

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHESSARENA: A CHESS TESTBED FOR EVALUATING STRATEGIC REASONING CAPABILITIES OF LARGE LAN- GUAGE MODELS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Recent large language models (LLMs) have shown strong reasoning capabilities. However, a critical question remains: do these models possess genuine reasoning skills—particularly complex strategic reasoning—or are they primarily excelling at sophisticated pattern recognition within their training data? To address this question, this paper presents a chess testbed, ChessArena, to evaluate the strategic reasoning capabilities of LLMs. Chess requires complex strategic reasoning capabilities including long-term planning, strict rule comprehension, and multi-turn conversation memorization. Specifically, ChessArena is a competitive framework where LLMs play against each other, under four different play modes. The testbed is equipped with a ranking algorithm and a leaderboard. The testbed can also evaluate fine-grained capabilities including basic understanding, move selection, and puzzle solving. Over 13 LLMs with different modes are evaluated in ChessArena, playing over 800 games. The results reveal significant shortcomings in current LLMs: no model can beat Maia-1100 (a chess engine at human amateur level), while some even failed to defeat a random player that selects moves arbitrarily. We also present a strong baseline to the testbed: our fine-tuned Qwen3-8B substantially improved performance, approaching much larger state-of-the-art reasoning models.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, from code generation (Jimenez et al., 2023) to mathematical problem-solving (Cobbe et al., 2021). One significant contributing factor to the success is the availability of high-quality benchmarks such as LiveCodeBench (Jain et al., 2024) and AIME2025 (MAA, 2025).

As LLMs are increasingly applied in real-world problems, improving their strategic reasoning capability, i.e., the reasoning under dynamic environments and uncertain adversary actions (Gandhi et al., 2023; Duan et al., 2024), becomes an urgent demand. However, there is still a lack of well-established evaluation frameworks for effectively evaluating the strategic reasoning capabilities of LLMs. Existing evaluation frameworks typically focus on isolated question-answering tasks that may not capture the essential aspects of strategic reasoning (Lin et al., 2025; Kazemi et al., 2025; Dua et al., 2019; Chen et al., 2021). Additionally, current benchmarks (Austin et al., 2021; Sprague et al.) often suffer from data contamination, where test examples may have appeared in training data.

In this work, we choose chess as the testbed for evaluating the strategic reasoning capability of LLMs, as it provides an ideal environment requiring the ability to maintain coherent strategies across prolonged gameplay, follow complex instructions consistently, and adapt reasoning based on evolving contexts. Additionally, the vast state space of chess—with an estimated 10^{47} possible board positions—virtually eliminates data contamination concerns.

Building on these advantages, we introduce ChessArena, a competitive platform where LLMs engage in complete chess games from opening to endgame. Our system implements a comprehensive ranking mechanism using approximately 30 games per model to ensure stable performance assessment. We evaluate models across four distinct play modes—Bullet, Blitz, Standard, and Blindfold—each designed to test different aspects of model capability, from rapid decision-making to memory retention in long-term contexts.

Our evaluation of over 13 state-of-the-art models, including O3, Gemini-2.5-Pro, and Doubao-Seed-1-6-Thinking, reveals their significant limitations. No model successfully defeated Maia-1100, a chess engine designed to play at a human amateur level, with some models losing even to a random player that arbitrarily selects a move from all legal moves. These results highlight three critical deficiencies: inconsistent instruction following (failure to maintain proper output formatting), weak tactic reasoning (selecting moves inferior to random choices), and limited multi-turn coherence (inability to maintain consistent play across multi-round games).

To investigate the underlying causes of these performance gaps, we developed three complementary evaluation tasks targeting specific reasoning components: basic rule understanding, single-move evaluation, and multi-step puzzle solving. These fine-grained assessments, combined with the competitive arena, provide comprehensive insight into model capabilities and limitations.

Finally, we demonstrate that post-training can address some of these deficiencies. Using high-quality gameplay data collected from ChessArena competitions, we fine-tuned Qwen3-8B through supervised learning followed by reinforcement learning. The resulting Qwen3-8B-Chess model shows substantial improvements in chess performance.

Our work makes three primary contributions:

- **ChessArena Platform:** We introduce a competitive evaluation framework for chess play. It is extensible, providing interfaces to any LLM participants. It supports the evaluation of complete games as well as fine-grained tasks targeted at specific reasoning components.
- **Empirical Findings:** Our testbed exposes critical gaps in current LLMs’ strategic reasoning through over 800 systematic gameplays. Fine-grained evaluations also provide detailed insight into the sources of model limitations.
- **Training Data and Model:** We collect and curate high-quality strategic reasoning data from ChessArena, and demonstrate through the Qwen3-8B-Chess model that training on strategic reasoning data can improve performance.

2 CHESSARENA

2.1 OVERVIEW

As shown in Fig. 1, ChessArena is a simulation platform where LLMs compete against each other to acquire quantitative chess strength ratings. Each model operates independently, generating moves based solely on the current chessboard state, closely emulating human competitive play. During gameplay, models receive task instructions and board representations, analyze the position, and predict moves that iteratively update the chessboard state. Additionally, our ChessArena competitions offer high scalability, with unified interface management that facilitates easy integration of new LLMs without affecting existing rankings. We use Forsyth-Edwards Notation (FEN) (rec.games.chess, 1994) for board representation and support both Universal Chess Interface (UCI) (Kahlen, 2004) and Standard Algebraic Notation (SAN) (rec.games.chess, 1994) for move representations. For more information about these representations, please refer to Appendix B.4.

2.2 PLAY MODES

To better evaluate the ability of LLMs, we design four play modes inspired by Lichess¹. Each LLM player can be associated with one of the following four modes.

- **Bullet:** Given the chessboard state, the LLM must directly generate a move without any intermediate reasoning. Outputs containing any form of thinking process will be rejected.
- **Blitz:** Given the chessboard state, the LLM may optionally include a reasoning process before producing the move. This mode is designed specifically for non-thinking LLMs.
- **Standard:** Given the chessboard state, the LLM must generate a move accompanied by a chain-of-thought (CoT) reasoning process. This mode is designed specifically for thinking LLMs.

¹<https://lichess.org/>

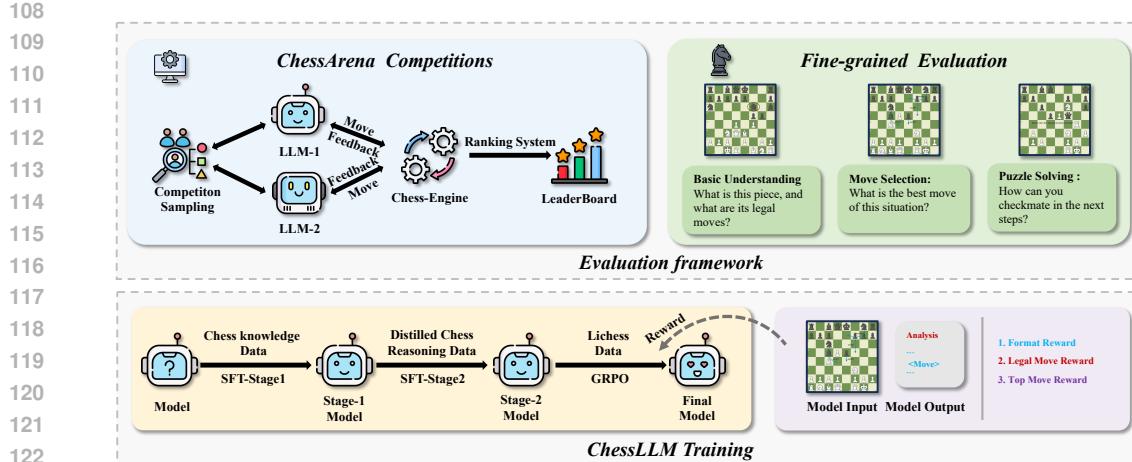


Figure 1: Overview of ChessArena competitions, fine-grained evaluation, and ChessLLM training. (1) An LLM can be integrated into ChessArena to compete against other models. After a certain number of competitions, each model is assigned a reliable Glicko rating and added to the leaderboard. (2) Three additional evaluation tasks are integrated into ChessArena to evaluate the chess capabilities at a fine-grained level. (3) We can extract high-quality chess reasoning data from the gameplay process, which can be used for training an LLM specially for chess.

- **Blindfold:** This mode represents the highest difficulty level. The model is provided with the move history from both players in the form of a multi-turn conversation. The LLM must reconstruct the chessboard state internally and produce a move with a thorough analysis.

2.3 RANKING SYSTEM

Glicko Rating System. We adopted the Glicko rating system (Glickman, 1995) as our ranking algorithm. As an enhancement of the traditional Elo rating system, Glicko represents each player’s chess strength using two parameters: the rating r (similar to traditional Elo) and the rating deviation d that reflects the uncertainty in the rating. A high d indicates that the player’s rating is still unreliable and requires more matches to stabilize. In our scenarios, both parameters update after each competition, with d decreasing monotonically as the system gains confidence in the player’s skill level.

Competition Sampling Strategy. We developed a competition sampling algorithm to accelerate the convergence of rating deviation (d). Mathematical analysis shows that d reduction is maximized when opponents have similar ratings (r) and low d values, as matches between players of comparable and established skill levels yield the most information. Complete details of the Glicko rating system and proofs regarding the competition sampling strategy are provided in Appendix C. Our algorithm enables new players to achieve reliable ratings ($d < 100$) within approximately 30 games.

2.4 CHESS ENGINE

Regarding the chess engine, we chose Stockfish (Stockfish Development Team, 2016), which is currently the most powerful chess engine and has been widely used in chess analysis. We utilize the analysis results from Stockfish as a critical reference for subsequent evaluations. Specifically, given a search depth and a chessboard state, we use Stockfish to analyze the win rates of all legal moves for the current state. We consider moves with win rates in the top-3 as “top moves” for subsequent analysis. Additionally, we employed two supplementary engines as players in our testbed.

Maia-1100. To better understand the gap between the LLMs and human chess players, we incorporated Maia-1100 (McIlroy-Young et al., 2020), a chess AI with an Elo rating of approximately 1600 on real human chess platforms,², which is roughly the average level for human players. Maia-1100 is specially developed for chess, and it is based on CNN and Monte Carlo Tree Search.

²<https://lichess.org/@/maia1>

162 **Random Player.** We also included a random player, which chooses randomly from all legal moves
 163 on the board. Note that this player is not purely random, as we provide the legal moves to it.
 164

165 **2.5 FINE-GRAINED EVALUATION TASKS**
 166

167 In addition to the overall Glicko rating, ChessArena also provides more comprehensive evaluations
 168 of the strategic reasoning capabilities of LLMs. We design three fine-grained tasks as follows.
 169

170 **Basic Understanding.** This task evaluates models’ basic understanding of chess rules and board
 171 states by testing their ability to generate legal moves. Given a chessboard state and a specific position,
 172 models must identify the piece of the given position (e.g., King or Queen) and generate all legal
 173 moves of this piece. We assess this basic understanding capability using three metrics: *Piece Match*
 174 *Accuracy (PMA)*, which measures the accuracy of piece identification, and *Precision and Recall*,
 175 which measure the accuracy of legal move prediction. To strengthen the evaluation, we introduce
 176 perturbations including empty squares and turn-mismatch scenarios (e.g., requesting a Black piece
 177 when it is White’s turn). In such cases, the correct response should be no legal moves.
 178

179 **Move Selection.** This task evaluates models’ single-move chess-playing ability by requiring them to
 180 select optimal moves from a given board state. We assess performance using three metrics: *Legal*
 181 *Rate (LR)*, *Top Rate (TR)*, and *Move Advantage Rate (MAR)*. LR quantifies the proportion of legal
 182 moves predicted by the model. TR evaluates whether the model’s predictions are included in the “top
 183 moves” as determined by Stockfish. MAR measures the relative strength of a model’s predicted move
 184 compared to all legal moves. Using Stockfish to evaluate win rates $Q(\text{FEN}, \text{move})$ for all legal moves
 185 from a given chessboard, we compute the Average Win Rate (AWR) as $\frac{1}{M} \sum_{m=1}^M Q(\text{FEN}, \text{Move}_m)$,
 186 where M is the number of legal moves. MAR is then calculated as:
 187

$$\text{MAR} = \frac{1}{N} \sum_{i=1}^N \frac{Q(\text{FEN}_i, \text{Move}_{\text{pred}}) - \text{AWR}_i}{\text{AWR}_i},$$

188 where N is the number of evaluation instances. For illegal moves, we set $Q(\text{FEN}, \text{Move}_{\text{pred}}) = 0$.
 189

190 **Puzzle Solving.** In line with the work of Hwang et al. (2025) and Ruoss et al. (2024), we evaluate
 191 chess puzzle solving using the Lichess puzzle database³. Each puzzle begins from an initial board
 192 state and consists of k ground-truth sequential moves that represent the solution. At each step, we
 193 present the current board state and require the model to predict the optimal move. A puzzle is
 194 considered solved only if all k predicted moves match the ground truth exactly—even a single error in
 195 any step results in failure. We utilize the puzzle dataset from the Lichess puzzle database, where each
 196 puzzle is associated with an Elo rating ranging from 200 to 3000 on the Lichess platform. We use
 197 *Puzzle Solving Accuracy (PSA)* as our evaluation metric, which measures the percentage of puzzles
 198 that the model correctly solves.
 199

200 **3 POST-TRAIN LLMs FOR CHESSARENA**
 201

202 To explore potential solutions to the observed strategic reasoning limitations exhibited by the models,
 203 we post-train LLMs (named Qwen3-8B-Chess and Seed-Coder-8B-Chess) on Qwen3-8B and Seed-
 204 Coder-8B-Instruct, which are the weakest among the studied LLMs. Our post-training includes
 205 two stages of supervised fine-tuning (SFT) and one stage of group relative policy optimization
 206 (GRPO) (Shao et al., 2024).
 207

208 **Supervised fine-tuning.** This phase aims to gain basic chess reasoning ability. It consists of two
 209 stages. In the first stage of SFT, we use chess-based dialogue data from ChessGPT (Feng et al.,
 210 2023), which covers discussions on basic chess rules, tactics, etc. This stage injects the background
 211 knowledge about chess into the model. In the second stage of SFT, we collect and filter data from
 212 games played on ChessArena, which is critical for endowing the model with fundamental chess
 213 reasoning skills.
 214

215 **Group relative policy optimization.** In the following stage, we further enhance the chess ability
 216 through GRPO. GRPO has been demonstrated as an effective method for enhancing a model’s
 217

³<https://database.lichess.org>

216 reasoning capabilities, particularly when verifiable rewards (e.g., for mathematics or code generation)
 217 are employed (Guo et al., 2025). This is also the case for our chess scenario. Specifically, we
 218 utilize Stockfish to analyze the model’s moves and generate verifiable reward signals, enabling the
 219 model to autonomously explore chess strategies through this feedback mechanism. We define three
 220 types of rewards: format reward, legal move reward, and top move reward. For more details about
 221 post-training (e.g., training data collection, reward design, and training hyperparameters), please refer
 222 to Appendix D.

