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Abstract

Low-bit quantization of network weights and activations can drastically re-
duce the memory footprint, complexity, energy consumption and latency of
Deep Neural Networks (DNNs). Many different quantization methods like
min-max quantization, Statistics-Aware Weight Binning (SAWB) or Binary
Weight Network (BWN) have been proposed in the past. However, they still
cause a considerable accuracy drop, in particular when applied to complex
learning tasks or lightweight DNN architectures. In this paper, we propose
a novel training procedure that can be used to improve the performance of
existing quantization methods. We call this procedure DNN Quantization
with Attention (DQA). It relaxes the training problem, using a learnable
linear combination of high, medium and low-bit quantization at the begin-
ning, while converging to a single low-bit quantization at the end of the
training. We show empirically that this relaxation effectively smooths the
loss function and therefore helps convergence. Moreover, we conduct ex-
periments and show that our procedure improves the performance of many
state-of-the-art quantization methods on various object recognition tasks.
In particular, we apply DQA with min-max, SAWB and BWN to train 2bit
quantized DNNs on the CIFAR10, CIFAR100 and ImageNet ILSVRC 2012
datasets, achieving a very good accuracy comparing to other conterparts.

1 Introduction and Related Work

In the last decade, Deep Neural Networks (DNNs) in general and Convolutional Neural
Networks (CNNs) in particular became state-of-the-art in many computer vision tasks,
such as image classification or segmentation, object detection and face recognition (LeCun
et al. (1998); landola et al.| (2016); |Simonyan & Zisserman| (2014]); |Graham| (2014]); |Szegedy
et al.| (2015)). However, to be the state-of-the-art, DNNs often contain a large number
of trainable parameters and require considerable computational power. Therefore, due to
their large power and memory consumption, implementing DNNs on embedded systems
with limited resources can be a real challenge. To alleviate this problem, a large number of
different network compression methods that reduce the resource requirements of DNNs has
been proposed in the past. Among them are for example pruning, distillation or quantization
methods.

Pruning methods have been first introduced by [LeCun et al. (1990). They identify and
remove the most insignificant DNN parameters and yield networks with a reduced memory
footprint and a smaller computational complexity. As reported by [Yamamoto & Maeno
(2018); [Ramakrishnan et al. (2020); He et al.| (2020]), pruning methods can either remove
single DNN parameters, intermediate inputs or even whole network layers that are, according
to a specific criteria, irrelevant for a good network performance.

Another line of work is distillation. As introduced by Hinton et al| (2015)), it aims at
training a small student DNN to reproduce the output of a bigger teacher network. While
distillation methods initially only matched the final outputs of the teacher and student
networks, methods evolved to take into account intermediate representations (Romero et al.
(2014); Koratana et al.| (2018])).

Our work is about DNN quantization, where weights and activations are represented with
a smaller number of bits n << 32. Quantization reduces the memory footprint of DNNs
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Figure 1: Quantizing the weights of a single network layer, using a linear combination of
K different quantizers Q = {Q1,Q2, - ,QKk}. Note, that each quantizer uses a different
bitwidth, i.e., n = {ny,ns, -+ ,nk}. The resulting quantized weights qj are multiplied with
attention values ay € [0, 1] that reflect the importance of the corresponding quantization
function Q(+). The attention values are optimized during training according to algorithm.

because the number of bits that are required to store their parameters is reduced. However, it
also reduces their computational complexity, because low bit operations can be implemented
more efficiently on dedicated low precision hardware (Merolla et al. (2014); Farabet et al.
(2011); |[Cowan et al.| (2020)); Han et al. (2020); Hacene et al.| (2018])).

Following |Gupta et al.| (2015), many works have experimentally demonstrated that neural
networks do not lose a lot of performance when their parameters are restricted to a small set
of possible values. For instance, |Choi et al.| (2018)) introduced PArameterized Clipping ac-
Tivation (PACT) in combination with Statistics-Aware Weight Binning (SAWB) —a method
that aims at uniformly quantizing both weights and activations to n bit. Learned Step Size
Quantization (LSQ) presented by [Esser et al.| (2019) is a quantization method that learns
the quantization steps during training. Unlike other methods, it scales the gradient dur-
ing backpropagation to speed up the training. Gradient scaling is important especially at
transition points.

