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ABSTRACT

Contextual bandit algorithms are essential for solving real-world decision making
problems. In practice, collecting a contextual bandit’s feedback from different
domains may involve different costs. For example, measuring drug reaction from
mice (as a source domain) and humans (as a target domain). Unfortunately, adapting
a contextual bandit algorithm from a source domain to a target domain with
distribution shift still remains a major challenge and largely unexplored. In this
paper, we introduce the first general domain adaptation method for contextual
bandits. Our approach learns a bandit model for the target domain by collecting
feedback from the source domain. Our theoretical analysis shows that our algorithm
maintains a sub-linear regret bound even adapting across domains. Empirical
results show that our approach outperforms the state-of-the-art contextual bandit
algorithms on real-world datasets.

1 INTRODUCTION

Contextual bandit (CB) algorithms have shown great promise for naturally handling explo-
ration/exploitation trade-off problems with optimal statistical properties. Notably, LinUCB (Li
et al., 2010) and its various adaptations (Yue & Guestrin, 2011; Agarwal et al., 2014; Li et al., 2016;
Kveton et al., 2017; Foster et al., 2018; Korda et al., 2016; Mahadik et al., 2020; Zhou et al., 2019),
have been shown to be able learn the optimal strategy when all data come from the same domain.
However, these methods fall short when applied to data from a new domain. For example, a drug
reaction prediction model trained by collecting feedback from mice (the source domain) may not
work for humans (the target domain).

So, how does one effectively explore a high-cost target domain by only collecting feedback from a
low-cost source domain, e.g., exploring drug reaction in humans by collecting feedback from mice
or exploring real-world environments by collecting feedback from simulated environments? The
challenge of effective cross-domain exploration is multifaceted: (1) The need for effective exploration
in both the source and target domains depends on the quality of representations learned in the source
domain, which in turn requires effective exploration; this leads to a chicken-and-egg dilemma. (2)
Aligning source-domain representations with target-domain representations is nontrivial in bandit
settings, where ground-truth may still be unknown if the action is incorrect. (3) Balancing these
aspects – effective exploration and accurate alignment in bandit settings – is also nontrivial.

To address these challenges, as the first step, we allow our method to simultaneously perform effective
exploration and representation alignment, leveraging unlabeled data from both the source and target
domains. Interestingly, our theoretical analysis reveals that naively doing so leads to sub-optimal
accuracy/regret (verified by our empirical results) and naturally leads to additional terms in the
target-domain regret bound. We then follow the regret bound derived from our analysis to develop an
algorithm that adaptively collect feedback from the source domain while aligning representations
from the source and target domains. Our contributions are outlined as follows:

• We identify the problem of contextual bandits across domains and propose domain-adaptive
contextual bandits (DABand) as a the first general method to explore a high-cost target domain
while only collecting feedback from a low-cost source domain.

• Our theoretical analysis shows that our method can achieve a sub-linear regret bound in the
target domain.
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• Our empirical results on real-world datasets show our DABand significantly improve perfor-
mance over the state-of-the-art contextual bandit methods when adapting across domains.

2 RELATED WORK

Contextual Bandits. In the realm of adaptive decision-making, contextual bandit algorithms,
epitomized by LinUCB (Li et al., 2010), have carved a niche in efficiently balancing the exploitation-
exploration paradigm across a spectrum of use cases, notably in complex adaptive systems such as
recommender systems (Li et al., 2010; Wang et al., 2022). These algorithmic frameworks, along
with their myriad adaptations (Yue & Guestrin, 2011; Agarwal et al., 2014; Li et al., 2016; Korda
et al., 2016; Kveton et al., 2017; Foster et al., 2018; Zhou et al., 2019; Mahadik et al., 2020; Xu et al.,
2020), have decisively outperformed conventional bandit models that operate devoid of contextual
awareness (Auer, 2002). This superiority is underpinned by theoretical models, paralleling the insights
in (Auer, 2002), where LinUCB variants are validated to conform to optimal regret boundaries in
targeted scenarios (Chu et al., 2011). However, a discernible gap in these methodologies is their
reduced efficacy in a new domain, particularly when getting feedback involves high cost. Our
proposed DABand bridges this gap by adeptly aligning both source-domain and target-domain
representations in the latent space, thereby reducing performance drop when transfer across different
domains.

Domain Adaptation. The landscape of domain adaptation has been extensively explored, as evi-
denced by a breadth of research (Pan & Yang, 2009; Pan et al., 2010; Long et al., 2018; Saito et al.,
2018; Sankaranarayanan et al., 2018; Zhang et al., 2019; Peng et al., 2019; Chen et al., 2019; Dai
et al., 2019; Wang et al., 2020; Nguyen-Meidine et al., 2021; Xu et al., 2023). The primary objective
of these studies has been the alignment of source and target domain distributions to facilitate the
effective generalization of models trained on labeled source data to unlabeled target data. This
alignment is conventionally attained either through the direct matching of distributional statistics (Pan
et al., 2010; Tzeng et al., 2014; Sun & Saenko, 2016; Peng et al., 2019; Nguyen-Meidine et al.,
2021) or via the integration of an adversarial loss (Ganin et al., 2016b; Zhao et al., 2017; Tzeng
et al., 2017; Zhang et al., 2019; Kuroki et al., 2019; Chen et al., 2019; Dai et al., 2019; Wang et al.,
2020). The latter, known as adversarial domain adaptation, has surged in prominence, bolstered
by its theoretical foundation (Goodfellow et al., 2014; Zhao et al., 2018; Zhang et al., 2019; Zhao
et al., 2019), the adaptability of end-to-end training in neural network architectures, and its empirical
efficacy. However, these methods only work in offline settings, and assumes complete observability
of labels in the source domain. Therefore they are not applicable to our online bandit settings.

Domain Adaptation Related to Bandits. There is also work related to both domain adaptation and
bandits. Specifically, Guo et al. (2020) propose a domain adaptation method using a bandit algorithm
to select which domain to use during training.

We note that their goal and setting is different from our DABand’s. (1) Guo et al. (2020) focuses on
improving accuracy in a typical, offline domain adaptation setting. In contrast, our DABand focuses
on minimizing regret in an online bandit setting. (2) Guo et al. (2020) assumes complete access
to ground-truth labels in the source domain, while in our bandit setting, ground-truth may still be
unknown if the action is incorrect. Therefore their work is not applicable to our setting.

3 THEORY

In this section, we formalize the problem of contextual bandits across domains and derive the
corresponding regret bound. We then develop our DABand inspired by this bound in Sec. 4. All
proofs of lemmas, theorems can be found in the Appendix.

Notation. We use [k] to denote the set {1, 2, · · · , k}, for k ∈ N+. The Euclidean norm of a vector
x ∈ Rd is denoted as ∥x∥2 =

√
xTx. We denote the operator norm and Frobenius norm of a matrix

W ∈ Rm×n as ∥W∥ and ∥W∥F , respectively. Given a semi-definite matrix A ∈ Rd×d and a vector
x ∈ Rd, we denote the Mahalanobis norm as ∥x∥A =

√
xTAx. For a function f (T ) of a parameter T ,

we denote as O(f (T )) the terms growing in the order of f (T ), ignoring constant factors. We assume
all the action spaces are identical and with cardinality of K, i.e., |A1| = |A2| = · · · = |AN | = K.
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We use ⟨·, ·⟩ to denote the inner product of two vectors. We denote as aD,i the action i in domain D,
and omit the subscript D when the context is clear, e.g., xDi,a∗

i
≡ xDi,a∗

D,i
.

3.1 PRELIMINARIES

Typical Contextual Bandit Setting. Suppose we have N samples from an unknown domain D,
which is represented as {xD

i,a, a
∗
i }i∈[N ],a∈[K]. Here, xi,a ∈ D denotes the context for action a ∈ Ai,

and a∗i ∈ Ai is the ground-truth action that will receive the optimal reward. We denote as ri,a
the received reward in round i after performing action a and âi ∈ Ai the chose action by a bandit
algorithm in round i. The goal in typical contextual bandits is to learn a policy of choosing actions âi
in each round to minimize the regret after N rounds:

R =
∑N

i=1
ri,a∗

i
−
∑N

i=1
ri,âi

. (1)

LinUCB. LinUCB Li et al. (2010) is a classic method for the typical contextual bandit setting. It
assumes that the reward is linear to its input context, i.e., xi,a. During each round i, the agent selects
an arm according to historical contexts and their corresponding rewards, ri,a:

âi = argmax
a∈Ai

{
xT
i,aθi + α ∥xi,a∥A−1

i−1

}
,

whereAi−1 = γId+
∑i−1

j=1 xj,âj
xT
j,âj

with γ > 0 and xT
j,âj

as the historical selected action’s context,
xi,a is the context for the candidate action a in round i, θi is the bandit parameter in round i and
α > 0 is a hyperparameter that adjusts the exploration rate.

LinUCB with Representation Learning. In this paper, we use Neural LinUCB Xu et al. (2020);
Wang et al. (2022) as a backbone model to handle high-dimensional context with representation
learning. We assume that there exist a ground-truth encoder ϕ∗ to encode the raw context xi,a into a
latent-space representation (encoding) ϕ∗(xi,a). Subsequently, the reward for the context xi,a is then
r(xi,a) = ⟨θ∗, ϕ∗(xi,a)⟩ plus some stochastic noise ϵ. Furthermore, we use the same setting as in Xu
et al. (2020) where the ground-truth rewards are restricted to the range of [0, 1]. Additionally, we
further bound predicted rewards by normalizing ∥θ̂∥ = 1 and ∥ϕ̂(xi,a)∥ = 1.

