
MEDS-Torch: An ML Pipeline for Inductive
Experiments for EHR Medical Foundation Models

Nassim Oufattole1
nassim@mit.edu

Teya Bergamaschi1
teya@mit.edu

Pawel Renc2
prenc@mgh.harvard.edu

Aleksia Kolo1
aleksiak@mit.edu

Matthew B.A. McDermott3∗
matthew_mcdermott@hms.harvard.edu

Collin Stultz1,2,3∗
cmstultz@csail.mit.edu

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 Massachusetts General Hospital, Boston, MA, USA

3 Harvard Medical School, Boston, MA, USA

Abstract

We introduce MEDS-Torch, a scalable and extensible pipeline for inductive experi-
ments with sequence models on medical datasets adhering to the MEDS format—a
universal schema for medical time series data. Using this pipeline, we system-
atically compare three tokenization methods (Everything In Code, Triplet, and
Text Code) and evaluate five transfer learning techniques, including autoregressive
generative modeling and contrastive learning variations, across multiple predictive
tasks on the MIMIC-IV EHR dataset. Our empirical analysis provides action-
able insights into the effectiveness of each method, demonstrating significant
performance differences among tokenization and pretraining combinations. By
benchmarking these approaches against fully supervised learning models, we offer
practical recommendations for selecting appropriate modeling strategies in diverse
healthcare settings. MEDS-Torch streamlines the process of running controlled
experiments on medical datasets and promotes reproducibility and standardization
in EHR research through its exclusive dependence on the MEDS schema, facilitat-
ing more effective machine learning experiments in healthcare without reliance on
dataset-specific nuances.

1 Intro

Processing and modeling electronic health record (EHR) data present significant challenges due to
its complexity, high dimensionality, and heterogeneity [17, 21, 22]. Developing efficient pipelines
that can handle diverse medical datasets is crucial for advancing predictive analytics in healthcare.
However, the challenges of developing methods that generalize across different datasets have slowed
down the creation of best ML practices on EHR datasets in the context of transfer learning methods
and input encoding (i.e. how raw continuous and categorical time-series EHR data is converted into a
sequence of inputs passed to a sequence model such as a transformer encoder or LSTM).

∗Corresponding author

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

Unlike image or text data, tabular EHR data is often high-dimensional, sparse, irregularly sampled,
and contains a mix of numerical and categorical variables. Additionally, the data can be noisy,
incomplete, and subject to strict privacy constraints. Methods such as forecasting have yielded mixed
results—underperforming compared to contrastive and multitask pretraining methods in some studies
[14, 7], yet outperforming them in other studies [12]. These experiments are often conducted on
different tasks and datasets, with varying standards for input encoding and different transfer learning
techniques. This inconsistency creates a gap in the literature, leaving data scientists in healthcare
institutions uncertain about which methods would work best for their specific, niche datasets.

Previous attempts to apply transfer learning and tokenization methods to EHR data have been limited
by the lack of standardized data formats and pipelines that generalize across datasets. Many existing
methods are tailored to specific datasets or require extensive preprocessing, making them unsuitable
for broader applications. Furthermore, the complexity of EHR data has hindered the development of
universally applicable tokenization and modeling techniques.

In this paper, we introduce MEDS-Torch2, a scalable pipeline designed to generalize to any medical
dataset adhering to the MEDS[2] format. We systematically compare three tokenization methods for
tabular EHR data and evaluate five transfer learning techniques, including variations of autoregressive
generative modeling and two variations of contrastive learning. Our evaluation spans several tasks
across two distinct datasets, providing comprehensive insights into the performance of each method.
Additionally, we benchmark these approaches against fully supervised learning models.

Our Contributions are:

1. Standardized EHR analysis framework: A scalable, extensible pipeline for processing
and analyzing any MEDS-formatted medical dataset, featuring efficient preprocessing and
promoting standardized, reproducible research in EHR modeling (Section 2).

2. Comprehensive tokenization and transfer learning framework: Implementation of three
tokenization methods and five transfer learning techniques, enabling systematic comparisons
of different approaches for EHR modeling (Section 3).

3. Empirical analysis and insights: Demonstration of MEDS-Torch’s capabilities through
extensive experiments across multiple tasks on MIMIC-IV, providing actionable insights
into the effectiveness of various tokenization and transfer learning combinations for EHR
data (Section 3).