Nikoli¢ et al,| (2020) proposed Bit-Pruning, a quantization method to learn the number
of bits that each layer requires to represent its parameters and activations. In the same
vein, Differentiable Quantization of Deep Neural Networks proposed by [Uhlich et al.| (2019)
(DQDNN) tries to combine the features of both LSQ and Bit-Pruning. They propose a
quantization technique where both the number of bits and the quantization steps are learned
simultaneous. Other more aggressive quantization methods proposed to use low-bit precision
down to binarization (resp. ternarization) with only two (resp. three) possible values and
one (resp. two) bit storage for each parameter and/or activation (Hubara et al| (2016]);
Courbariaux et al.| (2015); Li et al| (2016Db); |Zhu et al.| (2016)); [Li et al.| (2016a)).

Zhou et al.| (2017)) observed that training quantized networks to low precision benefits from
incremental training. Rather than quantizing all the weights at once, they are quantiz-
ing them incrementally in groups, with some training iterations between each quantization
step. In practice, 50% of the weights are quantized in the first step, then 75%, 87.5% and
finally 100%. Another method for incremental quantization is Binary-Relax (BR) (Yin et al.
(2018)). Rather than splitting the parameters into groups, it uses a weighted linear combi-
nation of quantized and full-precision parameters and adapts a strategy to push the weights
towards the quantized state, by gradually increasing the scaling factor corresponding to the
quantized parameters. However, their strategy how to move from full-precision to quantized
parameters is handcrafted and may not be optimal.

In comparison to most of the previously mentioned works, we do not propose an improved
quantization method, but a way how to train a quantized DNN with any existing quantizer.
We rely on the fact that the DNN performance can be increased if the network has the
ability to learn other features in addition to its own parameters. In the context of DNN
quantization, this has already been discussed by |[Elsken et al. (2019)); Ramakrishnan et al.
(2020); Hacene et al.| (2019); [Uhlich et al.| (2019); |[Nikoli¢ et al.| (2020). In this contribution,
we introduce DNN Quantization with Attention (DQA), an attention mechanism-based
learnable approach for DNN quantization (Vaswani et al. (2017))). As shown in Figure
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rather than quantizing with just a single bitwidth DQA performs quantization with multiple
different bitwidths in parallel. At each stage of the training, DQA can select the quantizer
with the optimal bitwidth by putting more attention weight on it. In particular, by starting
with a uniform initialization of the attention weights at the beginning of the training, DQA
can move smoothly from high precision to low precision quantization. We demonstrate in
this paper that this learnable approach results in better DNN accuracy for the exact same
complexity and number of bits.

The outline of the paper is as follows. In Section [3| we introduce the proposed method.
Section [4] presents experiments results and compares our method with other state-of-the-art
approaches on challenging computer vision datasets. Finally, we conclude in Section

2 Background

In the following, we explain how differentiable quantization with attention (DQA) can be
used to train quantized DNNs. For simplicity reasons, we only discuss how to train DNNs
with quantized weights. However, DQA is general and can also be used to train DNNs with
quantized weights and activations. In particular, we will also provide experimental results
for this case in Section [l

Training DNNs with quantized weights is challenging. Especially when considering low
bitwidths n << 32, quantization can cause a severe accuracy degradation if compared to
the full precision networks. This is mainly caused by the capacity reduction and by ad-
ditional optimization issues that go hand in hand with the quantization. In particular,
quantization yields non-smooth loss functions with gradients that are zero almost every-
where. As discussed by [Uhlich et al.| (2019), that effectively stops gradient backpropagation
and therefore harms training.

For these reasons, quantized DNNs are usually not trained with standard gradient based
training procedures, but require some tricks that allow for gradient backpropagation and
that stabilize the training. The most commonly used trick is to apply straight through
gradient estimates (STE) and to ignore the quantization during backpropagation. STE
yield non-zero gradients that are suited for DNN training. However, at the same time they
introduce a mismatch between the forward (FW) and backward (BW) pass, what often
causes training instabilities and oscillations. More specifically, mismatch means that the
gradients are calculated at the position of the quantized parameters, assuming the original
float32 loss surface.

Note, that because of this FW/BW mismatch, training with STE does not necessarily
converge to the optimum. This mismatch is for example problematic, if the gradient of the
cost function changes signs within one quantization step. For this case, gradient descent with
STE would start to oscillate near the quantization thresholds and would not converge to the
optimum, even if the cost function is convex. Of course, this problem is most pronounced
for low bitwidhts.