In the single-domain typical setting, the goal is to learn an encoder ϕ̂ and the contextual bandit
parameter θ̂, such that our estimated reward r̂(xi,a) = ⟨θ̂, ϕ̂(xi,a)⟩ can be close to the ground-truth
reward r(xi,a). One can then use this to form derive policies to minimize the regret in Eqn. (1).

For simplicity, in Definition 3.1 below, we further denote as fD the (ground-truth) labeling function for
domain D and as h ∈ H a hypothesis such that f is parameterized by ϕ∗D, θ

∗
D, and h is parameterized

by ϕ̂, θ̂.

3.2 OUR CROSS-DOMAIN CONTEXTUAL BANDIT SETTING

Typical contextual bandits operate in a single domain D. In contrast, our cross-domain bandit
setting involves a source domain S and a target domain T . In this setting, one can only collect
feedback (reward) from the source domain, but not from the target domain. Specifically: (1) We
assume a low-cost source domain (experiments on mice), where for each round i, one has access
to the contexts {xS

i,a}a∈[K] for each candidate actions, chooses one action âi, and receives reward
rSi,âi

. (2) Additionally, we assume a high-cost target domain where collecting feedback (reward) is
expensive (experiments on humans); therefore, one only has access to the contexts {xT

i,a}a∈[K] for
each candidate actions for each round, but cannot collect feedback (reward) rTi,âi

for any action in
the target domain. The goal in our cross-domain contextual bandits is to learn a policy of choosing
actions âi in the target domain to minimize the target-domain zero-shot regret for N (hypothetical)
future rounds:

RT =
∑N

i=1
rTi,a∗

i
−
∑N

i=1
rTi,âi

. (2)

Difference between Eqn. (1) and Eqn. (2). In the typical setting, Eqn. (1) uses different updated
policies for each round; this is also true for the source domain. In contrast, the target regret in Eqn. (2)

3
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use the same fixed policy obtained from the source domain for all N (hypothetical) rounds because
one cannot collect feedback from the target domain. See the difference between Definition 3.4 and
Definition 3.5 below for a more formal comparison.

3.3 FORMAL DEFINITIONS OF ERROR

Definition 3.1 (Labeling Function and Hypothesis). We define the labeling function fD and the
hypothesis h for domain D as follows:

fD(x
D
i,a) = r(xD

i,a) = ⟨θ∗D, ϕ∗D(xD
i,a)⟩+ ϵi

h(xD
i,a) = r̂(xD

i,a) = ⟨θ̂, ϕ̂(xD
i,a)⟩+ ϵi

where θ∗D is the optimal predictor for domain D, θ̂ denotes the estimated predictor, and ϵi is the
random noise.

Next, we analyze how well our hypothesis h estimates the labeling function f (i.e., ground-truth
hypothesis). Definition 3.2 below quantifies the closeness between two hypotheses by calculating the
absolute difference in their estimated rewards.
Definition 3.2 (Estimated Error between Two Hypotheses). Assuming all contexts xD

i,âi
are from

domain D, the error between two hypotheses h1, h2 ∈ H on domain D given selected actions
{âi}i∈[N ] ∈ [K] is

ϵD(h1, h2) =
∑N

i=1

(∣∣h1(x
D
i,âi

)− h2(x
D
i,âi

)
∣∣) =

∑N

i=1

(∣∣∣⟨θ̂1, ϕ̂1(x
D
i,âi

)⟩ − ⟨θ̂2, ϕ̂2(x
D
i,âi

)⟩
∣∣∣). (3)

Note that the domain D above can be the source domain S or the target domain T . We then define
the error of our estimated hypothesis in these domains.
Definition 3.3 (Source- and Target-Domain Error). With N samples from the source domain S,
and fS denoting the labeling function for S, the source-domain error is then

ϵS(fS , h) =
∑N

i=1

(∣∣fS(xS
i,âi

)− h(xS
i,âi

)
∣∣) =

∑N

i=1

(∣∣∣⟨θ∗S , ϕ∗
S(x

S
i,âi

)⟩ − ⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣),

where xS
i,· comes from S. Furthermore, âi = argmaxa h(x

S
i,a) and a∗i = argmaxa fS(x

S
i,a).

For simplicity, we shorten the notation ϵS(fS , h) to ϵS(h) and similarly use ϵT (h) for domain T .
Assuming xT

i,· comes from T , the estimated error for the target domain is then:

ϵT (fT , h) =
∑N

i=1

(∣∣fT (xT
i,âi

)− h(xT
i,âi

)
∣∣) =

∑N

i=1

(∣∣∣⟨θ∗T , ϕ∗
T (xT

i,âi
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣).

3.4 SOURCE REGRET AND TARGET REGRET

Below define the regret for the source and target domains.
Definition 3.4 (Source Regret). Assuming xS

i,· comes from domain S, the source regret (i.e., the
regret in the source domain) is

RS =
∑N

i=1

(
fS(x

S
i,a∗

i
)− fS(x

S
i,âi

)

)
=
∑N

i=1

(
⟨θ∗S , ϕ∗

S(x
S
i,a∗

i
)⟩ − ⟨θ∗S , ϕ∗

S(x
S
i,âi

)⟩

)
. (4)

The goal in our cross-domain contextual bandits is to learn a policy of choosing actions âi in the
high-cost target domain (e.g., human experiments) by collecting feedback only in the source domain
(e.g., mouse experiments). Formally, we would like to minimize the target regret as defined below.
Definition 3.5 (Target Regret and Problem Formulation). Denoting the estimated hypothesis as
ĥ =

{
ϕ̂, θ̂
}

, the target regret we aim to minimize is defined as

RT =
∑N

i=1

(
fT (xT

i,a∗
i
)− fT (xT

i,âi
)

)
s.t. âi = argmax

a
ĥ(xT

i,a) + α∥ϕ̂(xT
i,a)∥[AS ]−1 , ĥ = argmin

h
ϵS(h),

4
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where AS = γI+
∑N

i=1[ϕ̂(x
S
i,âi

)][ϕ̂(xS
i,âi

)]T denotes the context matrix accumulated by the selected
context features in the source domain.

3.5 CROSS-DOMAIN ERROR BOUND FOR REGRESSION

Prior to introducing our final regret bound, it is necessary to define an additional component. A funda-
mental challenge in general domain adaptation problems is to manage the divergence between source
and target domains. Unfortunately, previous domain adaptation theory only covers classification
tasks Ben-David et al. (2010); Zhang et al. (2019). In contrast, the problem of contextual bandits is
essentially a reward regression problem. To address this challenge, we introduce the following new
definition to bound the error between the source and target domains.
Definition 3.6 (H∆H Hypothesis Space for Regression). For a hypothesis space H, the symmetric
difference hypothesis space H∆H is the set of hypotheses s.t.

g ∈ H∆H ⇐⇒ g(x) = |h(x)− h′(x)|.
We then can further define the Divergence for H∆H Hypothesis Space:

d̂H∆H(S, T ) = 2 sup
h,h′∈H

|Ex∼S [|h(x)− h′(x)|]− Ex∼T [|h(x)− h′(x)|]|

Definition 3.7 (Optimal Hypothesis). The optimal hypothesis, denoted as h∗, can balance the
estimated error for both source and target domain. Formally,

h∗ = argmin
h∈H

ϵS(h) + ϵT (h),

and we define the minimum estimated error for the optimal hypothesis h∗ as

ψ = ϵS(h
∗) + ϵT (h

∗).

3.6 FINAL REGRET BOUND

With all the definitions of source/target regret in Definition 3.4 and Definition 3.5, we can then bound
the target regret using Theorem 3.1 below.
Theorem 3.1 (Target Regret Bound). Denoting the contexts from the source domain S as
{xS

t,a}i∈[N ],a∈[K], the associated ground-truth action as {a∗i }Ni=1, and the contexts from the tar-
get domain T as {xT

t,a}i∈[N ],a∈[K], the upper bound for our target regret RT is

RT ≜
N∑
i=1

(∣∣∣⟨θ∗T , ϕ∗
T (xT

i,a∗
i
)⟩ − ⟨θ∗T , ϕ∗

T (xT
i,âi

)⟩
∣∣∣)

≤ RS︸︷︷︸
Source Regret

+ 2 · ϵS(h)︸ ︷︷ ︸
Regression Error

+N · d̂H∆H(S, T )︸ ︷︷ ︸
Data Divergence

+ ψ + C︸ ︷︷ ︸
Constant

+

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

N∑
i=1

1[a∗i ̸= âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩
∣∣∣)︸ ︷︷ ︸

Predicted Rewards

, (5)

where RS , ϵS(h), and d̂H∆H are the source regret, source-domain error, and H∆H divergence
defined in Definition 3.4, Definition 3.3, and Definition 3.6, respectively. ψ is a constant independent
to the problem and and C is a constant which can be ignored (see the Appendix for more details) .

