onset to 52 h post-onset (up to 80 h). We handled outliers, missing values58

and implausible data following [7], and built a separate cohort for each ∆t. Since trajectories shorter59

than ∆t are excluded, the cohort sizes differ across ∆t. To ensure fair comparison, we conducted all60

experiments on a unified cohort defined as the intersection of the cohorts for all ∆t. We then split the61

cohort into 70/15/15% (train/validation/test).62

4.2 Offline RL Pipeline63

Data Preprocessing. Trajectories were discretized separately for each ∆t. Each step has 3364

time-varying features plus 5 demographic features (Appendix A.2), forming the observations of a65

POMDP. Following [1], we defined the action space using total volume of intravenous (IV) fluids66

and the maximum dose of vasopressors within a time step, each binned into 5 levels (25 actions67

total). Following [9], we used clinically motivated bins and designed NORMALIZED-THRESHOLD68

boundaries to enable cross–∆t comparison (Table 1). A sparse reward of +100 was given for survival69

(at discharge or at end of trajectory).70

Table 1: Normalized-Threshold action space for discretizing intravenous (IV) fluids and vasopressors.
Level IV fluids (mL/∆t) Vasopressor (µg kg−1 min−1)

0 = 0 = 0
1 (0, 125∆t) (0, 0.08)
2 [125∆t, 250∆t) [0.08, 0.20)
3 [250∆t, 500∆t) [0.20, 0.45)
4 ≥ 500∆t ≥ 0.45

Approximate Information State. We learned latent states from the history of observations with a71

GRU encoder [10], following [11] and [12]. At each time step k, the encoder maps the 33-dimensional72

observation, 5-dimensional demographic context, and action ak−1 to a D-dimensional latent state sk.73
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A dual-head objective reconstructs ok and predicts ok+1 via P (ok+1|sk, ak). We conducted a grid74

search, selecting models with the lowest validation negative log-likelihood (NLL).75

Behavior Cloning. We learned k-nearest-neighbors (kNN) classifiers for behavior cloning of76

clinicians’ policy πb(a|s) [13]. We performed a hyperparameter search over k and the distance metric77

separately for the train/validation/test set. Best classifiers were selected based on their macro and78

micro averaged area under the receiver operating characteristic curve (AUROC) via 5-fold cross79

validation, and were used as πb for BCQ and OPE.80

Batch-Constrained Q-learning. To avoid extrapolation error beyond πb [14], we used discrete81

batch-constrained Q-learning (BCQ) [15]. Our Q-network is a 3-layer network that estimates Q(s, a),82

together with a target network that was updated by Polyak averaging. At each update, Q-network83

selected the next action from a set generated by πb from BC, in which actions whose estimated84

probability fell below a threshold ε were masked out. We trained the network with a Huber loss using85

5 seeds and 8 values of ε (see Appendix A.6), and applied OPE on validation set to select the final86

policy πµ.87

Off-policy Evaluation. We evaluated πµ using weighted importance sampling (WIS) for off-policy88

evaluation (OPE). In WIS, we first computed per-step importance ratios ρk =
πµ(ak|sk)
πb(ak|sk) , and then took89

a weighted average of the observed returns, normalizing by the sum of the importance weights [16].90

To control the estimator variance, we truncated the cumulative importance ratios W =
∏H

k=1 ρk91

at W ≤ 1.438H [17]. We recorded the effective sample size (ESS) [18], which reflects how many92

trajectories contribute meaningfully after weighting. In Section 5, we present the validation ESS–WIS93

Pareto frontier for candidate policies, which consists of the set of candidate policies for which no94

other policy simultaneously achieves both higher WIS and higher ESS. We also report WIS and ESS95

with standard errors estimated via bootstrapping for each policy, with results shown separately for96

each ∆t. To complement these metrics, we further include heatmaps showing how the BCQ policy97

redistributes action probabilities relative to the clinician policy.98

5 Results99

Cohort Statistics. In Appendix A.7, we compare the cohort sizes across ∆t. The cohort sizes100

decrease with coarser ∆t, reflecting the exclusion of trajectories shorter than one step. For all101

experiments, we report results on a unified cohort that includes trajectories present under all ∆t,102

which contains 18,377 admissions with a mortality rate of 5.9%.103

AIS Encoder. In Table 2, we report the final selected hyperparameters and validation performance104

of the AIS encoder for each ∆t. ∆t = 8 required a smaller latent size of 32, whereas the other ∆t105

all used 128. We observe that validation MSE increases with larger ∆t, which is expected given the106

longer prediction horizons.

