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ABSTRACT

Chain-of-thought (CoT) prompting is a de-facto standard technique to elicit
reasoning-like answers from large language models (LLMs), allowing them to
spell out individual steps before giving a final answer. While the resemblance to
human-like reasoning is undeniable, the driving forces underpinning the success
of CoT reasoning still remain largely unclear. In this work, we perform an in-depth
analysis of CoT traces originating from competition-level mathematics questions,
with the aim of better understanding how and which parts of CoT actually con-
tribute to the final answer. To this end, we introduce the notion of a potential,
quantifying how much a given part of CoT increases the likelihood of a correct
completion. Upon examination of reasoning traces through the lens of the poten-
tial, we identify surprising patterns including (1) its often strong non-monotonicity
(due to reasoning tangents), (2) very sharp but sometimes tough to interpret spikes
(reasoning insights and jumps) and (3) at times lucky guesses, where the model ar-
rives at the correct answer without providing any relevant justifications before.
While some of the behaviours of the potential are readily interpretable and align
with human intuition (such as insights and tangents), others remain difficult to
understand from a human perspective. To further quantify the reliance of LLMs
on reasoning insights, we investigate the notion of CoT transferability, where we
measure the potential of a (weaker) under the partial CoT from another (stronger)
model. Indeed aligning with our previous results, we find that as little as 20% of
partial CoT can “unlock” the performance of the weaker model on problems that
were previously unsolvable for it, highlighting that a large part of the mechanics
underpinning reasoning transfer.

1 INTRODUCTION

Chain-of-thought reasoning (Wei et al., 2023) has lead to several breakthroughs in domains spanning
mathematics to coding, enabling modern language models to now win gold medals at mathematical
olympiads. The underlying idea of CoT is very simple and intuitive: let the model reason through
the given problem and explain its steps before giving a final answer. This approach offers two
main advantages: (1) Generating additional tokens means more computation available to the model,
providing extra steps to work out the final answer. (2) CoT enables the model to decompose complex
problems into more manageable sub-tasks, akin to human reasoning.

The success of chain-of-thought reasoning is undeniable, yet the precise mechanisms driving it
remain poorly understood. A very tempting explanation, due to their (by design) strong resemblance
to human reasoning, is that LLMs similarly benefit from spelling out bigger computations more
slowly, using techniques such as backtracking and verification to explore several avenues before
finally arriving at the best answer (Zhou et al., 2023). Other works however suggested that the
content of CoTs might not always reflect the actual solving strategy of the model, for instance
Lanham et al. (2023); Chen et al. (2025b) showed that the model’s explanations to addition task did
not line up with the underlying computation performed internally. This result seems to rather suggest
that CoTs primarily act as computational mechanisms, letting the model execute more complicated
algorithms or heuristics “under the hood” while at the same time mimicking human reasoning.

These perspectives motivate a closer look at how CoT actually contributes in practice. We there-
fore closely examine reasoning traces produced by several models with a focus on competition-level
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Figure 1: Left: Illustration of the calculation of the potential. Right: An example prompt and
partial CoT, which in this case should intuitively raise the probability of success (i.e. the potential)
significantly once discovered or provided by another model.

mathematics questions from AIME-2024 and AIME-2025. There is a growing trend of using mod-
els with general math capability to tackle challenging AIME problems. These difficult problems
present the best arena to study properties of reasoning chains, especially as modern models still
produce highly variable CoTs for the same problem, sometimes leading to the correct solution, but
often failing to do so. To precisely pin-point where some CoTs made “progress” towards the correct
answer, we introduce the notion of the potential, defined as the probability of success of the model
when sampling conditioned on a given partial chain of the CoT (see Eq. 1 for a precise definition).
As the potential initially starts out low (models can only sometimes arrive at the right answer), we
can use it to monitor precisely which tokens (or collection thereof) increase or decrease it, equipping
us with a tool to understand what parts of CoT unlock a previously difficult problem. We observe
that similarly to humans, LLMs often exhibit reasoning insights, i.e., strong increases of the poten-
tial due to the completion of a conceptually difficult step (see e.g., Fig. 1, Fig. 5, Fig. 9 or Fig. 11).
Not all spikes in the potential are easily interpretable however; we find that performance can signif-
icantly increase through seemingly trivial steps, coined reasoning jumps (see e.g. Fig. 5 or Fig. 6)
Surprisingly, we observe that the potential is far from monotonic, i.e. not every token contributes
effectively towards the final answer but rather long durations of no progress or even sharp drops can
occur. The latter are often due to reasoning tangents, i.e. approaches which initially look promising
but ultimately lead to dead ends or even wrong answers, (see e.g. Fig. 9).