Here we provide several observations (for more analysis, please refer to the Appendix):

(1) Since RS is sub-linear w.r.t. the number of samples in the source domain, so is RT .
(2) Theorem 3.1 bounds the target regret using the source regret, enabling the exploration of the

target domain by only collecting feedback (reward) from the source domain.
(3) Typical generalization bounds in DA naively minimize the source regret RS while aligning

source and target data in the latent space (i.e., minimizing d̂H∆H). This is not sufficient,
as we need two additional terms, i.e., the regression error ϵS(h) and the predicted reward∑N

i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+∑N

i=1 1[a
∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣), as regularization terms.

5
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(4) Minimizing the regression error ϵS(h) encourages accurate prediction of source rewards.
(5) Minimizing the predicted reward

∑N
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+∑N

i=1 1[a
∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣)

regularizes the model to avoid overestimating rewards.

Note that Theorem 3.1 is nontrivial. While it does resemble the generalization bound in domain
adaptation, there are key differences. As mentioned in Observation (3) above, our target regret bound
includes two additional crucial terms not found in domain adaptation. Specifically:

• Regression Error in the Source Domain.
∑N

i=1

(∣∣∣⟨θ∗S , ϕ∗S(xSi,âi
)⟩ − ⟨θ̂, ϕ̂(xSi,âi

)⟩
∣∣∣) (i.e.,

ϵS(h) in Theorem 3.1) defines the difference between the true reward from selecting action âi
and the estimated reward for this action.

• Predicted Reward.
∑N

i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

∑N
i=1 1[a

∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣) serves as a

regularization term to regularize the model to avoid overestimating rewards.

The results of the ablation study in Table 4 in Sec. 5 highlight the significance of these two terms.
See Appendix G.4 for more discussion on novelty as well as key differences between our DABand
and classic domain adaptation.

4 METHOD

With Theorem 3.1, we can then design our DABand algorithm to obtain optimal target regret. We
discuss how to translate each term in Eqn. (5) to a differential loss term in Sec. 4.1 and then put them
together in Sec. 4.2.

4.1 FROM THEORY TO PRACTICE: TRANSLATING THE BOUND IN EQN. (5) TO
DIFFERENTIABLE LOSS TERMS

Source Regret. Inspired by Neural-LinUCB (Xu et al., 2020), we use LinUCB Li et al. (2010)
to update θ̂ and the following empirical loss function when updating the encoder parameters ϕ̂ by
back-propagation in round i:

LRS
i =

∑K

a=1

(
θ̂T ϕ̂(xi,a)− r(xi,a)

)2
, (6)

where θ is the contextual bandit parameter, and ϕ̂ is the encoder shared by the source and target
domains, i.e., we set ϕ̂S = ϕ̂T during training.

Insights. From Eqn. (6), a fundamental difference between classification problems and bandit
problems becomes apparent. In classification tasks, both the ground-truth label and the estimated
label are accessible. However, in bandit problems, we only know the estimated label and reward.
If the estimated rewards align with our estimated label’s correctness, it suggests knowledge of the
ground-truth label for that feature. If not, we can only deduce that the estimated label is inaccurate,
without identifying the correct label among the other candidates. This uncertainty significantly
amplifies the complexity of contextual bandit problems.

Regression Error. We use L1 loss to optimize the regression error, defined as the difference between
the true reward from selecting action âi and the estimated reward for this action (see Definition 3.3
for a detailed explanation of this regression error). Minimizing the regression error term directly
encourages accurate prediction of source rewards using L1 loss. Specifically, we use

LϵS(h)
i =

∣∣∣⟨θ∗S , ϕ∗S(xS
i,âi

)⟩ − ⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣ , (7)

where ⟨θ∗S , ϕ∗S(xS
i,âi

)⟩ is the reward received by the agent in the source domain. Minimizing the
regression error term above directly encourages accurate prediction of source rewards.

Data Divergence. The data divergence term in Eqn. (5) leads to following loss term:

Ldiv = max
g

N · (ES [LD(g(ϕ̂(x)), 0)] + ET [LD(g(ϕ̂(x)), 1)]), (8)

6
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Algorithm 1 DABand Training Algorithm
1: Input: regularization parameter γ > 0, number of total steps N , episode length H , exploration

parameters α.
2: Output: parameters of the model: ϕ̂N , θ̂N , AN , bN .
3: Initialization: A0 = γI, b0 = 0, and for θ̂0 and ϕ̂0 are initialized following (Xu et al., 2020).
4: for i = 1, ..., N do
5: Obtain

{
xS
i,a

}
a∈[K]

and
{
xT
i,a

}
a∈[K]

from the source and the target domain, respectively.

6: Choose an action âi = argmaxa∈[K]

[
ϕ̂i−1(x

S
i,a)
]
θ̂i−1 + α

∥∥∥[ϕ̂i−1(x
S
i,a)
]∥∥∥

A−1
i−1

.

7: Get the reward ri = r(xi,âi
) based on the selected action âi.

8: Update bandit parameters:

9:


Ai = Ai−1 +

[
ϕ̂i−1(x

S
i,âi

)
] [
ϕ̂i−1(x

S
i,âi

)
]T
,

bi = bi−1 + ri

[
ϕ̂i−1(x

S
i,âi

)
]
,

θ̂i = A−1
i bi

10: if mod (i,H) = 0 then
11: for j = 1, ...,H do
12: Calculate LDABand in Eqn. (11).
13: Use the Adam optimizer (Diederik, 2014) to update encoder ϕ̂i and discriminator g by

back-propagation to solve the minimax optimization in Eqn. (10).
14: end for
15: else
16: ϕ̂i = ϕ̂i−1

17: end if
18: end for
19: Output: ϕ̂N , θ̂N , AN , bN .

where ES and ET denote expectations over the data distributions of (x, a) in the source and target
domains, respectively. g is a discriminator that classifies whether x is from the source domain or the
target domain. LD is the binary classification accuracy, where labels 0 and 1 indicate the source and
target domains, respectively. In practice, we use the cross-entropy loss as a differentiable surrogate
loss. As in Ganin et al. (2016b), solving the minimax optimization minϕ̂ maxg Ldiv is equivalent to
aligning source- and target-domain data distributions in the latent (encoding) space induced by the
encoder ϕ̂.

Predicted Reward. The predicted reward term in Eqn. (5), i.e.,
∑N

i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣) +∑N

i=1 1[a
∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣), can be translated to the loss term

∑N
i=1 L

reg
i , where for each

round i we have

Lreg
i =

∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣+ 1[a∗i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣) . (9)

Minimizing the predicted reward Lreg
i regularizes the model to avoid overestimating rewards.

Constant Term. In Eqn. (5), ψ +C is the constant term, where ψ is defined in Definition 3.7, and C
contains some small constants which can be ignored (see the Appendix for more details).

4.2 PUTTING EVERYTHING TOGETHER: DABAND TRAINING ALGORITHM

Putting all non-constant loss terms above together, we have the final minimax optimization problem

minϕ̂ maxg LDABand, (10)

where the value function (objective function):

LDABand =
∑N

i=1
(LRS

i + 2 · LϵS(h)
i + Lreg

i ) + λ · Ldiv
i . (11)
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Table 1: Accuracy on the target domain for the DIGIT dataset. Note that in this zero-shot target regret
setting, the accuracy ACC = 1− 1

N
RT , where RT is the target regret.

Metrics Acc Per Class ↑ Acc ↑
Test Accuracy 0 1 2 3 4 5 6 7 8 9 Average

LINUCB (Li et al., 2010) 0.3667±0.03 0.4045±0.02 0.5102±0.03 0.3811±0.01 0.3157±0.04 0.3445±0.01 0.4229±0.03 0.4595±0.03 0.3489±0.02 0.2449±0.01 0.3808±0.02

LINUCB-P (Li et al., 2010) 0.3645±0.02 0.6398±0.04 0.3151±0.02 0.2709±0.03 0.2258±0.01 0.1995±0.02 0.1752±0.01 0.3786±0.04 0.1273±0.02 0.2992±0.03 0.3060±0.02

NLINUCB (Xu et al., 2020) 0.3781±0.04 0.3228±0.03 0.3569±0.03 0.3381±0.04 0.3663±0.04 0.4312±0.05 0.4766±0.05 0.4004±0.05 0.4034±0.02 0.3613±0.03 0.3816±0.04

NLINUCB-P (Xu et al., 2020) 0.8588±0.03 0.2224±0.02 0.3880±0.03 0.3029±0.02 0.2978±0.03 0.0000±0.01 0.1869±0.02 0.2243±0.01 0.2148±0.01 0.0000±0.00 0.2706±0.02

DABAND (OURS) 0.6891±0.10 0.6662±0.03 0.6188±0.01 0.5703±0.05 0.6008±0.05 0.5534±0.03 0.6010±0.02 0.5709±0.01 0.6266±0.04 0.5023±0.02 0.6002±0.02

OURS VS. NLINUCB +0.3110 +0.3434 +0.2619 +0.2322 +0.2345 +0.1222 +0.1244 +0.1705 +0.2232 +0.1410 +0.2186

Table 2: Accuracy on the target domain for the VisDA17 dataset. Note that in this zero-shot target
regret setting, the accuracy ACC = 1− 1

N
RT , where RT is the target regret.

