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Abstract

Existing studies on reinforcement learning (RL) for sepsis management have
mostly aggregated patient data into 4-hour time steps. Although this coarseness
may distort patient dynamics and lead to suboptimal policies, the extent to which
this is a problem in practice remains unexplored. In this work, we conducted
controlled experiments of four time-step sizes (At = 1,2, 4, 8 h), following an
identical offline RL pipeline to quantify effects on state representation learning,
behavior cloning, policy training, and off-policy evaluation. Under our model-
selection criteria, 1 h time-step size yielded the highest estimated returns; however,
we caution that this naive comparison is not “fair” because the evaluation makes
different assumptions about the underlying problem. Our work highlights that
time-step size is a core design choice in offline RL for healthcare and emphasizes
the importance of thoughtful evaluation.

1 Introduction

Reinforcement learning (RL) has shown promise for sequential decision-making in healthcare,
enabling data-driven sepsis treatment policies [1]. Unlike typical RL problems with discrete steps,
electronic health record (EHR) data are often recorded at irregular time intervals. This irregularity
poses challenges for the direct application of RL to such data. A common workaround is a fixed-
length discretization of time. For example, the landmark work by Komorowski et al. [1] used 4 hour
time-steps. However, such discretization may introduce biases and obscure physiological changes,
negatively impacting policy learning and evaluation [2]. So far this bias has been studied only in
theory; almost all empirical work on this domain has adhered to the 4-hour time step and has not
systematically explored the impact of other time-step sizes on the entire RL pipeline.

In this work, we applied RL to the MIMIC-III sepsis management domain with four time-step
sizes (At=1,2,4,8 h). While this may seem like a simple change in preprocessing, it also alters
the problem formulation, the cohort, and action space definition, posing challenges for a “fair”
comparison. To facilitate analysis across different time step sizes, we used the same cohort, designed
normalized action spaces, and learned and evaluated policies separately for each At following an
identical offline RL pipeline. Our results show that the 1-h time-step size yielded the highest estimated
returns. However, because changing At induces a different MDP used during evaluation, such a naive
comparison is not fair. Our work highlights that time-step size is a core design choice for healthcare
RL that affects both learning and evaluation.

2 Related Works

Table 4 in Appendix A.1 summarizes recent studies on RL for sepsis. Nearly all adopted At = 4 h,
inherited from the seminal work by Komorowski et al. [1]. Jeter et al. [3] criticizes the coarse At
for potentially failing to capture rapid physiological changes. Lu et al. [4] found that using 1 h time
steps altered the learned policy, suggesting that a 4 h step might obscure decision timing. To our
knowledge, no controlled study has been done to compare different At values.
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2 3 Formulations

39 Suppose the timeline starts at an anchor time ¢y and ends at an ending time 7. We discretize the
40 continuous timeline into non-overlapping windows of size At. We define the boundaries between
41 consecutive windows ¢, = to + kAt, k=0,..., L, where L = [(T — t¢)/At] is the total number
42 of time steps. The k-th time step is the half-open interval [tg, t541) fork =0,..., T — 1.

43 Typically, we model healthcare RL problems as partially observable Markov decision processes
44 (POMDPs). All information recorded within the window [t), ;1) is aggregated into a (raw)
45 observation vector ok. A learned encoder f(-) is used to derive the state at step k from the history,
46 S = f(0g.x). Based on sy, the action selected and executed within the subsequent window
47 [tg+1,tk12) is denoted as ag, yielding a reward ry, [5]. This action affects the transition to the next
48 state sp+1. When a terminal state sp is reached, the process terminates, generating a trajectory

49 T = (507(10,7°07~--,ST—l,aT—l,TT—hST)-

so 4 [Experimental Setup

51 We applied an identical offline RL pipeline (Fig. 1) to data discretized at At € 1,2, 4,8 h, including
52 the following stages: Pre-processing — Approximate Information State (AIS) — Behavior Cloning
53 (BC) — Batch-Constrained Q-learning (BCQ) — Weighted Importance Sampling (WIS) (OPE).

