HIDDEN PATTERNS IN CHAIN-OF-THOUGHT REASON-ING

Anonymous authorsPaper under double-blind review

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032 033 034

037

038

040

041

042 043

044

046

047

048

051

052

ABSTRACT

Chain-of-thought (CoT) prompting is a de-facto standard technique to elicit reasoning-like answers from large language models (LLMs), allowing them to spell out individual steps before giving a final answer. While the resemblance to human-like reasoning is undeniable, the driving forces underpinning the success of CoT reasoning still remain largely unclear. In this work, we perform an in-depth analysis of CoT traces originating from competition-level mathematics questions, with the aim of better understanding how and which parts of CoT actually contribute to the final answer. To this end, we introduce the notion of a *potential*, quantifying how much a given part of CoT increases the likelihood of a correct completion. Upon examination of reasoning traces through the lens of the potential, we identify surprising patterns including (1) its often strong non-monotonicity (due to reasoning *tangents*), (2) very sharp but sometimes tough to interpret spikes (reasoning *insights* and *jumps*) and (3) at times *lucky guesses*, where the model arrives at the correct answer without providing any relevant justifications before. While some of the behaviours of the potential are readily interpretable and align with human intuition (such as insights and tangents), others remain difficult to understand from a human perspective. To further quantify the reliance of LLMs on reasoning *insights*, we investigate the notion of CoT *transferability*, where we measure the potential of a (weaker) under the partial CoT from another (stronger) model. Indeed aligning with our previous results, we find that as little as 20% of partial CoT can "unlock" the performance of the weaker model on problems that were previously unsolvable for it, highlighting that a large part of the mechanics underpinning reasoning transfer.

1 Introduction

Chain-of-thought reasoning (Wei et al., 2023) has lead to several breakthroughs in domains spanning mathematics to coding, enabling modern language models to now win gold medals at mathematical olympiads. The underlying idea of CoT is very simple and intuitive: let the model reason through the given problem and explain its steps before giving a final answer. This approach offers two main advantages: (1) Generating additional tokens means more computation available to the model, providing extra steps to work out the final answer. (2) CoT enables the model to decompose complex problems into more manageable sub-tasks, akin to human reasoning.

The success of chain-of-thought reasoning is undeniable, yet the precise mechanisms driving it remain poorly understood. A very tempting explanation, due to their (by design) strong resemblance to human reasoning, is that LLMs similarly benefit from spelling out bigger computations more slowly, using techniques such as backtracking and verification to explore several avenues before finally arriving at the best answer (Zhou et al., 2023). Other works however suggested that the content of CoTs might not always reflect the actual solving strategy of the model, for instance Lanham et al. (2023); Chen et al. (2025b) showed that the model's explanations to addition task did not line up with the underlying computation performed internally. This result seems to rather suggest that CoTs primarily act as computational mechanisms, letting the model execute more complicated algorithms or heuristics "under the hood" while at the same time mimicking human reasoning.

These perspectives motivate a closer look at how CoT actually contributes in practice. We therefore closely examine reasoning traces produced by several models with a focus on competition-level

056

058

060

061

062 063

064

065

066 067

068

069

070

071

073

074

075

076

077

079

081

084

085

087

880

090

091

092

093

094

095

096

097

098

100

101

102 103

104 105

106

107

Figure 1: **Left:** Illustration of the calculation of the potential. **Right:** An example prompt and partial CoT, which in this case should intuitively raise the probability of success (i.e. the potential) significantly once discovered or provided by another model.

mathematics questions from AIME-2024 and AIME-2025. There is a growing trend of using models with general math capability to tackle challenging AIME problems. These difficult problems present the best arena to study properties of reasoning chains, especially as modern models still produce highly variable CoTs for the same problem, sometimes leading to the correct solution, but often failing to do so. To precisely pin-point where some CoTs made "progress" towards the correct answer, we introduce the notion of the *potential*, defined as the probability of success of the model when sampling conditioned on a given partial chain of the CoT (see Eq. 1 for a precise definition). As the potential initially starts out low (models can only sometimes arrive at the right answer), we can use it to monitor precisely which tokens (or collection thereof) increase or decrease it, equipping us with a tool to understand what parts of CoT unlock a previously difficult problem. We observe that similarly to humans, LLMs often exhibit reasoning *insights*, i.e., strong increases of the potential due to the completion of a conceptually difficult step (see e.g., Fig. 1, Fig. 5, Fig. 9 or Fig. 11). Not all spikes in the potential are easily interpretable however; we find that performance can significantly increase through seemingly trivial steps, coined reasoning jumps (see e.g. Fig. 5 or Fig. 6) Surprisingly, we observe that the potential is far from monotonic, i.e. not every token contributes effectively towards the final answer but rather long durations of no progress or even sharp drops can occur. The latter are often due to reasoning tangents, i.e. approaches which initially look promising but ultimately lead to dead ends or even wrong answers, (see e.g. Fig. 9).