Metrics Acc Per Class ↑ Acc ↑
Test Accuracy aeroplane bicycle bus car horse knife motorcycle person plant skateboard train truck Average

LINUCB (Li et al., 2010) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
LINUCB-P (Li et al., 2010) 0.0510±0.02 0.0190±0.00 0.1360±0.05 0.0440±0.02 0.0390±0.01 0.5580±0.06 0.0410±0.02 0.2050±0.05 0.0850±0.04 0.0920±0.13 0.0580±0.02 0.0460±0.12 0.1145±0.06

NLINUCB (Xu et al., 2020) 0.2870±0.03 0.0220±0.02 0.0000±0.00 0.1250±0.02 0.0000±0.00 0.0130±0.02 0.0470±0.02 0.0000±0.00 0.0460±0.02 0.0050±0.00 0.6550±0.04 0.0000±0.00 0.1001±0.02

NLINUCB-P (Xu et al., 2020) 0.0060±0.01 0.0020±0.01 0.9222±0.02 0.0010±0.00 0.0080±0.01 0.0990±0.03 0.0030±0.00 0.0020±0.00 0.0180±0.02 0.0420±0.01 0.0000±0.00 0.0150±0.01 0.0932±0.01

DABAND (OURS) 0.5504±0.02 0.3562±0.04 0.4462±0.02 0.3844±0.01 0.5582±0.04 0.2632±0.03 0.6474±0.03 0.2396±0.03 0.4882±0.04 0.4062±0.02 0.7685±0.05 0.1968±0.02 0.4644±0.03

OURS VS. NLINUCB +0.2634 +0.3342 +0.4462 +0.2594 +0.5582 +0.2502 +0.6004 +0.2396 +0.4422 +0.4012 +0.1135 +0.1968 +0.3643

Note that we need to alternate between updating θ̂ using LinUCB Li et al. (2010) and updating the
encoder ϕ̂ with the discriminator g in Eqn. (10).

Formally, our method, described in Alg. 1, operates as follows: In each iteration, we access the context
in the original feature space (i.e., Rd) for each action from both source and target domains, denoted
as
{
xSi,a
}
a∈[K]

and
{
xTi,a
}
a∈[K]

respectively. Subsequently, we compute the latent representation
using the encoder ϕ(·) and select the action âi for iteration i based on the LinUCB selection rule.
The bandit parameters (i.e., θ,A, b) are updated in each iteration. The weights in ϕ are updated every
episode of length H (i.e., a batch with H past iterations) using our objective function in Eqn. (10),
following the same rule as in Neural-LinUCB (Xu et al., 2020).

5 EXPERIMENTS

In this section, we compare DABand with existing methods on real-world datasets.

Datasets. To demonstrate the effectiveness of our DABand, We evaluate our methods in terms of
prediction accuracy and zero-shot target regret on three datasets, i.e., DIGIT (Ganin et al., 2016a),
VisDA17 (Peng et al., 2017), and S2RDA49 (Tang & Jia, 2023). See details for each dataset
in Appendix B.

Baselines. We compare our DABand with both classic and state-of-the-art contextual bandit al-
gorithms, including LinUCB (Li et al., 2010), LinUCB with principle component analysis (PCA)
pre-processing (i.e., LinUCB-P), Neural-LinUCB (Xu et al., 2020) (NLinUCB), and Neural-LinUCB
variant that incorporates PCA (i.e., NLinUCB-P). Details for each baselines and discussion are in Ap-
pendix C. Note that domain adaptation baselines are not applicable to our setting because it only
works in offline settings and assumes complete observability of labels in the source domain (see Ap-
pendix C for details).

Zero-Shot Target Regret (Accuracy). We evaluate different methods on the zero-shot target regret
setting in Definition 3.5, where all methods can only collect feedback from the source domain, but
not the target domain. In this setting, accuracy is equal to 1 minus the average target regret, i.e.,
ACC = 1− 1

N
RT , where RT is defined in Eqn. (2) and Definition 3.5. Therefore higher accuracy

indicates lower target regret and better performance.

We report the per-class accuracy and average accuracy of different methods in Table 1, Table 2 and
Table 3 for DIGIT, VisDA17 and S2RDA49, respectively. Our DABand demonstrates favorable
performance against NLinUCB, a leading contextual bandit algorithm with representation learning.
Despite NLinUCB’s superior representation learning capabilities through neural networks (NN)
over LinUCB – yielding impressive performance in single-domain applications – its efficacy in
cross-domain tasks is heavily contingent on the disparity between the source and target domains.
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Table 3: Accuracy on the target domain for the S2RDA49 dataset. Note that in this zero-shot target
regret setting, the accuracy ACC = 1− 1

N
RT , where RT is the target regret.

Metrics Acc Per Class ↑ Acc ↑
Test Accuracy aeroplane bicycle bus car knife motorcycle plant skateboard train truck Average

LINUCB (Li et al., 2010) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
LINUCB-P (Li et al., 2010) 0.1430±0.02 0.2600±0.03 0.0810±0.01 0.0240±0.01 0.1070±0.02 0.0570±0.01 0.1060±0.01 0.0390±0.01 0.0960±0.02 0.1260±0.03 0.1039±0.02

NLINUCB (Xu et al., 2020) 0.0350±0.00 0.1210±0.02 0.0510±0.01 0.0870±0.02 0.0270±0.00 0.0240±0.01 0.2720±0.04 0.0090±0.00 0.1730±0.02 0.0309±0.01 0.1108±0.02

NLINUCB-P (Xu et al., 2020) 0.0000±0.00 0.0000±0.00 0.0000±0.00 0.2990±0.03 0.7000±0.02 0.0000±0.00 0.0000±0.00 0.0000±0.00 0.0000±0.00 0.1160±0.01 0.1115±0.01

DABAND (OURS) 0.5501±0.03 0.6418±0.03 0.5844±0.03 0.2346±0.01 0.0410±0.01 0.7580±0.04 0.5689±0.04 0.1345±0.02 0.1118±0.02 0.3126±0.02 0.3923±0.03

OURS VS. NLINUCB +0.5151 +0.5208 +0.5334 +0.1476 +0.0140 +0.7340 +0.2969 +0.1255 -0.0612 +0.2817 +0.2815

0 250 500 750 1000 1250 1500 1750 2000
Round

0

200

400

600

800

1000

1200

1400

Cu
m

ul
at

iv
e 

Re
gr

et

DABand
NLinUCB-P
NLinUCB
LinUCB-P
LinUCB

0 250 500 750 1000 1250 1500 1750 2000
Round

0

250

500

750

1000

1250

1500

1750

Cu
m

ul
at

iv
e 

Re
gr

et

DABand
NLinUCB-P
NLinUCB
LinUCB-P

0 250 500 750 1000 1250 1500 1750 2000
Round

0

250

500

750

1000

1250

1500

1750

Cu
m

ul
at

iv
e 

Re
gr

et

DABand
NLinUCB-P
NLinUCB
LinUCB-P

Figure 1: The cumulative regrets of different methods for 1,920 rounds on DIGIT (left), VisDA17
(middle), and S2RDA49 (right). Results are averaged over 5 runs. LinUCB is not reported for
VisDA17 and S2RDA49 due to out-of-memory issues.

Typically, the strengths of NN, which include enhanced representation learning (feature extraction),
may inadvertently amplify this domain divergence, potentially leading to overfitting on the source
domain. Conversely, our DABand algorithm not only improves accuracy but also adeptly addresses
the challenges posed by domain divergence. Note that LinUCB encounters an out-of-memory issue
due to the high-dimensionality of the data in VisDA17 and S2RDA49, marked as “N/A” in Table 2
and Table 3, respectively.

Performance Analysis of LinUCB and NLinUCB. Our target regret bound in Eqn. (5) consists of
5 terms, i.e., source regret, regression error, data divergence, constant, and predicted reward. After
applying linear contextual bandits on the source domain, the source regret enjoys a sub-linear rate.
However, in the linear model, the encoder ϕ̂(x) = x is an identity function and therefore fail to align
source-domain and target-domain contexts, leading to an unbounded, large data divergence term
in Eqn. (5). This is the main reason why linear contextual bandits, such as LinUCB, perform poorly
in the cross-domain contextual bandit setting.

Note that even contextual bandits using a nonlinear encoder, e.g., Neural-LinUCB (NLinUCB), fail
in this case because their encoders ϕ̂(x) are not learned to align source-domain and target-domain
contexts; they therefore will still lead to an unbounded, large data divergence term in Eqn. (5), and
subsequently poor performance in the cross-domain contextual bandit setting.

Table 4: Results of the ablation study in terms of accuracy
(higher is better). Note that the accuracy ACC = 1− 1

N
RT ,

where RT is the target regret. “R” and “P” is short for
“Regression Error” and “Predicted Reward”, respectively.

Datasets W/O R & P W/O R W/O P DABAND (FULL)

DIGIT 0.5676 0.5682 0.5768 0.6002

VISDA17 0.4088 0.4096 0.4304 0.4644

S2RDA49 0.3691 0.3694 0.3719 0.3923

Continued Training in Target Do-
mains and Cumulative Regret. Be-
sides zero-shot target regret, we also
evaluate how different methods per-
form when one continues their train-
ing in the high-cost target domain and
starts to collect feedback (reward) af-
ter the model is trained in the source
domain. A good cross-domain ban-
dit model can provide a head-start in
this setting, therefore enjoying signif-
icantly lower cumulative regret in the
target domain and saving substantial cost in collecting feedback in the high-cost target domain.