To further study the usage of reasoning insights in language models, we investigate the degree of
transferability of CoT between different models. We focus on providing a weaker model with the
(partial) CoT from a stronger one, with the motivation that if models indeed struggle with conceptual
understanding of the problem, their reasoning might be unblocked when being provided correct sub-
steps. Indeed, difficult mathematical questions often involve solving several steps of non-uniform
difficulty, some problems even become mostly trivial for humans once a specific insight is obtained
or provided. A good example of such a question is shown in Fig. 1, taken from AIME-1985. While
the question might look intimidating to many math students at first sight, the problem becomes easily
solvable when presented with the reasoning insight that n(n+1)(n+2)(n+3)+1 = (n2+3n+1)2.
In other words, human reasoning is often able to transfer if the gap is not too large. For LLMs, the
results are similar; (1) questions that were initially solvable by the weaker model remain solvable
for it also under the CoT of the stronger model, showing that it is capable of processing potentially
different paths to the solution. (2) Problems that were previously unsolved by the weaker model,
gradually become solvable as more and more CoT is provided, even as little as 20% of CoT leads to
a significant improvement in performance. We observe such transferability even between very dif-
ferent model classes, e.g. Qwen3-0.6B’s (Yang et al., 2025) accuracy significantly improves when
provided with partial CoT of GPT-OSS-20B (OpenAI et al., 2025). This strongly suggests that CoT
reasoning solves mathematical questions in a non-specific manner, i.e. other models can profit from
the reasoning.

2 RELATED WORK

Chain-of-Thought reasoning has been very influential in recent years, with every modern language
model now being trained to give reasoning-like responses. This characteristic has been strongly
exacerbated through the emergence of reasoning models such as o1 (OpenAI et al., 2024) and R1
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Figure 2: Potential curves. Potential of correct and wrong CoTs for Qwen2.5-7B on AIME-2024,
Question 5 and 11. Strongly non-monotonic behaviour for both correct and incorrect CoTs.

(DeepSeek-AI et al., 2025), further encouraging longer responses by training with reinforcement
learning with verifiable rewards. Such models now regularly require generating 32k tokens for
difficult mathematics questions before returning a final answer. The still human-like nature of these
reasoning chains has inspired a surge of works with the aim of interpreting and understanding how
these long sequences of tokens actually contribute to the final answer. A line of work has investigated
how models react when their CoT is manipulated through insertion of mistakes (Wang et al., 2023)
or changes in symbols (Madaan et al., 2023; Madaan & Yazdanbakhsh, 2022), finding them to be
surprisingly robust. Other works have investigated several attribution strategies to identify important
parts in CoT (Golovneva et al., 2023; Berchansky et al., 2024; Wu et al., 2023). Opposite types of
findings have also been made; Lyu et al. (2023); Lanham et al. (2023); Madsen et al. (2024) have
observed that CoT does not always reflect the underlying computation of the model, making it thus
difficult to pin-point helpful steps in the first place. Other works go a step further and argue that CoT
reasoning should not be compared to human reasoning (Kambhampati et al., 2025; Stechly et al.,
2025; Bhambri et al., 2025) or that they outright imitate reasoning without actually performing
any (Shojaee et al., 2025). Finally, the line of works most similar to ours also studies conditional
generation from partial CoTs; Bigelow et al. (2025) investigate so-called “fork tokens” in the context
of neural text generation. Bogdan et al. (2025) also explore the notion of conditional generation to
find “thought anchors”, parts of CoT that help the model arrive at correct answers. While their focus
is on more abstract reasoning concepts such as backtracking and self-verification, we focus on task-
relevant insights and also explore the failure modes of CoT reasoning. Finally (Amani et al., 2025)
also explore the notion of completing partial CoTs, incorporating the idea in reinforcement learning
for better reward signal.