A training procedure that can alleviate this problem to some degree is Binary-Relax (BR).
As proposed by |Yin et al.| (2018)), BR does not only apply STE, but also uses a linear
combination of the quantized and the full-precision parameters. This effectively reduces the
FW/BW mismatch at the beginning, while still enabling the DNN to use the exact low-bit
quantized loss at the end of the training.

3 Methodology

DQA builds on a similar approach. As shown in figure || !/Ilet f(x;0Q( w ;n)) be the transfer
function of a quantized DNN layer, where x € R”, w € R™ and Q(w;n) are the layer input,
the full-precision weights and the quantized Weightb respectively. Similar to the idea of
Binary-Relax (BR), DQA relaxes the quantization problem and combines different quanti-
zation schemes during training. More specifically, instead of using just one single Q(w;n),
we propose to train a quantized DNN with a set of K different quantization functions that
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are combined linearly during training as follows:

y = f(x;q) (1)

q=Q"a (2)
Q1 (W, 711);

Q- Qz(Wj ng) 7 3)
Qr(wing)”

where q is the weighted sum of K quantized weight vectors, Q € RE*M is a matrix whose
row vectors are the quantized weight vectors and a € [0, 1]¥ is the attention vector on the
quantization functions. Note, that each row of Q is calculated, using a different quantization
function Qg (w;ny) and bitwidth ng € N. In particular, we assume that the quantization
functions in Q are sorted by the bitwidth, i.e., n; < ny < ... < ng. In general, DQA is
agnostic to the choice of the actual quantization method and can be used with any existing
method like min-max, SAWB, binary or ternary quantization. In the following section, we
review and define popular quantization methods that we used in our experiments.

The attention a is computed from a soft attention vector o € R¥, using a softmax function
with temperature T € RT, i.e.,

SR

a=—— —, eRK, (4)

ZkK=1 et
In particular, a reflects the importance of the K quantization methods Q). During training,
the soft attention « is treated as a trainable parameter that is optimized in parallel to the
weights w. Note that, increasing ay will also increase the corresponding attention weight ay,
and therefore the importance of Q(w;ng). In this manner, the quantized DNN can learn
which bitwidth should be used at which stage, during the training.

DQA exponentially cools down the temperature T’
T(b) = T(0)T°. (5)

Here, b = 1,2,..., B is the batch index for batch-wise training, 7(0) € R* is the initial
temperature and ¥ € [0, 1] is the decay rate. Because of that schedule, DQA progressively
moves from the full mixture of quantization functions at the beginning of the training to
just one single quantization function at the end of training.

Note, that BR can be seen as a special case of DQA, where q = [Q(w;2), Q(w;32)]7, i.e. for
the case that we only use two quantizers with n = 2bit and n = 32bit, and for the case that
we use a fixed schedule to change the attention vector a. However, DQA has two advantages:
1) The way how we change a and move from high to low precision quantization is learned
and data dependent. Hence, DQA can choose the optimal mixture of the quantizers at each
training iteration. 2) As shown in Figure [2l DQA gives a smoother transition from high to
low-precision parameters. Here, we plot the absolute quantization error for a fixed tempera-
ture based schedule for a. In particular, we choose o = [3/4,1/4]" and a = [4/7,2/4,1/7]T
for BR and DQA with 2,4, 8bit quantization, respectively. Then, we start with a large tem-
perature T — oo, for which we effectively take the average % Zszl Qr(w;ng), and move
towards 2bit quantization for T" — 0. Note, that for the whole interval that we consider for
T, DQA results in a lower quantization error, meaning that it also yields a smaller FW/BW
mismatch.