2 MEDS-Torch

MEDS-Torch is a flexible and efficient pipeline designed for advanced machine learning on Electronic
Health Records (EHR) data. It provides a comprehensive suite of tools for processing, modeling, and
analyzing medical time-series data in the MEDS (Medical Event Data Standard) format.

MEDS-Torch implements a variety of tokenization strategies and transfer learning methods, enabling
researchers to experiment with different approaches. The pipeline supports three main tokenization
methods: Everything In Code (EIC), Triplet, and Text Code. These methods transform raw MEDS
data into sequences suitable for input into deep learning models (See Figure 2 in the appendix for
more information). For transfer learning, MEDS-Torch offers five distinct pretraining techniques,
including event-based contrastive learning [7] (around random events), order contrastive pretraining
[1], value forecasting [19], and two variations of autoregressive forecasting (see appendix section
A.2 for more information on these pretraining methods). This diversity allows researchers to explore
and compare different approaches for their specific tasks and datasets.

A key feature of MEDS-Torch is its ability to generalize to any medical dataset adhering to the
MEDS format. The pipeline’s dependence solely on the MEDS schema for input data and the
MEDS label schema for supervised task labels ensures its applicability across various EHR datasets.
This standardization allows researchers to easily apply the same models and techniques to different
datasets without extensive modifications, facilitating reproducibility and comparability of results
across studies. The MEDS format converts any subject time series data into a standardized table
structure, enabling MEDS-Torch to process and model the data consistently regardless of its original
format or source.

2Please view the MEDS-Torch codebase at https://github.com/Oufattole/meds-torch.

2

https://github.com/Oufattole/meds-torch

MEDS-Torch offers a user-friendly API that streamlines experiment execution. Leveraging Hydra
[24] for configuration management, the pipeline enables easy customization and overriding of
experiment parameters. We provide examples of common workflows, including supervised training,
autoregressive model pretraining and finetuning, distributed hyperparameter tuning, and multiseed
training jobs. These can be executed via a simple command-line interface (see Appendix B).3

3 Experiments and Results

The field of machine learning for Electronic Health Records (EHR) is characterized by fragmented
model development and evaluation approaches. Researchers often implement models on a limited
number of datasets, using custom implementations that are challenging to reproduce. This repro-
ducibility challenge stems from difficulties in replicating both cohorts [10, 8] and model training
recipes [15, 3]. While recent work has addressed cohort reproducibility [23], our work focuses on
providing reproducible model training recipes. This approach enables practitioners to effectively
compare methods and accelerates the identification of best practices for EHR modeling.

We demonstrate the utility of MEDS-Torch in facilitating methodologically reproducible controlled
experiments on EHR data. Our pipeline enables researchers to achieve actionable, dataset-specific
insights from a suite of methods applicable to any medical dataset in the MEDS format. For this
study, we focus on the MIMIC-IV [9] dataset, with ongoing collaborations to expand to other hospital
datasets. We chose MIMIC-IV as our initial dataset due to its public availability and widespread use
in the medical ML community. This choice allows for easier validation and comparison of our results
with existing literature.

We experiment with three tokenization methods commonly found in the EHR sequence model
literature: Everything In Code (EIC) [16], Triplet [7, 19], Text Code [5]. For each tokenization
method, we implement two categories of transfer learning techniques: Contrastive Learning Methods
include Order Contrastive Pretraining (OCP) [1] and Event-Based Contrastive Learning (EBCL)
[7]. Forecasting Transfer Learning Methods include Autoregressive Forecasting [16, 4] and Value
Forecasting [19]. We focus on contrastive learning methods due to their demonstrated effectiveness
in healthcare settings [7, 1, 6, 11]. Forecasting methods were included as they have shown promise in
capturing temporal dependencies in EHR data [16, 18].

(a) Overall win rate for each tokeniza-
tion strategy, where a win is counted
when a strategy achieves the highest av-
erage AUC (over 5 seeds) for a given
task and method combination.

(b) Performance comparison of different pretraining methods across
four clinical prediction tasks, showing AUC scores with standard
deviation error bars over 5 seeds.

Figure 1: Performance analysis of different tokenization strategies and learning methods on clinical
prediction tasks. Tasks include in-hospital mortality, in-ICU mortality, post-discharge mortality, and
30-day readmission prediction.

3For comprehensive guidance, users can refer to the documentation and tutorials in our codebase here:
https://meds-torch.readthedocs.io/en/latest/inductive_experiments/.