3 POTENTIAL OF COT

Setup. Let V denote the vocabulary. Assume we have a tokenized input prompt x ∈ VD (e.g.,
encoding a math question) and a ground truth answer y∗ ∈ V (for simplicity represented by a
single token) encoding the expected response (e.g. “513”). Let LMθ represent a language model
with parameters θ, mapping a sequence of tokens x to the logits of size |V|. When answering to a
prompt, models now generate T ∈ N intermediate chain-of-thought tokens c ∈ VT auto-regressively
before arriving at a final answer y. I.e. given prompt x, we generate ct ∼ LMθ(•|c<t,x) auto-
regressively and then only then finally sample the answer, y ∼ LMθ(•|c,x). Generations involving
such intermediate tokens have been observed to outperform models trained (or prompted) to directly
provide an answer in a variety of settings Wei et al. (2023). We will often abuse notation slightly by
letting (y, c≥t) ∼ LMθ(•|c<t,x) denote the (sequential) autoregressive generation, conditional on
(c<t,x). Typical decoding strategies in language models leverage this stochastic generation and it
is hence interesting to consider K ∈ N such generations (c, y) by varying the random seeds, either
unconditionally or starting from a partial CoT c<t,(

y(k), c
(k)
≥t

)
i.i.d.∼ LMθ(•|c<t,x) for k = 1, . . . ,K
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Figure 3: The potential of optimal and standard CoT for AIME-2025-I, question 1 and 5. While
standard CoT eventually arrives at the right answer, optimal CoT does so in a more robust way.

where we obtain (most likely) distinct CoT completions c(k)≥t and final answers y(k).

Potential. Given a prompt x and an associated reasoning process c with final answer y, it is natural
to ask which sub-steps in c contributed most to the overall result. Let us define the potential of a
chunk of CoT c<t on the prompt x as the probability of correct generation when conditioning on
c<t,

pot(c<t;x) := P(c≥t,y)∼LMθ(•|c<t,x) (y = y∗) (1)
Intuitively, if a chunk of CoT is useful or encompasses a step that the model tends to struggle with,
generating it should subsequently lead to a higher potential. Mathematically, if conditioning on a
shorter prefix c<s for s < t has a lower potential compared to c<t i.e. pot(c<s;x) < pot(c<t;x),
this implies that the CoT chunk cs<t “made progress” towards the final solution. On the other hand,
if the potential remains similar, pot(c<s;x) ≈ pot(c<t), then the chunk of CoT cs<t did not solve
a step that is difficult to the model, as it can reliably reproduce it under sampling. This does not
necessarily imply that such steps can be skipped as they could entail necessary computations such
as a long multiplication, which the model can reliably do but also needs to do. Finally, we can have
situations where the potential decreases, with CoTs actively worsening the state of the model. On
average however, we can show mathematically that the potential improves monotonically over all
correct CoTs:
Proposition 1. Conditional on the event that the full CoT c1:T yields the correct final answer y∗, it
holds for every t ≤ T that

E [pot(c<t+1;x)] ≥ E [pot(c<t;x)] .

We invite the reader to check the proof in Appendix A.2. Hence on average, every token ct should
push the potential higher, encouraging the model to converge towards the correct solution, reflecting
the intuition that chain-of-thought performs “evidence accumulation”. Calculating the potential
exactly is unfortunately intractable, so in practice we can use the following estimator instead,

potN (c<t;x) :=
1

N

N∑
n=1

1{y(n)=y∗} where
(
y(n), c

(n)
≥t

)
∼ LMθ(•|c<t,x)

As usual, sampling a higher number of trajectories N will provide a better approximation to the true
potential. We observe that setting N = 128 suffices to obtain reliable estimations of the potential
and use it throughout this work.