223

224

4 EXPERIMENTS

225

226

4.1 EXPERIMENTAL SETUP

227

228

Evaluated Models. We evaluated leading proprietary and open-source LLMs, including GPT-4.1 (OpenAI, 2025a), GPT-4o (OpenAI, 2024), O3 (OpenAI, 2025b), Claude-3-7-Sonnet (Anthropic, 2025), Gemini-2.5-pro (Google DeepMind, 2025), Qwen3-235B-A22B(Non-thinking) (Yang et al., 2025), DeepSeek-R1 (Guo et al., 2025), DeepSeek-V3 (Liu et al., 2024), DeepSeek-V3.1(Non-thinking), and Doubao (Seed et al., 2025) series. We also include Qwen3-8B and our trained Qwen3-8B-Chess. All evaluated models are shown in Table 5.

229

230

231

232

233

Ranking System. We initialized our Glicko rating system with $r = 1500$ and $d = 350$, setting a minimum rating deviation of $d = 50$ to ensure meaningful rating adjustments throughout the competition. Following Lichess, we display only players with $d \leq 100$, indicating statistically reliable ratings.

234

235

236

237

238

Implementation Details. We set the max new tokens to 4096 for non-thinking models and 16384 for thinking models. We set *temperature* as 0.2 and *top_p* as 1 for all experiments, as we observed optimal model performance under these configurations. We evaluated the models under two distinct conditions: with and without the provision of legal moves. We provide the latest 10 moves as partial move history in UCI format to give models sufficient game context and prevent fivefold repetition draws that occurred frequently without this historical information. In ChessArena, the termination conditions adhere to standard chess rules, including checkmate, forfeit, stalemate, insufficient material, fivefold repetition, the 75-move rule, and move limit (please refer to Appendix B.3 for further details). Our experimental setup employs two deployment approaches: official model APIs for most models, and local deployment via vLLM (Kwon et al., 2023) for Qwen3-8B and its post-training versions.

239

240

241

242

243

244

245

246

247

For basic understanding and move selection evaluation, we constructed the evaluation data from actual competitions in ChessArena. There are 200 and 1000 samples in these two tasks, respectively. To ensure a fair comparison of the model’s performance across the four play modes, we guaranteed that the evaluation data for these four play modes consisted of identical board states. For the Blindfold mode in the move selection experiment, the average number of conversation turns in our evaluation data is 47. For puzzle solving experiments, we use 1008 puzzles from the Lichess puzzle database. For more details about fine-grained evaluation data construction, please refer to Appendix E.

248

249

250

251

252

253

254

All of our prompt templates are shown in Appendix B.2, including prompt templates in ChessArena competitions of different play modes and fine-grained evaluation. In actual competitions, players compete in an even number of games (alternating between playing as White and Black) to balance the first-move advantage.

255

256

257

258

(A) LeaderBoard. Our rating leaderboard is shown in Table 1. We provide legal moves to the vast majority of models, as they cannot effectively play without them. The whole leaderboard and sub-metrics during competitions are shown in Appendix F.1.

259

260

261

Key observations. Among the models, we observe that thinking models such as O3, Doubao-Seed-1-6-Thinking, and Gemini-2.5-Pro currently lead the rankings. Among non-thinking models, GPT-4.1 and Claude-3-7-Sonnet show the strongest performance. When legal moves are provided, our trained Qwen3-8B-Chess achieves the best performance among all non-thinking models (including GPT-4.1). Notably, the untrained Qwen3-8B baseline ranks at the bottom of the leaderboard.

270 Table 1: Leaderboard of ChessArena. Thinking models generally perform better than non-thinking
 271 models, while all models are inferior to Maia-1100. When legal moves are provided, our post-trained
 272 Qwen3-8B-Chess outperforms other non-thinking models and is on par with thinking models. (‘Legal
 273 Moves’ stands for whether the set of legal moves are provided to the model, ‘RD’ means the rating
 274 deviation, and ‘Interval’ means the 95% confidence interval for the rating.)

Rank	Model	Mode	Legal Moves	Rating	RD	Interval	Games
1	Maia-1100	-	✗	2220	82	(2058, 2382)	44
2	O3	Standard	✗	1948	78	(1793, 2101)	28
3	Doubao-Seed-1-6-Thinking	Standard	✓	1830	50	(1729, 1929)	60
4	Gemini-2.5-Pro	Standard	✓	1819	81	(1659, 1979)	18
5	Qwen3-8B-Chess	Blitz	✓	1776	93	(1593, 1959)	16
6	Doubao-Seed-1-6-Thinking	Standard	✗	1743	66	(1612, 1873)	36
7	GPT-4.1	Blindfold	✓	1699	50	(1601, 1797)	60
8	Doubao-Seed-1-6-Thinking	Blindfold	✓	1687	73	(1542, 1831)	24
9	GPT-4.1	Blitz	✓	1686	50	(1588, 1784)	182
10	Claude-3-7-Sonnet	Blitz	✓	1654	50	(1555, 1751)	74
11	Claude-3-7-Sonnet	Blindfold	✓	1625	66	(1493, 1756)	30
12	GPT-4.1	Blitz	✗	1623	50	(1525, 1721)	106
13	Gemini-2.5-Pro	Standard	✗	1616	74	(1469, 1762)	28
14	Seed-Coder-8B-Chess	Blitz	✓	1614	63	(1490, 1738)	30
15	Qwen3-8B-SFT-Stage2	Blitz	✓	1612	56	(1501, 1721)	40
16	Claude-3-7-Sonnet	Blindfold	✗	1588	72	(1445, 1729)	28
17	GPT-4.1	Bullet	✓	1583	50	(1485, 1681)	54
18	DeepSeek-V3	Blitz	✓	1553	50	(1454, 1650)	174
19	Random Player	-	✓	1524	50	(1425, 1621)	284
20	Qwen3-235B-A22B	Blitz	✓	1483	50	(1385, 1581)	146
21	DeepSeek-V3	Blitz	✗	1482	58	(1367, 1597)	48
22	DeepSeek-V3	Blindfold	✓	1437	75	(1290, 1584)	24
23	DeepSeek-V3	Bullet	✓	1382	80	(1224, 1540)	22
24	Qwen3-235B-A22B	Bullet	✓	1369	54	(1261, 1476)	46
25	Qwen3-8B	Blitz	✓	1335	65	(1205, 1463)	32
26	Seed-Coder-8B-Instruct	Blitz	✓	1009	106	(800, 1218)	30

299
 300 *Comparing to Maia-1100 and Random Player.* There remains a significant performance gap between
 301 LLMs and Maia-1100. Currently, no LLM has demonstrated the capability to defeat Maia-1100 in
 302 actual gameplay, which demonstrates the inadequacy of the model’s strategic reasoning capabilities.
 303 Compared to the random player baseline, most models exhibit better performance. However, a few
 304 models still underperform the random player. This primarily occurs when models fail to generate
 305 legal moves due to the lack of instruction-following ability, resulting in forfeit losses. Table 12
 306 presents metrics demonstrating substantial *parsing error rates* across models, indicating format non-
 307 compliance and instruction-following deficiencies. Several models also exhibit elevated *illegal move*
 308 *rates* even when legal moves are explicitly provided. While high *illegal move rates* are anticipated
 309 when legal moves are not provided, rates exceeding 5% in scenarios with provided legal moves
 310 warrant attention.

311 *Different play modes.* For the same model under different play modes, we observe that most
 312 models achieve their best performance in Blitz or Standard modes. This aligns with expectations, as
 313 these modes provide the model with the most direct board information while permitting reasoning.
 314 Under Blindfold conditions, O3, Doubao-Seed-1-6-Thinking, GPT-4.1, and Claude-3-7-Sonnet still
 315 demonstrate competent playing strength. They demonstrate stronger multi-turn memorization and
 316 long-term strategic reasoning capabilities than other models. However, in Bullet mode, nearly all
 317 models perform poorly. This suggests that prohibiting thought chain output (e.g., “Let me think ...”
 318 or reasoning steps) severely impairs the models’ chess strategic reasoning capabilities.

319 **(B) Basic Understanding.** Table 2 shows the results of the basic understanding task. It can be seen
 320 that thinking models (e.g., O3, Doubao-Seed-1-6-Thinking and DeepSeek-R1) have almost complete
 321 chessboard understanding capabilities, being able to identify pieces at specific positions on the board
 322 and generate related legal moves according to chess rules. Additionally, some strong non-thinking
 323 models, such as GPT-4.1 and Claude-3-7-Sonnet, also have relatively high *PMA*, *Precision* and *Recall*.
 Our trained Qwen3-8B-Chess shows improvement over Qwen3-8B on this task, even though we did
 not specifically train on this task.

324
 325 Table 2: Basic understanding results. Thinking models such as O3 and Doubao-Seed-1-6-Thinking
 326 show strong chessboard understanding capabilities. Our post-training significantly improves the basic
 327 understanding capability.

328 Model	329 PMA (%)	330 Precision (%)	331 Recall (%)
330 GPT-4.1	331 98.0	332 89.3	333 92.1
331 O3	332 98.5	333 98.5	334 98.5
332 DeepSeek-V3	333 97.0	334 81.8	335 75.3
333 DeepSeek-V3.1	334 89.0	335 87.5	336 87.4
334 DeepSeek-R1	335 100.0	336 99.2	337 98.4
335 Doubao-1-5-Pro-32k	336 76.0	337 50.6	338 56.2
336 Doubao-1-5-Lite-32k	337 51.5	338 33.3	339 30.3
337 Doubao-1-5-Thinking-Pro	338 99.5	339 98.0	340 98.0
338 Doubao-Seed-1-6-Thinking	339 100.0	340 99.9	341 99.9
339 Qwen3-235B-A22B	340 80.5	341 50.7	342 49.3
340 Claude-3-7-Sonnet	341 98.0	342 87.6	343 87.3
341 Gemini-2.5-Pro	342 100.0	343 98.5	344 96.7
342 Qwen3-8B	343 36.0	344 14.1	345 18.8
343 Qwen3-8B-Chess-SFT-Stage1	344 63.5 (+31.5)	345 20.6 (+5.9)	346 29.5 (+14.3)
344 Qwen3-8B-Chess-SFT-Stage2	345 70.5 (+7.0)	346 51.9 (+31.3)	347 45.3 (+15.8)
345 Qwen3-8B-Chess (SFT+RL)	346 79.0 (+8.5)	347 52.6 (+0.7)	348 50.1 (+4.8)

344
 345 **(C) Move Selection.** Table 3 shows the results of move selection. We share our findings below.

346 *LLMs have significant room for improvement in the strategic reasoning of chess.* Among all LLMs we
 347 evaluated, thinking models such as O3, Gemini-2.5-Pro, and Doubao-Seed-1-6-Thinking performed
 348 the best, while GPT-4.1 and Qwen3-8B-Chess also showed relatively excellent performance. However,
 349 their TP and MAR are far behind Maia-1100, which indicates that LLMs still have significant room
 350 for improvement in chess strategic reasoning capabilities. When legal moves are not provided, the
 351 performance of most models is even worse, as indicated by the negative MAR values.

352 *Bullet and Blindfold chess games bring difficulties to LLMs.* In terms of comparison among different
 353 play modes, the performance of LLMs (e.g., O3, Doubao-Seed-1-6-Thinking, DeepSeek-R1, GPT-
 354 4.1, Qwen3-235B-A22B, DeepSeek-V3.1) in Bullet or Blindfold mode is usually worse than in
 355 Blitz/Standard mode. Both Bullet (thinking content restricted) and Blindfold (multi-turn conversation
 356 reconstruction) pose certain difficulties for LLMs.

357 *Thinking models tried to reconstruct the chessboard.* For the Blindfold chess experiment, it appears
 358 that different models exhibit significant variations in performance. First of all, compared to Standard
 359 mode, DeepSeek-R1 and Doubao-Seed-1-6-thinking show a noticeable decline in performance in
 360 Blindfold mode. We manually checked their response and found that they were trying to reconstruct
 361 the chessboard, which brings much difficulty for them, especially when the number of conversation
 362 turns is large (i.e., more than 90 turns).

363 *Non-Thinking models may be lazy in Blindfold chess games.* GPT-4.1 and Qwen3-235B-A22B also
 364 demonstrate a significant drop when in Blindfold play mode compared to their performance in Blitz
 365 mode. For experiments Blindfold and without legal moves, we find that GPT-4.1, Qwen3-235B-A22B,
 366 and DeepSeek-V3 mostly base their responses on the last move in the conversation and continue
 367 from there, showing signs of laziness. They are more like guessing a move. Claude-3-7-Sonnet
 368 seems to reconstruct the chessboard genuinely and accomplishes this automatically without spending
 369 many response tokens. Overall, Blindfold chess poses significant challenges for models, revealing
 370 deficiencies in multi-turn reasoning capabilities.

371 Table 16 shows the average conversation turns for models predicting legal versus illegal moves in
 372 Blindfold mode without legal move provision. For non-thinking models, conversation turns had
 373 minimal impact on performance. However, thinking models required significantly fewer turns to
 374 predict legal moves compared to illegal ones, indicating that longer conversations impede board
 375 reconstruction. This disparity reveals the lazy behavior exhibited by non-thinking models. Notably,
 376 O3 maintains performance across more conversation turns than DeepSeek-R1 and Doubao-Seed-
 377 1-6-Thinking, demonstrating superior multi-turn memorization and reasoning capabilities. For more
 378 information about Blindfold mode analysis, please refer to Appendix G.2.

378 Table 3: Move selection performance across four play modes with/without legal moves provision.
379 We bold the highest LR, TR, and MAR within each group. LLMs still have significant room for
380 improvement, especially when the legal moves are not provided.