To further study the usage of reasoning insights in language models, we investigate the degree of transferability of CoT between different models. We focus on providing a weaker model with the (partial) CoT from a stronger one, with the motivation that if models indeed struggle with conceptual understanding of the problem, their reasoning might be unblocked when being provided correct substeps. Indeed, difficult mathematical questions often involve solving several steps of non-uniform difficulty, some problems even become mostly trivial for humans once a specific insight is obtained or provided. A good example of such a question is shown in Fig. 1, taken from AIME-1985. While the question might look intimidating to many math students at first sight, the problem becomes easily solvable when presented with the reasoning insight that $n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2$. In other words, human reasoning is often able to transfer if the gap is not too large. For LLMs, the results are similar; (1) questions that were initially solvable by the weaker model remain solvable for it also under the CoT of the stronger model, showing that it is capable of processing potentially different paths to the solution. (2) Problems that were previously unsolved by the weaker model, gradually become solvable as more and more CoT is provided, even as little as 20% of CoT leads to a significant improvement in performance. We observe such transferability even between very different model classes, e.g. Qwen3-0.6B's (Yang et al., 2025) accuracy significantly improves when provided with partial CoT of GPT-OSS-20B (OpenAI et al., 2025). This strongly suggests that CoT reasoning solves mathematical questions in a non-specific manner, i.e. other models can profit from the reasoning.

2 RELATED WORK

Chain-of-Thought reasoning has been very influential in recent years, with every modern language model now being trained to give reasoning-like responses. This characteristic has been strongly exacerbated through the emergence of reasoning models such as o1 (OpenAI et al., 2024) and R1

Figure 2: **Potential curves.** Potential of correct and wrong CoTs for Qwen2.5-7B on AIME-2024, Question 5 and 11. Strongly non-monotonic behaviour for both correct and incorrect CoTs.

(DeepSeek-AI et al., 2025), further encouraging longer responses by training with reinforcement learning with verifiable rewards. Such models now regularly require generating 32k tokens for difficult mathematics questions before returning a final answer. The still human-like nature of these reasoning chains has inspired a surge of works with the aim of interpreting and understanding how these long sequences of tokens actually contribute to the final answer. A line of work has investigated how models react when their CoT is manipulated through insertion of mistakes (Wang et al., 2023) or changes in symbols (Madaan et al., 2023; Madaan & Yazdanbakhsh, 2022), finding them to be surprisingly robust. Other works have investigated several attribution strategies to identify important parts in CoT (Golovneva et al., 2023; Berchansky et al., 2024; Wu et al., 2023). Opposite types of findings have also been made; Lyu et al. (2023); Lanham et al. (2023); Madsen et al. (2024) have observed that CoT does not always reflect the underlying computation of the model, making it thus difficult to pin-point helpful steps in the first place. Other works go a step further and argue that CoT reasoning should not be compared to human reasoning (Kambhampati et al., 2025; Stechly et al., 2025; Bhambri et al., 2025) or that they outright imitate reasoning without actually performing any (Shojaee et al., 2025). Finally, the line of works most similar to ours also studies conditional generation from partial CoTs; Bigelow et al. (2025) investigate so-called "fork tokens" in the context of neural text generation. Bogdan et al. (2025) also explore the notion of conditional generation to find "thought anchors", parts of CoT that help the model arrive at correct answers. While their focus is on more abstract reasoning concepts such as backtracking and self-verification, we focus on taskrelevant insights and also explore the failure modes of CoT reasoning. Finally (Amani et al., 2025) also explore the notion of completing partial CoTs, incorporating the idea in reinforcement learning for better reward signal.

3 POTENTIAL OF COT

Setup. Let \mathcal{V} denote the vocabulary. Assume we have a tokenized input prompt $x \in \mathcal{V}^D$ (e.g., encoding a math question) and a ground truth answer $y^* \in \mathcal{V}$ (for simplicity represented by a single token) encoding the expected response (e.g. "513"). Let \mathbb{LM}_{θ} represent a language model with parameters θ , mapping a sequence of tokens x to the logits of size $|\mathcal{V}|$. When answering to a prompt, models now generate $T \in \mathbb{N}$ intermediate *chain-of-thought* tokens $c \in \mathcal{V}^T$ auto-regressively before arriving at a final answer y. I.e. given prompt x, we generate $c_t \sim \mathbb{LM}_{\theta}(\cdot|c_{< t}, x)$ autoregressively and then only then finally sample the answer, $y \sim \mathbb{LM}_{\theta}(\cdot|c, x)$. Generations involving such intermediate tokens have been observed to outperform models trained (or prompted) to directly provide an answer in a variety of settings Wei et al. (2023). We will often abuse notation slightly by letting $(y, c_{\geq t}) \sim \mathbb{LM}_{\theta}(\cdot|c_{< t}, x)$ denote the (sequential) autoregressive generation, conditional on $(c_{< t}, x)$. Typical decoding strategies in language models leverage this stochastic generation and it is hence interesting to consider $K \in \mathbb{N}$ such generations (c, y) by varying the random seeds, either unconditionally or starting from a partial CoT $c_{< t}$,