4 SHAPE OF POTENTIAL CURVES

We now empirically study the potential pot(c<t;x) as a function of the CoT length t. When condi-
tioning on CoTs c that lead to the correct answer y = y∗, based on Prop. 1, we expect the potential
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Figure 4: Inflated pass@k. We show pass@k accuracies and the corresponding corrected values
for Qwen-2.5-1.5B (left) and Qwen-2.5-7B (right).

t to be a smooth and monotonic function in t, with every chunk of CoT cs<t positively contributing
to the overall solution. We will mainly focus on difficult competition-level mathematics questions,
where the “empty” potential pot(c<0;x) is strictly between 0 and 1, i.e. the model only sometimes
produces the correct answer when prompted from scratch. If the model is always correct, the poten-
tial does not offer any insight into the CoT; all steps are equally easy to the model. In contrast, if
performance starts significantly lower, we can precisely pin-point where a successful CoT overcame
hurdles that stopped most other attempts. We calculate the potential curves for a variety of models,
including both the non-thinking types of models Qwen2.5-1.5B and 7B (Qwen et al., 2025) as well
as the reasoning models Qwen3-0.6B and 32B (Yang et al., 2025). We display a variety of potential
curves (both for correct and wrong trajectories) in Fig. 2 for two samples taken from AIME-2024.
Surprisingly, typical chain-of-thought seems to exhibit quite erratic potentials, with certain sections
of CoT actively worsening the probability of success. We will examine the characteristics of poten-
tial curves qualitatively in close detail in Sec. 5. We quantify the following properties of potential
curves often exhibited across AIME-2024: (1) Very sharp increases in the potential in a small token
window, we will later refer to these occurrences as reasoning insights and jumps. (2) Very sharp
drops in the potential, we coin this behaviour reasoning tangents or flaws. (3) Extremely late in-
creases in the potential, which previously remained flat and close 0. We will show qualitatively in
Sec. 5 that such CoTs are very often associated with guessing, i.e. the model produces a correct
answer without relying on its previously generated reasoning and at times even admits to do so.

MODEL INSIGHTS ↑ TANGENTS ↓ LATE SPIKE MONOTONICITY

QWEN2.5-1.5B 40% 5% 20% 45%

QWEN2.5-7B 62% 9.5% 14% 42%

QWEN3-0.6B 55% 41% 10% 15%

QWEN3-32B 36% 18% 0% 36%

Table 1: Behaviours of potential for several reasoning and non-reasoning models.

Quantifying the shape. In the following we will derive some quantitative summaries correspond-
ing to the observations we made based on the plots in Fig. 2. We calculate the potentials for 128
responses per sample on AIME-2024 (total of 30 × 128 samples) and filter out responses that lead
to wrong answers. We further only consider samples that are difficult enough for the given model to
not reach perfect accuracy without any partial CoT. We then derive four summary statistics that aim
to describe the properties introduced above, we detail their definitions in Appendix A.5.

We display the results in Table 1. Our initial observations are substantiated; only half of the CoTs
exhibit monotonicity, with reasoning models tending to produce even more erratic potentials. Non-
reasoning models seem to exhibit more late spikes, which aligns with our qualitative observations
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Figure 5: Reasoning tangents and insights. Qwen2.5-7B’s potential pot256(•;x) behaving
strongly non-monotonic. The reasoning tangent 2⃝ hurts the potential, while the reasoning insights
3⃝ (observing the symmetry x = y of the problem) and 4⃝ (finding the root of the cubic equation)

push the potential back on track. Finally, the model performs a reasoning jump 5⃝ (for some non-
obvious reason, this particular calculation is difficult for the model).

later in Sec. 5 that such models tend to produce correct answers often through guessing on very
difficult problems. Model size also seems to surpress this behaviour more, which is expected since
larger models generally tend to perform better. Reasoning tangents occur more often for reasoning
models, aligning well with the observation in the literature that such models have the tendency to
overthink (Chen et al., 2025a), i.e. they discard the discovered, correct answer and explore alterna-
tive but flawed approaches. This also partially explains their less monotonic potential. All models
exhibit a high amount of reasoning insights, suggesting that most of the difficulty is concentrated in
a few key steps instead of being uniformly spread out, more akin to human reasoning.