3

https://meds-torch.readthedocs.io/en/latest/inductive_experiments/

Our results, as shown in Figure 1 (see all results in Appendix Table 1), indicate that the choice of
tokenization method significantly impacts model performance across different tasks and learning
methods. Key findings include: (1) Triplet tokenization generally outperforms other methods for
contrastive learning and supervised learning tasks (visualized in Figure 1a). (2) Value Forecasting is
the most performant pretraining method across most downstream tasks (visualized in Figure 1b).

The variability in performance across tokenization methods and learning approaches underscores the
need for flexible, extensible frameworks like MEDS-Torch that allow researchers to easily experiment
with different combinations. As we continue to expand our experiments to include more datasets
and refine our methods, we anticipate that MEDS-Torch will play a crucial role in advancing the
state-of-the-art in EHR-based predictive modeling. By providing a standardized platform for method
comparison, we aim to accelerate the development of more accurate and reliable predictive models
on any given healthcare dataset.

Our experiments were conducted on a machine with 8 V100 GPUs, 76 cores, and 768 GB RAM. We
used a supervised transformer encoder [20] with 4 attention heads, 2 layers, a maximum sequence
length of 128 tokens, and a token dimension of 128. Labels for each task were extracted from our
MEDS dataset using the ACES tool [23], which enables the reproducible retrieval of identically
defined cohorts across any medical dataset. We employed Ray Tune [13] for hyperparameter
optimization and conducted multiple runs with different random seeds to ensure robust results. The
Hydra framework [24] was used to manage our experimental configurations.

In our experiments, we distributed hyperparameter sweeps and multiseed jobs such that each seed or
hyperparameter combination had exclusive access to one GPU, running in parallel with other configu-
rations using Ray Tune [13]. This implementation allows for efficient utilization of computational
resources and enables rapid experimentation across various model architectures and hyperparameters.

4 Conclusion

In this paper, we introduced MEDS-Torch, a versatile and efficient pipeline for training sequence
models on EHR data in the standardized MEDS format. Our key contributions include: (1) the
development of a scalable and generalizable tool for processing medical datasets in the MEDS
format, (2) the implementation of computationally efficient preprocessing and caching mechanisms,
(3) support for three different tokenization methods, (4) implementation of five transfer learning
techniques, and (5) empirical analysis across multiple tasks demonstrating the ease of performance
comparisons on MEDS-formatted datasets. Through our systematic evaluation of tokenization
methods (EIC, Triplet, and Text Code) across multiple tasks on the MIMIC-IV dataset, we have
demonstrated the significant impact of tokenization choices on model performance. The MEDS-Torch
pipeline not only streamlines the process of running controlled experiments on medical datasets
but also promotes reproducibility and standardization in EHR research. By providing a flexible,
extensible framework for method comparison, MEDS-Torch enables researchers and healthcare
institutions to systematically evaluate modeling strategies tailored to their specific datasets and tasks,
potentially accelerating the development and deployment of more accurate and reliable predictive
models in healthcare settings.

While our study provides valuable insights, it also has limitations that point to exciting directions
for future work. We plan to expand our evaluation to a broader range of EHR data sources beyond
MIMIC-IV, further validating our pipeline’s generalizability. Leveraging our existing support for
architecture searching via Hydra and Ray Tune, we aim to provide comprehensive documentation,
scripts, and results from architecture searches across more tasks, datasets, and learning methods,
accompanied by compute time/memory benchmarks. Additionally, we intend to extend our framework
to support generative model evaluations and incorporate new pretraining strategies, including masked
imputation and additional contrastive learning methods. These enhancements will further establish
MEDS-Torch as a comprehensive tool for advancing EHR-based machine learning research and
applications.

References
[1] Monica N Agrawal, Hunter Lang, Michael Offin, Lior Gazit, and David Sontag. Leveraging

time irreversibility with order-contrastive pre-training. In International Conference on Artificial

4

Intelligence and Statistics, pages 2330–2353. PMLR, 2022.

[2] Bert Arnrich, Edward Choi, Jason Alan Fries, Matthew B.A. McDermott, Jungwoo Oh, Tom
Pollard, Nigam Shah, Ethan Steinberg, Michael Wornow, and Robin van de Water. Medical
event data standard (MEDS): Facilitating machine learning for health. In ICLR 2024 Workshop
on Learning from Time Series For Health, 2024.

[3] Andrew L Beam, Arjun K Manrai, and Marzyeh Ghassemi. Challenges to the reproducibility of
machine learning models in health care. Jama, 323(4):305–306, 2020.