Table 2: AIS encoder (GRU) results across time-step sizes: selected latent dimension, learning rate,
and minimum validation MSE with 95% confidence intervals from 1000 bootstrap samples.

∆t (h) Latent Dim Learning Rate MSE [95% CI]

1 128 0.001 0.2288 [0.2181, 0.2424]
2 128 0.001 0.2678 [0.2655, 0.2702]
4 128 0.001 0.4011 [0.3940, 0.4110]
8 32 0.001 0.4351 [0.4286, 0.4420]

107

Behavior Cloning. We summarize the hyperparameter grid and results in Appendix A.6 and108

Table 7. Across all datasets, as k increases from 21 to 5
√
n, validation macro and micro AUROC109

generally improves. Based on the validation performance, we selected KNN classifiers with Euclidean110

distance and k = 5
√
n as πb, yielding macro AUROC > 0.75 and micro AUROC ≈ 0.95. While111

class imbalance can reduce macro AUROC and inflate micro AUROC, the overall performance is112

acceptable [19].113

Off-Policy Evaluation. Section 5 shows validation ESS-WIS Pareto frontiers for candidate policies.114

Across ∆t, WIS is high (≈ 100) when ESS is small, then declines as ESS increases, reflecting the115

bias-variance trade-off. Coarser ∆t (4-8 h) achieves higher ESS without reducing WIS, whereas finer116

∆t (1-2 h) produce lower ESS overall because they introduce more decision points, inflating variance117
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Figure 2: Pareto frontiers of validation WIS versus ESS for each time step ∆t. Dashed lines trace
the non-dominated points; hollow markers denote the model selected for testing; dotted lines with
different colors represent the thresholds used as the boundary for model selection across ∆t.

and thus reducing ESS. For each ∆t, we selected a different ESS cutoff and chose the policy with118

ESS ≥ the cutoff that achieved the highest WIS. More details are provided in Appendix A.6.119

Test Performance. Table 3 summarizes test performance. When compared against the observed120

rewards induced by the behavior policy πb, BCQ πµ achieves a higher WIS at 1 h, while its perfor-121

mance is comparable to πb at coarser ∆t (2–8 h). For all ∆t, the test ESS exceeds the corresponding122

validation ESS, with coarser ∆t (4–8 h) yielding higher ESS, consistent with trends on the validation123

set. Coarser ∆t (4–8 h) adopt a higher BCQ threshold (ε = 0.5) than finer ∆t (1–2 h; ε = 0.1),124

indicating that policies are more conservative at coarser time scales. Appendix A.5 compares action125

frequencies between the selected πµ and πb. Both policies most frequently select zero vasopressor126

and low IV-fluid doses. Compared with πb, πµ assigns more probability mass to zero or low IV-fluid127

doses under zero vasopressor, producing a more skewed action distribution over a small set of actions.128

Table 3: Test-set WIS value and ESS for BCQ and clinician (Observed πb) policies across ∆t.
Observed πb results are identical across ∆t. Values are reported with 100 bootstrap mean ± std.

∆t (h) Policy Threshold ε V̂test (WIS) ESStest

1 BCQ πµ 0.10 97.88 ± 1.01 175.93 ± 12.77
2 BCQ πµ 0.10 94.03 ± 1.50 196.29 ± 12.54
4 BCQ πµ 0.50 94.25 ± 1.27 292.76 ± 14.89
8 BCQ πµ 0.50 94.66 ± 1.23 280.03 ± 15.71

All ∆t Observed πb – 94.09 ± 0.44 2757.00

6 Conclusion & Discussion129

While most prior work on RL for sepsis followed the AI Clinician [1] with 4 h time steps, we provide,130

to our knowledge, the first systematic comparison across 1, 2, 4, and 8 h using an identical offline131