$$\left(y^{(k)}, \boldsymbol{c}_{\geq t}^{(k)}\right) \overset{i.i.d.}{\sim} \mathrm{LM}_{\boldsymbol{\theta}}(\bullet | \boldsymbol{c}_{< t}, \boldsymbol{x}) \quad \text{for } k = 1, \dots, K$$

Figure 3: The potential of optimal and standard CoT for AIME-2025-I, question 1 and 5. While standard CoT eventually arrives at the right answer, optimal CoT does so in a more robust way.

where we obtain (most likely) distinct CoT completions $c_{\geq t}^{(k)}$ and final answers $y^{(k)}$.

Potential. Given a prompt x and an associated reasoning process c with final answer y, it is natural to ask which sub-steps in c contributed most to the overall result. Let us define the *potential* of a chunk of CoT $c_{< t}$ on the prompt x as the probability of correct generation when conditioning on $c_{< t}$,

$$pot(\boldsymbol{c}_{< t}; \boldsymbol{x}) := \mathbb{P}_{(\boldsymbol{c}_{>t}, y) \sim \mathbb{IM}_{\theta}(\bullet | \boldsymbol{c}_{< t}, \boldsymbol{x})} (y = y^*)$$
(1)

Intuitively, if a chunk of CoT is useful or encompasses a step that the model tends to struggle with, generating it should subsequently lead to a higher potential. Mathematically, if conditioning on a shorter prefix $c_{<s}$ for s < t has a lower potential compared to $c_{<t}$ i.e. $\operatorname{pot}(c_{< s}; x) < \operatorname{pot}(c_{< t}; x)$, this implies that the CoT chunk $c_{s< t}$ "made progress" towards the final solution. On the other hand, if the potential remains similar, $\operatorname{pot}(c_{< s}; x) \approx \operatorname{pot}(c_{< t})$, then the chunk of CoT $c_{s< t}$ did not solve a step that is difficult to the model, as it can reliably reproduce it under sampling. This does not necessarily imply that such steps can be skipped as they could entail necessary computations such as a long multiplication, which the model can reliably do but also *needs* to do. Finally, we can have situations where the potential decreases, with CoTs actively worsening the state of the model. On average however, we can show mathematically that the potential improves monotonically over all correct CoTs:

Proposition 1. Conditional on the event that the full CoT $c_{1:T}$ yields the correct final answer y^* , it holds for every $t \leq T$ that

$$\mathbb{E}\left[\operatorname{pot}(\boldsymbol{c}_{< t+1}; \boldsymbol{x})\right] \geq \mathbb{E}\left[\operatorname{pot}(\boldsymbol{c}_{< t}; \boldsymbol{x})\right].$$

We invite the reader to check the proof in Appendix A.2. Hence on average, every token c_t should push the potential higher, encouraging the model to converge towards the correct solution, reflecting the intuition that chain-of-thought performs "evidence accumulation". Calculating the potential exactly is unfortunately intractable, so in practice we can use the following estimator instead,

$$\mathrm{pot}_N(\boldsymbol{c}_{< t}; \boldsymbol{x}) := \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{\{y^{(n)} = y^*\}} \quad \text{where } \left(y^{(n)}, \boldsymbol{c}_{\geq t}^{(n)}\right) \sim \mathrm{LM}_{\boldsymbol{\theta}}(\boldsymbol{\cdot} | \boldsymbol{c}_{< t}, \boldsymbol{x})$$

As usual, sampling a higher number of trajectories N will provide a better approximation to the true potential. We observe that setting N=128 suffices to obtain reliable estimations of the potential and use it throughout this work.