Amount of guessing. We quantify the amount of guessing that Qwen2.5-1.5B and Qwen2.5-7B
perform by revisiting the popular pass@k metric, a quantity that is very prone to suffer from this
particular behaviour. For a dataset consisting of P queries {xi}Pi=1 with corresponding answers
{y∗i }Pi=1, we sample k responses y(j)i per question from the model and measure if the correct answer
is at least once among this set, i.e.

pass@k =
1

P

P∑
i=1

1{
y∗∈{y(1)

i ,...,y
(k)
i }
}

Especially for large k, this metric could fall victim to lucky guesses as (1) it only takes one correct
answer to obtain the full score and (2) the reasoning process usually not being assessed. Indeed, in
Fig. 4 we show that the pass@k scores can be very inflated by flagging samples with the late spike
statistic, in this case on AIME-2025.

Optimizing the potential. Given our observation that CoT does not naturally follow a monotonic
curve, with many tokens even worsening performance, the following question emerges:

Can we search the space of CoT c such that every sub-CoT cs<t contributes?

One way to try and maximize the potential of every chunk of CoT is to set a chunk size C ∈ N and
randomly explore candidate chunks, calculate their potential and keep the highest scoring chunk.
In this manner, we can construct a CoT that increases the potential at least gradually if the model
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Figure 6: Unaligned difficulty. Qwen2.5-1.5B solves most difficult parts in 1⃝ but only small
increase in potential. Seemingly easier part 2⃝ of just obtaining t given s and adding the two turns
out to be significantly more difficult.

admits such reasoning, ideally avoiding issues such as reasoning tangents. We summarize the recipe
in Algorithm 1 more formally. We indeed find that models admit such optimized CoT, we display
some associated potential curves in contrast with regular CoT in Fig. 3. We can indeed see that the
optimized CoT displays strong monotonicity with most tokens contributing to the potential. This is
in stark contrast with the standard CoT, which either does not increase the potential for a long token
horizon (left side of the figure), or even actively worsens it (right side). We examine such CoTs
more qualitatively in Appendix A.3.

Algorithm 1 Generating potential-optimized CoTs

1: Initialize the CoT c<t ← ∅
2: while the chosen candidate does not contain the answer do
3: Sample M candidate CoT chunks c

(m)
t:(t+T )

i.i.d.∼ LMθ(· | c<t,x) of length C, for m =

1, . . . ,M

4: Compute potentials pm ← potN (c
(m)
<t+T ;x)

5: Select m̃← argmaxm pm
6: Update c<t+T ← [c<t, c

(m̃)
t<(t+T )]

7: end while

5 A CLOSER LOOK AT CHAIN-OF-THOUGHT REASONING

We now perform a qualitative analysis of various chain-of-thought reasonings on competition-level
mathematics. Due to the verbosity of reasoning models such as Qwen3, we limit this section to
the Qwen2.5 series, whose CoT is more concise and thus more amenable to direct interpretation.
The only exception is Fig. 7, where we display parts of a trace from Qwen3-0.6B. Our goal is to
precisely align the potential curve with the underlying reasoning produced by the model, and as a
consequence obtain an understanding of the types of tokens that drive or hinder the progress. For
space reasons we defer from displaying the full CoT but instead show only the sections crucial to
the potential. We refer the interested reader to Appendix A.3 for additional qualitative examples.
We display the first sample obtained from Qwen2.5-7B in Fig. 5, a potential curve that exhibits
strong non-monotonicity as we have often encountered (see Fig. 2). We dissect the reasoning into
five segments according to the potential. Segment 1⃝ steadily makes progress towards the solution
by correctly expressing the radius as a function of the sides of the box and formulating the optimiza-
tion problem. In segment 2⃝ the model goes on a reasoning tangent, a step that is not necessarily
wrong but happens to not work out for the particular problem (AM-GM inequality gives a non-tight
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Figure 7: Reasoning tangents and guessing. Qwen3-0.6B goes on a long reasoning tangent in 1⃝
that does not increase the potential over a long token horizon. Finally it outputs a final answer in 2⃝,
itself admitting that the guess is not backed by the reasoning prior but seems likely to the model.

