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Abstract— Autonomous robotic surgery combines state-of-
the-art strategies to potentially provide more efficacy and safety
regardless of the surgeon’s skill. These approaches usually
use CNNs, which require a large amount of data for suitable
training. However, in some applications as medical procedures
on animals, performing thousands of trials would be ethically
hard to justify. In this letter, we develop a digital twin on
Isaac Sim to create a synthetic dataset. We use synthetic
images to train a CNN for image segmentation tasks of our
AI robot science (AISP) platform. We compare it to a second
CNN trained with real images showing that for a specific
validation dataset, the CNN trained with synthetic images
performs similarly to the one trained with real images.

The dataset and trained models are freely available
for noncommercial use at https://github.com/
AISciencePlatform/icra2023_synthetic_data_
pretraining_for_robotics.

I. INTRODUCTION

Surgical robots are platforms designed to perform chal-
lenging medical procedures in highly constrained workspaces
[1]. Usually, surgeons use them as smart tools [2], in which
the robots are under their teleoperator control. This strategy
exploits the robot’s dexterity and reduces the surgeon’s hand
tremor providing more efficacy and safety. In this paradigm,
the quality and accuracy of robot-assisted surgery (RAS)
is related to the surgeon’s skills, which are subjected to
human imprecision. However, new developments in artificial
intelligence, computer vision, and motion control techniques
have enabled greater robot autonomy [3].

Recently, we are developing an AI-robot Science Platform
(AISP) [4], which is a multi-arm robotic platform composed
of four serial manipulatorsdesigned for scientific experimen-
tation. The goal we envision is to provide different levels
of autonomy to perform tasks alongside humans. Different
from teleoperated RAS, autonomous robotic surgery (ARS)
can potentially provide efficacy and safety regardless of the
surgeon’s skill [3] at expense of removing the human oper-
ator, which usually can use their vision to compensate for
kinematic inaccuracies [5]. Because of that, ARS approaches
could require additional strategies to deal with it. The first
step toward this direction is to improve the accuracy of
the platform by means of adaptive control strategies taking
advantage of DNN semantic segmentation approaches.
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Motion control has been addressed in strategies that
use the robot model to describe its configuration in the
workspace. The model usually encapsulates information
about the robot’s geometric parameters, the robot’s iner-
tial parameters, relative poses between different reference
frames, and so on. Consequently, the overall accuracy is
directly related to the model quality, and therefore, in ap-
plications that demand higher levels of accuracy as assistive
surgical robotics, calibration procedures could be required.

Marinho et al. [6] proposed an adaptive kinematic control
strategy based on quadratic programming. This strategy
enables the use of any sensor that provides partial1 or
complete2 task-space measurements to compensate online
for calibration errors. Such calibration strategy can use
the information from the image using instrument/detection
tracking strategies, in which semantic segmentation is usually
an important component [5], [7], [8].

In such data-driven approaches based on convolutional
neural networks (CNNs), it is well-known that they are pow-
erful but require a large amount of data for suitable training
[9] and annotated data is often the bottleneck. Furthermore,
in our target application of medical procedures on animals,
performing thousands of trials would be inconceivable in
terms of logistics, cost, and ethics. Also in other fields with
similar challenges, the use of synthetic datasets is trending
[10]. Simulators enable the creation of realistic images
and perfectly annotated data using state-of-the-art rendering
techniques. Furthermore, synthetic image generation allows
a large degree of domain randomization [11], which is
paramount to closing the gap between synthetic and real
data [10]. In our previous work [12], we have shown that in
robot-aided endonasal surgery, increased rendering realism
positively correlates with the quality of the output in real
images, using networks trained only on synthetic data.

In this work, further develop our IsaacSim3-based digital
twin of AISP to autonomously generate synthetic datasets.
We use the generated datasets to train a CNN to perform
image segmentation tasks and evaluate the results against
another CNN trained on real images. Our goal is to obtain
information about the robots to estimate their configuration
[13], [14]. Nonetheless, such estimation is outside the scope
of this paper.

1E.g., position, orientation, and distance.
2Pose, that is, combined position and orientation.
3https://developer.nvidia.com/isaac-sim
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II. METHODOLOGY

The AISP platform is composed of two collaborative-
type Cobotta arms (CVR038, Densowave, Japan), and two
industrial manipulators (VS050, Densowave, Japan). Each
robot is equipped with a unique customized end-effector
aiming to enable a large set of applications. One cobotta has
a customized micro-drill, whereas the other one has a grasper
for handling regular-sized cotton swabs. The industrial ma-
nipulators are equipped with customized actuators based on
a rotary gripper module to operate tweezers and scissors.