4 Shape of Potential curves

We now empirically study the potential $pot(c_{< t}; x)$ as a function of the CoT length t. When conditioning on CoTs c that lead to the correct answer $y = y^*$, based on Prop. 1, we expect the potential

Figure 4: **Inflated** pass@k. We show pass@k accuracies and the corresponding corrected values for Qwen-2.5-1.5B (left) and Qwen-2.5-7B (right).

t to be a smooth and monotonic function in t, with every chunk of CoT $c_{s < t}$ positively contributing to the overall solution. We will mainly focus on difficult competition-level mathematics questions, where the "empty" potential $pot(c_{<0}; x)$ is strictly between 0 and 1, i.e. the model only sometimes produces the correct answer when prompted from scratch. If the model is always correct, the potential does not offer any insight into the CoT; all steps are equally easy to the model. In contrast, if performance starts significantly lower, we can precisely pin-point where a successful CoT overcame hurdles that stopped most other attempts. We calculate the potential curves for a variety of models, including both the non-thinking types of models Qwen2.5-1.5B and 7B (Qwen et al., 2025) as well as the reasoning models Qwen3-0.6B and 32B (Yang et al., 2025). We display a variety of potential curves (both for correct and wrong trajectories) in Fig. 2 for two samples taken from AIME-2024. Surprisingly, typical chain-of-thought seems to exhibit quite erratic potentials, with certain sections of CoT actively worsening the probability of success. We will examine the characteristics of potential curves qualitatively in close detail in Sec. 5. We quantify the following properties of potential curves often exhibited across AIME-2024: (1) Very sharp increases in the potential in a small token window, we will later refer to these occurrences as reasoning *insights* and *jumps*. (2) Very sharp drops in the potential, we coin this behaviour reasoning tangents or flaws. (3) Extremely late increases in the potential, which previously remained flat and close 0. We will show qualitatively in Sec. 5 that such CoTs are very often associated with guessing, i.e. the model produces a correct answer without relying on its previously generated reasoning and at times even admits to do so.

Model	Insights †	Tangents ↓	LATE SPIKE	MONOTONICITY
QWEN2.5-1.5B	40%	5%	20%	45%
QWEN2.5-7B	62%	9.5%	14%	42%
QWEN3-0.6B	55%	41%	10%	15%
QWEN3-32B	36%	18%	0%	36%

Table 1: Behaviours of potential for several reasoning and non-reasoning models.

Quantifying the shape. In the following we will derive some quantitative summaries corresponding to the observations we made based on the plots in Fig. 2. We calculate the potentials for 128 responses per sample on AIME-2024 (total of 30×128 samples) and filter out responses that lead to wrong answers. We further only consider samples that are difficult enough for the given model to not reach perfect accuracy without any partial CoT. We then derive four summary statistics that aim to describe the properties introduced above, we detail their definitions in Appendix A.5.

We display the results in Table 1. Our initial observations are substantiated; only half of the CoTs exhibit monotonicity, with reasoning models tending to produce even more erratic potentials. Non-reasoning models seem to exhibit more late spikes, which aligns with our qualitative observations

Figure 5: **Reasoning tangents and insights.** Qwen2.5-7B's potential $pot_{256}(\cdot; x)$ behaving strongly non-monotonic. The reasoning *tangent* ② hurts the potential, while the reasoning *insights* ③ (observing the symmetry x = y of the problem) and ④ (finding the root of the cubic equation) push the potential back on track. Finally, the model performs a reasoning jump ⑤ (for some non-obvious reason, this particular calculation is difficult for the model).

later in Sec. 5 that such models tend to produce correct answers often through guessing on very difficult problems. Model size also seems to surpress this behaviour more, which is expected since larger models generally tend to perform better. Reasoning tangents occur more often for reasoning models, aligning well with the observation in the literature that such models have the tendency to *overthink* (Chen et al., 2025a), i.e. they discard the discovered, correct answer and explore alternative but flawed approaches. This also partially explains their less monotonic potential. All models exhibit a high amount of reasoning insights, suggesting that most of the difficulty is concentrated in a few key steps instead of being uniformly spread out, more akin to human reasoning.

Amount of guessing. We quantify the amount of guessing that Qwen2.5-1.5B and Qwen2.5-7B perform by revisiting the popular pass@k metric, a quantity that is very prone to suffer from this particular behaviour. For a dataset consisting of P queries $\{x_i\}_{i=1}^P$ with corresponding answers $\{y_i^*\}_{i=1}^P$, we sample k responses $y_i^{(j)}$ per question from the model and measure if the correct answer is at least once among this set, i.e.

$$pass@k = \frac{1}{P} \sum_{i=1}^{P} \mathbb{1}_{\left\{y^* \in \{y_i^{(1)}, \dots, y_i^{(k)}\}\right\}}$$

Especially for large k, this metric could fall victim to lucky guesses as (1) it only takes one correct answer to obtain the full score and (2) the reasoning process usually not being assessed. Indeed, in Fig. 4 we show that the pass@k scores can be very inflated by flagging samples with the *late spike* statistic, in this case on AIME-2025.

Optimizing the potential. Given our observation that CoT does not naturally follow a monotonic curve, with many tokens even worsening performance, the following question emerges:

Can we search the space of CoT c such that every sub-CoT $c_{s < t}$ contributes?