In general, training quantized DNNs with such a mixture of different weight quantizations
and decaying T will not necessarily result in a quantized DNN that uses a low bitwidth. To
enforce a low-bit quantized DNN, we therefore add to the loss function a separate regularizer
for each layer

r(a) = - g (6)
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Figure 2: The quantization error of BR and DQA for different temperatures T'. In particular,
a low temperature corresponds to 2bit quantization, while a high temperature means a
mixture of float32 and 2bit quantization or a mixture of 2/4/8bit quantization, respectively.

where S is the number of weights in the whole network. Note, that the normalization by
S makes the regularizer, and therefore the choice of A, independent of the actual network
size. g = [g1,92, - ,9K]7 is a penalty vector, where g is increasing with growing k.
Because we assume, that the quantization functions Qx(w;ny) are sorted by the bitwidth,
ie., ny < mng < .. < ng adding g7a(a) penalizes if large attention values are assigned to
quantizers with a large bitwidth. Hence, it helps the method to converge to the lowest-bit
quantization. Algorithm [1| summarizes the DQA training. To quantize a given value z,
we use min-max, Statistics-Aware Weight Binning SAWB, Binary Weight Network (BWN)
or Ternary Weight Network (TWN) as defined by [Nikoli¢ et al.| (2020); |Choi et al.| (2018]);
Rastegari et al.| (2016); [Li et al.| (2016a) respectively, and detailed in appendix

Algorithm 1 DQA algorithm for a single network layer

Inputs: Input vector x, initial softmax temperature 7'(0), final softmax temperature T(B),
number of training iterations B, and layer transfer function f
Output: Output tensor y

Y=e B <1
for each b=1,2,...,B do

T(b) < T(0)y"

o «— stdaw

a « softmax(a/T'(b))

q = Q”a (linear combination)

y = f(x,q)

Update w and « via backpropagation.
end for

4  Experiments

In this section we will first introduce the benchmark protocol that we use to evaluate our
method, then we report different results obtained by DQA and compare them with other
training procedures.

4.1 Benchmark Protocol

To evaluate our method DNN Quantization with Attention (DQA), we perform experiments
on the three object recognition datasets CIFAR10, CIFAR100 and ImageNet ILSVRC 2012.
For each dataset, we use DQA to train low-bit quantized versions of the ResNet18 (He et al.
(2016)) and MobileNetV2 (Sandler et al.| (2018))) network architectures. Low-bit means,
that we consider networks that only use n = 1 or n = 2bit for quantization.
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Figure 3: The evolution of the attention values ay and the resulting quantization function
for the first layer of a quantized ResNet18 trained on CIFAR100.

For CIFAR10 and CIFAR100, we start from randomly initialized parameters w and train
the quantized networks for 300 epochs. As an optimizer, we use SGD with an initial learning
rate v = 0.1, which is divided by 10 every 100 epochs. The training batch size is 128.

On the ImageNet ILSVRC 2012 dataset, we train the quantized networks for 90 epochs,
using a batch size of 256 images. As an initial learning rate, we again use v = 0.1 which is
divided by 10 every 30 epochs. This way, we again apply two equally spaced learning rate
drops over the full 90 epochs.

For all our experiments, we either quantize only the weights or both weights and activations
using DQA with three different quantization functions {Q1, Q2, @s}. More specifically, we
either consider a mixture of three min-max quantization functions that use n,; = 2bit,
ny = 4bit and ng = 8bit, respectively or a mixture of BWN, TWN and 8bit min-max
quantization. For all experiments, we use an exponential temperature schedule with an
initial temperature T'(0) = 100 that is cooled down to the final value of T(B) = 0.03. The
soft attention vector is initialized according to

N
Zj:l,j#k n;
~~ (7)
Zj:l nj

o =
Note, that since the quantization functions Qr(w;ny) are assumed to be sorted by the
bitwidth, i.e. n; < ns < --- < ng, this initialization assigns the highest attention to the
quantization function with the lowest bitwidth. The initialization therefore acts as a prior
that favours low-bit quantized DNNs and helps us to converge to small bit widths early
during training. To further encourage low-bit quantized DNNs, we use the penalty values
g = [1,4,16]7 that penalize quantization functions with a large bitwidth. Note, that we
always compare networks that are quantized to the same bitwidth and thus have the same
memory footprint and the same computational complexity.

4.2 Results

In the first experiments, we report the obtained accuracy achieved by DQA and compare it
to three different baselines: 1) The full-precision network with float32 parameters. 2) The
quantized network that uses 2bit quantized parameters and uses vanilla training without
any relaxation scheme. 3) Binary-Relax (BR). To have a fair comparison to BR, we also
report some results where we consider BR with the same mixture of quantization functions,
ie.,

- wQi(w,n1) + Qa(w,na) + Q3(w, n3) (8)
B w+2 ’

where w is initialised to 1 and multiplied by 1.02 after each epoch. In other words, we use
a fixed schedule to move from 8bit to 2bit quantization.
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Figure 4: The loss surfaces for a randomly initialized ResNet18, with float32, 2bit or mixed
2,4,8bit quantized weights, evaluated on the CIFAR10 dataset. 2bit quantized weights yield
a non-smooth loss surface with many local minima, what is undesirable for optimization.
Mixing 2,4,8bit quantizers alleviates this problem.