The goal is to evaluate a CNN trained with synthetic
images for segmentation tasks of the AISP’s Cobotta arms.
In order to compare its performance, we trained a second
CNN with real images. Both CNNs are based on U-NET
[15] and are labeled as UNET-R and UNET-S. The former
denotes the one trained with real images, whereas the latter
denotes the one trained with synthetic images. Fig. 1 shows
the overview of the proposed approach.

A. Synthetic dataset

To generate the synthetic dataset of our robotic platform
we created a digital twin based on Isaac Sim.4 We used the
platform’s CAD models and defined suitable render materials
to take into account the specular reflection of the metallic
surfaces, the acrylic panels on the doors, and the robots.
Furthermore, we replicated the light conditions as in the
real environment. Figure 2 shows the real platform and its
digital twin side-by-side. Using the simulator, we generated
10000 greyscale images5 of 512 x 512 pixels with their
respective segmented images. We used RTX – Interactive
(Path Tracing) render and Isaac Sim Replicator tools to
uniformly randomize the pose of the camera and the joint
positions of both Cobotta manipulators,6 as shown in Fig. 3.
We fixed a start pose of the camera to match the framing of
the real images and performed variations in the x, y, and z
axes of 10cm, 0.2cm, and 4cm respectively. In all cases, the
camera orientation was pointed to the table. The rendering
of all images took about 14 hours in a computer running
Windows 11 64 bits, equipped with a Intel i9-13900K with
64GB RAM, and two RTX-A6000 Ada Generation.

B. Real dataset

To generated the real dataset we performed a teleoperation
drilling task7 and captured 100 snapshots using a 4K cam-
era (STC-HD853HDMI, Omron-Sentech, Japan). All images
were converted to greyscale images of 512 x 512 pixels, as
shown in Fig. 3. We manually segmented each image. We
used 20 images as test dataset. Therefore, the real training
dataset comprises 80 images.

4We used Isaac Sim 2022-2-1.
5We used 8k images for training and 2k for validation.
6We set suitable random camera poses and robot configurations to obtain

similar rendered images to the real dataset.
7For this task, we used the Cobotta manipulators only.

III. EVALUATION

To validate the proposed approach, we compared the
predictions of both CNNs with respect to the test dataset,
as shown in Fig. 1. We use Pytorch-UNet8 on Python 3.10
with PyTorch 1.13.1+cu117 to train both CNNs.

Figure 4 shows the box-and-whiskers plot of the IoU ∈
[0, 1] and the Dice ∈ [0, 1] similarity coefficients for both
CNNs. A similarity of 1 represents a perfect match between
the predicted image and the real one. In both cases the
predicted images are accurated. However, the performance
of UNET-R is higher than UNET-S. This is expected since
our synthetic dataset does not replicate perfectly all details
contained in the real system.

Figure 5 shows the qualitative results of the image seg-
mentation at the best and worst cases for UNET-S. Some
shaded regions of the robots that resemble the table, and
very bright regions of pixels, such as lamplight, are features
of the real dataset that were not represented in the synthetic
one. Consequently, those regions were very challenging to
UNET-S, as expected.

IV. CONCLUSIONS

In this preliminary work, we evaluated the accuracy of
a CNN trained with synthetic images to perform image
segmentation tasks of our robotic platform. The synthetic
dataset comprises 10000 rendered images with random joint
positions and random camera poses of our digital twin, which
we created on Isaac Sim. Furthermore, we trained a second
CNN using 80 real images and compared both with respect to
our ground truth composed of 20 different real images. The
results showed that for this small test, the CNN trained with
synthetic images performed similarly to the one trained with
real images despite the missing details of the real system in
the synthetic dataset.

Future works will be focused on an ablation study to
determine the relevant parameters to be randomized in the
generation of the synthetic dataset. Furthermore, we want to
explore strategies for recognition of occluded objects.
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Fig. 3. Dataset samples. On the top, the real dataset, which is composed of snapshots of a teleoperated drilling task using both Cobotta arms. On the
bottom, the synthetic dataset. In this case, both the camera pose and the configuration of both arms were randomized.

Fig. 4. Similarity coefficients of the network trained with real images
(UNET-R) and the one trained with synthetic images (UNET-S). On the
left, the box-and-whiskers plot of the intersection over union (loU). On the
right, the box-and-whiskers plot of the Dice coefficient. In this pilot study,
UNET-S showed good enough performance despite being trained with only
synthetic images.
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Fig. 5. Representative results of the semantic segmentation for two samples.
On the top, the results where UNET-S (Synthetic case) performed better (IoU
= 0.923). On the bottom, the results where UNET-S had the lowest score
(IoU = 0.863). The white region represents the correct segmentation of both
Cobotta manipulators (TP) whereas the black region represents the correct
segmentation of the pixels outside of them (TN). Furthermore, the green
color represents regions wrongly considered as part of the Cobottas (FP),
whereas the magenta color denotes regions wrongly considered outside of
them (FN).
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