lower bound for the minimum). The model manages to ignore this step in this particular trajectory,
but on average suffers from this distraction, leading to a sharp drop in the potential. In segment 3⃝
and 4⃝, the model correctly recognizes the symmetry of the problem as well as discovers the root of
the cubic equation, with both insights consequently boosting the accuracy akin to human reasoning.
Finally, in segment 5⃝ we observe the final spike in the potential, stemming from a simple arith-
metics step that the model tends to get wrong. While the previous spikes were readily interpretable,
the last one seems more unintuitive, given that the model manages to very reliably perform the ar-
guably harder arithmetics steps just before. We coin this a reasoning jump, a very sharp increase in
the potential that largely seems due to a very model-specific issue.

Such misalignment in perceived difficulty of sub-steps is often present in CoT, in Fig. 6 we dis-
play another reasoning trace of Qwen2.5-7B along with the associated potential which exhibits this
surprising characteristic. Segment 1⃝ here does the conceptual heavy-lifting; it correctly deduces
the associated system of equations in two variables, simplifies and obtains the solution for the first
variable s. The completion of these seemingly involved steps is only rewarded with a small increase
in potential, as opposed to humans, the model does not struggle here. Instead, the more difficult
steps contained in segment 2⃝ consist of now obtaining the second variable t, which only involves
plugging the value for s into the previously derived equation. Compared to the previous segment,
finishing the problem starting from the end of 1⃝ would be a significantly simpler task for humans.

Another surprising insight we obtained is that models can be very capable of guessing solutions to
such problems. In Fig. 7 (and Fig. 10) we display the reasoning of Qwen3-0.6B. While the content
of segment 1⃝ at first sight looks relevant, closer inspection reveals that the final answer “80” is not
at all deduced from the reasoning performed before. The answer seems to be a lucky guess, most
likely informed by the fact that answers to such competition-level questions usually take the form of
an integer value. This guessing is elegantly reflected in the potential curve; the reasoning in segment
1⃝ (which essentially encompasses the entire CoT) does not make any progress at all towards the

final answer, precisely because the model is most likely making a guess in the end, which more often
than not ends up being wrong.

6 TRANSFERABILITY OF COT

Motivated by the insights from Sec. 4 and 5, we now investigate if reasoning insights transfer be-
tween different families of models, which would further underscore that the mechanisms underlying
CoT reasoning share parallels with human reasoning. We hypothesize that if the sub-steps present
information gain through reasoning insights, (similar to e.g. Fig. 1), weaker models could be able to
solve problems that were previously too difficult. We study this scenario for both reasoning and non-
reasoning models. In the first setup we consider Qwen3-0.6B as the weak model, which is provided
with partial CoT from its bigger version Qwen3-32B. We also explore traces from GPT-OSS-20B to
further assess how robust transferability is with respect to out-of-distribution scenarios. For the non-
reasoning models we instead create a dataset of gold CoT, using one of the strongest public models
Qwen3-235B to produce answers on AIME-2024 in thinking mode. We then extract the CoT after
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Figure 8: Transferability of CoT. Left: Accuracy on AIME-2025 of weaker reasoning model
Qwen3-0.6B when provided with partial CoT from Qwen3-32B (red) and from GPT-OSS-20B (or-
ange), leading to very quick improvements. Right: Accuracy of non-reasoning models Qwen2.5-7B
and Qwen2.5-72B when provided with a partial CoT based on the final summary output of reasoning
model Qwen3-235B.