[4] Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[5] Kyunghoon Hur, Jungwoo Oh, Junu Kim, Jiyoun Kim, Min Jae Lee, Eunbyeol Cho, Seong-
Eun Moon, Young-Hak Kim, Louis Atallah, and Edward Choi. Genhpf: General healthcare
predictive framework for multi-task multi-source learning. IEEE Journal of Biomedical and
Health Informatics, 28(1):502–513, 2024.

[6] Aapo Hyvarinen and Hiroshi Morioka. Nonlinear ICA of Temporally Dependent Stationary
Sources. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Confer-
ence on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 460–469. PMLR, 20–22 Apr 2017.

[7] Hyewon Jeong, Nassim Oufattole, Matthew Mcdermott, Aparna Balagopalan, Bryan
Jangeesingh, Marzyeh Ghassemi, and Collin Stultz. Event-based contrastive learning for
medical time series, 2024.

[8] Alistair E. W. Johnson, Tom J. Pollard, and Roger G. Mark. Reproducibility in critical care:
a mortality prediction case study. In Finale Doshi-Velez, Jim Fackler, David Kale, Rajesh
Ranganath, Byron Wallace, and Jenna Wiens, editors, Proceedings of the 2nd Machine Learning
for Healthcare Conference, volume 68 of Proceedings of Machine Learning Research, pages
361–376. PMLR, 18–19 Aug 2017.

[9] Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

[10] Alistair EW Johnson, Tom J Pollard, and Roger G Mark. Reproducibility in critical care: a
mortality prediction case study. In Machine learning for healthcare conference, pages 361–376.
PMLR, 2017.

[11] Ryan King, Tianbao Yang, and Bobak J. Mortazavi. Multimodal pretraining of medical time
series and notes. In Stefan Hegselmann, Antonio Parziale, Divya Shanmugam, Shengpu
Tang, Mercy Nyamewaa Asiedu, Serina Chang, Tom Hartvigsen, and Harvineet Singh, editors,
Proceedings of the 3rd Machine Learning for Health Symposium, volume 225 of Proceedings of
Machine Learning Research, pages 244–255. PMLR, 10 Dec 2023.

[12] Alex Labach, Aslesha Pokhrel, Xiao Shi Huang, Saba Zuberi, Seung Eun Yi, Maksims Volkovs,
Tomi Poutanen, and Rahul G. Krishnan. Duett: Dual event time transformer for electronic
health records, 2023.

[13] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

[14] Matthew McDermott, Bret Nestor, Evan Kim, Wancong Zhang, Anna Goldenberg, Peter
Szolovits, and Marzyeh Ghassemi. A comprehensive ehr timeseries pre-training benchmark. In
Proceedings of the Conference on Health, Inference, and Learning, CHIL ’21, page 257–278,
New York, NY, USA, 2021. Association for Computing Machinery.

[15] Matthew B. A. McDermott, Shirly Wang, Nikki Marinsek, Rajesh Ranganath, Luca Foschini,
and Marzyeh Ghassemi. Reproducibility in machine learning for health research: Still a ways
to go. Science Translational Medicine, 13(586):eabb1655, 2021.

5

[16] Pawel Renc, Yugang Jia, Anthony E. Samir, Jaroslaw Was, Quanzheng Li, David W. Bates, and
Arkadiusz Sitek. Zero shot health trajectory prediction using transformer. March 2024.

[17] Benjamin Shickel, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi. Deep ehr: a survey
of recent advances in deep learning techniques for electronic health record (ehr) analysis. IEEE
journal of biomedical and health informatics, 22(5):1589–1604, 2017.

[18] Ethan Steinberg, Jason Fries, Yizhe Xu, and Nigam Shah. Motor: A time-to-event foundation
model for structured medical records. arXiv preprint arXiv:2301.03150, 2023.

[19] Sindhu Tipirneni and Chandan K Reddy. Self-supervised transformer for sparse and irregularly
sampled multivariate clinical time-series. ACM Transactions on Knowledge Discovery from
Data (TKDD), 16(6):1–17, 2022.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[21] Cao Xiao, Edward Choi, and Jimeng Sun. Opportunities and challenges in developing deep
learning models using electronic health records data: a systematic review. Journal of the
American Medical Informatics Association, 25(10):1419–1428, 2018.

[22] Feng Xie, Han Yuan, Yilin Ning, Marcus Eng Hock Ong, Mengling Feng, Wynne Hsu, Bibhas
Chakraborty, and Nan Liu. Deep learning for temporal data representation in electronic
health records: A systematic review of challenges and methodologies. Journal of biomedical
informatics, 126:103980, 2022.