Mode	Model or Engine	With Legal Moves			Without Legal Moves		
		LR (%)	TR (%)	MAR (%)	LR (%)	TR (%)	MAR (%)
	Random Player	100.0	14.8	-1.1	/	/	/
	Maia-1100	/	/	/	100.0	78.3	+107.6
Blitz	GPT-4.1	97.5	25.9	+20.5	71.6	29.3	+6.2
	Claude-3.7-Sonnet	99.6	26.1	+25.6	68.4	18.2	-17.7
	DeepSeek-V3	99.1	18.5	+10.7	64.5	12.9	-27.7
	DeepSeek-V3.1	93.4	26.7	+18.6	63.7	16.9	-23.6
	Qwen3-235B-A22B	89.8	24.9	+29.0	64.2	17.0	-25.3
	Qwen3-8B	96.2	13.4	+1.8	9.8	2.1	-79.5
	Qwen3-8B-Chess-SFT-Stage1	86.8	13.6	-9.6	15.1	2.6	-74.9
	Qwen3-8B-Chess-SFT-Stage2	96.9	23.4	+15.1	66.3	13.3	-22.1
	Qwen3-8B-Chess (SFT+RL)	92.9	40.2	+41.1	87.6	20.2	-1.2
Bullet	Seed-Coder-8B-Instruct	59.3	8.5	-36.1	4.5	1.0	-85.4
	Seed-Coder-8B-Chess(SFT+RL)	99.5	29.5	+35.7	85.1	12.4	-9.0
	GPT-4.1	98.7	25.0	+20.8	74.0	28.7	+5.7
	Claude-3.7-Sonnet	98.6	22.5	+16.8	75.2	17.9	-9.4
	DeepSeek-V3	98.9	18.8	+11.3	66.2	13.3	-21.8
Standard	DeepSeek-V3.1	80.6	16.1	-8.0	56.3	12.7	-35.7
	Qwen3-235B-A22B	95.9	17.8	+4.5	69.1	15.9	-18.5
	DeepSeek-R1	100.0	32.7	+34.7	82.5	23.7	-1.0
	Doubaob-1-5-Thinking-Pro	99.7	32.9	+35.4	78.0	24.8	+3.0
	Doubaob-Seed-1-6-Thinking	99.8	39.1	+53.7	90.7	36.0	+32.0
Blindfold	Gemini-2.5-Pro	99.4	37.6	+46.5	85.5	40.5	+36.5
	O3	99.6	58.7	+80.1	98.0	62.0	+80.2
	GPT-4.1	96.8	20.1	+12.7	72.7	20.2	+1.2
	Claude-3.7-Sonnet	98.2	23.9	+21.5	77.3	18.9	-9.1
	DeepSeek-V3	95.1	19.2	+16.2	78.5	14.9	-7.8
	DeepSeek-V3.1	96.5	26.0	+27.2	66.0	13.7	-18.0
	DeepSeek-R1	94.7	22.7	+14.0	44.6	10.9	-36.9
	Qwen3-235B-A22B	96.1	19.9	+17.4	75.3	17.2	-10.4
	Doubaob-Seed-1-6-Thinking	97.8	32.1	+36.5	43.6	12.9	-30.5
5 RELATED WORK	Gemini-2.5-Pro	98.7	30.4	+23.5	68.7	21.5	-8.7
	O3	98.4	46.9	+63.2	86.9	43.5	+50.9

(D) Puzzle solving. Table 4 presents the main experimental results of puzzle solving, where we divide the puzzles according to their Elo ratings. Stockfish achieved an overall score of 98.4%, which aligns with expectations. Maia-1100 attained an overall score of 74.6%. Among all LLMs, the O3 model stands out remarkably, achieving a puzzle-solving rate of 55.6%. Other models all scored below 15%. Overall, thinking models outperformed non-thinking models. Our trained Qwen3-8B-Chess achieved the highest score among non-thinking models. We also present the puzzle-solving results without legal moves in Table 17. As can be observed, stronger models such as O3, GPT-4.1, and Gemini-2.5-pro exhibit almost no performance degradation, whereas weaker models are significantly affected. The models’ deficiencies in puzzle solving task indicate persistent limitations in long-term reasoning capabilities.

5 RELATED WORK

Chess Language Model. Recent studies have explored LLM applications to chess with interesting findings. Xiangqi-R1 (Chen et al., 2025) achieved strong performance in Chinese chess through SFT and GRPO training, while Hwang et al. (2025) encountered significant bottlenecks when applying RL methods to chess puzzle solving, which the authors attribute to the model’s inadequate acquisition of chess-related knowledge during pretraining. Carlini (2023) discovered that GPT-3.5-turbo could play chess using PGN format, but deeper analysis revealed reliance on memorized patterns rather than genuine reasoning. In contrast, Chess Bench (Ruoss et al., 2024) achieved grandmaster-level performance using a 270M Transformer pre-trained through Stockfish knowledge distillation, though this represents a domain-specific architecture rather than a general language model. ChessGPT (Feng

432 Table 4: Puzzle solving accuracy when legal moves are provided. LLMs perform relatively poorly,
 433 with O3 standing out as the strongest.

435 436 Model or Engine	437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 Puzzle Solving Accuracy (%)							
	200-600	600-1000	1000-1400	1400-1800	1800-2200	2200-2600	2600-3000	Overall
Stockfish (Depth=20)	100.0	100.0	100.0	100.0	99.3	97.9	91.5	98.4
Maia-1100	98.6	97.2	91.6	82.5	72.7	51.0	28.2	74.6
Random Player	1.4	1.4	2.1	0.0	0.0	0.0	0.0	0.7
GPT-4.1	18.9	14.0	8.4	4.9	1.4	2.8	0.0	7.2
Claude-3-7-Sonnet	18.2	16.1	4.9	4.2	5.6	1.4	0.0	7.2
DeepSeek-V3	11.9	7.7	2.1	0.7	0.0	0.7	0.0	3.3
DeepSeek-V3.1	13.3	10.5	8.4	4.9	1.4	2.8	7.0	6.0
Qwen3-235B-A22B	24.5	18.2	9.8	5.6	4.2	1.4	0.0	9.1
Qwen3-8B	2.8	4.9	2.1	0.0	0.0	0.0	0.0	1.4
Qwen3-8B-Chess	31.5	16.8	10.5	7.0	5.6	2.1	0.0	10.5
Seed-Coder-8B-Instruct	0.0	1.4	0.0	0.0	1.0	0.0	0.0	0.4
Seed-Coder-8B-Chess	23.8	8.4	4.9	3.5	4.9	2.8	0.0	6.9
O3	97.9	90.2	79.7	62.9	46.5	10.5	1.4	55.6
Gemini-2.5-Pro	37.1	24.5	18.2	9.1	4.2	3.5	1.4	14.0
Doubao-Seed-1-6-Thinking	27.3	23.8	11.9	7.7	4.2	1.4	2.1	11.2
DeepSeek-R1	23.1	20.3	7.0	4.2	2.8	0.7	0.7	8.4

450 et al., 2023) represents a systematic approach, fine-tuning RedPajama-3B on web-scraped chess data
 451 to significantly outperform base models, while also contributing a high-quality chess-related training
 452 dataset. Similarly, Wang et al. (2025) fine-tuned LLaMA3-8B on expert-annotated datasets targeting
 453 tactics and strategy, achieving performance superior to GPT-4o on their benchmarks. However,
 454 their evaluation task—selecting the better move between two given options—is considerably less
 455 challenging than actual gameplay.

456 **LLMs Evaluation Benchmark.** ChatBot Arena (Chiang et al., 2024) introduced human preference-
 457 based evaluation using Elo rankings, grounding model assessment in naturalistic user interactions.
 458 SWE-Bench (Jimenez et al., 2023) evaluates LLMs on real-world software engineering tasks, while
 459 LiveCodeBench (Jain et al., 2024) provides continuously updated coding benchmarks from LeetCode
 460 and CodeForces to prevent data contamination. AIME2025 (MAA, 2025) assesses mathematical
 461 reasoning through 30 olympiad-level problems from the American Invitational Mathematics Examination.
 462 For strategic reasoning evaluation, GT-Bench (Duan et al., 2024) employs game-based scenarios
 463 to assess LLMs’ strategic capabilities. ZebraLogic (Lin et al., 2025) tests logical reasoning through
 464 zebra puzzles of varying complexity. BBH (Kazemi et al., 2025) comprises 23 challenging multi-step
 465 reasoning tasks from BIG-Bench. Most relevant to our work, a concurrent work, GameArena (Lee
 466 et al., 2025), evaluated eight LLMs’ chess abilities in blitz-style competitions. We introduce Ches-
 467 sArena as a comprehensive testbed with multiple gameplay scenarios and fine-grained studies to
 468 evaluate strategic reasoning capabilities in current language models.

470 6 DISCUSSION

471 **Generalization.** One interesting problem is whether models trained on chess-specific domains with
 472 enhanced strategic reasoning capabilities can be generalized to other domains. In Appendix G.3,
 473 we evaluate our chess-specific trained model’s performance on other benchmarks. We found that
 474 our trained model demonstrated improvements on benchmarks such as AIME2025 and ZebraLogic,
 475 while maintaining comparable performance on other benchmarks.

476 **Limitations.** Our training data underwent outcome supervision filtering (evaluating only the quality
 477 of final moves without examining the reasoning process); this may result in training data containing
 478 cases where the reasoning process is flawed, but the final move is correct, potentially introducing noise
 479 into the dataset. This is a common issue shared across domains that rely on outcome supervision, such
 480 as code generation and mathematical reasoning. Besides, our trained model performs well under the
 481 “with legal moves” setting but poorly when such legal moves are not provided. This indicates that the
 482 model may still depend on memorization instead of developing genuine strategic understanding—a
 483 challenge potentially too demanding for 8B-parameter models. Alternatively, employing continued
 484 pre-training (Zhou et al., 2024) for the first stage of our SFT may be a viable option to improve its
 485 capability.

486

Conclusion. We introduce ChessArena, a competitive platform enabling large language models to play against each other in human-like chess competitions. Through authentic gameplay, we evaluate LLMs' strategic reasoning, instruction following, and multi-turn conversational memorization capabilities. Our analysis through ChessArena gameplay and fine-grained evaluation reveals substantial room for improvement in LLMs' chess strategic reasoning abilities. Observing deficiencies of current LLMs, we trained Qwen3-8B-Chess and achieved significant improvements in chess strategic reasoning capabilities. We hope our ChessArena platform, fine-grained evaluation tasks, and high-quality training datasets will contribute to future large language model research.

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
ChessArena is constructed entirely from publicly available chess gameplay data and standard chess
notation formats that permit open research usage, ensuring our contributions comply with established
data usage protocols. During the collection and evaluation processes, we do not gather personal
information about players or participants, and ChessArena task instances utilize only standard chess
positions and moves that are part of the public domain of chess knowledge. Our contributions do
not involve any human subject participation; we do not perform crowdsourcing or recruit human
annotators for any component of ChessArena, including data collection, game execution, and evalua-
tion procedures. ChessArena’s model selection and evaluation criteria are based solely on objective
performance metrics and do not implicitly or explicitly rely on any discriminative or biased heuristics
for model assessment. For the dataset release, we plan to open-source the ChessArena competition
platform, the ranking system implementation, competition sampling algorithms, fine-grained evalua-
tion frameworks, experimental results, the training data used for fine-tuning the Qwen3-8B-Chess
model, and the model weights. Following established best practices, we will provide comprehensive
documentation describing each component and its usage, and establish accessible communication
channels for soliciting community feedback to improve ChessArena. ChessArena does not present
any immediately harmful applications, as chess gameplay represents a benign domain for evaluating
strategic reasoning capabilities.558
559
REPRODUCIBILITY STATEMENT
560561
562
563
564
565
In our submitted source code, we provide all corresponding code for ChessArena competition, ranking
system, competition sampling, and fine-grained evaluation, as well as chess training-related SFT and
GRPO training data examples and code, enabling readers to reproduce our results. In the future, we
plan to open-source all code with corresponding documentation. We also intend to release the trained
Qwen3-8B-Chess model to facilitate subsequent research.566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Anthropic. Claude 3.7 Sonnet and Claude Code. Technical report, Anthropic, 2025. URL <https://www.anthropic.com/news/clause-3-7-sonnet>.

597

598 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
599 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
600 models. *arXiv preprint arXiv:2108.07732*, 2021.

601

602 Nicholas Carlini. Language models can play chess: An analysis of GPT-3.5-turbo-instruct's chess
603 playing ability. Personal Blog, September 2023. URL <https://nicholas.carlini.com/writing/2023/chess-llm.html>. Blog post analyzing how language models can play
604 chess.

605

606 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
607 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
608 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

609

610 Yuhao Chen, Shuochen Liu, Yuanjie Lyu, Chao Zhang, Jiayao Shi, and Tong Xu. Xiangqi-r1:
611 Enhancing spatial strategic reasoning in llms for chinese chess via reinforcement learning. *arXiv
612 preprint arXiv:2507.12215*, 2025.

613

614 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
615 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
616 platform for evaluating llms by human preference. In *Forty-first International Conference on
Machine Learning*, 2024.

617

618 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
619 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
620 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

621

622 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
623 Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
624 *Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp.
625 2368–2378, 2019.

626

627 Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
628 Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning
629 capabilities of llms via game-theoretic evaluations. *Advances in Neural Information Processing
Systems*, 37:28219–28253, 2024.

630

631 Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
632 Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. *Advances in
633 Neural Information Processing Systems*, 36:7216–7262, 2023.

634

635 Kanishk Gandhi, Dorsa Sadigh, and Noah D Goodman. Strategic reasoning with language models.
636 *arXiv preprint arXiv:2305.19165*, 2023.

637

638 Mark E Glickman. The glicko system. *Boston University*, 16(8):9, 1995.

639

640 Google DeepMind. Gemini-2.5-Pro. Technical report, Google DeepMind, 2025. URL <https://deepmind.google/models/gemini/>.

641

642 Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
643 Sida Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. In *Forty-first
International Conference on Machine Learning*.

644

645 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
646 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
647 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

648

649 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv
650 preprint arXiv:2501.03262*, 2025.

648 Dongyoон Hwang, Hojoon Lee, Jaegul Choo, Dongmin Park, and Jongho Park. Can large language
 649 models develop strategic reasoning? post-training insights from learning chess. *arXiv preprint*
 650 *arXiv:2507.00726*, 2025.

651 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 652 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 653 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

654 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 655 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint*
 656 *arXiv:2310.06770*, 2023.

657 Stefan-Meyer Kahlen. Description of the universal chess interface (uci), 2004. URL <https://www.wbrec-ridderkerk.nl/html/UCIProtocol.html>.

658 Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
 659 ket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench extra
 660 hard. *arXiv preprint arXiv:2502.19187*, 2025.

661 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 662 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 663 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*,
 664 pp. 611–626, 2023.

665 Andrew Lee, Bo Chang Antonio Gulli, Bovard Doerschuk-Tiberi Bob Fraser, Chris Prichard
 666 Chad Woodford, Bob Fraser, et al. Chess text input. <https://www.kaggle.com/benchmarks/kaggle/chess-text>, 2025. Google DeepMind, Google Cloud, Kaggle.

667 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 668 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv*
 669 *preprint arXiv:2502.01100*, 2025.

670 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 671 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 672 *arXiv:2412.19437*, 2024.