RL pipeline. To enable a fairer comparison, we extracted the same cohort and train/val/test splits132

across ∆t, designed a normalized action space for each ∆t, conducted AIS and kNN grid searches133

per ∆t, and clipped importance ratios by horizon in WIS. These choices offer a robust reference134

for future fair comparisons in similar tasks. Still, a fully fair evaluation remains challenging: in our135

task, policies are evaluated across different MDPs (induced by different ∆t), so the WIS/ESS are not136

directly comparable across ∆t. In future work, we will evaluate policies on a common resolution137

(e.g., evaluate policies learned under 1 h and 8 h both on an 8 h dataset) and our pipeline design makes138

this feasible. Our results show that time-step size is a crucial design choice that can substantially139

shape the learned policies in RL for sepsis task. Our results advocate for careful reconsideration from140

the community of different time-step sizes in sepsis management beyond the conventional 4 h setup,141

in order to learn better policies and make fairer evaluation across time-step sizes.142
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A appendix221

A.1 Related Works222

Table 4: RL studies for sepsis care, summarizing time-step choices and key design aspects.
Paper ∆t Algorithm Dataset Cohort Notes

Raghu et al. [20] 4 h Dueling DDQN MIMIC-III 17.9k Continuous state; 5×5 IV/vaso bins; first
DL-RL policy (–3.6 % mortality).

Komorowski et al.
[1]

4 h Batch Q-learning MIMIC-III
(+eRI∗)

17.1k AI Clinician; 750 states, 25 actions; exter-
nal validation.

Jeter et al. [3] 4 h Reproduction study MIMIC-III 5.4k Finds no-action policy often rivals AI Clin-
ician; urges caution.

Yu et al. [21] 1 h Deep IRL MIMIC-III 14.0k Learns reward; highlights mortality factors
(e.g. PaO2).

Tang et al. [9] 4 h Set-valued DQN MIMIC-III 20.9k Returns top-k near-optimal dose sets for
clinician choice.

Killian et al. [12] 4 h Offline DQN MIMIC-III 17.9k Sequential latent encodings outperform
raw features.

Lu et al. [4] 1–4 h Dueling DDQN MIMIC-III 17k+ Sensitivity study on features, reward, time
discretization.

Fatemi et al. [22] 4 h Dead-end discovery MIMIC-III 17k+ Identifies high-risk states; secures policy
to avoid them.

Satija et al. [23] 4 h MO-SPIBB MIMIC-III 17k+ Safe policy improvement under perfor-
mance constraints.

Ji et al. [24] 4 h Trajectory inspection MIMIC-III 17k+ Clinician “what-if” review reveals policy
flaws; validation tool.

Liang et al. [25] 4 h Episodic-memory
DQN

MIMIC-III 17.9k Memory module boosts sample efficiency,
lowers est. mortality.

Choudhary et al.
[26]

4 h Tabular MDP MIMIC-III ∼18k ICU-Sepsis benchmark: 715 states, 25
actions.

Tu et al. [27] 1 h CQL (offline) MIMIC-III 14.0k Safety-aware CQL with dense rewards for
variable-length stays.

∗eRI: Philips eICU Research Institute cohort for external validation; DDQN: Double Deep Q-Network; DQN: Deep Q-Network; IRL: Inverse
Reinforcement Learning; CQL: Conservative Q-Learning; MO-SPIBB: Multi-Objective Safe Policy Improvement with Baseline Bootstrapping.

A.2 Extracted Features for State Representation223

Table 5: Observed features extracted from the MIMIC-III database. The upper panel lists the 33-
dimensional time-varying continuous variables fed to the GRU encoder, following the default code
configuration. The lower panel lists the 5 static demographic / contextual variables appended to each
trajectory.

33-d Time-varying continuous features
Glasgow Coma Scale Heart Rate Sys. BP
Dia. BP Mean BP Respiratory Rate
Body Temp (°C) FiO2 Potassium
Sodium Chloride Glucose
INR Magnesium Calcium
Hemoglobin White Blood Cells Platelets
PTT PT Arterial pH
Lactate PaO2 PaCO2
PaO2/FiO2 Bicarbonate (HCO3) SpO2
BUN Creatinine SGOT
SGPT Bilirubin Base Excess

5-d Demographic and contextual features
Age • Gender • Weight • Ventilation Status • Re-admission Status
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A.3 Extracted Cohort Sizes224

Table 6: Extracted cohort size of MIMIC-Sepsis at different time steps.
∆t (h) Cohort Size

1 18,995
2 18,987
4 18,906
8 18,783

A.4 BC Performance225

Table 7: Estimated behavior policy performance (Macro and Micro AUROC) on the validation sets
across time-step sizes, with 95% confidence intervals from 1000 bootstrap samples.