Fig. 1 shows the cumulative regrets of different methods on DIGIT, VisDA17 and S2RDA49, respec-
tively. We show results averaged over five runs with different random seeds. Our DABand consistently

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

surpasses all baselines for all rounds in terms of both cumulative regrets and their increase rates,
demonstrating DABand’s potential to significantly reduce the cost in high-cost target domains.

Ablation Study. To verify the effectiveness of each term in our DABand’s regret bound (Theorem 3.1,
we report the accuracy of our proposed DABand after removing the Regression Error term and/or the
Predicted Reward term (during training) in Table 4 for DIGIT, VisDA17 and S2RDA49. Results on
all datasets show that removing either term will lead to performance drop. For example, in VisDA17,
our full DABand achieves accuracy of 0.4642; the accuracy drops to 0.4238 after removing the
Regression Error (R) term, and further drops to 0.4088 after removing the Predicted Reward (P) term.
These results verify the effectiveness of these two terms in our DABand.

6 CONCLUSION

In this paper, we introduce a novel domain adaptive neural contextual bandit algorithm, DABand,
which adeptly combines effective exploration with representation alignment, utilizing unlabeled data
from both source and target domains. Our theoretical analysis demonstrates that DABand can attain
a sub-linear regret bound within the target domain. This marks the first regret analysis for domain
adaptation in contextual bandit problems incorporating deep representation, shallow exploration,
and adversarial alignment. We show that all these elements are instrumental in the domain adaptive
bandit setting on real-world datasets. Moving forward, interesting future research could be to uncover
more innovative techniques for aligning the source and target domains (mentioned in Appendix F),
particularly within the constraints of: (1) bandit settings, as opposed to classification settings, and (2)
the high-dimensional and dense nature of the target domain, contrasted with the sparse and simplistic
nature of the source domain.
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A PROOFS

A.1 PROOFS FOR LEMMAS

Lemma A.1. For any hypotheses h, h′ ∈ H and a ∈ A is selected by either h or h′,

|ϵS(h, h′)− ϵT (h, h
′)| ≤ N

2
d̂H∆H(S, T ).

Proof. By definition of H∆H (as defined in Def. 3.6), we have

d̂H∆H(S, T )
Def. 3.6

= 2 sup
h,h′∈H

|Ex∼S [|h(x)− h′(x)|]− Ex∼T [|h(x)− h′(x)|]|

=
2

N
sup

h,h′∈H

∣∣∣N · Ex∼S [|h(x)− h′(x)|]−N · Ex∼T [|h(x)− h′(x)|]
∣∣∣

Def. 3.3
=

2

N
sup

h,h′∈H

∣∣∣ϵS(h, h′)− ϵT (h, h
′)
∣∣∣

≥ 2

N

∣∣∣ϵS(h, h′)− ϵT (h, h
′)
∣∣∣.

Lemma A.2. Given three hypotheses h1, h2, h3 ∈ H, we have the following triangle inequality:

ϵD(h1, h2) ≤ ϵD(h1, h3) + ϵD(h2, h3). (12)

Proof. The hypothesis difference

ϵD(h1, h2) =
∑N

i=1

∣∣∣∣h1(xD)− h2(x
D)

∣∣∣∣
Def. 3.2

=
∑N

i=1

∣∣∣∣h1(xD)− h2(x
D) + h3(x

D)− h3(x
D)

∣∣∣∣
≤

∑N

i=1

∣∣∣∣h1(xD)− h3(x
D)

∣∣∣∣+∑N

i=1

∣∣∣∣h3(xD)− h2(x
D)

∣∣∣∣
= ϵS(h1, h3) + ϵS(h2, h3).

Lemma A.3. Let H be a hypothesis space. Then for every h ∈ H:

ϵT (h) ≤ ϵS(h) +
N

2
d̂H∆H(S, T ) + ψ, (13)

where ψ is defined in Definition 3.7.

Proof. By definition in Definition 3.3 in main paper, we start from ϵT (h) = ϵT (h, fT ), then we have

ϵT (h) = ϵT (fT , h)

Lm. A.2
≤ ϵT (fT , h

∗) + ϵT (h, h
∗)

≤ ϵT (h
∗) + ϵS(h, h

∗) + |ϵT (h, h∗)− ϵS(h, h
∗)|

Lm. A.1
≤ ϵT (h

∗) + ϵS(h, h
∗) +

N

2
d̂H∆H(S, T )

≤ ϵT (h
∗) + ϵS(h) + ϵS(h

∗) +
N

2
d̂H∆H(S, T )

= ϵS(h) + ψ +
N

2
d̂H∆H(S, T ).

13
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Lemma A.4. Denoting the contexts from the target domain T as {xT
t,a}i∈[N ],a∈[K] and the associated

ground-truth action as {a∗i }Ni=1, the estimated regret (i.e., using the trained model θ̂ from the source
domain) for the target domain is

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣) ≤

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+ N∑

i=1

α · κTi ,

where κTi is max

{
2
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

+
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

}
.

Proof. By definition, we have

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)

=

N∑
i=1

(∣∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩+ α

∥∥∥ϕ̂(xT
i,âi

)
∥∥∥
A−1

i−1

− α
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

+ α
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

− α
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

∣∣∣∣)

=

N∑
i=1

(∣∣∣∣(⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩+ α

∥∥∥ϕ̂(xT
i,a∗

i
)
∥∥∥
A−1

i−1

)
−
(
⟨θ̂, ϕ̂(xT

i,âi
)⟩+ α

∥∥∥ϕ̂(xT
i,âi

)
∥∥∥
A−1

i−1

)∣∣∣∣)

+

N∑
i=1

α

(∣∣∣∣∥∥∥ϕ̂(xT
i,âi

)
∥∥∥
A−1

i−1

−
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

∣∣∣∣)

≤
N∑
i=1

(∣∣∣∣(⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩+ α

∥∥∥ϕ̂(xT
i,a∗

i
)
∥∥∥
A−1

i−1

)
−
(
⟨θ̂, ϕ̂(xT

i,âi
)⟩+ α

∥∥∥ϕ̂(xT
i,âi

)
∥∥∥
A−1

i−1

)∣∣∣∣)

+

N∑
i=1

αmax

{∥∥∥ϕ̂(xT
i,âi

)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

}
(14)

≤
N∑
i=1

(∣∣∣∣(⟨θ̂, ϕ̂(xT
i,âi

)⟩+ α
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

)∣∣∣∣)+

N∑
i=1

αmax

{∥∥∥ϕ̂(xT
i,âi

)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

}
(15)

≤
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

N∑
i=1

α ·max

{
2
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

+
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

}

:=

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

N∑
i=1

α · κT
i , (16)

where the inequality in Eqn. (14) is based on the fact that for any a, b > 0, |a− b| ≤
max{a, b}. The inequality in Eqn. (15) is derived from the definition of âi, since âi is se-

lected from the maximum value of
(
⟨θ̂, ϕ̂(xT

i,a)⟩+ α
∥∥∥ϕ̂(xT

i,a)
∥∥∥
A−1

i−1

)
, therefore we guarantee that(

⟨θ̂, ϕ̂(xT
i,âi

)⟩+ α
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

)
≥
(
⟨θ̂, ϕ̂(xT

i,a∗
i
)⟩+ α

∥∥∥ϕ̂(xT
i,a∗

i
)
∥∥∥
A−1

i−1

)
. In addition, Eqn. (16)

holds by definition as we define κTi as max

{
2
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xT

i,a∗
i
)
∥∥∥
A−1

i−1

+
∥∥∥ϕ̂(xT

i,âi
)
∥∥∥
A−1

i−1

}
.

Next, we discuss the property of κTi in the following lemma.

Lemma A.5. For any arbitrary domain D, we denote

κDi = max

{
2
∥∥∥ϕ̂(xD

i,âi
)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xD

i,a∗
i
)
∥∥∥
A−1

i−1

+
∥∥∥ϕ̂(xD

i,âi
)
∥∥∥
A−1

i−1

}
. Then, by our DABand algorithm,

as the time step i→ ∞, we have κDi → 0.

Proof. By definition of A, its singular value increase as i increase, which means that the singular
values in its inverse matrix, A−1, will decrease to 0. Therefore, for any new array u, ||u||A−1 =

14
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√
uA−1uT → 0. Then when i→ ∞, we have

lim
i→∞

κDi = max

{
2
∥∥∥ϕ̂(xD

i,âi
)
∥∥∥
A−1

i−1

,
∥∥∥ϕ̂(xD

i,a∗
i
)
∥∥∥
A−1

i−1

+
∥∥∥ϕ̂(xD

i,âi
)
∥∥∥
A−1

i−1

}
≈ 0.

Lemma A.6. Denoting the contexts from the source domain S as {xS
t,a}i∈[N ],a∈[K], the associated

ground-truth action as {a∗i }Ni=1, we have the following inequality:
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xS
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣) ≤ ϵS(h) +

N∑
i=1

1[a∗i ̸= âi]
((∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩
∣∣∣)+ α · κSi

)
,

where κSi is defined in Lemma A.5.