673 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 674 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 675 2025.

676 MAA. American invitational mathematics examination - aime
 677 2025, 2025. URL <https://maa.org/math-competitions/american-invitational-mathematics-examination-aime>.

678 Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhuman
 679 ai with human behavior: Chess as a model system. In *Proceedings of the 26th ACM SIGKDD*
 680 *international conference on knowledge discovery & data mining*, pp. 1677–1687, 2020.

681 OpenAI. Hello GPT-4o. Technical report, OpenAI, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

682 OpenAI. Introducing GPT-4.1 in the API. Technical report, OpenAI, 2025a. URL <https://openai.com/index/gpt-4-1/>.

683 OpenAI. Introducing-O3-and-O4-Mini. Technical report, OpenAI, 2025b. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

684 rec.games.chess. Standard: Portable game notation specification and implementa-
 685 tion guide, 1994. URL <http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm>.

686 Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li K Wenliang, Elliot Catt,
 687 John Reid, Cannada A Lewis, Joel Veness, and Tim Genewein. Amortized planning with large-
 688 scale transformers: A case study on chess. *Advances in Neural Information Processing Systems*,
 689 37:65765–65790, 2024.

702 ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
 703 Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb
 704 reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.13914*, 2025.

705 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 706 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 707 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

708 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 709 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 710 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

711 Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the
 712 limits of chain-of-thought with multistep soft reasoning. In *The Twelfth International Conference
 713 on Learning Representations*.

714 Stockfish Development Team. Stockfish 8. <https://stockfishchess.org/>, 2016. Open
 715 source chess engine.

716 Shu Wang, Lei Ji, Renxi Wang, Wenzhao Zhao, Haokun Liu, Yifan Hou, and Ying Nian Wu. Explore
 717 the reasoning capability of llms in the chess testbed. In *Proceedings of the 2025 Conference of
 718 the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
 719 Language Technologies (Volume 2: Short Papers)*, pp. 611–622, 2025.

720 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 721 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 722 2025.

723 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 724 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 725 scale. *arXiv preprint arXiv:2503.14476*, 2025.

726 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 727 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv
 728 preprint arXiv:2403.13372*, 2024.

729 Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
 730 pre-trained models: A survey. In *IJCAI*, 2024.

731 Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widayarsi, Imam
 732 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
 733 generation with diverse function calls and complex instructions. In *The Thirteenth International
 734 Conference on Learning Representations*.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX	
757		
758	A The Usage of Large Language Models	16
759		
760	B More Implementation Details	16
761	B.1 Evaluated Models	16
762	B.2 Prompt Templates	16
763	B.3 Termination Conditions	17
764	B.4 Chess Notation	17
765	B.5 Difference Between Move Selection and Real Chess Competition	17
766		
767		
768	C Glicko Rating System & Competition Sampling Algorithm	21
769		
770	C.1 Glicko Rating System	21
771	C.2 Competition Sampling	21
772		
773		
774	D Post-training Details	23
775		
776	D.1 SFT Data Collection	23
777	D.2 RL Data Collection	24
778	D.3 Reward	24
779	D.4 Training hyper-parameters	24
780	D.5 Continuous Reward	24
781	D.6 Why do we choose single-step RL?	25
782		
783		
784		
785	E Fine-Grained Evaluation Dataset Construction	26
786		
787		
788	F Additional Results	26
789		
790	F.1 Whole LeaderBoard	26
791	F.2 Move History Affection	27
792		
793	G Analysis	29
794		
795	G.1 Why Do LLMs Fail in Chess?	29
796	G.2 Blindfold Analysis	33
797	G.3 The Generalization of Chess Reasoning Training	35
798	G.4 Legal Moves as Potential Constraints	48
799	G.5 RL Training Analysis	51
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810
811 In the Appendix, we provide detailed experimental settings, mathematical proofs for the compe-
812 tition sampling algorithm, post-training dataset construction and training details, and additional
813 experimental results and analysis.

814 A THE USAGE OF LARGE LANGUAGE MODELS

815 We used large language models as assistant tools for two specific purposes in this work:

816

817 • Paper polishing: LLMs were employed to improve the clarity, grammar, and overall readability of
818 the manuscript text.

819 • Table formatting: LLMs assisted in enhancing the visual presentation and formatting of tables to
820 improve readability.

821

822 The use of LLMs was limited strictly to these two auxiliary functions. LLMs did not contribute
823 to research ideation, experimental design, data analysis, result interpretation, or the generation of
824 scientific content. All research ideas, methodologies, findings, and conclusions are entirely the work
825 of the authors.

826

827 B MORE IMPLEMENTATION DETAILS

828 B.1 EVALUATED MODELS

829 Our evaluated models are shown in Table 5.

830 Table 5: Large Language Models Evaluated in ChessArena

831 Model Family	832 Model Name	833 Type	834 Thinking
835 OpenAI	GPT-4.1 (OpenAI, 2025a)	Proprietary	✗
	GPT-4o (OpenAI, 2024)	Proprietary	✗
	O3 (2025-04-16) (OpenAI, 2025b)	Proprietary	✓
836 DeepSeek	DeepSeek-V3 (0324) (Liu et al., 2024)	Open Source	✗
	DeepSeek-V3.1	Open Source	✗
	DeepSeek-R1 (0120) (Guo et al., 2025)	Open Source	✓
837 ByteDance	Doubao-1.5-Pro-32K	Proprietary	✗
	Doubao-1.5-Lite-32K	Proprietary	✗
	Seed-Coder-8B-Instruct	Open Source	✗
	Doubao-1.5-Thinking-Pro	Proprietary	✓
	Doubao-Seed-1.6-Thinking (Seed et al., 2025)	Proprietary	✓
838 Alibaba	Qwen3-235B-A22B (0514) (Yang et al., 2025)	Open Source	✗
	Qwen3-8B (0514)	Open Source	✗
839 Anthropic	Claude-3.7-Sonnet (Anthropic, 2025)	Proprietary	✗
	Gemini-2.5-Pro (Google DeepMind, 2025)	Proprietary	✓
840 Ours	Qwen3-8B-SFT-Stage1	Open Source	✗
	Qwen3-8B-SFT-Stage2	Open Source	✗
	Qwen3-8B-Chess (SFT+RL)	Open Source	✗
	Seed-Coder-8B-SFT-Stage1	Open Source	✗
	Seed-Coder-8B-SFT-Stage2	Open Source	✗
	Seed-Coder-8B-Chess(SFT + RL)	Open Source	✗

856 B.2 PROMPT TEMPLATES

857 There are the prompt templates for chess competitions, designed for various play modes. Blitz and
858 Standard allow the model to think, as shown in Figure 2. Bullet expects the model to output the
859 answer directly without thinking, as shown in Figure 3. Blindfold is another mode, where the model
860 is expected to reconstruct the board from the conversation history and play accordingly. We record
861 the player’s and opponent’s moves in the conversation history. For details, please refer to Figure 4.

864 For basic understanding, the prompt templates are shown in Figure 5. The prompt templates for move
 865 selection remain consistent with those of each play mode. The prompt template of puzzle solving is
 866 the same as Blitz/Standard play mode prompt template.
 867

868 **B.3 TERMINATION CONDITIONS**
 869

870 Following official chess rules, our games terminate under these conditions:
 871

- 872 • **Checkmate**: A player delivers checkmate, winning the game.
 873
- 874 • **Forfeit**: A player fails to generate a legal move after multiple attempts (indicating either instruction-
 875 following deficits or board analysis failures), awarding victory to the opponent. We will give an
 876 instruction if an LLM fails to give a legal move. We allow a player to retry 5 times.
 877
- 878 • **Stalemate**: Draw declared when the active player has no legal moves but is not in check.
 879
- 880 • **Insufficient material**: Draw due to neither player having sufficient pieces to force checkmate (e.g.,
 881 king vs. king).
 882
- 883 • **Fivefold repetition**: Draw triggered by the same position recurring five times.
 884
- 885 • **75-move rule**: Draw if 75 consecutive moves occur without pawn advances or captures.
 886
- 887 • **Move limit**: Draw if the total move count exceeds the maximum move count. We set it to 200
 888 moves.
 889

890 **B.4 CHESS NOTATION**
 891

892 **Board Representation.** We adopt the Forsyth-Edwards Notation (FEN) rec.games.chess (1994) as
 893 our chessboard representation Standard. FEN is a widely recognized notation system that encodes a
 894 chess position into six space-delimited fields, comprehensively capturing the game state (e.g., piece
 895 placement, active color, castling rights, en passant targets, half move clock, and full move number).
 896 This notation is supported by the Python-Chess library and provides LLMs with an unambiguous,
 897 machine-parseable representation of board states, where each unique chess position maps to a distinct
 898 FEN string.
 899

900 **Move Representation.** For move encoding, we implement the Universal Chess Interface
 901 (UCI) Kahlen (2004) Standard, which specifies moves in coordinate notation (e.g., "e2e4" for
 902 pawn advance). UCI's start-to-end positional format ensures deterministic move interpretation.
 903 Additionally, we maintain compatibility with Standard Algebraic Notation (SAN) to accommodate
 904 alternative LLM outputs. Our system automatically normalizes all move representations into a
 905 canonical form, enabling robust analysis regardless of the LLM's native output format.
 906

907 In ChessArena, we first prefer to have models output UCI notation moves. If UCI notation moves
 908 cannot be extracted, we will extract SAN moves. We support both move notations. Regarding
 909 chessboard representations, we know that besides FEN representation, there is also Portable Game
 910 Notation (PGN) rec.games.chess (1994) representation. However, PGN representation shows the
 911 move history of a game and cannot directly reveal the piece arrangement on a board, so we use FEN
 912 representation, which is much more direct and clear for models. In basic understanding experiments,
 913 GPT-4.1, Claude-3-7-sonnet, and Doubao-Seed-1-6-thinking all showed a high piece match rate,
 914 precision, and recall, indicating they have understanding capabilities for FEN board representation,
 915 but their actual chess gameplay performance still has considerable space for improvement.
 916

917 **B.5 DIFFERENCE BETWEEN MOVE SELECTION AND REAL CHESS COMPETITION**
 918

919 Move selection evaluation results show an overall consistent trend with the ChessArena Leaderboard.
 920 ChessArena competition is more complex than single move selection. Additionally, LLMs also have
 921 opportunities to adjust themselves. LLMs must try their best in a pressure situation. Move selection
 922 offers a straightforward and efficient method for assessing an LLM's chess strategic reasoning. In
 923 contrast, ChessArena competition provides a more accurate and engaging evaluation by requiring
 924 models to participate in extended game sessions.
 925

918
919
920
921
922

Blitz/Standard prompt template

923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

System:

You are an expert chess player. You are playing a game of chess. You are playing as {White_or_Black}. You must thoroughly analyze the position and play with utmost caution. When you have the advantage, press it relentlessly and aim for a swift checkmate. Carefully evaluate every move to eliminate any chance of a counterplay or draw by your opponent. When at a disadvantage, strive to turn the tide and win if possible. If victory is unattainable, exhaust all possible means to force a draw. Meticulously analyze legal moves, then select the absolute best one. You need to determine whether you are playing as Black or White. Then, you need to observe the positions of your pieces and choose one of your own pieces to move; make sure that your move follows the rules of chess. Considering the long-term strategy and short-term tactic. Analyze the position carefully. You may think through the position and consider multiple candidate moves.

When you have decided on your final move, output it in UCI notation (e.g., 'e2e4', 'g8f6', 'e7e8q') in the following format:

<answer>

<move>

</answer>

For example:

e2e4

Reminder of chess rules:

- Bishops move diagonally.
- Rooks move horizontally or vertically.
- Knights jump in an L-shape.
- Queens combine rook and bishop movement.
- Kings move one square in any direction.
- Pawns move forward, capture diagonally, and can promote.

You can think and reason as much as you want (step by step), but your final move must be formatted exactly as shown above.

User:

The current FEN: {<fen>}

(Optional) Legal moves in UCI notation: {<uci_1>

<uci_2> ...<uci_L>}.

What is the best move?

Figure 2: Input prompt format for Blitz and Standard chess competition. Whether to provide legal moves is optional.

```

972 Bullet prompt template
973
974 System:
975 You are an expert chess player. You are playing a game
976 of chess. You are playing as White/Black.
977 Same as Blitz. Omitted.
978 You must give me your answer directly without using
979 any other words. I will not accept your answer if there
980 are any other words. Only output your move content. Your
981 final move must be formatted exactly as shown above.
982
983 User:
984 The current FEN: {<fen>}
985 (Optional) Legal moves in UCI notation: {<uci_1>
986 <uci_2> ...<uci_L>}.
987 What is the best move?
988

```

Figure 3: Input prompt format for Bullet chess competition. Whether to provide legal moves is optional. Thinking is forbidden.

```

991 Blindfold prompt template
992
993 System:
994 You are an expert chess player. You are playing a game
995 of chess. You are playing as White/Black.
996 We have the move history of you
997 and your opponent. You must reconstruct the game and
998 analyze the best move on the chessboard.
999 Same as Blitz. Omitted.
1000 You can think and reason as much as you want (step by
1001 step), but your final move must be formatted exactly
1002 as shown above.
1003 User(First Turn):
1004 This is the beginning of the game.
1005
1006 Assistant(First Turn):
1007 <move_1>
1008
1009 User:
1010 Your opponent's last move is <move_2>.
1011
1012 Assitant:
1013 <move_3>
1014
1015
1016 Multi-Turns
1017 User: Your opponent's last move is {<move_k>}.
1018 (Optional) Legal moves in UCI notation: {<uci_1>
1019 <uci_2> ...<uci_L>}.
1020 What is the best move?
1021
1022
1023

```

Figure 4: Input prompt format for Blindfold chess competition. Whether to provide legal moves is optional. This is a multi-round conversation template. LLMs should reconstruct the chessboard from the conversation history.

```

1026
1027
1028
1029     Basic understanding evaluation prompt template
1030
1031 System:
1032 You are an expert chess player. I need you to help
1033 me model a chessboard. The specific steps are as
1034 follows:
1035 I will provide you with a FEN string representing
1036 the current board state, and then give you a
1037 position. You need to identify the piece at that
1038 position from the FEN and output all legal moves
1039 for that piece.
1040 You must carefully analyze the board, consider
1041 the rules of chess, and provide the final answer.
1042
1043 Your answer should be format as follows (output a
1044 json):
1045     ````json
1046     {
1047         "piece": <piece symbol>,
1048         "legal moves": [<list of legal moves>]
1049     }
1050     ````

1051 For example:
1052 FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
1053 w KQkq - 0 1
1054 Position:g1
1055 Answer:
1056     ````json
1057     {
1058         "piece": "N",
1059         "legal moves": ["g1h3", "g1f3"]
1060     }
1061     ````

1062 Note:
1063 If the given position has no piece, directly
1064 output empty(i.e.,None), and the corresponding
1065 legal moves should also be empty(i.e.,[]).
1066 When it's White's turn to move, if the position
1067 contains a Black piece, you should identify the
1068 piece, but its legal moves must be empty (and
1069 vice versa for Black's turn).
1070 You can think and reason as much as you want (step
1071 by step), but your final answer must be formatted
1072 exactly as shown above.
1073 User:
1074 Current board position in FEN notation: {<fen>}
1075 Position: {<pos>}
1076
1077
1078
1079