One way to try and maximize the potential of every chunk of CoT is to set a chunk size $C \in \mathbb{N}$ and randomly explore candidate chunks, calculate their potential and keep the highest scoring chunk. In this manner, we can construct a CoT that increases the potential at least gradually if the model

7: end while

Figure 6: **Unaligned difficulty.** Qwen2.5-1.5B solves most difficult parts in ① but only small increase in potential. Seemingly easier part ② of just obtaining t given s and adding the two turns out to be significantly more difficult.

admits such reasoning, ideally avoiding issues such as reasoning tangents. We summarize the recipe in Algorithm 1 more formally. We indeed find that models admit such optimized CoT, we display some associated potential curves in contrast with regular CoT in Fig. 3. We can indeed see that the optimized CoT displays strong monotonicity with most tokens contributing to the potential. This is in stark contrast with the standard CoT, which either does not increase the potential for a long token horizon (left side of the figure), or even actively worsens it (right side). We examine such CoTs more qualitatively in Appendix A.3.

Algorithm 1 Generating potential-optimized CoTs

```
1: Initialize the CoT c_{< t} \leftarrow \emptyset

2: while the chosen candidate does not contain the answer do

3: Sample M candidate CoT chunks c_{t:(t+T)}^{(m)} \stackrel{i.i.d.}{\sim} \operatorname{LM}_{\theta}(\cdot \mid c_{< t}, x) of length C, for m = 1, \ldots, M

4: Compute potentials p_m \leftarrow \operatorname{pot}_N(c_{< t+T}^{(m)}; x)

5: Select \tilde{m} \leftarrow \operatorname{arg\,max}_m p_m

6: Update c_{< t+T} \leftarrow [c_{< t}, c_{t<(t+T)}^{(\tilde{m})}]
```

5 A CLOSER LOOK AT CHAIN-OF-THOUGHT REASONING

We now perform a qualitative analysis of various chain-of-thought reasonings on competition-level mathematics. Due to the verbosity of reasoning models such as Qwen3, we limit this section to the Qwen2.5 series, whose CoT is more concise and thus more amenable to direct interpretation. The only exception is Fig. 7, where we display parts of a trace from Qwen3-0.6B. Our goal is to precisely align the potential curve with the underlying reasoning produced by the model, and as a consequence obtain an understanding of the types of tokens that drive or hinder the progress. For space reasons we defer from displaying the full CoT but instead show only the sections crucial to the potential. We refer the interested reader to Appendix A.3 for additional qualitative examples. We display the first sample obtained from Qwen2.5-7B in Fig. 5, a potential curve that exhibits strong non-monotonicity as we have often encountered (see Fig. 2). We dissect the reasoning into five segments according to the potential. Segment ① steadily makes progress towards the solution by correctly expressing the radius as a function of the sides of the box and formulating the optimization problem. In segment ② the model goes on a reasoning *tangent*, a step that is not necessarily wrong but happens to not work out for the particular problem (*AM-GM inequality* gives a non-tight

Figure 7: **Reasoning tangents and guessing.** Qwen3-0.6B goes on a long reasoning tangent in ① that does not increase the potential over a long token horizon. Finally it outputs a final answer in ②, itself admitting that the guess is not backed by the reasoning prior but seems likely to the model.

lower bound for the minimum). The model manages to ignore this step in this particular trajectory, but on average suffers from this distraction, leading to a sharp drop in the potential. In segment ③ and ④, the model correctly recognizes the symmetry of the problem as well as discovers the root of the cubic equation, with both *insights* consequently boosting the accuracy akin to human reasoning. Finally, in segment ⑤ we observe the final spike in the potential, stemming from a simple arithmetics step that the model tends to get wrong. While the previous spikes were readily interpretable, the last one seems more unintuitive, given that the model manages to very reliably perform the arguably harder arithmetics steps just before. We coin this a reasoning *jump*, a very sharp increase in the potential that largely seems due to a very model-specific issue.

Such misalignment in perceived difficulty of sub-steps is often present in CoT, in Fig. 6 we display another reasoning trace of Qwen2.5-7B along with the associated potential which exhibits this surprising characteristic. Segment ① here does the conceptual heavy-lifting; it correctly deduces the associated system of equations in two variables, simplifies and obtains the solution for the first variable s. The completion of these seemingly involved steps is only rewarded with a small increase in potential, as opposed to humans, the model does not struggle here. Instead, the more difficult steps contained in segment ② consist of now obtaining the second variable t, which only involves plugging the value for s into the previously derived equation. Compared to the previous segment, finishing the problem starting from the end of ① would be a significantly simpler task for humans.

Another surprising insight we obtained is that models can be very capable of guessing solutions to such problems. In Fig. 7 (and Fig. 10) we display the reasoning of Qwen3-0.6B. While the content of segment ① at first sight looks relevant, closer inspection reveals that the final answer "80" is not at all deduced from the reasoning performed before. The answer seems to be a lucky guess, most likely informed by the fact that answers to such competition-level questions usually take the form of an integer value. This guessing is elegantly reflected in the potential curve; the reasoning in segment ① (which essentially encompasses the entire CoT) does not make any progress at all towards the final answer, precisely because the model is most likely making a guess in the end, which more often than not ends up being wrong.