[23] Justin Xu, Jack Gallifant, Alistair E. W. Johnson, and Matthew B. A. McDermott. Aces:
Automatic cohort extraction system for event-stream datasets, 2024.

[24] Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019.

A Tokenization and Pretraining Method Details

A.1 Tokenization

In this paper, we explore three distinct tokenization methods (represented in Figure 2): Everything In
Code (EIC), Triplet, and Text Code. For detailed explanations of each method, see Figure 2.

A.2 Pretraining Methods

We currently support five distinct pretraining techniques: (1) Event-Based contrastive pretraining,
(2) Order contrastive pretraining, (3) Value forecasting, (4) Autoregressive EIC pretraining, and (5)
Autoregressive triplet forecasting.

The first three methods rely on support for a random-window dataset class, where the patient’s history
is loaded and partitioned into two adjacent windows. Extra measures are taken to keep windows
within the user-defined maximum sequence length for their architecture. Event-Based contrastive
pretraining creates positive pairs from observation windows immediately preceding and following
an event in a patient’s trajectory. In contrast, windows from different patients are considered negative
pairs. The objective of pretraining is to minimize the distance between positive pairs in the latent
space while maximizing the separation from negative pairs. Order contrastive pretraining (based
on [1]) involves drawing pairs of observation windows from a patient’s trajectory, with the task of
determining whether these windows are in their correct chronological order. By challenging the
model to differentiate between correctly and incorrectly ordered sequences, this approach encourages
the learned representations to effectively capture the temporal structure and sequential dependencies
within the data. Value forecasting (based on [19]) takes two adjacent windows of time, the prior
window is input into the encoder, and the second window is used to create labels, the model must
predict the presence of codes (binary cross entropy loss) and the numeric value of all present codes
with a present numeric value (MSE loss).

6

Figure 2: Comparison of three tokenization methods for medical time series data. Everything In Code
(EIC) converts all observations into categorical tokens by quantile binning values and discretizing
time deltas. Triplet represents each observation as three separate embeddings (time delta, code,
numeric value) that are summed together. The continuous components (time delta and numeric value)
are embedded using learned feed-forward networks, while codes use learned codebook embeddings
(i.e. each unique code is stored as a unique integer which we learn an embedding for). Text Code
is similar to Triplet but maintains codes as text strings rather than numeric IDs, allowing semantic
embedding. The figure shows the transformation process from raw patient observations through
preprocessing to nested tensor representations, and finally to the embedded form for each method.

The other two methods use a single window of input data and the base PyTorch dataset class:
Autoregressive EIC pretraining (based on [16]) is the task of predicting the next code, just as GPT-
style language models [4] are pretrained, as the patient’s history is assumed to be preprocessed into a
categorical sequence. Autoregressive triplet forecasting is an autoregressive forecasting task where
the model has to predict the next observation by simultaneously predicting the triplet of time, code,
and value, it is a natural extension of Autoregressive EIC forecasting to the triplet and text code input
encoded data. MSE loss is used over the time and numeric values while cross entropy is applied for
the code.

B Code Examples

B.0.1 Environment Variables

The following environment variables are used in the code examples:

• PATHS_KWARGS: Defines data paths, e.g.,
paths.data_dir=/path/to/data paths.meds_cohort_dir=/path/to/meds
paths.output_dir=/path/to/output

• TASK_KWARGS: Defines task parameters for supervised learning, e.g.,
data.task_name=mortality data.task_root_dir=/path/to/task/labels

C Command-line Examples

Listing 1: Training a supervised model on GPU

7

1 MEDS−Torch − t r a i n t r a i n e r =gpu $PATHS_KWARGS $TASK_KWARGS

Listing 2: Pretraining an autoregressive forecasting model

1 MEDS−Torch − t r a i n t r a i n e r =gpu $PATHS_KWARGS model= e i c _ f o r e c a s t i n g

Listing 3: Parameter overriding and hyperparameter tuning

1 MEDS−Torch − t r a i n t r a i n e r . max_epochs =20 d a t a . b a t c h _ s i z e =64
$PATHS_KWARGS $TASK_KWARGS

2 MEDS−Torch − t u n e e x p e r i m e n t = e x p e r i m e n t . yaml c a l l b a c k s = t u n e _ d e f a u l t
$PATHS_KWARGS $TASK_KWARGS h p a r a m s _ s e a r c h = r a y _ t u n e