3. KNN 4. Batch-Constrained S Olff};Policy Eyaluation (OI.PE) 6. Test Final Policy
Behavior Cloning— Q-learning (BCQ) Weigl ‘;d 'mP‘\’;,‘;*é‘ceE Sngp ing Reporting Test WIS =+ CI, ESS

Learn 7, Learn 7, eport b Plots per At
Model selection

1. Pre-processing 2. AIS
Raw MIMIC-III Data—|Extract Sepsis Cohort for At € {1,2,4,8} . - Floo)
Sk = 0):

Split Train / Validation / Test Set

R —

Figure 1: Overview of the offline RL pipeline.

s4 4.1 Dataset & Cohort Construction

55 We used MIMIC-III v1.4 database [6], focusing on the adult ICU patients with sepsis following [7].
s6 For each hospitalization, we kept the first ICU stay and extracted demographic data and time-series
57 data. We then estimated the sepsis onset using the Sepsis-3 criteria [8]. For each stay we assembled
58 trajectories from 28 h pre-onset to 52 h post-onset (up to 80 h). We handled outliers, missing values
59 and implausible data following [7], and built a separate cohort for each A¢. Since trajectories shorter
60 than At are excluded, the cohort sizes differ across At. To ensure fair comparison, we conducted all
61 experiments on a unified cohort defined as the intersection of the cohorts for all At. We then split the
62 cohort into 70/15/15% (train/validation/test).

63 4.2 Offline RL Pipeline

e+ Data Preprocessing. Trajectories were discretized separately for each At. Each step has 33
65 time-varying features plus 5 demographic features (Appendix A.2), forming the observations of a
66 POMDP. Following [1], we defined the action space using total volume of intravenous (IV) fluids
67 and the maximum dose of vasopressors within a time step, each binned into 5 levels (25 actions
68 total). Following [9], we used clinically motivated bins and designed NORMALIZED-THRESHOLD
69 boundaries to enable cross—At comparison (Table 1). A sparse reward of +100 was given for survival
70 (at discharge or at end of trajectory).

Table 1: Normalized-Threshold action space for discretizing intravenous (IV) fluids and vasopressors.
Level IV fluids (mL/At) Vasopressor (pg kg~! min—1)

0 =0 =0
1 (0, 125A¢) (0, 0.08)
2 [125At, 250A¢) [0.08, 0.20)
3 [250At, 500At) 0.20, 0.45)
4 > 500At > 0.45

71 Approximate Information State. We learned latent states from the history of observations with a
72 GRU encoder [10], following [11] and [12]. At each time step k, the encoder maps the 33-dimensional
73 observation, 5-dimensional demographic context, and action aj_; to a D-dimensional latent state sy.
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A dual-head objective reconstructs oy, and predicts o1 via P(0g11|sk, ar). We conducted a grid
search, selecting models with the lowest validation negative log-likelihood (NLL).

Behavior Cloning. We learned k-nearest-neighbors (kNN) classifiers for behavior cloning of
clinicians’ policy 7y, (a|s) [13]. We performed a hyperparameter search over k and the distance metric
separately for the train/validation/test set. Best classifiers were selected based on their macro and
micro averaged area under the receiver operating characteristic curve (AUROC) via 5-fold cross
validation, and were used as 7, for BCQ and OPE.

Batch-Constrained Q-learning. To avoid extrapolation error beyond 7, [14], we used discrete
batch-constrained Q-learning (BCQ) [15]. Our Q-network is a 3-layer network that estimates Q(s, a),
together with a target network that was updated by Polyak averaging. At each update, Q-network
selected the next action from a set generated by m;, from BC, in which actions whose estimated
probability fell below a threshold € were masked out. We trained the network with a Huber loss using
5 seeds and 8 values of ¢ (see Appendix A.6), and applied OPE on validation set to select the final
policy .