```

Figure 5: Input prompt format for basic understanding

1080 C GLICKO RATING SYSTEM & COMPETITION SAMPLING ALGORITHM

1082 C.1 GLICKO RATING SYSTEM

1084 In the Glicko ranking system, each player is assigned two values: the rating r and the rating deviation
 1085 RD. In the original Glicko paper Glickman (1995), these values are updated after a certain period; In
 1086 our scenario, we assume they are updated after each competition. The updated values, denoted as r'
 1087 and RD' , are given by the following formulas:

$$1089 \quad r' = r + \frac{q}{\frac{1}{RD^2} + \frac{1}{d^2}} g(RD_o) (s_o - E(s | r, r_o, RD_o)) \quad (1)$$

$$1092 \quad RD' = \sqrt{\left(\frac{1}{RD^2} + \frac{1}{d^2} \right)^{-1}} \quad (2)$$

1096 where

$$1099 \quad q = \frac{\ln 10}{400} \approx 0.0057565 \quad (3)$$

$$1101 \quad g(RD) = \frac{1}{\sqrt{1 + \frac{3q^2 RD^2}{\pi^2}}} \quad (4)$$

$$1106 \quad E(s | r, r_o, RD_o) = \frac{1}{1 + 10^{-g(RD_o)(r-r_o)/400}} \quad (5)$$

$$1109 \quad d^2 = \left(q^2 (g(RD_o))^2 E(s | r, r_o, RD_o) (1 - E(s | r, r_o, RD_o)) \right)^{-1} \quad (6)$$

1111 where s represents the competition result (i.e., 1 for a win, 0.5 for a draw, and 0 for a loss), r_o
 1112 and RD_o denote the opponent's rating and rating deviation, respectively. These calculations are
 1113 performed for each player participating in the rating period.

1114 C.2 COMPETITION SAMPLING

1116 **System Objectives and Optimization Criteria** In equation equation 2, we can see that RD will
 1117 definitely decrease as matches progress, indicating that a player's rating becomes increasingly reliable.
 1118 So under what conditions does a player's RD decay faster, enabling the player to converge most
 1119 quickly? We provide a mathematical analysis in this section. The core goal of this matching system
 1120 is to accelerate the convergence rate of player ratings, specifically by maximizing the reduction rate
 1121 of rating deviation (RD). The optimization objective function is defined as:

$$1123 \quad \arg \max_{r_i, r_j, RD_i, RD_j} \Delta RD_i + \Delta RD_j \quad (7)$$

1125 where ΔRD_i and ΔRD_j represent the changes in rating deviation for player i and player j after
 1126 matching, respectively.

1128 **Mathematical Derivation Process** According to the update rules of the Glicko-1 system, the
 1129 change in rating deviation can be expressed as:

$$1132 \quad \Delta RD_i = RD_i - \sqrt{\left(\frac{1}{RD_i^2} + \frac{1}{d_i^2} \right)^{-1}} = RD_i - \sqrt{\frac{RD_i^2}{1 + \frac{RD_i^2}{d_i^2}}} \quad (8)$$

1134

1135

1136

1137

1138

1139

$$\Delta RD_j = RD_j - \sqrt{\left(\frac{1}{RD_j^2} + \frac{1}{d_j^2}\right)^{-1}} = RD_j - \sqrt{\frac{RD_j^2}{1 + \frac{RD_j^2}{d_j^2}}} \quad (9)$$

1140

To maximize $\Delta RD_i + \Delta RD_j$, we need to minimize d_i^2 and d_j^2 . According to equation 6:

1141

1142

1143

1144

1145

1146

1147

$$d_i^2 = \left(q^2 (g(RD_j))^2 E(s | r_i, r_j, RD_j) (1 - E(s | r_i, r_j, RD_j))\right)^{-1} \quad (10)$$

Therefore, minimizing d_i^2 and d_j^2 is equivalent to maximizing: $q^2 g(RD_i)^2 E_i (1 - E_i)$ and $q^2 g(RD_j)^2 E_j (1 - E_j)$, where:

1148

1149

1150

$$E_i = \frac{1}{1 + 10^{-g(RD_j)(r_i - r_j)/400}}, \quad E_i = 1 - E_j \quad (11)$$

1151

1152

1153

1154

$$g(RD) = \frac{1}{\sqrt{1 + \frac{3q^2 RD^2}{\pi^2}}}, \quad q = \frac{\ln 10}{400} \approx 0.0057565 \quad (12)$$

1155

1156

Based on the above derivation, the optimization objective can be transformed into:

1157

1158

1159

$$\text{argmax}_{r_i, r_j, RD_i, RD_j} E_i (1 - E_i) [g(RD_i)^2 + g(RD_j)^2] \quad (13)$$

1160

1161

1162

1163

Key Conclusions From equation (7), we can draw the following important conclusions: When $r_i = r_j$ (i.e., the two players have the same rating), then $E_i = E_j = 0.5$, at which point $E_i(1 - E_i)$ reaches its maximum value of 0.25. Meanwhile, $g(RD)$ is a decreasing function of RD, meaning that smaller RD results in larger $g(RD)$.

1164

1165

Therefore, the optimal matching strategy is:

1166

1167

1168

- Prioritize matching players with similar ratings ($r_i \approx r_j$)
- Under the premise of similar ratings, select players with smaller rating deviations (RD)

1169

1170

This strategy ensures maximum information gain for both players in the competition, thereby accelerating rating convergence.

1171

1172

1173

Algorithm Premises A minimum rating deviation threshold min_RD (a hyperparameter) is set. When a player's RD $\leq \text{min_RD}$, their rating deviation no longer decreases.

1174

1175

Competition Sampling Process

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1. A player initiates a match request, and the system records their current rating r and rating deviation RD
2. The system searches for potential opponents in the match pool and calculates the matching score:

$$\text{score}(i, j) = E_i (1 - E_i) [g(RD_i)^2 + g(RD_j)^2]$$

3. The opponent with the highest matching score is prioritized

4. For players with high RD, the system prioritizes matching them with opponents who have low RD and similar ratings

5. After the opponent accepts the match, the match begins

6. After the match, both players' r and RD are updated based on the results

1188 **ChessArena Matching System Variants** The system supports two startup modes:
 1189

1190 1. Random startup mode:
 1191 (a) A player is randomly selected from the player pool
 1192 (b) The selected player automatically initiates a match request
 1193 (c) Steps 2-6 of the Competition Sampling process are executed
 1194
 1195 2. Specified startup mode:
 1196 (a) An initial player is specified by a human
 1197 (b) The specified player initiates a match request
 1198 (c) Steps 2-6 of the Competition Sampling process are executed
 1199
 1200

1201 D POST-TRAINING DETAILS

1202 D.1 SFT DATA COLLECTION

1203 **ChessGPT** ChessGPT Feng et al. (2023) has open-sourced a text pre-training dataset and a post-
 1204 training SFT dataset related to chess. These datasets include conversational data about chess, covering
 1205 topics such as basic rules and tactical discussions. We sampled chess-related portions (GPT-4-Chess,
 1206 Chess-Forums, and Chess-Modeling) from this dataset as part of our SFT data.
 1207

1208 **Distillation** We distilled data from non-thinking models: GPT-4.1, DeepSeek-V3, Qwen3-235b-
 1209 a22b, and Claude-3-7-Sonnet; Thinking models: Doubao-Seed-1-6-thinking and DeepSeek-R1. The
 1210 input prompt format resembles the Blitz play mode prompt template, and the output includes the
 1211 model’s analysis of the chessboard and the final move selection. We used Stockfish to ensure the
 1212 quality of the distilled data. We only retained data where the final move was among the top three
 1213 moves analyzed by Stockfish. We filtered the data whose response length is less than 100. The
 1214 characteristics of the distilled dataset are shown in the Table 6. We use the tiktoken(cl100k-base)⁴
 1215 tokenizer to estimate the length of the distilled dataset.
 1216

1217 What’s more, in ChessArena, LLMs may initially fail to provide a legal move in the first round but
 1218 correct themselves in subsequent attempts. We also extract such data for training, as it helps the
 1219 model learn multi-turn correction capabilities. There are 652 samples in the multi-turn correction
 1220 dataset.
 1221

1222 Table 6: Characteristics of the Main Distilled Dataset(excluding multi-turn correction data)

Type	Count	Prompt Length (avg.)	Resp. Len. (avg.)	TOP1	TOP2-3
Non-Thinking	21,278	575	527	10,273	11,005
Thinking	3,399	582	5,014	1,862	1,537
Multi-Round Correction	652	1693	343	276	376

1230 Table 7: SFT data summary

Dataset	Count	Description	Prompt Length (avg.)	Resp. Len. (avg.)
ChessGPT(Stage1)	3908	Chess-related synthesized data from GPT-4	41	38
	5395	Chess-related dialogues data from online platform	245	178
	3000	Chessboard understanding data like PGN to FEN, FEN to UCI et al.	116	65
Distilled Data(Stage2)	21278	Distilled single turn data	524	527
	652	Multi-Round Correction data	1693	343

1241 ⁴https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken

1242 D.2 RL DATA COLLECTION
1243

1244 Theoretically, our RL training data is virtually unlimited, as only a single chessboard state is required
1245 to conduct RL training. Accordingly, we extracted board state data from the Lichess database and
1246 constructed our RL training dataset. All board states corresponding to FEN positions used in Fine-
1247 Grained studies were filtered out, resulting in a final set of 56,000 training samples. We ensured a
1248 balanced distribution of board states across the opening games, middle games, and end games to
1249 facilitate comprehensive learning by the model. Although experiments with larger datasets were
1250 attempted, no further improvement in model performance was observed.

1251 D.3 REWARD
1252

1253 Our reward function consists of three components: 1) Format reward; 2) Legal move reward; 3) Top
1254 move reward. Format reward guides the model to follow certain formats; Legal move reward guides
1255 the model to infer legal moves from the chessboard; Top move reward guides the model to acquire
1256 chess strategy reasoning capabilities. Top moves are analyzed by Stockfish, and we pre-process
1257 to obtain top moves before training to avoid Stockfish consuming excessive CPU resources during
1258 training.

1259

1260 **Format Reward** If the model’s output follows the specified format (i.e., it is contained within the
1261 prescribed block), the format reward $reward_f = 1$; otherwise, $reward_f = 0$.

1262

1263 **Legal Move Reward** If the model’s predicted move is among the legal moves for the current board
1264 position, the legal moves reward $reward_l = 1$; otherwise, $reward_l = 0$.

1265

1266 **Top Move Reward** If the model’s predicted move matches one of the top moves pre-analyzed by
1267 Stockfish, the top moves reward $reward_t = 1$; otherwise, $reward_t = 0$.

1268
1269

The final reward is calculated as a weighted sum of these three rewards:

1270
1271
1272

$$Reward = \epsilon_f \times reward_f + \epsilon_l \times reward_l + \epsilon_t \times reward_t$$

where ϵ_f , ϵ_l , and ϵ_t are the corresponding weight coefficients.

1273
1274

D.4 TRAINING HYPER-PARAMETERS

1275
1276
1277
1278
1279
1280

Supervised Fine-tuning We train our models using the LlamaFactory Zheng et al. (2024) framework. Our hyper-parameters are shown in Table 8. In our training process, to utilize more data (though mixing thinking and non-thinking data for training may cause issues), we use the non-thinking distilled dataset to train our models. So, our models is trained in non-thinking mode. For the multi-turn correction dataset, we only train our model on the final turn response.

1281
1282
1283
1284
1285
1286

Reinforcement Learning We train our models using the verl (Sheng et al., 2025) framework. All of our training experiments are finished on 8 NVIDIA H800 80GB GPUs. A single training experiment takes approximately 60 hours. To enhance model performance, we incorporated methodologies from DR. GRPO Liu et al. (2025), Reinforce++ Hu (2025), and DAPO Yu et al. (2025). It was observed that the integration of these techniques contributed to improved model performance.

1287

D.5 CONTINUOUS REWARD

1288
1289
1290

We experimented with a continuous reward function. Building upon the same SFT model, we trained it using 10k chess RL samples. Our proposed continuous reward is:

1291
1292
1293

$$Reward = 1 - \frac{Rank_{move}}{len(legal_moves)} + \epsilon_f \times reward_f$$

1294
1295

where $\epsilon_f = 0.1$. In simple terms, the worst-ranked legal move receives a reward of 0, and the top-ranked move receives a reward of 1. Additionally, a format reward is added for valid moves. The performance of the model on the single-step move selection task is shown in Table 9.

Table 8: Training hyper-parameters for Post-training.

Model Training Hyper-parameters			
Supervised Fine-tuning Stage 1		Reinforcement Learning	
Hyperparameter	Value	Hyperparameter	Value
Training Steps	1038	Training Configuration	
Optimizer	AdamW	Training Steps	1750
Learning Rate	5e-6	Optimizer	AdamW
Global Batch Size	32	Learning Rate	1e-6
Epochs	3	Global Batch Size	128
Warmup Ratio	0.1	Mini Batch Size	64
Lr scheduler type	Cosine	Epochs	4
Max tokens	4096	Max Tokens	4096
Supervised Fine-tuning Stage 2		GRPO Configuration	
Hyperparameter	Value	Number of Rollouts	8
Training Steps	2130	Rollout Temperature	1.0
Optimizer	AdamW	Rollout Topp	1.0
Learning Rate	5e-6	KL Loss Coefficient	0
Global Batch Size	32	Entropy Coefficient	0
Epochs	3	Clip High	0.28
Warmup Ratio	0.1	Clip Low	0.2
Lr scheduler type	Cosine	Reward Configuration	
Max tokens	4096	ϵ_f	0.1
		ϵ_l	0.3
		ϵ_t	0.6

Table 9: Performance of Qwen3-8B-Chess with continuous reward. The model trained with the continuous reward function performs significantly worse than the model trained with the discrete reward.

	LR (%)	TR (%)	MAR (%)
With Legal Moves	90.3	12.7	-9.8
Without Legal Moves	84.0	10.8	-14.7

The results indicate that the model trained with the continuous reward performs poorly, significantly trailing the discrete reward model. We hypothesize that in the game of chess, only learning the few best moves is effective. Making the model learn the relative ranking between all legal moves might be unnecessary and could even lead to reward hacking (where the model might not fully commit to exploring the very best moves).