Table|l)and [2] show the experimental results for the CIFAR10 and CIFAR100 datasets when
we quantize only weights and when we quantize both weights and activations, respectively.
We report the final validation accuracy of the quantized DNNs for different choices of the
quantization functions {Q1,Q2,Qs}. In general, all reported validation accuracies are the
result of a single training run. Only for the experiments that use BWN quantization, we
report the average validation accuracy computed over 5 runs, because the convergence of
BWN quantized networks proved to be noisy, which shadowed the effects of DQA. Our
proposed method archives accuracies that are comparable to the full-precision baseline,
while outperforming the 2bit quantized baseline and BR.

The second experiment aims at studying the behavior of the attention values aj during
training. Figure [3| shows the evolution of the attention values aj and the corresponding
quantization function. We can observe from that all attention values are equal at the
beginning of the training but — due to the penalty term and the temperature schedule — they
slowly converge towards a maximum attention value for the 2bit quantization. This evolution
can also be seen in where we show how the resulting quantization function evolves
during training. Note, that the quantization function is smoothed out at the beginning and
converges more and more towards the 2bit quantization curve at the end of the training.
This smooth transition is the reason why DQA yields better results than training with just
a single fixed quantization.

Interestingly, compared to a single low-bit quantization, DQA yields smoother loss surfaces.
Figure {] visualizes the loss surface of a ResNet18 with randomly initialized weights on the
CIFARI10 dataset. Here, we apply the method proposed by that samples
two random directions in the parameter space of a DNN and visualizes the loss along these
directions. Obviously, the loss surface is the smoothest for a float32 network. In comparison,
the same ResNet18 with 2bit min-max quantized weights yields a very rough loss surface.
For the 2bit case, optimization can get stuck easily in one of the numerous local minima.
Moreover, it yields gradients that change quickly in direction and magnitude, causing severe
oscillations and effectively making the training unstable. However, if we apply DQA and
use a mixture of 2, 4 and 8bit min-max quantization to quantize the network weights, the
loss surface is smoothed out. Therefore, compared to DNNs that are trained with only one
low-bit quantization scheme, quantized DNNs trained with DQA typically converge faster
at the beginning of the training and reach a better final optimum.

The third experiment compares DQA with other methods for quantized DNNs trained on the
ImageNet ILSVRC 2012 dataset. Table[3|(parameter quantization only) and Table[4] (param-
eter and activation quantization) show that DQA outperforms the quantized 2bit baseline
and BR when considering different quantization approaches. Moreover, DQA causes a sig-
nificantly smaller drop in accuracy when quantizing MobileNetV2. Thus, it may represent a



Under review as a conference paper at ICLR 2022

Data ny Ql %) QQ ns Q3 A Acc
| R18 C10 32 | FP - - - - - 95.2%
R18 C10 2 min-max | - - - - - 91.5%
R18+BR C10 2 min-max | 32 | FP - - - 93.0%
R18+BR C10 2 min-max | 4 min-max | 8 min-max | - 93.7%
R18+Ours | C10 2 min-max | 4 min-max | 8 min-max | 5 94.8%
R18 C10 2 SAWB - - - - - 94.8%
RI1I8+BR [ C10 |2 | SAWB 4 | SAWB 8 | SAWB - 1 95.1%
R18+Ours | C10 2 SAWB 4 SAWB 8 SAWB 1 95.4%
R18 C10 1 BWN - - - - - 93.8%
R18+BR C10 1 BWN 2 TWN 32 | FP - 94.2%
R18+Ours | C10 1 BWN 2 TWN 32 | FP 5 94.5%
R18 C10 2 TWN - - - - - 94.3%
R18+BR C10 2 TWN 4 min-max | 8 min-max | - 94.5%
R18+Ours | C10 2 TWN 4 min-max | 8 min-max | - 94.8%
R18 C100 | 32 | FP - - - - - 77.9%
R18 C100 | 2 min-max | - - - - - 70.0%
R18+BR C100 | 2 min-max | 32 | FP - - - 72.9%
R18+BR C100 | 2 min-max | 4 min-max | 8 min-max | - 74.0%
R18+Ours | C100 | 2 min-max | 4 min-max | 8 min-max | 10 | 76.4%
R18 C100 | 2 SAWB - - - - - 77.0%
R18+BR C100 | 2 SAWB 4 SAWB 8 SAWB - 77.3%
R18+Ours | C100 | 2 SAWB 4 SAWB 8 SAWB 5 78.1%
R18 C100 | 1 BWN - - - - - 75.0%
R18+BR C100 | 1 BWN 2 TWN 32 | FP - 75.3%
R184+Ours | C100 | 1 BWN 2 TWN 32 | FP 30 | 75.9%
R18 C100 | 2 TWN - - - - - 76.1%
R18+BR C100 | 2 | TWN 4 | min-max | 8 | min-max | - 76.3%
R18+Ours | C100 | 2 TWN 4 min-max | 8 min-max | 20 | 76.7%