∆t (h) Macro AUROC [95% CI] Micro AUROC [95% CI]

1 0.7715 [0.7678, 0.7753] 0.9449 [0.9443, 0.9456]
2 0.8047 [0.7998, 0.8095] 0.9491 [0.9482, 0.9500]
4 0.8143 [0.8071, 0.8211] 0.9507 [0.9496, 0.9518]
8 0.7576 [0.7429, 0.7720] 0.9454 [0.9435, 0.9472]

A.5 Action Heatmaps226

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

12
5

12
5-

25
0

25
0-

50
0

 5
00

123881 0 0 0 0

676 1789 1 1032 0

228 0 0 0 0

284 0 0 0 0

12 0 0 0 0

1h BCQ

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

25
0

25
0-

50
0

50
0-

10
00

 1
00

0

16290 0 0 0 0

49879 0 0 0 0

0 0 0 0 0

0 0 0 0 0

5 0 0 0 0

2h BCQ

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

50
0

50
0-

10
00

10
00

-2
00

0
 2

00
0

12881 0 0 0 0

20861 0 0 14 0

3 0 0 0 0

89 0 0 0 0

0 0 0 0 0

4h BCQ

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

10
00

10
00

-2
00

0
20

00
-4

00
0

 4
00

0

10910 0 0 0 0

5999 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

8h BCQ

(a) BCQ

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

12
5

12
5-

25
0

25
0-

50
0

 5
00

35415 518 413 305 281

58914 3270 2813 2417 1753

10016 308 435 467 371

4524 268 266 336 328

2865 275 394 531 420

1h Clinician

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

25
0

25
0-

50
0

50
0-

10
00

 1
00

0

17395 209 176 133 118

31378 1649 1449 1236 925

5327 200 252 278 271

2348 168 188 247 198

1153 131 198 283 264

2h Clinician

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

50
0

50
0-

10
00

10
00

-2
00

0
 2

00
0

8543 96 77 57 59

16357 811 708 655 522

2810 137 167 205 166

1250 95 146 164 157

295 39 70 129 133

4h Clinician

0 0-0.08 0.08-0.20 0.20-0.45  0.45

0
0-

10
00

10
00

-2
00

0
20

00
-4

00
0

 4
00

0

4190 39 31 23 25

8496 411 371 372 312

1340 70 98 126 127

421 30 60 99 91

72 11 14 31 49

8h Clinician

(b) Observed clinicians

Figure 3: Frequency heatmap of IV-fluid (y-axis; mL) and vasopressor (x-axis; µg kg−1 min−1)
doses for ∆t ∈ {1, 2, 4, 8}. BCQ policies are compared with the empirical clinician distribution.
Darker cells indicate more frequent selections.
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A.6 Additional Hyperparameter Details227

Table 8: Hyperparameter values used for training GRU encoder and BCQ models.

Hyperparameter Searched Settings
RNN:

– Embedding dimension, dS {8, 16, 32, 64, 128}
– Learning rate {1×10−5, 3×10−5, 1×10−4, 3×10−4, 5×10−4, 1×10−3}

kNN:
– Number of neighbors, k ki = exp

(
ln 21 + i

7 (ln(5
√
n)− ln 21)

)
a

– Distance metric {Euclidean, Manhattan}
BCQ (with 5 random restarts):

– Threshold, ε {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 0.999}
– Learning rate 3×10−4

– Weight decay 1×10−3

– Hidden layer size 256

a i = 0, 1, . . . , 7. n denotes the size of the flattened dataset.

Table 9: ESS cutoffs for model selection.
∆t (h) ESS Cutoff

1 100
2 150
4 200
8 250

A.7 Extracted Cohort Sizes228

Table 10: Extracted cohort size of MIMIC-Sepsis at different time steps.
∆t (h) Cohort Size

1 18,995
2 18,987
4 18,906
8 18,783
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