D.6 WHY DO WE CHOOSE SINGLE-STEP RL?

Chess is a sequential game, and intuitively, employing sequence-like multi-step Reinforcement Learning (RL) methods, such as self-play, seems more appropriate. However, this study adopts single-step RL because: the Stockfish analysis, which we use as the oracle, searches through subsequent multiple moves (we set the depth to 20). This implies that the optimal move for the current board state (derived from Stockfish analysis) has already considered many future steps; it is not limited to the immediate next move. While multi-step RL methods, such as self-play, might align more intuitively with the nature of Chess RL, resource limitations prevented us from conducting long-context post-training, thus leading us to primarily adopt single-step RL for training. Readers who are interested are encouraged to further explore the effectiveness of Chess training using methods similar to self-play.

1350 E FINE-GRAINED EVALUATION DATASET CONSTRUCTION
13511352 We extracted the FEN of board states that actually occurred, thereby minimizing the risk of data
1353 contamination to the greatest extent possible.
13541355 **ChessBoard Extraction** In each game of ChessArena, numerous board states are generated (aver-
1356 aging 40 chessboard states per game). However, many of these board states may be duplicated,
1357 particularly in the opening phase. We extract distinct board states from this data while ensuring a
1358 balanced distribution across the opening-game, middle-game, and end-game stages (with the middle-
1359 game slightly outnumbering both the opening and endgame phases). A total of 79,441 FENs are
1360 collected. FENs already present in the training dataset are removed to prevent data contamination of
1361 the trained models. After this filtering, 57,511 FENs remain. These retained chessboard states can be
1362 utilized to construct the subsequent evaluation set.
13631364 **Basic Understanding** The FEN data acquired from the Chessboard Extraction step is subsequently
1365 utilized for further dataset construction. In the basic understanding evaluation dataset construction
1366 process, each position is sampled according to the following distribution: with an 85% probability,
1367 a position containing one of the player’s own pieces is selected; with a 7% probability, a position
1368 from the opponent’s pieces is chosen; and with an 8% probability, an empty square is selected. Each
1369 board FEN is used to construct one basic understanding data instance, resulting in a total of 57,511
1370 instances. To facilitate efficient evaluation, a subset of 200 instances is selected for assessment.
1371 Consistent experimental outcomes have been observed across subsets of varying sizes, including 200,
1372 500, 1000, and larger.
13731374 **Move Selection** Following the acquisition of the FEN board state data from the initial step, theo-
1375 retically, all instances could serve as evaluation data for move selection. However, to ensure both
1376 accuracy and efficiency in the evaluation process, we performed a rollout using Qwen3-8B-Chess on
1377 each data instance. This procedure ensured a balanced distribution of easy, medium, and difficult
1378 problems. From this processed set, 1,000 instances were selected to constitute the evaluation dataset
1379 for the move selection fine-grained experiment. For Blindfold play mode, we use the real move
1380 history that happened in ChessArena as the conversation history. However, it is important to note
1381 that a comprehensive evaluation of models’ chess capabilities can be achieved without relying on
1382 our provided FEN board representations, for instance, by extracting board states from the Lichess
1383 database. Furthermore, given the vast search space of chess and the virtually infinite number of
1384 possible board configurations, the risk of data contamination is negligible.
13851386 **Puzzle Solving** We retrieved puzzle data from the Lichess database and randomly selected 1,008
1387 samples to form the evaluation set. Subsequently, we partitioned the data into seven segments based
1388 on Elo rating intervals of 400 points, with each segment containing exactly 144 puzzle instances.
1389 The dataset is sufficiently large to allow discernible observation of the differences in puzzle-solving
1390 capabilities among the LLMs.
13911392 **Datasets Distribution** As mentioned before, we performed a preemptive rollout procedure using
1393 Qwen3-8B-Chess on the move selection evaluation dataset to categorize the difficulty levels. The
1394 rollout was conducted 8 times per instance with hyper-parameters set to temperature 1.0 and top-p
1395 0.95. We defined an instance as easy if Qwen3-8B-Chess selected a top-3 move in all 6-8 rollouts,
1396 medium if it did so in 3-5 rollouts, and hard if it never selected a top-3 move. The overall difficulty
1397 distribution and statistics of fine-grained evaluation are illustrated in Table 10.
13981399 F ADDITIONAL RESULTS
14001401 F.1 WHOLE LEADERBOARD
14021403 Our complete rating leaderboard is presented in Table 11, which includes additional models that
1404 do not affect the conclusion analysis, as well as models with RD values exceeding 100. Table 12
1405 reports secondary metrics from ChessArena competitions, encompassing win-loss number, instruction
1406 following metrics (parsing errors, forbidden moves, legal moves), and move quality measures (top

Table 10: Statistics of fine-grained evaluation datasets.

Task	Category	Count	Percentage (%)
Basic Understanding	Normal Positions	144	72.0
	Empty Positions	19	9.5
	Opponent Positions	37	18.5
	<i>Total</i>	200	100.0
Move Selection	<i>Phase - Early (0-20)</i>	241	24.1
	<i>Phase - Middle (20-60)</i>	472	47.2
	<i>Phase - Late (>60)</i>	287	28.7
Puzzle Solving	<i>Difficulty - Easy</i>	215	21.5
	<i>Difficulty - Medium</i>	187	18.7
	<i>Difficulty - Hard</i>	598	59.8
	<i>Total</i>	1000	100.0
Puzzle Solving	Mate	308	30.6
	Cruising	405	40.2
	Advantage	275	27.3
	Others	20	2.0
	<i>Total</i>	1008	100.0

moves). Among them, parsing err% + illegal mv% + forbidden% + legal mv% should equal 100%, indicating the proportion of these behaviors exhibited by the model across all attempts. We can observe that many models(e.g., Rank2: O3, Rank4: Gemini-2.5-Pro, Rank 6: Doubao-Seed-1-6-Thinking, Rank16: Doubao-1-5-Thinking-Pro and Rank 18: DeepSeek-R1) exhibit a high parsing err% rate, indicating a failure to output the specified format. This is particularly notable in some thinking models, although they often correct this in subsequent attempts and output moves in the correct format. Additionally, it can be seen that under the setting where legal moves are not provided, the illegal mv% of the models increases significantly. In Bullet mode, almost no models violate the rule prohibiting the output of thoughts, as specifically reflected in the forbidden%. The forbidden% for all models is less than 5%. As shown in Figure 6, we can observe the distribution of termination scenarios across all competitions. Over 56% of the games ended with a decisive outcome, while the remaining resulted in a draw. Among the decisive games, 31.1% were due to the model being unable to give a legal move, and 25.2% ended by checkmate. Among draws, over 30% were attributed to move limit and insufficient material, indicating that models often engage in extremely prolonged endgames and fail to conclude the match efficiently. Additionally, a small number of games ended in stalemate or due to fivefold repetition.

Tables 13, 14, and 15 present statistics on model performance in wins, losses, and draws, including metrics such as the average number of moves and the number of games won by checkmate. These data help elucidate performance differences across models. For instance, Table 13 shows that the majority of wins by the random player resulted from forfeits, which aligns with expectations, while stronger models such as O3 and Doubao-Seed-1-6-Thinking achieved a higher number of checkmate victories. As observed in Table 14, several models(e.g., Rank 9: GPT-4.1, Rank 26: Qwen3-235B-A22B) exhibit a high number of forfeit losses even when legal moves are provided, indicating potential issues with instruction adherence—specifically, the failure to output moves in the required format or to generate logically sound moves. Furthermore, the data clearly indicate that drawn games consistently involve a higher number of moves compared to decisive outcomes (wins or losses), suggesting that models often struggle to conclude games efficiently and tend to prolong them into draws. This trend is particularly pronounced among weaker models (e.g., Rank 34: Qwen3-8B, Rank 24: Random Player), which typically exhibit a higher average move count in their games compared to stronger counterparts (e.g., Rank3: Doubao-Seed-1-6-Thinking, Rank 4: Gemini-2.5-Pro, Rank 5: Qwen3-8B-Chess).

F.2 MOVE HISTORY AFFECTION

To explore the performance difference of the model when provided with or without move history, we conducted an extra evaluation. In Blitz mode, the model’s performance difference is when provided

1458

1459

1460

Table 11: Whole Rating Leaderboard

1461

Rank	Model	Type	Legal Moves	Rating	RD	Interval	Games
1	Maia-1100	-	✗	2220	82	(2058, 2382)	44
2	O3	Standard	✗	1948	78	(1793, 2101)	28
3	Doubao-Seed-1-6-Thinking	Standard	✓	1830	50	(1729, 1929)	60
4	Gemini-2.5-Pro	Standard	✓	1819	81	(1659, 1979)	18
5	Qwen3-8B-Chess	Blitz	✓	1776	93	(1593, 1959)	16
6	Doubao-Seed-1-6-Thinking	Standard	✗	1743	66	(1612, 1873)	36
7	GPT-4.1	Blindfold	✓	1699	50	(1601, 1797)	60
8	Doubao-Seed-1-6-Thinking	Blindfold	✓	1687	73	(1542, 1831)	24
9	GPT-4.1	Blitz	✓	1686	50	(1588, 1784)	182
10	Claude-3-7-Sonnet	Blitz	✓	1654	50	(1555, 1751)	74
11	O3	Blindfold	✗	1636	115	(1409, 1861)	16
12	Claude-3-7-Sonnet	Blindfold	✓	1625	66	(1493, 1756)	30
13	GPT-4.1	Blitz	✗	1623	50	(1525, 1721)	106
14	Gemini-2.5-Pro	Standard	✗	1616	74	(1469, 1762)	28
15	Seed-Coder-8B-Chess	Blitz	✓	1614	63	(1490, 1738)	30
16	Qwen3-8B-SFT	Blitz	✓	1612	56	(1501, 1721)	40
17	Doubao-1-5-Thinking-Pro	Standard	✓	1598	63	(1473, 1723)	32
18	Claude-3-7-Sonnet	Blindfold	✗	1588	72	(1445, 1729)	28
19	DeepSeek-R1	Standard	✓	1587	50	(1487, 1686)	54
20	GPT-4.1	Bullet	✓	1583	50	(1485, 1681)	54
21	GPT-4o	Bullet	✓	1568	80	(1409, 1725)	28
22	DeepSeek-V3	Blitz	✓	1553	50	(1454, 1650)	174
23	Doubao-1-5-Pro	Blitz	✓	1539	58	(1423, 1654)	42
24	Random Player	-	✓	1524	50	(1425, 1621)	284
25	Doubao-1-5-Lite	Blitz	✓	1509	78	(1354, 1662)	28
26	Qwen3-235B-A22B	Blitz	✓	1483	50	(1385, 1581)	146
27	DeepSeek-V3	Blitz	✗	1482	58	(1367, 1597)	48
28	Qwen3-8B-Chess	Blitz	✗	1472	88	(1297, 1645)	16
29	Claude-3-7-Sonnet	Bullet	✓	1452	59	(1334, 1569)	34
30	DeepSeek-V3	Blindfold	✓	1437	75	(1290, 1584)	24
31	GPT-4o	Blindfold	✓	1402	81	(1241, 1561)	20
32	DeepSeek-V3	Bullet	✓	1382	80	(1224, 1540)	22
33	Qwen3-235B-A22B	Bullet	✓	1369	54	(1261, 1476)	46
34	Qwen3-8B	Blitz	✓	1335	65	(1205, 1463)	32
35	Doubao-Seed-1-6-Thinking	Blindfold	✗	1276	90	(1097, 1453)	24
36	GPT-4.1	Blindfold	✗	1237	160	(922, 1550)	8
37	Seed-Coder-8B-Instruct	Blitz	✓	1009	106	(800, 1218)	30

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

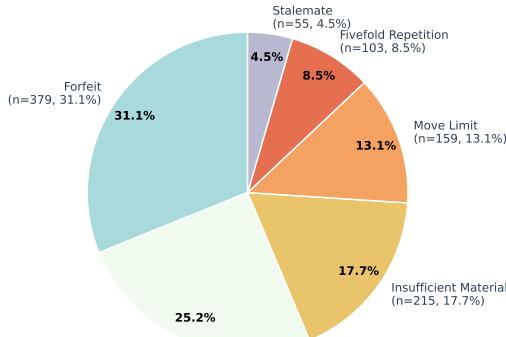


Figure 6: Distribution of Game Terminations

1512 Table 12: ChessArena Competition Results and Performance Metrics. Mode: Play
 1513 Modes(Blitz/Bullet/Standard/Blindfold); Legal: Whether legal moves were provided; Parsing Err%:
 1514 Invalid format rate; Illegal Mv%: Illegal move rate; Forbidden%: Illegal thought rate in Bullet play
 1515 mode; Legal Mv%: Legal move rate; Top Mv%: Top move rate. Due to the existence of draws, the
 1516 sum of wins and losses does not equal the total number of games played by the model. We bold the
 1517 highest top mv% among the LLMs and underline and bold the second highest.

