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Abstract

We introduce MEDS-Torch, a scalable and extensible pipeline for inductive experi-
ments with sequence models on medical datasets adhering to the MEDS format—a
universal schema for medical time series data. Using this pipeline, we system-
atically compare three tokenization methods (Everything In Code, Triplet, and
Text Code) and evaluate five transfer learning techniques, including autoregressive
generative modeling and contrastive learning variations, across multiple predictive
tasks on the MIMIC-IV EHR dataset. Our empirical analysis provides action-
able insights into the effectiveness of each method, demonstrating significant
performance differences among tokenization and pretraining combinations. By
benchmarking these approaches against fully supervised learning models, we offer
practical recommendations for selecting appropriate modeling strategies in diverse
healthcare settings. MEDS-Torch streamlines the process of running controlled
experiments on medical datasets and promotes reproducibility and standardization
in EHR research through its exclusive dependence on the MEDS schema, facilitat-
ing more effective machine learning experiments in healthcare without reliance on
dataset-specific nuances.

1 Intro

Processing and modeling electronic health record (EHR) data present significant challenges due to
its complexity, high dimensionality, and heterogeneity [17, 21, 22]. Developing efficient pipelines
that can handle diverse medical datasets is crucial for advancing predictive analytics in healthcare.
However, the challenges of developing methods that generalize across different datasets have slowed
down the creation of best ML practices on EHR datasets in the context of transfer learning methods
and input encoding (i.e. how raw continuous and categorical time-series EHR data is converted into a
sequence of inputs passed to a sequence model such as a transformer encoder or LSTM).

∗Corresponding author

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.



Unlike image or text data, tabular EHR data is often high-dimensional, sparse, irregularly sampled,
and contains a mix of numerical and categorical variables. Additionally, the data can be noisy,
incomplete, and subject to strict privacy constraints. Methods such as forecasting have yielded mixed
results—underperforming compared to contrastive and multitask pretraining methods in some studies
[14, 7], yet outperforming them in other studies [12]. These experiments are often conducted on
different tasks and datasets, with varying standards for input encoding and different transfer learning
techniques. This inconsistency creates a gap in the literature, leaving data scientists in healthcare
institutions uncertain about which methods would work best for their specific, niche datasets.

Previous attempts to apply transfer learning and tokenization methods to EHR data have been limited
by the lack of standardized data formats and pipelines that generalize across datasets. Many existing
methods are tailored to specific datasets or require extensive preprocessing, making them unsuitable
for broader applications. Furthermore, the complexity of EHR data has hindered the development of
universally applicable tokenization and modeling techniques.

In this paper, we introduce MEDS-Torch2, a scalable pipeline designed to generalize to any medical
dataset adhering to the MEDS[2] format. We systematically compare three tokenization methods for
tabular EHR data and evaluate five transfer learning techniques, including variations of autoregressive
generative modeling and two variations of contrastive learning. Our evaluation spans several tasks
across two distinct datasets, providing comprehensive insights into the performance of each method.
Additionally, we benchmark these approaches against fully supervised learning models.

Our Contributions are:

1. Standardized EHR analysis framework: A scalable, extensible pipeline for processing
and analyzing any MEDS-formatted medical dataset, featuring efficient preprocessing and
promoting standardized, reproducible research in EHR modeling (Section 2).

2. Comprehensive tokenization and transfer learning framework: Implementation of three
tokenization methods and five transfer learning techniques, enabling systematic comparisons
of different approaches for EHR modeling (Section 3).

3. Empirical analysis and insights: Demonstration of MEDS-Torch’s capabilities through
extensive experiments across multiple tasks on MIMIC-IV, providing actionable insights
into the effectiveness of various tokenization and transfer learning combinations for EHR
data (Section 3).

2 MEDS-Torch

MEDS-Torch is a flexible and efficient pipeline designed for advanced machine learning on Electronic
Health Records (EHR) data. It provides a comprehensive suite of tools for processing, modeling, and
analyzing medical time-series data in the MEDS (Medical Event Data Standard) format.