Proof. By definition, we have
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xS
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)

=
N∑
i=1

[
1[a∗

i = âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)+ 1[a∗

i ̸= âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)]

≤
N∑
i=1

[
1[a∗

i = âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩ − 1

∣∣∣)+ 1[a∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,a∗

i
)⟩ − 0

∣∣∣)]

≤
N∑
i=1

[
1[a∗

i = âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩ − 1

∣∣∣)+ 1[a∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,a∗

i
)⟩+ ⟨θ̂, ϕ̂(xS

i,âi
)⟩ − ⟨θ̂, ϕ̂(xS

i,âi
)⟩
∣∣∣)]

≤
N∑
i=1

[
1[a∗

i = âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩ − 1

∣∣∣)+ 1[a∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩ − 0
∣∣∣)+ 1[a∗

i ̸= âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩ − ⟨θ̂, ϕ̂(xS

i,âi
)⟩
∣∣∣)]

L.m. A.4
≤

N∑
i=1

(∣∣∣⟨θ∗S , ϕ∗
S(x

S
i,âi

)⟩ − ⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣)+

N∑
i=1

1[a∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣+ α · κS

i

)

≡ ϵS(h) +
N∑
i=1

1[a∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣+ α · κS

i

)
,

A.2 PROOF FOR THE TARGET REGRET BOUND

Theorem A.1 (Target Regret Bound). Denoting the contexts from the source domain S as
{xS

t,a}i∈[N ],a∈[K], the associated ground-truth action as {a∗i }Ni=1, and the contexts from the target
domain T as {xT

t,a}i∈[N ],a∈[K], the upper bound for our target regret RT is

RT ≜
N∑
i=1

(∣∣∣⟨θ∗T , ϕ∗
T (x

T
i,a∗

i
)⟩ − ⟨θ∗T , ϕ∗

T (x
T
i,âi

)⟩
∣∣∣)

≤ RS︸︷︷︸
Source Regret

+ 2 · ϵS(h)︸ ︷︷ ︸
Regression Error

+N · d̂H∆H(S, T )︸ ︷︷ ︸
Data Divergence

+ ψ + C︸ ︷︷ ︸
Constant

+
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+ N∑

i=1

1[a∗i ̸= âi]
((∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩
∣∣∣))︸ ︷︷ ︸

Predicted Rewards

,

where RS , ϵS(h), and d̂H∆H are the source regret, source-domain error, and H∆H divergence
defined in Definition 3.4, Definition 3.3, and Definition 3.6, respectively. ψ is a constant independent
to the problem and and C is a constant which can be ignored.

Proof. Please check the full proof in the next page.
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By the definition of the Target Regret Bound, we have

RT =
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xT

i,âi
)⟩
∣∣∣)

=
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xT

i,âi
)⟩+ ⟨θ̂, ϕ̂(xT

i,âi
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)

≤
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,âi

)⟩ − ⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)

≤ ϵT (h) +
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩+ ⟨θ̂, ϕ̂(xT

i,a∗
i
)⟩ − ⟨θ̂, ϕ̂(xT

i,a∗
i
)⟩
∣∣∣)

≤ ϵT (h) +
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)+

N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,a∗
i
)⟩
∣∣∣)

≤ ϵT (h) +
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)+

N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,a∗
i
)⟩
∣∣∣)

+
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xS
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩
∣∣∣)−

N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xS
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩
∣∣∣)

≤ ϵT (h) +
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)+

N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xS
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩
∣∣∣)

+

∣∣∣∣∣
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,a∗
i
)⟩
∣∣∣)−

N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xS
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩
∣∣∣)∣∣∣∣∣

≤ ϵT (h) +
N

2
d̂H∆H(S, T ) +

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)

+
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xS
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xS

i,a∗
i
)⟩+ ⟨θ∗, ϕ∗(xS

i,âi
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)

L.m.. A.3
≤ ϵS(h) + ψ +

N

2
d̂H∆H(S, T ) +

N

2
d̂H∆H(S, T ) +

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,a∗

i
)⟩ − ⟨θ̂, ϕ̂(xT

i,âi
)⟩
∣∣∣)

+
N∑
i=1

(∣∣∣⟨θ∗, ϕ∗(xS
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)+

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xS
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)

L.m. A.4
≤ ϵS(h) + ψ +Nd̂H∆H(S, T ) +

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

N∑
i=1

α · κTi

+RS +
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xS
i,a∗

i
)⟩ − ⟨θ∗, ϕ∗(xS

i,âi
)⟩
∣∣∣)

L.m. A.6
≤ ϵS(h) + ψ +Nd̂H∆H(S, T ) +

N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+

N∑
i=1

α · κTi

+RS + ϵS(h) +
N∑
i=1

1[a∗i ̸= âi]
(∣∣∣⟨θ̂, ϕ̂(xS

i,âi
)⟩
∣∣∣+ α · κSi

)
L.m. A.5

= RS︸︷︷︸
Source Regret

+ 2 · ϵS(h)︸ ︷︷ ︸
Regression Error

+N · d̂H∆H(S, T )︸ ︷︷ ︸
Data Divergence

+ ψ + C︸ ︷︷ ︸
Constant

+
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+ 1[a∗i ̸= âi]

(
N∑
i=1

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣))︸ ︷︷ ︸

Predicted Rewards

,
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where C =
∑N

i=1 α · κTi + 1[a∗i ̸= âi]
(∑N

i=1 α · κSi
)

is a small number which can be ignored as
i→ ∞ (i.e., see Lemma A.5).

B DATASETS

To evaluate the effectiveness of our DABand, for each dataset, we treat the “easy” domain as the
low-cost source domain and the more challenging one as the high-cost target domain. This allows us
to demonstrate the efficacy of our method by adapting from a simpler to a more complex domain
within a contextual bandit setting.

DIGIT. Our DIGIT dataset consists of MNIST and MNIST-M. MNIST is a gray-scale hand-written
digit dataset, while MNIST-M (Ganin et al., 2016a) features color digits. In this paper, MNIST serves
as our source domain, and MNIST-M as our target domain, offering a more challenging adaptation
path. The MNIST digits are gray-scale and uniform in size, aspect ratio, and intensity range, in
stark contrast to the colorful and varied digits of MNIST-M. Therefore, adapting from MNIST to
MNIST-M presents a greater challenge than adapting from MNIST-M to MNIST, where the target
domain is less complex.

VisDA17. The VisDA-2017 image classification challenge (Peng et al., 2017) addresses a domain
adaptation problem across 12 classes, involving three distinct datasets. The training set consists of
3D rendering images, whereas the validation and test sets feature real images from the COCO (Lin
et al., 2014) and YouTube Bounding Boxes (Real et al., 2017) datasets, respectively. Ground truth
labels were provided only for the training and validation sets. Scores for the test set were calculated
by a server operated by the competition organizers. For our purposes, we use the training set as the
source domain and the validation set as the target domain.

S2RDA49. The S2RDA49 (Synthetic-to-Real) is a new benchmark dataset (Tang & Jia, 2023)
constructed in 2023. This dataset contains 49 classes. The source domain (i.e., the synthetic domain)
is synthesized by rendering 3D models from ShapeNet (Chang et al., 2015). The used 3D models are
in the same label space as the target/real domain, and each class has 12K rendered RGB images. The
target domain (i.e., the real domain) of S2RDA49 contains 60535 images from 49 classes, collected
from the ImageNet validation set (Deng et al., 2009), ObjectNet (Barbu et al., 2019), VisDA2017
validation set (Peng et al., 2017), and the web. In this paper, we select the only 10 class that matches
the VisDA17 dataset.

C BASELINES

We compare our DABand with both classic and state-of-the-art contextual bandit algorithms. We
start with LinUCB (Li et al., 2010), a typical baseline for linear contextual bandit problems. To
enable comprehensive comparisons, we extend our evaluation to include LinUCB augmented with
pre-processed features using principle component analysis (PCA), referred to as LinUCB-P. In
LinUCB-P, we first apply PCA to fit on training data (without labels/feedback) in both source and
target domain. Then, with transformed, lower-dimensional context data, LinUCB is performed to
see whether this pre-alignment procedure can transfer the knowledge to the target domain. Another
pivotal baseline in our study is Neural-LinUCB (Xu et al., 2020) (NLinUCB), which utilizes several
layers of fully connected neural networks to dynamically process the original features at the beginning
of every iteration. Similar to LinUCB-P, we introduce a NLinUCB variant that incorporates PCA, i.e.,
NLinUCB-P. Note that domain adaptation baselines are not applicable to our setting. Specifically,
domain adaptation methods only work in offline settings, and assume complete observability of labels
in the source domain. In contrast, contextual bandit is an online setting where the oracle is revealed
only when correctly predicted. Therefore domain adaptation methods are not applicable to our
online bandit settings.

D IMPLEMENTATION DETAILS

In this section, we provide detailed insights into the implementation of our approach, applied to two
distinct datasets: DIGIT and VisDA17. We use Pytorch to implement our method, and all experiments
are run on servers with NVIDA A5000 GPUs.
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DIGIT. Within the DIGIT dataset framework, we use the MNIST dataset as the source domain
and MNIST-M as the target domain. To ensure compatibility between the datasets, we standardize
the channel size of images in the source domain (cS = 1) to align with that in the target domain
(cT = 3). Each image undergoes normalization and is resized to 28× 28 pixels with 3 channels to
accommodate the format requirements of both domains. Then, an encoder is utilized to diminish
the data’s dimensionality to a more manageable latent space. Following this reduction, the data
is processed through two fully connected neural network layers, ending in the final latent space
necessary for loss computation as delineated in main paper. For the optimal hyperparameters, we set
the learning rate to 1× e−5, with λ is chosen from {1.0, 5.0, 10.0, 15.0, 20.0} and kept the same for
all experiments. Additionally, we set the exploration rate α to 0.05.