Rank	Model	Mode	Legal	Parsing Err%	Illegal Mv%	Forbidden%	Legal Mv%	Top Mv%
1	Maia-1100	-	✗	0.0	0.0	0.0	100.0	87.5
2	O3	Standard	✗	51.1	1.6	0.0	47.3	78.6
3	Doubao-Seed-1-6-Thinking	Standard	✓	2.1	0.3	0.0	97.6	51.4
4	Gemini-2.5-Pro	Standard	✓	31.8	0.5	0.0	67.7	61.8
5	Qwen3-8B-Chess	Blitz	✓	0.2	0.2	0.0	99.6	44.3
6	Doubao-Seed-1-6-Thinking	Standard	✗	16.9	8.7	0.0	74.4	51.4
7	GPT-4.1	Blindfold	✓	0.7	3.7	0.0	95.6	51.4
8	Doubao-Seed-1-6-Thinking	Blindfold	✓	1.0	1.3	0.0	97.7	55.1
9	GPT-4.1	Blitz	✓	5.0	1.6	0.0	93.4	53.4
10	Claude-3-7-Sonnet	Blitz	✓	0.3	1.8	0.0	97.9	52.0
11	O3	Blindfold	✗	7.4	2.1	0.0	90.6	77.2
12	Claude-3-7-Sonnet	Blindfold	✓	0.1	1.3	0.0	98.6	53.7
13	GPT-4.1	Blitz	✗	9.8	18.4	0.0	71.8	59.4
14	Gemini-2.5-Pro	Standard	✗	38.5	9.2	0.0	52.3	73.6
15	Seed-Coder-SB-Chess	Blitz	✓	0.7	0.0	0.0	99.3	25.9
16	Qwen3-8B-SFT	Blitz	✓	2.2	2.3	0.0	95.5	38.7
17	Doubao-1-5-Thinking-Pro	Standard	✓	29.8	2.4	0.0	67.8	53.4
18	Claude-3-7-Sonnet	Blindfold	✗	1.4	24.7	0.0	73.8	58.5
19	DeepSeek-R1	Standard	✓	30.8	1.4	0.0	67.8	51.0
20	GPT-4.1	Bullet	✓	13.5	1.4	0.0	85.0	45.0
21	GPT-4o	Bullet	✓	0.0	1.0	0.0	99.0	34.4
22	DeepSeek-V3	Blitz	✓	0.5	0.5	0.0	99.0	45.9
23	Doubao-1-5-Pro	Blitz	✓	0.1	5.9	0.0	94.0	32.2
24	Random Player	-	✓	0.0	0.0	0.0	100.0	40.3
25	Doubao-1.5-Lite	Blitz	✓	23.2	3.3	0.0	73.5	33.2
26	Qwen3-235B-A22B	Blitz	✓	8.4	3.6	0.0	88.0	39.3
27	DeepSeek-V3	Blitz	✗	1.4	40.8	0.0	57.8	43.8
28	Qwen3-8B-Chess	Blitz	✗	0	30.7	0.0	69.3	33.8
29	Claude-3-7-Sonnet	Bullet	✓	25.3	0.6	0.0	74.1	34.6
30	DeepSeek-V3	Blindfold	✓	4.4	9.4	0.0	86.2	33.7
31	GPT-4o	Blindfold	✓	0.0	1.8	0.0	97.1	37.4
32	DeepSeek-V3	Bullet	✓	0.0	2.5	3.4	96.9	32.9
33	Qwen3-235B-A22B	Bullet	✓	0.0	2.7	0.5	96.8	35.3
34	Qwen3-8B	Blitz	✓	1.6	1.3	0.0	97.1	32.9
35	Doubao-Seed-1-6-Thinking	Blindfold	✗	2.8	39.2	0.0	58.0	54.0
36	GPT-4.1	Blindfold	✗	2.8	34.6	0.0	62.6	62.2
37	Seed-Coder-8B-Instruct	Blitz	✓	14.9	43.5	0.0	41.6	34.0

1544
 1545 with or without move history, as can be seen from Table 18. Providing or not providing move history
 1546 does not significantly affect the model’s performance, with evaluation metrics fluctuating within
 1547 the range of 1% to 5%. As we previously mentioned, providing move history primarily serves
 1548 to allow the model to access historical information, thereby helping to avoid fivefold repetition
 1549 draw. Without legal move constraints, PGN notation improves model performance, likely because
 1550 PGN notation aligns better with the model’s training corpus. The model is more familiar with this
 1551 method of representing move history. In our ChessArena, as long as both sides are provided with
 1552 consistent information, it does not introduce unfairness that might arise from differences in move
 1553 history representation.

1554 1555 G ANALYSIS

1556 G.1 WHY DO LLMs FAIL IN CHESS?

1557
 1558 The results presented above indicate that LLMs exhibit relatively poor performance in chess. We
 1559 attribute this deficiency primarily to the following factors:

1560
 1561
 1562
 1563
 1564 **Lack of Instruction-Following Capability** In Table 12, the metrics Parsing Err%, Illegal Mv%,
 1565 and Forbidden% serve as indicators of instruction adherence; higher values denote a greater frequency
 1566 of errors. Specifically, these failures manifest in three ways:

1566 Table 13: ChessArena Competition wining games statistics: Wins: Number of games won; Winning
 1567 Move: Average move of wining games; Checkmate / Forfeit: Number of games won by checkmate /
 1568 forfeit

1569	Rank	Model	Mode	Legal	Wins	Winning Move	Checkmate	Forfeit
1570	1	Maia-1100	-	✗	44	21	40	4
1571	2	O3	Standard	✗	15	18	7	8
1572	3	Doubao-Seed-1-6-Thinking	Standard	✓	32	36	20	12
1573	4	Gemini-2.5-Pro	Standard	✓	10	26	10	0
1574	5	Qwen3-8B-Chess	Blitz	✓	7	46	7	0
1575	6	Doubao-Seed-1-6-Thinking	Standard	✗	15	38	9	6
1576	7	GPT-4.1	Blindfold	✓	17	23	8	9
1577	8	Doubao-Seed-1-6-Thinking	Blindfold	✓	5	24	5	0
1578	9	GPT-4.1	Blitz	✓	54	29	34	20
1579	10	Claude-3-7-Sonnet	Blitz	✓	13	29	5	8
1580	11	O3	Blindfold	✗	16	19	1	15
1581	12	Claude-3-7-Sonnet	Blindfold	✓	4	35	4	0
1582	13	GPT-4.1	Blitz	✗	67	14	14	53
1583	14	Gemini-2.5-Pro	Standard	✗	16	22	2	14
1584	15	Seed-Coder-8B-Chess	Blitz	✓	9	41	9	0
1585	16	Qwen3-8B-SFT	Blitz	✓	10	63	10	0
1586	17	Doubao-1-5-Thinking-Pro	Standard	✓	4	40	3	1
1587	18	Claude-3-7-Sonnet	Blindfold	✗	9	20	1	8
1588	19	DeepSeek-R1	Standard	✓	9	42	8	1
1589	20	GPT-4.1	Bullet	✓	7	12	3	4
1590	21	GPT-4o	Bullet	✓	2	17	2	0
1591	22	DeepSeek-V3	Blitz	✓	38	32	12	26
1592	23	Doubao-1-5-Pro	Blitz	✓	10	53	9	1
1593	24	Random Player	-	✓	91	44	4	87
1594	25	Doubao-1.5-Lite	Blitz	✓	4	40	1	3
1595	26	Qwen3-235B-A22B	Blitz	✓	28	30	10	18
1596	27	DeepSeek-V3	Blitz	✗	34	8	0	34
1597	28	Qwen3-8B-Chess	Blitz	✗	7	15	0	7
1598	29	Claude-3-7-Sonnet	Bullet	✓	0	/	0	0
1599	30	DeepSeek-V3	Blindfold	✓	6	19	4	2
1600	31	GPT-4o	Blindfold	✓	4	22	3	1
1601	32	DeepSeek-V3	Bullet	✓	1	34	1	0
1602	33	Qwen3-235B-A22B	Bullet	✓	6	46	1	5
1603	34	Qwen3-8B	Blitz	✓	5	31	0	5
1604	35	Doubao-Seed-1-6-Thinking	Blindfold	✗	1	30	0	1
1605	36	GPT-4.1	Blindfold	✗	0	/	0	0
1606	37	Seed-Coder-8B-Instruct	Blitz	✓	0	/	0	0

- Parsing Errors: The model fails to adhere to the specified output format, rendering the move unextractable.
- Illegal Moves: The model fails to select a legal move, even when the list of Legal Moves is explicitly provided in the prompt. This is particularly evident in weaker models (e.g., Rank 23: Doubao-1-5-Pro, Rank 26: Qwen3-235B-A22B).
- Forbidden Tokens: The model generates "thinking tokens" during Bullet play mode (where speed is critical). While rare in the ChessArena benchmark, this was observed in Rank 32: DeepSeek-V3 (3.4%).

1611 Elevated error rates in these metrics increase the likelihood of the model failing to produce a legal
 1612 move after multiple retries, resulting in a forfeit.

1613

1614 **Deficiency in Strategic Reasoning** Most models fail to infer valid moves solely from the board
 1615 state (FEN). As shown in Table 2, only "Thinking" models (e.g., DeepSeek-R1, Doubao-Seed-
 1616 1-6-Thinking, O3, Gemini-2.5-Pro) achieve a Precision% exceeding 95% when identifying legal
 1617 moves for specific pieces. However, actual gameplay requires the model to validate moves for all
 1618 pieces globally, meaning identification errors accumulate. Consequently, we observe that only models
 1619 achieving >90% in both Precision% and Recall% on the Basic Understanding task can play effectively
 without an explicitly provided list of legal moves (see Table 3).

1620 Table 14: ChessArena Competition Losing games statistics: Losses: Number of games lost; Losses
 1621 Move: Average move of lost games; Checkmate / Forfeit: Number of games lost by checkmate /
 1622 forfeit

Rank	Model	Mode	Legal	Losses	Losses Move	Checkmate	Forfeit
1	Maia-1100	-	✗	0	/	0	0
2	O3	Standard	✗	13	20	7	6
3	Doubao-Seed-1-6-Thinking	Standard	✓	7	24	7	0
4	Gemini-2.5-Pro	Standard	✓	2	48	2	0
5	Qwen3-8B-Chess	Blitz	✓	0	/	0	0
6	Doubao-Seed-1-6-Thinking	Standard	✗	17	21	8	9
7	GPT-4.1	Blindfold	✓	12	35	9	3
8	Doubao-Seed-1-6-Thinking	Blindfold	✓	1	40	0	1
9	GPT-4.1	Blitz	✓	44	30	32	12
10	Claude-3-7-Sonnet	Blitz	✓	18	29	16	2
11	O3	Blindfold	✗	0	/	0	0
12	Claude-3-7-Sonnet	Blindfold	✓	6	34	6	0
13	GPT-4.1	Blitz	✗	38	20	4	34
14	Gemini-2.5-Pro	Standard	✗	12	16	1	11
15	Seed-Coder-8B-Chess	Blitz	✓	3	37	1	2
16	Qwen3-8B-SFT	Blitz	✓	7	36	2	5
17	Doubao-1-5-Thinking-Pro	Standard	✓	2	20	0	2
18	Claude-3-7-Sonnet	Blindfold	✗	17	28	3	14
19	DeepSeek-R1	Standard	✓	6	22	6	0
20	GPT-4.1	Bullet	✓	6	34	6	0
21	GPT-40	Bullet	✓	9	21	9	0
22	DeepSeek-V3	Blitz	✓	43	48	38	5
23	Doubao-1-5-Pro	Blitz	✓	6	19	4	2
24	Random Player	-	✓	67	47	67	0
25	Doubao-1.5-Lite	Blitz	✓	11	36	4	7
26	Qwen3-235B-A22B	Blitz	✓	45	31	27	18
27	DeepSeek-V3	Blitz	✗	14	11	0	14
28	Qwen3-8B-Chess	Blitz	✗	9	6	0	9
29	Claude-3-7-Sonnet	Bullet	✓	6	24	6	0
30	DeepSeek-V3	Blindfold	✓	6	51	6	0
31	GPT-40	Blindfold	✓	1	8	1	0
32	DeepSeek-V3	Bullet	✓	5	44	5	0
33	Qwen3-235B-A22B	Bullet	✓	13	39	13	0
34	Qwen3-8B	Blitz	✓	15	48	15	0
35	Doubao-Seed-1-6-Thinking	Blindfold	✗	23	15	23	0
36	GPT-4.1	Blindfold	✗	8	25	8	0
37	Seed-Coder-8B-Instruct	Blitz	✓	31	4	3	28

1655
 1656
 1657
 1658
 1659
 1660
 1661 Furthermore, even when models produce valid moves, the quality remains suboptimal. While models
 1662 generally outperform random players in TR% and MAR% (metrics measuring move quality in
 1663 Table 3), they fall significantly short of human baselines (i.e., Maia-1100).

1664
 1665 Weaker models frequently struggle to convert advantages into checkmates, leading to unnecessary
 1666 draws. In advantageous positions, instead of executing a decisive sequence, these models often select
 1667 erratic moves that force the game into a draw via move limits or insufficient material (as evidenced
 1668 by the distribution in Figure 6). Figure 7 illustrates a specific instance where DeepSeek-R1 fails to
 1669 identify a simple one-move checkmate, choosing a mediocre move instead.

1670
 1671 Fundamentally, these failures point to a deficit in strategic reasoning capabilities. Our tasks are
 1672 analogous to propositional logic problems: the model must derive a solution based on known
 1673 conditions (FEN, Position, or Legal Moves) and established knowledge (game rules). The limited
 reasoning ability demonstrated by models in the ChessArena environment highlights a critical area
 requiring further research and optimization.

1674
 1675 Table 15: ChessArena Competition Drawing games statistics: Draws: Number of games drawn;
 1676 Draws Move: Average move of drawn games; Stalemate / Move Limit / Insufficient Material /
 1677 Fivefold Repetition: Number of games drawn by stalemate / move limit / insufficient material /
 1678 fivefold repetition

Rank	Model	Mode	Legal	Draws	Draws Move	Stalemate	Move Limit	Insufficient Material	Fivefold Repetition
1	Maia-1100	-	✗	0	/	0	0	0	0
2	O3	Standard	✗	0	/	0	0	0	0
3	Doubao-Seed-1.6-Thinking	Standard	✓	21	62	6	0	15	0
4	Gemini-2.5-Pro	Standard	✓	6	68	1	0	5	0
5	Qwen3-8B-Chess	Blitz	✓	9	63	2	1	6	0
6	Doubao-Seed-1.6-Thinking	Standard	✗	4	66	0	0	4	0
7	GPT-4.1	Blindfold	✓	31	70	1	1	11	18
8	Doubao-Seed-1.6-Thinking	Blindfold	✓	18	73	0	2	8	8
9	GPT-4.1	Blitz	✓	84	74	10	7	51	16
10	Claude-3.7-Sonnet	Blitz	✓	43	71	2	8	30	3
11	O3	Blindfold	✗	0	/	0	0	0	0
12	Claude-3.7-Sonnet	Blindfold	✓	19	73	2	3	8	6
13	GPT-4.1	Blitz	✗	1	100	0	1	0	0
14	Gemini-2.5-Pro	Standard	✗	0	/	0	0	0	0
15	Seed-Coder-8B-Chess	Blitz	✓	19	60	11	1	1	6
16	Qwen3-8B-SFT	Blitz	✓	23	90	0	2	21	0
17	Doubao-1.5-Thinking-Pro	Standard	✓	26	69	0	2	24	0
18	Claude-3.7-Sonnet	Blindfold	✗	2	61	0	0	1	1
19	DeepSeek-R1	Standard	✓	39	72	3	5	28	3
20	GPT-4.1	Bullet	✓	41	75	2	4	20	15
21	GPT-4.0	Bullet	✓	17	82	0	7	1	9
22	DeepSeek-V3	Blitz	✓	92	87	19	29	29	15
23	Doubao-1.5-Pro	Blitz	✓	26	102	2	13	8	3
24	Random Player	-	✓	126	110	11	90	23	2
25	Doubao-1.5-Lite	Blitz	✓	13	91	1	2	5	5
26	Qwen3-235B-A22B	Blitz	✓	74	94	5	19	46	4
27	DeepSeek-V3	Blitz	✗	0	/	0	0	0	0
28	Qwen3-8B-Chess	Blitz	✗	0	/	0	0	0	0
29	Claude-3.7-Sonnet	Bullet	✓	28	92	0	0	28	0
30	DeepSeek-V3	Blindfold	✓	12	86	0	0	12	0
31	GPT-4.0	Blindfold	✓	15	65	0	0	15	0
32	DeepSeek-V3	Bullet	✓	16	81	0	0	16	0
33	Qwen3-235B-A22B	Bullet	✓	27	73	0	0	27	0
34	Qwen3-8B	Blitz	✓	12	126	0	0	12	0
35	Doubao-Seed-1.6-Thinking	Blindfold	✗	0	/	0	0	0	0
36	GPT-4.1	Blindfold	✗	0	/	0	0	0	0
37	Seed-Coder-8B-Instruct	Blitz	✓	0	/	0	0	0	0