MEDS-Torch implements a variety of tokenization strategies and transfer learning methods, enabling
researchers to experiment with different approaches. The pipeline supports three main tokenization
methods: Everything In Code (EIC), Triplet, and Text Code. These methods transform raw MEDS
data into sequences suitable for input into deep learning models (See Figure 2 in the appendix for
more information). For transfer learning, MEDS-Torch offers five distinct pretraining techniques,
including event-based contrastive learning [7] (around random events), order contrastive pretraining
[1], value forecasting [19], and two variations of autoregressive forecasting (see appendix section
A.2 for more information on these pretraining methods). This diversity allows researchers to explore
and compare different approaches for their specific tasks and datasets.

A key feature of MEDS-Torch is its ability to generalize to any medical dataset adhering to the
MEDS format. The pipeline’s dependence solely on the MEDS schema for input data and the
MEDS label schema for supervised task labels ensures its applicability across various EHR datasets.
This standardization allows researchers to easily apply the same models and techniques to different
datasets without extensive modifications, facilitating reproducibility and comparability of results
across studies. The MEDS format converts any subject time series data into a standardized table
structure, enabling MEDS-Torch to process and model the data consistently regardless of its original
format or source.

2Please view the MEDS-Torch codebase at https://github.com/Oufattole/meds-torch.
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MEDS-Torch offers a user-friendly API that streamlines experiment execution. Leveraging Hydra
[24] for configuration management, the pipeline enables easy customization and overriding of
experiment parameters. We provide examples of common workflows, including supervised training,
autoregressive model pretraining and finetuning, distributed hyperparameter tuning, and multiseed
training jobs. These can be executed via a simple command-line interface (see Appendix B).3

3 Experiments and Results

The field of machine learning for Electronic Health Records (EHR) is characterized by fragmented
model development and evaluation approaches. Researchers often implement models on a limited
number of datasets, using custom implementations that are challenging to reproduce. This repro-
ducibility challenge stems from difficulties in replicating both cohorts [10, 8] and model training
recipes [15, 3]. While recent work has addressed cohort reproducibility [23], our work focuses on
providing reproducible model training recipes. This approach enables practitioners to effectively
compare methods and accelerates the identification of best practices for EHR modeling.

We demonstrate the utility of MEDS-Torch in facilitating methodologically reproducible controlled
experiments on EHR data. Our pipeline enables researchers to achieve actionable, dataset-specific
insights from a suite of methods applicable to any medical dataset in the MEDS format. For this
study, we focus on the MIMIC-IV [9] dataset, with ongoing collaborations to expand to other hospital
datasets. We chose MIMIC-IV as our initial dataset due to its public availability and widespread use
in the medical ML community. This choice allows for easier validation and comparison of our results
with existing literature.

We experiment with three tokenization methods commonly found in the EHR sequence model
literature: Everything In Code (EIC) [16], Triplet [7, 19], Text Code [5]. For each tokenization
method, we implement two categories of transfer learning techniques: Contrastive Learning Methods
include Order Contrastive Pretraining (OCP) [1] and Event-Based Contrastive Learning (EBCL)
[7]. Forecasting Transfer Learning Methods include Autoregressive Forecasting [16, 4] and Value
Forecasting [19]. We focus on contrastive learning methods due to their demonstrated effectiveness
in healthcare settings [7, 1, 6, 11]. Forecasting methods were included as they have shown promise in
capturing temporal dependencies in EHR data [16, 18].

(a) Overall win rate for each tokeniza-
tion strategy, where a win is counted
when a strategy achieves the highest av-
erage AUC (over 5 seeds) for a given
task and method combination.

(b) Performance comparison of different pretraining methods across
four clinical prediction tasks, showing AUC scores with standard
deviation error bars over 5 seeds.

Figure 1: Performance analysis of different tokenization strategies and learning methods on clinical
prediction tasks. Tasks include in-hospital mortality, in-ICU mortality, post-discharge mortality, and
30-day readmission prediction.