Off-policy Evaluation. We evaluated 7, using weighted importance sampling (WIS) for off-policy
evaluation (OPE). In WIS, we first computed per-step importance ratios p, = Tulexlsk) “and then took

o (aklsk)’
a weighted average of the observed returns, normalizing by the sum of the importance weights [16].
To control the estimator variance, we truncated the cumulative importance ratios W = HkH:1 Pk

at W < 1.438H [17]. We recorded the effective sample size (ESS) [18], which reflects how many
trajectories contribute meaningfully after weighting. In Section 5, we present the validation ESS-WIS
Pareto frontier for candidate policies, which consists of the set of candidate policies for which no
other policy simultaneously achieves both higher WIS and higher ESS. We also report WIS and ESS
with standard errors estimated via bootstrapping for each policy, with results shown separately for
each At. To complement these metrics, we further include heatmaps showing how the BCQ policy
redistributes action probabilities relative to the clinician policy.

5 Results

Cohort Statistics. In Appendix A.7, we compare the cohort sizes across At. The cohort sizes
decrease with coarser At, reflecting the exclusion of trajectories shorter than one step. For all
experiments, we report results on a unified cohort that includes trajectories present under all At,
which contains 18,377 admissions with a mortality rate of 5.9%.

AIS Encoder. In Table 2, we report the final selected hyperparameters and validation performance
of the AIS encoder for each At. At = 8 required a smaller latent size of 32, whereas the other At
all used 128. We observe that validation MSE increases with larger At, which is expected given the
longer prediction horizons.

Table 2: AIS encoder (GRU) results across time-step sizes: selected latent dimension, learning rate,
and minimum validation MSE with 95% confidence intervals from 1000 bootstrap samples.

At (h) Latent Dim Learning Rate MSE [95% CI]
1 128 0.001 0.2288 [0.2181, 0.2424]
2 128 0.001 0.2678 [0.2655, 0.2702]
4 128 0.001 0.4011 [0.3940, 0.4110]
8 32 0.001 0.4351 [0.4286, 0.4420]

Behavior Cloning. We summarize the hyperparameter grid and results in Appendix A.6 and
Table 7. Across all datasets, as k increases from 21 to 5/n, validation macro and micro AUROC
generally improves. Based on the validation performance, we selected KNN classifiers with Euclidean
distance and k = 5+/n as mp, yielding macro AUROC > 0.75 and micro AUROC ~ 0.95. While
class imbalance can reduce macro AUROC and inflate micro AUROC, the overall performance is
acceptable [19].

Off-Policy Evaluation. Section 5 shows validation ESS-WIS Pareto frontiers for candidate policies.
Across At, WIS is high (= 100) when ESS is small, then declines as ESS increases, reflecting the
bias-variance trade-off. Coarser At (4-8 h) achieves higher ESS without reducing WIS, whereas finer
At (1-2 h) produce lower ESS overall because they introduce more decision points, inflating variance
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Figure 2: Pareto frontiers of validation WIS versus ESS for each time step At. Dashed lines trace
the non-dominated points; hollow markers denote the model selected for testing; dotted lines with
different colors represent the thresholds used as the boundary for model selection across At.

and thus reducing ESS. For each At, we selected a different ESS cutoff and chose the policy with
ESS > the cutoff that achieved the highest WIS. More details are provided in Appendix A.6.

Test Performance. Table 3 summarizes test performance. When compared against the observed
rewards induced by the behavior policy m,, BCQ 7,, achieves a higher WIS at 1 h, while its perfor-
mance is comparable to 7, at coarser At (2-8 h). For all At, the test ESS exceeds the corresponding
validation ESS, with coarser At (4-8 h) yielding higher ESS, consistent with trends on the validation
set. Coarser At (4-8 h) adopt a higher BCQ threshold (¢ = 0.5) than finer At (1-2 h; ¢ = 0.1),
indicating that policies are more conservative at coarser time scales. Appendix A.5 compares action
frequencies between the selected 7, and 7. Both policies most frequently select zero vasopressor
and low IV-fluid doses. Compared with 73, 7, assigns more probability mass to zero or low IV-fluid
doses under zero vasopressor, producing a more skewed action distribution over a small set of actions.