VisDA17. We use the VisDA17 dataset’s training set as the source domain, with the validation set
functioning as the target domain. We adhere to preprocessing steps established by (Prabhu et al.,
2021) to ensure uniformity across domains: Each image is normalized and resized to 224×224 pixels
with 3 channels, matching the requisite specifications for both source and target domains. For hyper-
parameters, the learning rate of 1× e−5 is applied, with λ is chosen from {1.0, 5.0, 10.0, 15.0, 20.0}
and then kept the same for all experiments. We set the exploration rate α to 0.05.

S2RDA49. We selects 10 classes from the original 49 classes since it matches the target domain
samples in VisDA17 (Peng et al., 2017). We adhere to preprocessing steps established by (Prabhu
et al., 2021) to ensure uniformity across domains: Each image is normalized and resized to 224× 224
pixels with 3 channels. For hyperparameters, the learning rate of 1× e−3 is applied, with λ chosen
from {1.0, 5.0, 10.0, 15.0, 20.0} and then kept the same for all experiments. We set the exploration
rate α to 0.01.

Table 5: Results of the ablation studies in terms of accuracy (higher is better). Note that the accuracy
ACC = 1− 1

N
RT , where RT is the target regret. “R”, “P” and “D” are short for “Regression Error”,

“Predicted Reward” and “Data Divergence” (i.e., adversarial loss and the discriminator), respectively.

Datasets W/O R&P&D W/O R&P W/O R&D W/O P&D W/O R W/O P W/O D DABAND (FULL)

DIGIT 0.3816±0.04 0.5676±0.02 0.3793±0.02 0.3544±0.01 0.5682±0.01 0.5768±0.01 0.3649±0.02 0.6002±0.02

VISDA17 0.1001±0.02 0.4088±0.03 0.1010±0.02 0.0936±0.01 0.4096±0.01 0.4304±0.01 0.1098±0.01 0.4644±0.03

S2RDA49 0.1108±0.02 0.3691±0.02 0.0918±0.01 0.1032±0.01 0.3694±0.03 0.3719±0.02 0.1121±0.02 0.3923±0.03

E TOTAL ABLATION STUDIES

The full ablation study is shown in Table 5. Furthermore, we ran the corresponding hypothesis tests,
and the p values are in the range of (3.201× 10−21, 1.504× 10−2), much lower than the threshold
of 0.05 and therefore verifying the significance of DABand’s performance improvement.

F LIMITATION

This work contains several limitations. Specifically, we highlight below:

Intuitive Perspective. The bandit algorithm indeed enjoys interpretability and the accuracy of its
closed-form updates, but this is true only because it typically employs a linear model.

Unfortunately, linear models do not work very well for real-world data, which is often high-
dimensional. For example, the empirical results for LinUCB and LinUCB-P in Table 1 and Table 2
show that such linear contextual bandit algorithms significantly underperform state-of-the-art neural
bandit algorithms, which use back-propagation (similar results are shown in (Zhou et al., 2019; Xu
et al., 2020)). In summary deep learning models with back-propagation is necessary due to the
following reasons:

• High-Dimensional Data. To enhance performance in real-world high-dimensional data (e.g.,
images), the integration of deep learning (and back-propagation) is necessary, though this may
sacrifice a portion of the algorithm’s explanatory power.
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• Covariate Shift and Aligning Source and Target Domains in the Latent Space. In our
settings where there is covariance shift between the source and target domains, a deep (nonlinear)
encoder is required to transform the original context into a latent space where source-domain
encodings and target-domain encoders can align. This also necessitates deep learning models
with back-propagation.

Indeed, there is a trade-off between interpretability and performance. This would certainly be an
interesting future direction, but it is out of the scope of this paper.

Theoretical Perspective. Our Theorem 3.1 is sharp, as all the inequalities are based on lemmas in
the paper and the Cauchy inequality. Identifying the criteria under which the target regret bound
reaches equality as well as how one can achieve it in practice would be interesting future work.

Empirical Perspective. The performance of DABand largely relies on the alignment quality between
the source and target domains. Therefore, for two domains that cannot be aligned (for example, most
domain adaptation tasks are predefined, and the data for both domains is pre-processed and cleaned,
not original real-world data), it is challenging to evaluate how DABand can still transfer knowledge
across different domains. Furthermore, it is still unknown whether, if we increase the domain shift
in a dataset from another domain, our DABand can still perform well. These issues are beyond the
scope of this paper, but they represent interesting areas for future work.

G DISCUSSIONS

G.1 SUBLINEARITY FOR THE TARGET REGRET BOUND

0 20 40 60 80 100
Batch per 64 Rounds

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

Re
su

lts

Sublinear

Reference: y = x
Reference: y = 0.65x
Source Regret
Regression Error
Predicted Rewards
Data Divergence
Sum of others

Figure 2: Sub-linearity for each term in Eqn. (5).

To see the data divergence term is sub-linear,
note that our target regret bound in Eqn. (5) can
be divided into two parts:

• Total Source Regret: In Neural-
LinUCB (NLinUCB) (Xu et al., 2020)
[1], this is shown to be O(

√
N), which

is sub-linear.

• Sum of Other Terms (Including the
Data Divergence): These terms can
be *directly optimized* to convergence
and minimized to a small value using
SGD variants such as Adam. As shown
in Corollary 4.2 of the Adam paper [2],
the Adam optimizer enjoys an average
regret R(N)/N of O( 1√

N
) (here N is equivalent to T in the Adam paper), which leads to a

sub-linear total regret O(
√
N). Since all other terms are directly optimized using Adam,

they also enjoy a sub-linear regret.

Therefore, our target regret bound is also sub-linear. Moreover:

• Key Difference between the Source Regret and Other Terms. Note that in our target
regret bound in Eqn. (5), the source regret term RS increases monotonically with respect to
N and cannot be directly minimized. In contrast, all other terms, e.g., the data divergence
term N · d̂H∆H(S, T ) can be directly minimized since all related data is training data and
is already known. This is why we minimize the corresponding loss terms like Eqn. (7), Eqn.
(8) and Eqn. (9) during training.

• The data divergence term can be minimized to a small value as N → ∞. For example, if
the source and target domains are perfectly aligned after our training, the data divergence
becomes 0. Therefore, the cumulative sum of the data divergence term over all rounds will
be sub-linear.
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G.2 DIFFERENCE BETWEEN BANDIT AND CLASSIFICATION SETTINGS

In the classification setting, given a sample x, a model predicts its label ŷ. Since its ground-truth label
is known, one can directly apply the cross-entropy loss to perform back-propagation and update our
model. In contrast, in bandit settings, for each sample x, our model predicts an action â by optimizing
the estimated rewards. One then submits this predicted action to the environment and receives
feedback that only indicates whether the predicted action â is the optimal action a∗ or not. If not, we
are informed that our prediction is incorrect, yet we do not receive information on what the correct
(optimal) action should be. Moreover, during training, we only train on 300 episodes for DIGIT
and VisDA17 and 100 episodes for S2RDA49. Each episode contains 64 samples. This implies that
compared with those DA methods which train on multiple epochs, in our settings, all of the models
only see a sample once. Such complexity makes the bandit setting much more challenging.

Why Simultaneously Training Source and Target Domains is Needed and Helpful. It is also
noteworthy that our DABand is an end-to-end model that enables two-way feedback between
source and target domains:

• Source to Target: Collecting source-domain rewards helps DABand to learn a better
encoder (which transforms raw contexts into encodings in the latent space) because the
reward signals help the encoder extract more relevant encodings (embeddings) from
target-domain contexts, thereby reducing the target-domain regret.

• Target to Source: After aligning source-domain and target-domain encodings in the shared
latent space (i.e., minimizing the data divergence term in Eqn. (5)), the information from
the target-domain context can then help the source domain to explore arms that are more
relevant to the target domain. Ultimately, this also helps reduce the target-domain regret
even without collecting target-domain rewards.

G.3 IMPORTANCE OF BANDITS AND DABAND

Bandit algorithms are designed to navigate environments where feedback is sparse, costly, and
indirect. By efficiently learning from limited feedback – identifying not just when a prediction is
wrong but adapting without explicit guidance on the right choice – bandit algorithms offer a strategic
advantage in dynamically evolving settings. Our DABand exemplifies this by leveraging a low-cost
source domain to improve performance in a high-cost target domain, thereby reducing cumulative
regret (improving accuracy) while minimizing operational costs. DABand not only reduces the
expense associated with acquiring and labeling vast datasets but also capitalizes on the intrinsic
adaptability of bandit algorithms to learn and optimize in complex, uncertain environments.

G.4 NOVELTIES RESTATEMENT

Theoretical Novelty. In general, DABand is the first work to perform contextual bandit in a domain
adaptation setting, i.e., adapt from a source domain with feedback to a target domain without feedback.
Moreover, our theoretical analysis presents two major technical challenges/novelties below:

• Generalization of H∆H Distance to Regression. In the original multi-domain general-
ization bound (Ben-David et al., 2010), the H∆H divergence between source and target
domains is derived for classification models. However, contextual bandit is essentially a
reward regression problem, and therefore necessitates generalizing the H∆H distance from
the classification case to the regression case. This presents a significant technical challenge,
and leads to a series of modifications in the proof.