6 Transferability of CoT

Motivated by the insights from Sec. 4 and 5, we now investigate if reasoning *insights* transfer between different families of models, which would further underscore that the mechanisms underlying CoT reasoning share parallels with human reasoning. We hypothesize that if the sub-steps present information gain through reasoning insights, (similar to e.g. Fig. 1), weaker models could be able to solve problems that were previously too difficult. We study this scenario for both reasoning and non-reasoning models. In the first setup we consider Qwen3-0.6B as the weak model, which is provided with partial CoT from its bigger version Qwen3-32B. We also explore traces from GPT-OSS-20B to further assess how robust transferability is with respect to out-of-distribution scenarios. For the non-reasoning models we instead create a dataset of *gold* CoT, using one of the strongest public models Qwen3-235B to produce answers on AIME-2024 in thinking mode. We then extract the CoT after

Figure 8: **Transferability of CoT. Left:** Accuracy on AIME-2025 of weaker reasoning model Qwen3-0.6B when provided with partial CoT from Qwen3-32B (red) and from GPT-OSS-20B (orange), leading to very quick improvements. **Right:** Accuracy of non-reasoning models Qwen2.5-7B and Qwen2.5-72B when provided with a partial CoT based on the final summary output of reasoning model Qwen3-235B.

thinking, which presents a clean summary of the long thinking traces and use these as partial traces. We then test the weaker Qwen2.5-7B and Qwen2.5-72B models, letting them complete the partial responses for various percentages. We display the resulting test accuracies as a function of the fraction of partial CoT in Fig. 8. We observe that surprisingly, in both reasoning and non-reasoning scenarios, the models manage to not only maintain their original accuracies but quickly improve (with as little as 20% CoT), answering previously unsolved questions. While the CoT does seem to transfer better within the same family, Qwen3-0.6B can still leverage the significantly different traces from GPT-OSS-20B, suggesting that the mechanisms driving the performance are universally shared between models to a strong degree.

7 Conclusion

In this work we have investigated chain-of-thought reasoning in large language models through the notion of the associated potential. We have performed an in-depth analysis of parts of CoT that strongly move the potential upwards (reasoning insights and jumps), as well as tokens that actively worsen the performance due to reasoning tangents. We further observed that especially for smaller LLMs, the potential can exhibit very late spikes only, suggesting that the final answer was reached without leveraging the reasoning. Upon qualitative examination we indeed found that many answers are guesses, leading to inflated pass@k scores. We showed that more desirable potentials (free of tangents) can be obtained by an iterative procedure, resulting in more monotonic CoTs. Finally, we further investigate reasoning insights by introducing the notion of CoT transferability, which measures to what degree a weaker model can profit from the partial CoT of a stronger one. We show that the insights of the stronger model indeed help push the performance of the weaker one beyond what it can typically solve on its own, highlighting that CoT indeed relies on such interpretable mechanisms. We believe that combining the transferability of partial CoTs with reinforcement learning to reduce sparsity of rewards makes for exciting future work.

REFERENCES

Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar, Emmanuel Abbe, and Robert West. Rl for reasoning by adaptively revealing rationales, 2025. URL https://arxiv.org/abs/2506.18110.

Moshe Berchansky, Daniel Fleischer, Moshe Wasserblat, and Peter Izsak. CoTAR: Chain-of-thought attribution reasoning with multi-level granularity. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024,

487

488

489

490

491

492 493

494

495

496 497

498

499

500

501

502

504 505

506

507

508 509

510

511

512

513

514

515

516

517

519

521

522

523

524

525

526

527

528

529

530

531

532

534

535

536

538

pp. 236–246, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.13. URL https://aclanthology.org/2024.findings-emnlp.13/.

- Siddhant Bhambri, Upasana Biswas, and Subbarao Kambhampati. Do cognitively interpretable reasoning traces improve llm performance?, 2025. URL https://arxiv.org/abs/2508.16695.
- Eric J Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text generation. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=8RCmNLeeXx.
- Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which Ilm reasoning steps matter?, 2025. URL https://arxiv.org/abs/2506.19143.
- Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do NOT think that much for 2+3=? on the overthinking of long reasoning models. In *Forty-second International Conference on Machine Learning*, 2025a. URL https://openreview.net/forum?id=MSbU3L7V00.
- Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan Leike, Jared Kaplan, and Ethan Perez. Reasoning models don't always say what they think, 2025b. URL https://arxiv.org/abs/2505.05410.
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.
- Olga Golovneva, Moya Peng Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz. ROSCOE: A suite of metrics for scoring step-by-step reasoning. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=xYlJRpzZtsY.