3For comprehensive guidance, users can refer to the documentation and tutorials in our codebase here:
https://meds-torch.readthedocs.io/en/latest/inductive_experiments/.
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Our results, as shown in Figure 1 (see all results in Appendix Table 1), indicate that the choice of
tokenization method significantly impacts model performance across different tasks and learning
methods. Key findings include: (1) Triplet tokenization generally outperforms other methods for
contrastive learning and supervised learning tasks (visualized in Figure 1a). (2) Value Forecasting is
the most performant pretraining method across most downstream tasks (visualized in Figure 1b).

The variability in performance across tokenization methods and learning approaches underscores the
need for flexible, extensible frameworks like MEDS-Torch that allow researchers to easily experiment
with different combinations. As we continue to expand our experiments to include more datasets
and refine our methods, we anticipate that MEDS-Torch will play a crucial role in advancing the
state-of-the-art in EHR-based predictive modeling. By providing a standardized platform for method
comparison, we aim to accelerate the development of more accurate and reliable predictive models
on any given healthcare dataset.

Our experiments were conducted on a machine with 8 V100 GPUs, 76 cores, and 768 GB RAM. We
used a supervised transformer encoder [20] with 4 attention heads, 2 layers, a maximum sequence
length of 128 tokens, and a token dimension of 128. Labels for each task were extracted from our
MEDS dataset using the ACES tool [23], which enables the reproducible retrieval of identically
defined cohorts across any medical dataset. We employed Ray Tune [13] for hyperparameter
optimization and conducted multiple runs with different random seeds to ensure robust results. The
Hydra framework [24] was used to manage our experimental configurations.

In our experiments, we distributed hyperparameter sweeps and multiseed jobs such that each seed or
hyperparameter combination had exclusive access to one GPU, running in parallel with other configu-
rations using Ray Tune [13]. This implementation allows for efficient utilization of computational
resources and enables rapid experimentation across various model architectures and hyperparameters.

4 Conclusion

In this paper, we introduced MEDS-Torch, a versatile and efficient pipeline for training sequence
models on EHR data in the standardized MEDS format. Our key contributions include: (1) the
development of a scalable and generalizable tool for processing medical datasets in the MEDS
format, (2) the implementation of computationally efficient preprocessing and caching mechanisms,
(3) support for three different tokenization methods, (4) implementation of five transfer learning
techniques, and (5) empirical analysis across multiple tasks demonstrating the ease of performance
comparisons on MEDS-formatted datasets. Through our systematic evaluation of tokenization
methods (EIC, Triplet, and Text Code) across multiple tasks on the MIMIC-IV dataset, we have
demonstrated the significant impact of tokenization choices on model performance. The MEDS-Torch
pipeline not only streamlines the process of running controlled experiments on medical datasets
but also promotes reproducibility and standardization in EHR research. By providing a flexible,
extensible framework for method comparison, MEDS-Torch enables researchers and healthcare
institutions to systematically evaluate modeling strategies tailored to their specific datasets and tasks,
potentially accelerating the development and deployment of more accurate and reliable predictive
models in healthcare settings.

While our study provides valuable insights, it also has limitations that point to exciting directions
for future work. We plan to expand our evaluation to a broader range of EHR data sources beyond
MIMIC-IV, further validating our pipeline’s generalizability. Leveraging our existing support for
architecture searching via Hydra and Ray Tune, we aim to provide comprehensive documentation,
scripts, and results from architecture searches across more tasks, datasets, and learning methods,
accompanied by compute time/memory benchmarks. Additionally, we intend to extend our framework
to support generative model evaluations and incorporate new pretraining strategies, including masked
imputation and additional contrastive learning methods. These enhancements will further establish
MEDS-Torch as a comprehensive tool for advancing EHR-based machine learning research and
applications.
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A Tokenization and Pretraining Method Details

A.1 Tokenization

In this paper, we explore three distinct tokenization methods (represented in Figure 2): Everything In
Code (EIC), Triplet, and Text Code. For detailed explanations of each method, see Figure 2.