• Decomposing the Target Regret into the Source Regret with Other Terms. The subse-
quent major challenge our DABand addresses involves decomposing the regret bound for the
target domain (i.e., the target regret) into a source regret term and other terms to upper-bound
the target regret. This is necessary because we do not have access to feedback/reward from
the target domain (we only have access to feedback/reward in the source domain). This
process requires a nuanced understanding of the interplay between source and target domain
dynamics within our model’s framework.
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Other Technical Novelties. Moreover, our contribution goes beyond the theoretical analysis itself.
Specifically,

• We identify the problem of contextual bandits across domains and propose domain-adaptive
contextual bandits (DABand) as the first general method to explore a high-cost target domain
while only collecting feedback from a low-cost source domain.

• Our theoretical analysis shows that our method can achieve a sub-linear regret bound in the
target domain.

• Our empirical results on real-world datasets show our DABand significantly improves
performance over the state-of-the-art contextual bandit methods when adapting across
domains.

G.5 DISCUSSION ON ZERO-SHOT TARGET REGRET BOUND

G.5.1 SIGNIFICANCE OF THEOREM 3.1

Note that Theorem 3.1 is nontrivial. While it does resemble the generalization bound in domain
adaptation, there are key differences. As mentioned in Observation (3) in Sec. 3.6, our target regret
bound includes two additional crucial terms not found in domain adaptation. Specifically:

• Regression Error in the Source Domain.
∑N

i=1

(∣∣∣⟨θ∗S , ϕ∗
S(x

S
i,âi

)⟩ − ⟨θ̂, ϕ̂(xSi,âi
)⟩
∣∣∣), which

defines the difference between the true reward from selecting action âi and the estimated reward
for this action.

• Predicted Reward.
∑N

i=1

(∣∣∣⟨θ̂, ϕ̂(xT
i,âi

)⟩
∣∣∣)+∑N

i=1 1[a
∗
i ̸= âi]

(∣∣∣⟨θ̂, ϕ̂(xS
i,âi

)⟩
∣∣∣), which serves

as a regularization term to regularize the model to avoid overestimating rewards.

The results of the ablation study in Table 4 in Sec. 5 highlight the significance of these two terms.
Please also refer to “Technical Novelty” of Sec. G.4 above for discussion on key novelty/challenges
in deriving Theorem 3.1.

G.5.2 TESTING PHASE RATHER THAN TRADITIONAL BANDIT LEARNING SETTINGS

Our regret bound in Theorem 3.1 is a zero-shot regret bound for the target domain (with empirical
results in the Zero-Shot Target Regret paragraph of Sec. 5), which corresponds to a testing phase.

However, we would like to clarify that extending this bound to handle continued training in the target
domain (corresponding to the Continued Training in Target Domains and Cumulative Regret
paragraph of Sec. 5) is straightforward. At a high level, we can have

Rtotal
T = Rzero−shot

T +Rcontinued
T ,

with the first term handled by our DABand’s Theorem 3.1 and the second term handled by typical
single-domain contextual bandit.

G.5.3 SCALE OF SOURCE REGRET AND PREDICTED REWARDS

Similar to Neural-LinUCB (NLinUCB), in our DABand, the true reward is restricted to the range of
[0, 1] (as we mentioned in Sec. 3.1); therefore it will not make the source regret unbounded.

Furthermore, our DABand algorithm tries to minimize the source regret while aligning the source
and target domains. The minimization of the source regret is theoretically guaranteed, as discussed in
recent work such as Neural-LinUCB (NLinUCB) (Xu et al., 2020).

G.6 ARE THE COMPARISONS FAIR?

Leveraging Target-Domain Contexts. A lot of our baselines do leverage the contexts of the target
domain. For example, our baseline LinUCB-P starts by performing PCA jointly on both source-
domain and target-domain contexts and then perform LinUCB. Therefore LinUCB-P does leverage
the contexts of the target domain. Similarly, NLinUCB-P starts by performing PCA jointly on both
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source-domain and target-domain context and then perform NLinUCB. It therefore also leverages
target-domain contexts.

Seeing Target-Domain Rewards. Note that in our domain adaptive bandit settings:

• During the zero-shot phase, target rewards are not visible for all methods (include both
baselines and our DABand); it is therefore fair comparison.

• During the continued-training phase, all methods (include both baselines and our DABand)
start to see the target reward and update their parameters; it is therefore also fair comparison.

G.7 WHY MINIMIZE THE PREDICTED REWARD ON THE SOURCE DOMAIN?

While the predicted-reward term is naturally derived from our theoretical analysis, we do find
interesting insights when examining this term and its relation to our model. Specifically:

• Indirect Regularization on Bandit Parameters θ̂ and the Encoder ϕ̂(·). One can see
this term as an L1 regularization term. It does not directly regularize the bandit parameter
θ̂; however, minimizing the L1 norm of the predicted reward (i.e., a K-dimensional vector
for a K-arm bandit) does indirectly regularize the bandit parameter θ̂ and the encoder ϕ̂(·),
thereby preventing the L1 norm of the predicted reward from getting to large.

• Smaller Predicted Rewards for Smaller Variance and Better Stability. Furthermore, this
regularization can help avoid predicting high rewards for all arms in the bandit.

– Note that for the bandit algorithm to achieve low regret, predicting large rewards are
not necessary. This is because one uses the argmax operation (i.e., Line 6 in Alg. 1) to
select the best arm; an arm k with a small predicted reward can still be selected as long
as all other arms have even smaller predicted rewards.

– Too higher predicted rewards are not desirable because they increase the model’s
sensitivity, leading to higher variance and subsequently increasing the generalization
error (i.e., the target regret’s bound).

G.8 CLARIFICATION OF DABAND’S CONTRIBUTIONS

Our DABand is the first general method to explore a target domain while only collecting feedback
from the source domain, regardless of linear or nonlinear assumptions. No prior methods have
explored this setting of exploring a target domain while only collecting feedback from the source
domain.

Therefore, DABand’s contribution is two-fold: (1) DABand is the first general method to explore
a target domain while only collecting feedback from the source domain; (2) DABand is also the
first general method in this domain-adaptive bandit setting that works even under general nonlinear
assumptions.

G.9 IMPORTANCE OF THE DISCRIMINATOR.

Our bandit setting aims to explore a target domain while only collecting feedback from the source
domain. All reward feedback in the target domain is unknown, making this approach very
challenging. Therefore, using a discriminator to align representations for both domains is necessary.
If we ignore the discriminator, the method will not work in our settings. This is also evidenced by the
whole results for ablation studies in Table 5.

G.10 HOW THE TERMS IN THE REGRET DECAY AS N INCREASES.

To see how the terms in the regret decay:

• Decay in the Source Regret. Most of the decay occurs in the first term (i.e., Source Regret
R_S), which has been discussed in the NLinUCB paper (Xu et al., 2020). Specifically the
cumulative source regret is O(

√
N). Then, dividing both sides of Eqn. (5) by N , we will

get the average source regret term with O(
√
N/N), which does decay with N .
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• Decay in the Data Divergence Term. Decay in the Data Divergence Term. The data
divergence term, d̂H∆H(S, T ), can actually be further decomposed into

– an empirical term that estimates the divergence using N source-domain contexts and
N target-domain contexts, and

– a term related to N with complexity O(log(2N)/N) (Ben-David et al., 2010).
Therefore, the second term with O(log(2N)/N) does also decay as N increases.

G.11 UNDERSTANDING THE BOUND IF THE SOURCE AND TARGET DOMAINS ARE
EQUIVALENT

Even if the input distributions of the two domains match, it does not imply that the relationship
between the input context x and the predicted reward is the same for them, since the data divergence
term is only responsible for aligning the distribution of x (input); it is irrelevant to the output and
rewards. This is why other terms are needed to characterize the difference in the relationship between
the context x and the reward in the source and target domains. The data divergence term alone is not
sufficient.

G.12 CLARIFICATION ON THE PROBLEM SETTING.

Simultaneous Observation. In our setting, source-domain contexts and target-domain contexts are
simultaneously observed, with only the reward of the source domain being observed.

Target-Domain Contexts Available Even Before Running Alg. 1. Note that in practice, target-
domain contexts are usually available even before Algorithm 1 starts and before observing any
reward from the source domain. (This makes it possible to train our DABand by simultaneously
using source-domain and target-domain contexts.)

For example, in the case of testing drug reactions on mice (source domain) and humans (target
domain), usually one already has the human subjects’ genomics, demographic, and other data as
target-domain contexts, even before testing the drug on mice (i.e., the source domain) and collecting
rewards.

This is because these human genomics/demographic data are easy to collect at a low cost; in contrast,
testing the drug on humans (i.e., the target domain) and collecting rewards involves extremely high
costs, due to the risks of fatality, side effects, and the enormous costs of conducting clinical trials.

H POTENTIAL IMPACT OF DABAND

Our DABand has many potential real-world applications, especially when obtaining responses is
costly. For instance, in testing new drugs, we can construct responses from mice for new drug A,
and then use DABand to obtain the zero-shot hypothetical regret bound for responses in humans. In
another scenario, we can collect data (responses) on humans for another published, similar drug B,
and then transfer knowledge by aligning the divergence between drug A and drug B. If both regrets
reveal acceptable performance, we might not need excessive costs for back-and-forth testing, which
significantly speeds up the process and reduces costs.
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