Table 1: Obtained accuracy of ResNet18 (R18) trained on CIFAR10 (C10) and CIFAR100
(C100) for quantized weights, only. We consider numerous quantization functions (min-max,
SAWB, BWN and TWN). Note, that FP refers to full precision (i.e. Q(w,32) = w).

promising training procedure that makes existing quantization methods more powerful and,
hence, helps us to train lightweight DNN architectures.

5 Conclusion

In this paper, we introduced DQA, a novel learning procedure for training low-bit quantized
DNNs, using existing quantization methods. Instead of using only a single quantization
precision during training, DQA relaxes the problem and uses a mixture of high, medium
and low-bit quantization functions. Our experiments on popular object recognition datasets,
such as CIFAR10, CIFAR100 and ImageNet ILSVRC 2012, show that DQA can be used to
train highly accurate low-bit quantized DNNs that achieve a good accuracy compared with
state-of-the-art counterparts.

If we compare to the full-precision networks, DQA yields a significantly lower accuracy drop
than other training procedures that only use a single quantization precision and bitwidth
during training, This is especially true when quantizing DNN architectures that are already
designed to be lightweight and efficient, such as the MobileNetV2. Because such architec-
tures are already small, they are naturally harder to compress.

DQA also compares favourably to Binary-Relax (BR), another training procedure for quan-
tized DNNs that applies a mixture of quantized and full-precision weights during training.
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Data ny Ql %) QQ ns Q3 A Acc
| R18 C10 32 | FP - - - - - 95.2%
R18 C10 2 min-max | - - - - - 87.8%
R18+BR C10 2 min-max | 32 | FP - - - 89.5%
R18+Ours | C10 2 min-max | 4 min-max | 8 min-max | b 90.4%
R18 C10 2 PS - - - - - 94.4%
R18+BR C10 2 PS 32 | FP - - - 94.3%
R184+Ours | C10 [ 2 | PS 4 | PS s | PS 1 |94.7%
R18 C100 | 32 | FP - - - - - 77.9%
R18+BR C100 | 2 | min-max | 32 | FP - - - 65.2%
R18+Ours | C100 | 2 min-max | 4 min-max | 8 min-max | 10 | 68.3%
R18 C100 | 2 PS - - - - - 75.2%
R18+BR | C100 | 2 | PS 32 | FP - - - 75.9%
R18+Ours | C100 | 2 PS 4 PS 8 PS 5 78.1%

Table 2: Obtained accuracy of ResNet18 (R18) trained on CIFAR10 (C10) and CIFAR100
(C100), when quantizing both weights and activations to 2bit. Note, that PS refers to
PACT-SAWB.

ni | Q1 ng | Q2 n3 | Qs A | Top-1 (Top-5)
RIS 3 [ FP — - ~769.9% (39.1%)
R18 2 [ min-max | - | - - |- - [ 58.7% (81.9%)

R18+Ours | 2 | min-max | 4 | min-max [ 8 | min-max | 1 | 66.9% (87.4%)

MV2 32 | FP - - - - - 69.0% (89.0%)
MV2 2 | min-max | - | - - |- - | 44.2% (69.8%)
MV2+Ours | 2 | min-max | 4 | min-max | 8 | min-max | 1 | 52.2% (77.1%)
RI8 T [BWN - |- - ~ [ 61.0% (33.5%)
R18+Ours 1 BWN 2 TWN 8 min-max | 10 | 61.4% (83.7%)