Table 3: Test-set WIS value and ESS for BCQ and clinician (Observed 7;,) policies across At.
Observed m, results are identical across At. Values are reported with 100 bootstrap mean =+ std.

At (h)  Policy Threshold e Viest (WIS) ESStest
1 BCQ 7y, 0.10 97.88 + 1.01 175.93 + 12.77
2 BCQ 7, 0.10 94.03 + 1.50 196.29 + 12.54
4 BCQ 7, 0.50 94.25 +1.27  292.76 + 14.89
8 BCQ 7, 0.50 94.66 + 1.23  280.03 + 15.71
All At Observed 7, - 94.09 + 0.44 2757.00

6 Conclusion & Discussion

While most prior work on RL for sepsis followed the Al Clinician [1] with 4 h time steps, we provide,
to our knowledge, the first systematic comparison across 1, 2, 4, and 8 h using an identical offline
RL pipeline. To enable a fairer comparison, we extracted the same cohort and train/val/test splits
across At, designed a normalized action space for each A¢, conducted AIS and kNN grid searches
per At, and clipped importance ratios by horizon in WIS. These choices offer a robust reference
for future fair comparisons in similar tasks. Still, a fully fair evaluation remains challenging: in our
task, policies are evaluated across different MDPs (induced by different At), so the WIS/ESS are not
directly comparable across At. In future work, we will evaluate policies on a common resolution
(e.g., evaluate policies learned under 1 h and 8 h both on an 8 h dataset) and our pipeline design makes
this feasible. Our results show that time-step size is a crucial design choice that can substantially
shape the learned policies in RL for sepsis task. Our results advocate for careful reconsideration from
the community of different time-step sizes in sepsis management beyond the conventional 4 h setup,
in order to learn better policies and make fairer evaluation across time-step sizes.
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A appendix

A.1 Related Works
Table 4: RL studies for sepsis care, summarizing time-step choices and key design aspects.

Paper At Algorithm Dataset Cohort Notes

Raghu et al. [20] 4h Dueling DDQN MIMIC-III 17.9k Continuous state; 5x5 IV/vaso bins; first
DL-RL policy (3.6 % mortality).

Komorowski et al. 4h Batch Q-learning MIMIC-IIT 17.1k Al Clinician; 750 states, 25 actions; exter-

[1] (+eRT™) nal validation.

Jeter et al. [3] 4h  Reproduction study MIMIC-III 5.4k Finds no-action policy often rivals AI Clin-
ician; urges caution.

Yuet al. [21] 1h Deep IRL MIMIC-III 14.0k  Learns reward; highlights mortality factors
(e.g. PaOy).

Tang et al. [9] 4h Set-valued DQN MIMIC-III 209k  Returns top-k near-optimal dose sets for
clinician choice.

Killian et al. [12] 4h Offline DQN MIMIC-IIT 179k Sequential latent encodings outperform
raw features.

Lu et al. [4] 1-4h  Dueling DDQN MIMIC-III 17k+ Sensitivity study on features, reward, time
discretization.

Fatemi et al. [22] 4h Dead-end discovery MIMIC-III 17k+ Identifies high-risk states; secures policy
to avoid them.

Satija et al. [23] 4h MO-SPIBB MIMIC-III 17k+ Safe policy improvement under perfor-
mance constraints.

Jietal. [24] 4h Trajectory inspection ~ MIMIC-III 17k+ Clinician “what-if” review reveals policy
flaws; validation tool.

Liang et al. [25] 4h Episodic-memory MIMIC-III 179k Memory module boosts sample efficiency,

DON lowers est. mortality.

Choudhary et al. 4h Tabular MDP MIMIC-III ~18k  ICU-Sepsis benchmark: 715 states, 25

[26] actions.

Tu et al. [27] l1h CQL (offline) MIMIC-IIT 14.0k  Safety-aware CQL with dense rewards for

variable-length stays.