A.2 Pretraining Methods

We currently support five distinct pretraining techniques: (1) Event-Based contrastive pretraining,
(2) Order contrastive pretraining, (3) Value forecasting, (4) Autoregressive EIC pretraining, and (5)
Autoregressive triplet forecasting.

The first three methods rely on support for a random-window dataset class, where the patient’s history
is loaded and partitioned into two adjacent windows. Extra measures are taken to keep windows
within the user-defined maximum sequence length for their architecture. Event-Based contrastive
pretraining creates positive pairs from observation windows immediately preceding and following
an event in a patient’s trajectory. In contrast, windows from different patients are considered negative
pairs. The objective of pretraining is to minimize the distance between positive pairs in the latent
space while maximizing the separation from negative pairs. Order contrastive pretraining (based
on [1]) involves drawing pairs of observation windows from a patient’s trajectory, with the task of
determining whether these windows are in their correct chronological order. By challenging the
model to differentiate between correctly and incorrectly ordered sequences, this approach encourages
the learned representations to effectively capture the temporal structure and sequential dependencies
within the data. Value forecasting (based on [19]) takes two adjacent windows of time, the prior
window is input into the encoder, and the second window is used to create labels, the model must
predict the presence of codes (binary cross entropy loss) and the numeric value of all present codes
with a present numeric value (MSE loss).
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Figure 2: Comparison of three tokenization methods for medical time series data. Everything In Code
(EIC) converts all observations into categorical tokens by quantile binning values and discretizing
time deltas. Triplet represents each observation as three separate embeddings (time delta, code,
numeric value) that are summed together. The continuous components (time delta and numeric value)
are embedded using learned feed-forward networks, while codes use learned codebook embeddings
(i.e. each unique code is stored as a unique integer which we learn an embedding for). Text Code
is similar to Triplet but maintains codes as text strings rather than numeric IDs, allowing semantic
embedding. The figure shows the transformation process from raw patient observations through
preprocessing to nested tensor representations, and finally to the embedded form for each method.

The other two methods use a single window of input data and the base PyTorch dataset class:
Autoregressive EIC pretraining (based on [16]) is the task of predicting the next code, just as GPT-
style language models [4] are pretrained, as the patient’s history is assumed to be preprocessed into a
categorical sequence. Autoregressive triplet forecasting is an autoregressive forecasting task where
the model has to predict the next observation by simultaneously predicting the triplet of time, code,
and value, it is a natural extension of Autoregressive EIC forecasting to the triplet and text code input
encoded data. MSE loss is used over the time and numeric values while cross entropy is applied for
the code.

B Code Examples

B.0.1 Environment Variables

The following environment variables are used in the code examples:

• PATHS_KWARGS: Defines data paths, e.g.,
paths.data_dir=/path/to/data paths.meds_cohort_dir=/path/to/meds
paths.output_dir=/path/to/output

• TASK_KWARGS: Defines task parameters for supervised learning, e.g.,
data.task_name=mortality data.task_root_dir=/path/to/task/labels

C Command-line Examples

Listing 1: Training a supervised model on GPU
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1 MEDS−Torch − t r a i n t r a i n e r =gpu $PATHS_KWARGS $TASK_KWARGS

Listing 2: Pretraining an autoregressive forecasting model

1 MEDS−Torch − t r a i n t r a i n e r =gpu $PATHS_KWARGS model= e i c _ f o r e c a s t i n g

Listing 3: Parameter overriding and hyperparameter tuning

1 MEDS−Torch − t r a i n t r a i n e r . max_epochs =20 d a t a . b a t c h _ s i z e =64
$PATHS_KWARGS $TASK_KWARGS

2 MEDS−Torch − t u n e e x p e r i m e n t = e x p e r i m e n t . yaml c a l l b a c k s = t u n e _ d e f a u l t
$PATHS_KWARGS $TASK_KWARGS h p a r a m s _ s e a r c h = r a y _ t u n e