Table 3: Experiments on the ImageNet dataset, using the ResNetl8 (R18) and the Mo-
bileNetV2 (MV2) networks with quantized weights, only. Quantized DNNs trained with
DQA consistently outperform quantized DNNs that have been trained with just a single
quantization method. It also drastically reduces the accuracy drop when quantizing Mo-
bilenet V2.

nm | Q1 na | Q2 ns | Qs A [ Top-1 (Top-5)
RIS 32 [ TP - - = 169.9% (89.1%)
R18 2 | min-max | - - - - - 40.7% (69.9%)
R18+BR [ 2 | min-max | 32 | FP - |- - 57.7% (81.5%)
R18+Ours | 2 | min-max | 4 | min-max | 8 | min-max | 0.5 | 60.4% (83.4%)

Table 4: Experiments on the ImageNet dataset, when quantizing both weights and activa-
tions of ResNet18 (R18).

However, while BR uses a fixed scheme to mix the network weights of different precision,
DQA can learn how to mix them in an optimal way and how to gradually move from high
precision to low precision. In practice, this helps training and results in quantized DNNs
with higher accuracy.

DQA is agnostic to and can be used with many different existing quantization methods, such
as min-max, PACT-SAWB, Binary-Weight and Ternary-Weight quantization. Therefore,
DQA is a very promising extension to existing DNN quantization methods.
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A Appendix

A.1 Choosing the Quantization Functions

Quantization describes the process of representing a value x € X with a corresponding
quantized value g € Q, using a quantization function Q : X — Q. Here, Q = {¢1,¢2, ..., qan }
is the set of quantization steps that is much smaller than X, i.e., |Q] << |X|. For a given
w and @, the quantization function minimizes the distance between w and g, i.e.,

Q(a;n) = argmin |z — q|, (9)
q€Q
where || - | is the Euclidean norm. There are different methods how to construct Q that

yield different quantization schemes, like uniform or non-uniform quantization.

The first method we may consider is the one introduced in |[Nikoli¢ et al.| (2020). For X =
[Zmins Tmaz] they define

(i—l)M i=1.2 ..

i 10
21’1 _ 1 ) Y ) ) ( )

qi = Tmin +
In particular, the values ¢; are uniformly distributed between the values ,,;, and Z.maz,
what is known as min-max quantization.

The second method we use with our proposed training procedure is Statistics-Aware Weight
Binning (SAWB) Choi et al.| (2018]). The quantization values are again distributed uniformly
over a given interval. However, instead of using the limits %, and 2,4, SAWB introduces
a limit «, i.e.,

- 212, 11

g =—a+(i— )ﬁ’l— 125y 20 (11)

The optimal « can be calculated in a calibration step, using data. In particular, we minimize
the mean-square quantization error

*

ao* = arg moin Egpalllz — Q(z;n, a)|?] (12)

with respect to a.. After calibration, we can use Q(z;n) = Q(z; n,a = ™) for quantization.

For both min-max and SAWB quantization, the solution of Eq. equation[J]is straight-forward
to obtain. It is a uniform quantization function with equally spaced quantization steps that
is defined by

a1 T <=qQ1
.m) = 92m —¢ 2"—1
Q(w;n) = 3 q1 + Bi—=round (;v o ﬂh) ,others . (13)
gon , L > (Qon

Another quantization function worth to mention was introduced for the Binary Weight
Network (BWN) Rastegari et al.| (2016). It uses a scaling factor § = E(|x|) and constrains
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the quantized values to be binary (n = 1). In particular, with @ = {—, 3}, the quantization
function is defined as

g,x=0

—f3 ,others (14)

Q(w, 1) = B, - sign(x) = {

In the same vein, Ternary Weight Network (TWN) |Li et al.| (2016a)) introduces a third
quantization step to improve the accuracy. A TWN uses a bitwidth of n = 2 and a symmetric
Q = {—4,0,8}. Similar to the BWN, the range parameter § is calibrated with data. More
specifically, we can compute the optimal range 5* = E, 42> [|7]], where § = 0.7E[|z|]
is the symmetric threshold that is used for quantization during calibration. The resulting
quantization function is defined as

_5 ,1’<—(§
Q(x;2) =<0 x| <6 . (15)
I3 , x>0
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