thinking, which presents a clean summary of the long thinking traces and use these as partial traces.
We then test the weaker Qwen2.5-7B and Qwen2.5-72B models, letting them complete the partial
responses for various percentages. We display the resulting test accuracies as a function of the frac-
tion of partial CoT in Fig. 8. We observe that surprisingly, in both reasoning and non-reasoning
scenarios, the models manage to not only maintain their original accuracies but quickly improve
(with as little as 20% CoT), answering previously unsolved questions. While the CoT does seem
to transfer better within the same family, Qwen3-0.6B can still leverage the significantly different
traces from GPT-OSS-20B, suggesting that the mechanisms driving the performance are universally
shared between models to a strong degree.

7 CONCLUSION

In this work we have investigated chain-of-thought reasoning in large language models through the
notion of the associated potential. We have performed an in-depth analysis of parts of CoT that
strongly move the potential upwards (reasoning insights and jumps), as well as tokens that actively
worsen the performance due to reasoning tangents. We further observed that especially for smaller
LLMs, the potential can exhibit very late spikes only, suggesting that the final answer was reached
without leveraging the reasoning. Upon qualitative examination we indeed found that many answers
are guesses, leading to inflated pass@k scores. We showed that more desirable potentials (free of
tangents) can be obtained by an iterative procedure, resulting in more monotonic CoTs. Finally, we
further investigate reasoning insights by introducing the notion of CoT transferability, which mea-
sures to what degree a weaker model can profit from the partial CoT of a stronger one. We show that
the insights of the stronger model indeed help push the performance of the weaker one beyond what
it can typically solve on its own, highlighting that CoT indeed relies on such interpretable mecha-
nisms. We believe that combining the transferability of partial CoTs with reinforcement learning to
reduce sparsity of rewards makes for exciting future work.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

We use vllm (Kwon et al., 2023) for all of our experiments. For potential calculation we set N = 128
and use a temperature of T = 0.6 and p = 0.95 as sampling parameters. For all models and datasets
we generate T = 32k tokens excluding the prompt. To ensure that the potential does not increase
due to higher generation length, we always subtract the length of the partial CoT from 32k and use
this number as T .

A.2 PROOF OF PROPOSITION 1

Here we present the previously omitted proof of Proposition

By Bayes’ rule, for any token ct+1 we have

ft+1 = P(y = 1 | x, c1:t, ct+1) =
ft p1(ct+1)

ft p1(ct+1) + (1− ft) p0(ct+1)
.

Taking expectation with respect to ct+1 drawn from p1, i.e. conditioned on the event that the rest of
the run is correct, gives

E[ft+1] = ft
∑
ct+1

p1(ct+1)
p1(ct+1)

ftp1(ct+1) + (1− ft)p0(ct+1)
.

Equivalently,

E[ft+1] = ft
∑
ct+1

p1(ct+1)
2

ftp1(ct+1) + (1− ft)p0(ct+1)
.
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Now apply the Cauchy–Schwarz inequality with weights q(ct+1) = ftp1(ct+1)+ (1− ft)p0(ct+1):(∑
ct+1

p1(ct+1)
2

q(ct+1)

)(∑
ct+1

q(ct+1)

)
≥

(∑
ct+1

p1(ct+1)

)2

.

Since
∑

ct+1
q(ct+1) = 1 and

∑
ct+1

p1(ct+1) = 1, it follows that∑
ct+1

p1(ct+1)
2

q(ct+1)
≥ 1.

Therefore,
E[ft+1] ≥ ft.

Finally, taking expectation over prefixes c1:t distributed as on correct runs yields

E[ft+1] ≥ E[ft],
which is the desired result.

A.3 MORE COT

We display more examples of annotated CoT in Fig. 9 and Fig. 7. In Fig. 9 we have again have the
model performing a reasoning insight, correctly realizing that the exponents can be deduced from
the binary representation of the number. We then finally have a reasoning jump, where the model
experiences a strong boost in potential from the word “correspond”. While at first sight not clearly
interpretable, we hypothesize that this word forces the model to output concrete values for ai’s,
otherwise a common failure model as the model tries to further refine their computation.