*eRI: Philips eICU Research Institute cohort for external validation; DDQN: Double Deep Q-Network; DQN: Deep Q-Network; IRL: Inverse
Reinforcement Learning; CQL: Conservative Q-Learning; MO-SPIBB: Multi-Objective Safe Policy Improvement with Baseline Bootstrapping.

A.2 Extracted Features for State Representation

Table 5: Observed features extracted from the MIMIC-III database. The upper panel lists the 33-
dimensional time-varying continuous variables fed to the GRU encoder, following the default code
configuration. The lower panel lists the 5 static demographic / contextual variables appended to each

trajectory.
33-d Time-varying continuous features
Glasgow Coma Scale Heart Rate Sys. BP
Dia. BP Mean BP Respiratory Rate
Body Temp (°C) FiO, Potassium
Sodium Chloride Glucose
INR Magnesium Calcium
Hemoglobin White Blood Cells Platelets
PTT PT Arterial pH
Lactate PaO, PaCO,
Pa0O,/FiO, Bicarbonate (HCO3) SpO,
BUN Creatinine SGOT
SGPT Bilirubin Base Excess
5-d Demographic and contextual features
[Age  Gender <« Weight « Ventilation Status + Re-admission Status
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Figure 3: Frequency heatmap of IV-fluid (y-axis; mL) and vasopressor (x-axis; g kg=! min~1!)
doses for At € {1,2,4,8}. BCQ policies are compared with the empirical clinician distribution.
Darker cells indicate more frequent selections.

224 A.3 Extracted Cohort Sizes
Table 6: Extracted cohort size of MIMIC-Sepsis at different time steps.
At (h) Cohort Size
1 18,995
2 18,987
4 18,906
8 18,783
225 A.4 BC Performance
Table 7: Estimated behavior policy performance (Macro and Micro AUROC) on the validation sets
across time-step sizes, with 95% confidence intervals from 1000 bootstrap samples.
At (h) Macro AUROC [95% CI] Micro AUROC [95% CI]
1 0.7715[0.7678,0.7753] ~ 0.9449 [0.9443, 0.9456]
2 0.8047 [0.7998, 0.8095]  0.9491 [0.9482, 0.9500]
4 0.8143 [0.8071,0.8211]  0.9507 [0.9496, 0.9518]
8 0.7576 [0.7429, 0.7720]  0.9454 [0.9435, 0.9472]
226 A.5 Action Heatmaps
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58914 [eral(] 2813 2417 1753 2‘ 1649 1449 1236 925 % 16357 811 708 655 522 % 411 371 372 312
S18 413 305 281 o 200 176 133 118 < 9% 77 ST 59 o 9 31 23 25
0-6.08 0.0810.20 0.2010,45 26.45 0-6.08 0.0810.20 0,20‘»0.45 26.45 0 0-6.08 0.0810.20 0.2010.45 26.45 6 0-6.08 0.0810.20 0.20-‘0.45 26.45



227 A.6 Additional Hyperparameter Details

Table 8: Hyperparameter values used for training GRU encoder and BCQ models.

Hyperparameter Searched Settings
RNN:
— Embedding dimension, dg {8, 16, 32,64, 128}
— Learning rate {1x107%,3x107°, 1x107%, 3x107%, 5x 1074, 1x 1073}
kNN: .
— Number of neighbors, k ki = exp (In21 + £(In(5y/n) — In21))?
— Distance metric {Euclidean, Manhattan}
BCQ (with 5 random restarts):
— Threshold, € {0,0.01,0.05,0.1,0.3,0.5,0.75,0.999}
— Learning rate 3x1074
— Weight decay 1x1073
— Hidden layer size 256
2¢=0,1,...,7. ndenotes the size of the flattened dataset.

Table 9: ESS cutoffs for model selection.
At (h) ESS Cutoff

1 100
2 150
4 200
8 250

228 A.7 Extracted Cohort Sizes

Table 10: Extracted cohort size of MIMIC-Sepsis at different time steps.
At (h) Cohort Size

18,995
18,987
18,906
18,783
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