541

542

543

544

546

547

548 549

550

551

552

553

554

558

559

561

564

565

566

567

568

569

570 571

572

573 574

575

576

577

578

579

580

581

582

583

584

585

588

589

592

Subbarao Kambhampati, Kaya Stechly, Karthik Valmeekam, Lucas Saldyt, Siddhant Bhambri, Vardhan Palod, Atharva Gundawar, Soumya Rani Samineni, Durgesh Kalwar, and Upasana Biswas. Stop anthropomorphizing intermediate tokens as reasoning/thinking traces!, 2025. URL https://arxiv.org/abs/2504.09762.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, Karina Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson, Sam McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Timothy Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan Brauner, Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought reasoning, 2023. URL https://arxiv.org/abs/2307.13702.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and Adila Alfa Krisnadhi (eds.), *Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 305–329, Nusa Dua, Bali, November 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.ijcnlp-main.20. URL https://aclanthology.org/2023.ijcnlp-main.20/.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes two to tango, 2022. URL https://arxiv.org/abs/2209.07686.

Aman Madaan, Katherine Hermann, and Amir Yazdanbakhsh. What makes chain-of-thought prompting effective? a counterfactual study. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?id=va7nzRsbA4.

Andreas Madsen, Sarath Chandar, and Siva Reddy. Are self-explanations from large language models faithful? In *Annual Meeting of the Association for Computational Linguistics*, 2024. URL https://api.semanticscholar.org/CorpusID:266999774.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613 614

615

616

617

618

619

620

621

622

623

625

626

627

629

630

631

632

633 634

635

636

637

638

639

640 641

642

643

644

645

646

647

Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai ol system card, 2024. URL https://arxiv.org/abs/2412.16720.

OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen, Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives, Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher, Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar, Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman, Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily, Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles, Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano, Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey, Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/2508.10925.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.06941.

Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, and Subbarao Kambhampati. Beyond semantics: The unreasonable effectiveness of reasonless intermediate tokens, 2025. URL https://arxiv.org/abs/2505.13775.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun. Towards understanding chain-of-thought prompting: An empirical study of what matters. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2717–2739, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.153. URL https://aclanthology.org/2023.acl-long.153/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.

Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju. Analyzing chain-of-thought prompting in large language models via gradient-based feature attributions, 2023. URL https://arxiv.org/abs/2307.13339.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex reasoning in large language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=WZH7099tqfM.

A APPENDIX

A.1 EXPERIMENTAL DETAILS

We use vllm (Kwon et al., 2023) for all of our experiments. For potential calculation we set N=128 and use a temperature of T=0.6 and p=0.95 as sampling parameters. For all models and datasets we generate T=32k tokens excluding the prompt. To ensure that the potential does not increase due to higher generation length, we always subtract the length of the partial CoT from 32k and use this number as T.

A.2 PROOF OF PROPOSITION 1

Here we present the previously omitted proof of Proposition

By Bayes' rule, for any token c_{t+1} we have

$$f_{t+1} = \mathbb{P}(y=1 \mid x, c_{1:t}, c_{t+1}) = \frac{f_t \, p_1(c_{t+1})}{f_t \, p_1(c_{t+1}) + (1 - f_t) \, p_0(c_{t+1})}.$$

Taking expectation with respect to c_{t+1} drawn from p_1 , i.e. conditioned on the event that the rest of the run is correct, gives

$$\mathbb{E}[f_{t+1}] = f_t \sum_{c_{t+1}} p_1(c_{t+1}) \frac{p_1(c_{t+1})}{f_t p_1(c_{t+1}) + (1 - f_t) p_0(c_{t+1})}.$$

Equivalently,

$$\mathbb{E}[f_{t+1}] = f_t \sum_{c_{t+1}} \frac{p_1(c_{t+1})^2}{f_t p_1(c_{t+1}) + (1 - f_t) p_0(c_{t+1})}.$$

Now apply the Cauchy–Schwarz inequality with weights $q(c_{t+1}) = f_t p_1(c_{t+1}) + (1 - f_t) p_0(c_{t+1})$:

$$\left(\sum_{c_{t+1}} \frac{p_1(c_{t+1})^2}{q(c_{t+1})}\right) \left(\sum_{c_{t+1}} q(c_{t+1})\right) \geq \left(\sum_{c_{t+1}} p_1(c_{t+1})\right)^2.$$

Since $\sum_{c_{t+1}} q(c_{t+1}) = 1$ and $\sum_{c_{t+1}} p_1(c_{t+1}) = 1$, it follows that

$$\sum_{c_{t+1}} \frac{p_1(c_{t+1})^2}{q(c_{t+1})} \ge 1.$$

Therefore,

$$\mathbb{E}[f_{t+1}] \geq f_t.$$

Finally, taking expectation over prefixes $c_{1:t}$ distributed as on correct runs yields

$$\mathbb{E}[f_{t+1}] \geq \mathbb{E}[f_t],$$

which is the desired result.