C.0.1 Example Configuration File

Listing 4: Sample experiment.yaml file

1 # @package _global_
2

3 d e f a u l t s :
4 - o v e r r i d e / data : p y t o r c h _ d a t a s e t
5 - o v e r r i d e / l o g g e r : wandb
6 - o v e r r i d e / model / backbone: t r i p l e t _ t r a n s f o r m e r _ e n c o d e r
7 - o v e r r i d e / model / input_encoder : t r i p l e t _ e n c o d e r
8 - o v e r r i d e / model: s u p e r v i s e d
9 - o v e r r i d e / t r a i n e r : gpu

10

11 t a g s : [ mimiciv , t r i p l e t , t r a n s f o r m e r _ e n c o d e r ]
12

13 seed : 0
14

15 t r a i n e r :
16 min_epochs : 1
17 max_epochs: 10
18 g r a d i e n t _ c l i p _ v a l : 1 . 0
19

20 data :
21 d a t a l o a d e r :
22 b a t c h _ s i z e : 64
23 num_workers: 6
24 max_seq_len : 128
25 c o l l a t e _ t y p e : t r i p l e t
26 subsequence_sampl ing_s tra tegy : t o_ en d
27

28 model:
29 token_dim : 128
30 o p t i m i z e r :
31 l r : 0 . 001
32 backbone:
33 n _ l a y e r s : 2
34 nheads : 4
35 dropout : 0
36

37 l o g g e r :
38 wandb:
39 t a g s : ${ t a g s }
40 group: m i m i c i v _ t o k e n i z a t i o n
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This experiment.yaml file configures a supervised learning experiment using a triplet trans-
former encoder on MIMIC-IV data. It sets up various parameters for the trainer, data loading, model
architecture, and logging.

D All Results

Table 1: MIMIC-IV: Mean ± STD AUC (over five trials) of tokenization Methods across tasks.
hosp-Mortality refers to in-hospital mortality after 24 hours. ICU-Mortality refers to in-ICU mortality.
Discharge-Mortality predicts whether a subject will survive 1 year after discharge. Readmission is
the task of predicting if a subject is readmitted within 30 days.
Method Type Tokenization hosp-Mortality ICU-Mortality Discharge-Mortality Readmission

Contrastive OCP EIC 86.1 ± 0.3 77.2 ± 0.4 84.1 ± 0.1 70.3 ± 0.3
Text Code 80.0 ± 0.5 69.3 ± 1.6 81.6 ± 0.1 68.3 ± 0.3

Triplet 87.3 ± 0.4 75.8 ± 0.4 85.6 ± 0.1 71.5 ± 0.2

EBCL EIC 86.1 ± 0.7 76.6 ± 0.6 84.0 ± 0.0 70.6 ± 0.2
Text Code 85.2 ± 0.3 74.9 ± 0.9 83.9 ± 0.3 70.1 ± 0.3

Triplet 86.5 ± 0.2 77.4 ± 0.7 85.6 ± 0.1 71.8 ± 0.1

Forecasting AR EIC 84.8 ± 0.1 76.9 ± 0.5 83.6 ± 0.3 69.9 ± 0.2
Text Code 81.9 ± 0.4 71.6 ± 1.3 81.9 ± 0.4 69.1 ± 0.3

Triplet 74.0 ± 0.6 65.1 ± 2.2 76.0 ± 1.8 64.4 ± 0.5

Value EIC 86.1 ± 0.6 77.8 ± 1.0 84.0 ± 0.2 70.2 ± 0.6
Text Code 85.2 ± 0.2 75.8 ± 0.6 85.8 ± 0.1 72.1 ± 0.1

Triplet 88.2 ± 0.1 77.3 ± 0.8 86.2 ± 0.1 72.1 ± 0.1

Supervised - EIC 86.4 ± 0.2 77.9 ± 0.4 84.0 ± 0.1 70.0 ± 0.1
Text Code 85.3 ± 0.3 75.5 ± 0.7 85.0 ± 0.3 70.8 ± 0.3

Triplet 87.1 ± 0.9 77.4 ± 1.1 85.4 ± 0.2 71.5 ± 0.2
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