C.0.1 Example Configuration File

Listing 4: Sample experiment.yaml file

1 # @package _global_
2

3 d e f a u l t s :
4 - o v e r r i d e / data : p y t o r c h _ d a t a s e t
5 - o v e r r i d e / l o g g e r : wandb
6 - o v e r r i d e / model / backbone: t r i p l e t _ t r a n s f o r m e r _ e n c o d e r
7 - o v e r r i d e / model / input_encoder : t r i p l e t _ e n c o d e r
8 - o v e r r i d e / model: s u p e r v i s e d
9 - o v e r r i d e / t r a i n e r : gpu

10

11 t a g s : [mimiciv , t r i p l e t , t r a n s f o r m e r _ e n c o d e r]
12

13 seed : 0
14

15 t r a i n e r :
16 min_epochs : 1
17 max_epochs: 10
18 g r a d i e n t _ c l i p _ v a l : 1 . 0
19

20 data :
21 d a t a l o a d e r :
22 b a t c h _ s i z e : 64
23 num_workers: 6
24 max_seq_len : 128
25 c o l l a t e _ t y p e : t r i p l e t
26 subsequence_sampl ing_s tra tegy : t o_ en d
27

28 model:
29 token_dim : 128
30 o p t i m i z e r :
31 l r : 0 . 001
32 backbone:
33 n _ l a y e r s : 2
34 nheads : 4
35 dropout : 0
36

37 l o g g e r :
38 wandb:
39 t a g s : ${ t a g s }
40 group: m i m i c i v _ t o k e n i z a t i o n

8

This experiment.yaml file configures a supervised learning experiment using a triplet trans-
former encoder on MIMIC-IV data. It sets up various parameters for the trainer, data loading, model
architecture, and logging.

D All Results

Table 1: MIMIC-IV: Mean ± STD AUC (over five trials) of tokenization Methods across tasks.
hosp-Mortality refers to in-hospital mortality after 24 hours. ICU-Mortality refers to in-ICU mortality.
Discharge-Mortality predicts whether a subject will survive 1 year after discharge. Readmission is
the task of predicting if a subject is readmitted within 30 days.
Method Type Tokenization hosp-Mortality ICU-Mortality Discharge-Mortality Readmission

Contrastive OCP EIC 86.1 ± 0.3 77.2 ± 0.4 84.1 ± 0.1 70.3 ± 0.3
Text Code 80.0 ± 0.5 69.3 ± 1.6 81.6 ± 0.1 68.3 ± 0.3

Triplet 87.3 ± 0.4 75.8 ± 0.4 85.6 ± 0.1 71.5 ± 0.2

EBCL EIC 86.1 ± 0.7 76.6 ± 0.6 84.0 ± 0.0 70.6 ± 0.2
Text Code 85.2 ± 0.3 74.9 ± 0.9 83.9 ± 0.3 70.1 ± 0.3

Triplet 86.5 ± 0.2 77.4 ± 0.7 85.6 ± 0.1 71.8 ± 0.1

Forecasting AR EIC 84.8 ± 0.1 76.9 ± 0.5 83.6 ± 0.3 69.9 ± 0.2
Text Code 81.9 ± 0.4 71.6 ± 1.3 81.9 ± 0.4 69.1 ± 0.3

Triplet 74.0 ± 0.6 65.1 ± 2.2 76.0 ± 1.8 64.4 ± 0.5

Value EIC 86.1 ± 0.6 77.8 ± 1.0 84.0 ± 0.2 70.2 ± 0.6
Text Code 85.2 ± 0.2 75.8 ± 0.6 85.8 ± 0.1 72.1 ± 0.1

Triplet 88.2 ± 0.1 77.3 ± 0.8 86.2 ± 0.1 72.1 ± 0.1

Supervised - EIC 86.4 ± 0.2 77.9 ± 0.4 84.0 ± 0.1 70.0 ± 0.1
Text Code 85.3 ± 0.3 75.5 ± 0.7 85.0 ± 0.3 70.8 ± 0.3

Triplet 87.1 ± 0.9 77.4 ± 1.1 85.4 ± 0.2 71.5 ± 0.2

9

	Intro
	MEDS-Torch
	Experiments and Results
	Conclusion
	Tokenization and Pretraining Method Details
	Tokenization
	Pretraining Methods

	Code Examples
	Environment Variables

	Command-line Examples
	Example Configuration File

	All Results