A.3 MORE COT

We display more examples of annotated CoT in Fig. 9 and Fig. 7. In Fig. 9 we have again have the model performing a reasoning insight, correctly realizing that the exponents can be deduced from the binary representation of the number. We then finally have a reasoning jump, where the model experiences a strong boost in potential from the word "correspond". While at first sight not clearly interpretable, we hypothesize that this word forces the model to output concrete values for a_i 's, otherwise a common failure model as the model tries to further refine their computation.

In Fig. 10 we again observe a reasoning guess from Qwen2.5-1.5B, where the CoT in segment ①, while seemingly making sense at first sight, actually does not contribute to the final answer at all. In fact the number 80 does not relate at all to the computations made before. This is reflected in the potential, that shows a spike only towards the very end, highlighting that the CoT indeed did not contribute.

Finally, we show an instance of optimized CoT introduced in Sec.4. We observe that the potential is now strongly monotonic, with almost every partial CoT leading to some improvement in the potential. This is also reflected qualitatively, we can see that the CoT is more concise in language, in fact we can display all of it here. In segment ① the model makes slower progress as those are steps it can reliably do. Finally, the model undergoes a reasoning insight ② with the model discovering that d needs to divide 56.

A.4 STABILITY OF COT

We can also consider a slight variation of the potential, called the stability of a CoT. Given a prompt x, CoT reasoning and answer pair (c, y) we define the stability of a sub-chain $c_{< t}$ as

$$\mathrm{stable}_N(\boldsymbol{c}_{< t}; \boldsymbol{x}, y) := \frac{1}{N} \sum_{n=1}^N \mathbb{1}_{\{y^{(n)} = y\}} \quad \text{where } \left(y^{(n)}, \boldsymbol{c}_{\geq t}^{(n)}\right) \sim \mathrm{LM}_{\boldsymbol{\theta}}(\bullet | \boldsymbol{c}_{< t}, \boldsymbol{x})$$

with the slight variation that instead of considering the ground truth y^* , we now consider the reached final answer of the chain c as the target. I.e. the potential is a special of stability, when $y=y^*$. Stability measures how *determined* the final answer is throughout the reasoning process of the model. Somewhat surprisingly, we observe that correct answers do not necessarily always display higher stability, indicating that models can become convinced very early on in their reasoning about wrong answers. We display various stability curves in Fig. 12.

A.5 MORE DETAILS ON SUMMARY STATISTICS

Here we provide the definitions for the statistics we used in Sec. 4. In all experiments we divide the CoT into 20 chunks, getting thus potential curves consisting of 20 points.

Figure 9: Unintuitive reasoning jumps. Qwen2.5-7B's potential $pot_{256}(\cdot;x)$ remains flat in ① although crucial insights are obtained. The potential then increases due to a reasoning *insight* in ② (realizing that the binary representation determines the exponents). In ③ we obtain the final spike at the word "corresponding", a reasoning *jump*, which seems strange from a human perspective. We hypothesize that it might force the model to output values for a_i 's, which indeed is the next logical step. We indeed observe that without this word, the model continues to perform unnecessary calculations, subsequently leading to wrong values for a_i .

Figure 10: **Reasoning tangents and guessing.** Qwen2.5-1.5B goes on a long reasoning tangent in ① that does not increase the potential over a long token horizon. Finally it outputs a final answer in ② unrelated to the previous reasoning that happens to be correct.

Figure 11: **Optimized CoT.** We show a trajectory based on the optimized CoT from Qwen2.5-1.5B. The CoT is more concise, actually allowing us to show it here in full length. The potential is monotonic as anticipated and all tokens contribute to it. In segment ① the model makes slower progress as those are steps it can reliably do. Finally, the model undergoes a reasoning insight ② with the model discovering that d needs to divide 56.

Figure 12: **Stability profiles.** Stability profiles for Qwen2.5-1.5B and Qwen2.5-7B on AIME 7 and 26 respectively. Correct and wrong answers exhibit similar profiles across models and questions.

- Insight: We say that a given potential contains an insight if the difference between two consecutive chunks of CoT exceeds 40%, i.e. if one step of CoT raised the potential by at least 40%. We exclude the last two steps to make sure we don't count the late reasoning spikes as insights.
- **Tangent:** We define a potential to exhibit a tangent if the potential drops by at least 30%, not necessarily consecutively.
- Guess: We define late reasoning spikes or guesses as the case when the potential at the second to last step is smaller than 5%.
- Monotonicity: We call a potential monotone if its consecutive steps do not decrease by more than 10%.