In Fig. 10 we again observe a reasoning guess from Qwen2.5-1.5B, where the CoT in segment 1⃝,
while seemingly making sense at first sight, actually does not contribute to the final answer at all.
In fact the number 80 does not relate at all to the computations made before. This is reflected in
the potential, that shows a spike only towards the very end, highlighting that the CoT indeed did not
contribute.

Finally, we show an instance of optimized CoT introduced in Sec.4. We observe that the potential
is now strongly monotonic, with almost every partial CoT leading to some improvement in the
potential. This is also reflected qualitatively, we can see that the CoT is more concise in language, in
fact we can display all of it here. In segment 1⃝ the model makes slower progress as those are steps
it can reliably do. Finally, the model undergoes a reasoning insight 2⃝ with the model discovering
that d needs to divide 56.

A.4 STABILITY OF COT

We can also consider a slight variation of the potential, called the stability of a CoT. Given a prompt
x, CoT reasoning and answer pair (c, y) we define the stability of a sub-chain c<t as

stableN (c<t;x, y) :=
1

N

N∑
n=1

1{y(n)=y} where
(
y(n), c

(n)
≥t

)
∼ LMθ(•|c<t,x)

with the slight variation that instead of considering the ground truth y∗, we now consider the reached
final answer of the chain c as the target. I.e. the potential is a special of stability, when y =
y∗. Stability measures how determined the final answer is throughout the reasoning process of the
model. Somewhat surprisingly, we observe that correct answers do not necessarily always display
higher stability, indicating that models can become convinced very early on in their reasoning about
wrong answers. We display various stability curves in Fig. 12.

A.5 MORE DETAILS ON SUMMARY STATISTICS

Here we provide the definitions for the statistics we used in Sec. 4. In all experiments we divide the
CoT into 20 chunks, getting thus potential curves consisting of 20 points.
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Figure 9: Unintuitive reasoning jumps. Qwen2.5-7B’s potential pot256(•;x) remains flat in 1⃝
although crucial insights are obtained. The potential then increases due to a reasoning insight in 2⃝
(realizing that the binary representation determines the exponents). In 3⃝ we obtain the final spike
at the word “corresponding”, a reasoning jump, which seems strange from a human perspective.
We hypothesize that it might force the model to output values for ai’s, which indeed is the next
logical step. We indeed observe that without this word, the model continues to perform unnecessary
calculations, subsequently leading to wrong values for ai.

Figure 10: Reasoning tangents and guessing. Qwen2.5-1.5B goes on a long reasoning tangent in
1⃝ that does not increase the potential over a long token horizon. Finally it outputs a final answer in
2⃝ unrelated to the previous reasoning that happens to be correct.
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Figure 11: Optimized CoT. We show a trajectory based on the optimized CoT from Qwen2.5-
1.5B. The CoT is more concise, actually allowing us to show it here in full length. The potential
is monotonic as anticipated and all tokens contribute to it. In segment 1⃝ the model makes slower
progress as those are steps it can reliably do. Finally, the model undergoes a reasoning insight 2⃝
with the model discovering that d needs to divide 56.

Figure 12: Stability profiles. Stability profiles for Qwen2.5-1.5B and Qwen2.5-7B on AIME 7 and
26 respectively. Correct and wrong answers exhibit similar profiles across models and questions.
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• Insight: We say that a given potential contains an insight if the difference between two
consecutive chunks of CoT exceeds 40%, i.e. if one step of CoT raised the potential by at
least 40%. We exclude the last two steps to make sure we don’t count the late reasoning
spikes as insights.

• Tangent: We define a potential to exhibit a tangent if the potential drops by at least 30%,
not necessarily consecutively.

• Guess: We define late reasoning spikes or guesses as the case when the potential at the
second to last step is smaller than 5%.

• Monotonicity: We call a potential monotone if its consecutive steps do not decrease by
more than 10%.
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