1701
 1702 Table 16: Average Conversation Turn Count in Blindfold move selection (Without Legal Move
 1703 Provision)

Model	Thinking	Successful		Failed
		Turn Count	Turn Count	
GPT-4.1	✗	94	94	
DeepSeek-V3	✗	94	88	
Qwen3-235B-A22B	✗	96	86	
Claude-3.7-Sonnet	✗	92	94	
DeepSeek-R1	✓	72	112	
Doubao-Seed-1.6-Thinking	✓	70	112	
Gemini-2.5-Pro	✓	88	105	
O3	✓	88	129	

1716 Table 17: Puzzle Solving Accuracy: Blitz/Standard Prompt Template and Legal Moves not Provided

Model or Engine	Puzzle Solving Accuracy (%)							
	200-600	600-1000	1000-1400	1400-1800	1800-2200	2200-2600	2600-3000	Overall
GPT-4.1	44.1	29.4	18.2	12.6	4.2	2.8	0.0	15.9
Claude-3.7-Sonnet	18.2	16.1	4.9	4.2	5.6	1.4	0.0	7.2
DeepSeek-V3	2.1	2.1	2.1	2.8	0.7	1.4	0.0	1.6
DeepSeek-V3.1(Non-thinking)	9.8	7.7	4.9	2.1	2.8	1.4	0.7	4.2
Qwen3-235B-A22B(Non-thinking)	16.7	12.5	7.2	4.5	5.0	4.2	0.0	7.1
Qwen3-8B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Qwen3-8B-Chess(SFT+RL)	7.0	8.4	4.2	2.8	0.7	0.7	0.0	3.4
O3	95.8	93.0	87.4	68.5	44.8	16.8	4.2	58.6
Gemini-2.5-Pro	45.2	39.2	19.6	14.0	2.8	3.5	0.7	19.9
Doubao-Seed-1.6-Thinking	21.0	22.4	13.3	4.9	4.9	0.7	0.0	9.6
DeepSeek-R1	18.9	13.3	11.2	1.9	2.1	1.4	0.7	7.1

Table 18: GPT-4.1 Performance in Blitz Mode: Impact of Move History

Evaluation Condition	LR (%)	TR (%)
<i>With Legal Move Constraints</i>		
Without Move History	98.2	25.0
With Move History(List of UCI)	97.2	29.0
With Move History(PGN)	97.0	28.7
<i>Without Legal Move Constraints</i>		
Without Move History	68.4	28.4
With Move History(List of UCI)	70.2	26.2
With Move History(PGN)	75.4	34.5

Figure 7: DeepSeek-R1 fails to checkmate. Left: DeepSeek-R1’s choice; Right: The optimal Checkmate Move.

G.2 BLINDFOLD ANALYSIS

We discussed the different behaviour between thinking and non-thinking LLMs in Blindfold chess games. Non-thinking models frequently exhibit laziness and shortcut-taking behavior, while thinking models genuinely attempt to reconstruct the board, but this task proves excessively difficult. Table 19 is a case study of different models’ responses in a Blindfold chess game. Thinking models such as Doubao-Seed-1-6-thinking always try to reconstruct the chessboard state, but it’s too difficult. GPT-4.1 often takes shortcuts by directly following the last move made on its own side in the conversation history. Claude-3-7-Sonnet does not explicitly reconstruct the chessboard state but still retains some ability to analyze the game situation. Overall, chess gameplay under blindfold play modes proves excessively challenging, making it difficult for models to reconstruct the chessboard state and analyze potential moves accurately. Non-thinking models demonstrate virtually no capability for genuine board reconstruction. Among thinking models, only the O3 model exhibits satisfactory performance. This highlights substantial room for improvement in models’ multi-turn conversation memorization capabilities.

Table 19: A Case Study of Blindfold chess game of different LLMs

Query Details:

System prompt is omitted.

Conversation History (Recent Moves):

80+ Conversation Turns are omitted.

- **user**: The opponent's last move is b7c7.

- **assistant:** My move: e3e7

- **user**: The opponent's last move

- **assistant:** My move: e7c7

- **user**: The opponent's last move

- **assistant:** My move: e8e7

- **user:** The opponent's last move is c7b6.

- **assistant:** My move: f1h3

- user (I)

Case 1: Doubao-Seed-1-6-thinking Failed to Reconstruct the Chessboard: It has fallen into the repeater problem.

Got it, let's try to figure out the current position first. I need to recap the move history to get the pieces on the board.

First, I'm White, since the first move was g1f3 (White's knight). Let's list the key moves for both sides, focusing on piece locations:

Case 2: GPT-4.1 takes a shortcut: It continues moving from the landing point(i.e., h3) of the last piece in the Query.

1836

Table 19 (Continued): Blindfold Model Performance

1837

1838

1839

1840

My move:

1841

h3e6

1842

1843

1844

Case 3: Claude-3-7-Sonnet analyzes the chessboard and tries to give a better move.

1845

I'll analyze the position carefully to find the best move.

1846

Step 1: Confirm Current Material and Position - White's pieces: Based on moves, we have a bishop on h3 (f1h3), a rook/queen on e7 (e8e7, previously e3e7 -> e7c7 -> e8e7), and other pieces (knights, remaining pawns) whose positions need to be inferred. - Black's pieces: Only the king is confirmed on a6 (b6a6), and other pieces (like pawns on a6's original position) have been captured or moved. - Material advantage: White has at least a bishop + rook/queen vs. Black's lone king—clear advantage, goal is to checkmate.

1847

Step 2: Evaluate Candidate Moves 1. **e7a7**: Directly attacks the Black king on a6. If e7 is a queen/rook, e7a7 would be check. But need to confirm if a7 is occupied—no Black pieces are known to be on a7, so this could be checkmate. 2. **h3c8**: Moves the bishop to c8, controlling b7 (a square the Black king might flee to if attacked). This prepares for a subsequent checkmate but is not immediate. 3. **e7e6**: Moves the e7 piece to e6, controlling d5 and f5—limits the king's potential escape to the center, but is slower than direct attack. 4. **b4b5**: If White has a pawn on b4, b4b5 would check the king (attacking a6), but there's no record of a b4 pawn in the move history, so this is risky.

1848

Step 3: Select the Best Move e7a7 is the most efficient: it directly targets the Black king, and since there are no known Black pieces blocking a7, this move will put the king in check. If the king has no legal moves to escape (a6 can only move to a5, b5, or b6—b6 is empty but controlled by White's pieces), this becomes checkmate.

1849

My move:

1850

1851

e7a7

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

G.3 THE GENERALIZATION OF CHESS REASONING TRAINING

1872

In Table 20, we present the performance of Qwen3-8B and its training versions on other important benchmarks, including LiveCodeBench-v5 (Jain et al., 2024), AIME2025 (MAA, 2025), ZebraLogic (Lin et al., 2025), BigCodeBench (Zhuo et al.), CruxEval (Gu et al.) and DROP (Dua et al., 2019)). They are well-known benchmarks in code generation, logical reasoning, and mathematics domains. These models were evaluated under non-thinking (cause our model is trained under a non-thinking chat template) conditions with a 4k context length, temperature of 0.6, and top-p of 0.95. The results demonstrate that our chess domain-trained Qwen3-8B model maintains comparable performance across other benchmarks without significant score degradation. Notably, we observe performance improvements on AIME2025 and ZebraLogic, indicating that chess domain-specific training exhibits positive transfer effects to other domains. Furthermore, the cross-domain performance improvements appear to stem primarily from RL, demonstrating the effectiveness of chess RL training. We observed substantial improvements in the model's performance on ZebraLogic tasks (25.9 → 48), with score increases across all puzzle categories: small puzzles, medium puzzles, large puzzles, and XL puzzles (70.3/12.1/0.0/0.0 → 92.2/55.4/14.5/0.5). Models trained on chess demonstrate significant performance gains on puzzle-solving and related reasoning tasks. We analyzed the model's responses for a case study to investigate the underlying factors contributing to the performance improvements, as shown in Table 21. After chess training, the model became significantly more systematic and logically clear in solving such problems, with a final verification process that markedly improved the model's success rate in addressing these problems. Based on Puzzle 2 and Puzzle 3, we can observe that the model, after being trained on chess data, indeed

1890 exhibits an increased number of reasoning steps and a more pronounced process of self-verification.
 1891 This enhancement significantly strengthens the model’s ability to solve large and medium-sized
 1892 puzzles.

1893 To better evaluate the generalization capabilities of models after Chess post-training, we designed a
 1894 series of ablation studies. These experiments included various mixed settings such as training only
 1895 on Math, only on Code, Math + Code, and Math + Code + Chess. The Math and Code data utilized
 1896 were sourced from Eurus-2-RL-data⁵. The data split quantities used are as follows: Math: 10k, Code:
 1897 10k, Math + Code: 5k + 5k, Math + Code + Chess: 3.3k + 3.3k + 3.3k, and Math + Chess: 8k + 2k.

1898 The detailed experimental results are presented in Table 20.

1899

- 1900 1. Models fine-tuned via Chess Supervised Fine-Tuning (SFT), regardless of whether they
 1901 subsequently undergo Code, Math, or Chess Reinforcement Learning (RL), consistently
 1902 demonstrate a degree of generalization ability to the logical reasoning benchmark, Ze-
 1903 braLogic. Specifically, models that underwent Chess SFT show a significant improvement
 1904 in their ZebraLogic scores after the RL phase.
- 1905 2. Incorporating a certain amount of Chess data into the RL dataset contributes to the general-
 1906 ization of Code capabilities, particularly on the LiveCodeBench. Comparisons (e.g., Math
 1907 + Chess - RL / Math + Code + Chess - RL versus Math - RL / Math + Code - RL) reveal
 1908 that RL models augmented with Chess data achieve a improvement in their LiveCodeBench
 1909 scores.
- 1910 3. However, the use of Chess SFT may lead to performance degradation on other benchmarks
 1911 (e.g., BigCode-Bench, CruxEval); mixing Chess data for RL could also result in a slight
 1912 performance decline on mathematical tasks (i.e., AIME2025).

1913 Overall, training on Chess exhibits tangible generalization capabilities across different domains,
 1914 suggesting significant avenues for future research.

1915 Table 20: Performance of Qwen3-8B and its Post-Trained Variants on External Benchmarks

Model Variant	LiveCodeBench	AIME2025	ZebraLogic	BigCodeBench	CruxEval	DROP
Qwen3-8B (Baseline)	25.19	18.61	25.90	41.32	73.25	85.15
I. Chess Post-train						
Qwen3-8B-Chess-SFT-Stage2	27.48	15.43	30.40	41.40	68.00	82.83
Qwen3-8B-Chess (SFT+RL)	25.19	19.30	48.00	39.82	72.25	83.58
II. RL with Chess-SFT						
+Math-RL	25.19	19.70	42.40	39.39	73.25	84.12
+Math+Chess-RL	26.72	19.32	39.00	40.09	72.09	84.01
+Math+Code-RL	28.24	18.61	38.30	40.26	71.25	83.34
+Math+Code+Chess-RL	30.53	17.96	38.00	40.30	72.22	83.84
III. RL without Chess-SFT						
+Math-RL	25.19	21.30	28.00	42.37	77.47	85.53

1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
⁵<https://huggingface.co/datasets/PRIME-RL/Eurus-2-RL-Data>

1944

1945

1946

1947

1948

Table 21: ZebraLogic Case Studies

Puzzle 1: Qwen3-8B-Chess performs better due to its more rigorous reasoning steps.

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

Puzzle to Solve:

There are 4 houses, numbered 1 to 4 from left to right, as seen from across the street. Each house is occupied by a different person. Each house has a unique attribute for each of the following characteristics:

- Each person has a unique name: ‘Alice’, ‘Eric’, ‘Arnold’, ‘Peter’
- Each person has an occupation: ‘artist’, ‘engineer’, ‘teacher’, ‘doctor’
- People have unique favorite book genres: ‘fantasy’, ‘science fiction’, ‘mystery’, ‘romance’
- People use unique phone models: ‘google pixel 6’, ‘iphone 13’, ‘oneplus 9’, ‘samsung galaxy s21’

Clues: 1. The person who is an engineer is directly left of the person who uses a Samsung Galaxy S21.

2. The person who loves fantasy books is in the second house.

3. Alice is not in the second house.

4. Eric is the person who is a teacher.

5. The person who uses a Samsung Galaxy S21 is the person who loves fantasy books.

6. The person who uses an iPhone 13 is the person who loves science fiction books.

7. The person who loves science fiction books is somewhere to the left of the person who uses a OnePlus 9.

8. The person who uses a OnePlus 9 is Arnold.

9. The person who is a doctor is the person who loves mystery books.

10. The person who uses an iPhone 13 is the person who is a teacher.

Ground-Truth

```
{
  "House 1": { "Name": "Alice", "Occupation": "engineer", "BookGenre": "romance",
  "PhoneModel": "google pixel 6" },
  "House 2": { "Name": "Peter", "Occupation": "artist", "BookGenre": "fantasy",
  "PhoneModel": "samsung galaxy s21" },
  "House 3": { "Name": "Eric", "Occupation": "teacher", "BookGenre": "science fiction",
  "PhoneModel": "iphone 13" },
  "House 4": { "Name": "Arnold", "Occupation": "doctor", "BookGenre": "mystery",
  "PhoneModel": "oneplus 9" }
}
```

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999

Table 21 (Continued): ZebraLogic Case Study

2000
2001**Case 1: Response from Qwen3-8B. The reasoning process lacks clarity and violates clue 3,9**

2002

Reasoning:2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

Starting with Clue 2, we know the person who loves fantasy books is in House 2. Clue 5 says the person who uses a Samsung Galaxy S21 is the one who loves fantasy books, so House 2 uses the Samsung Galaxy S21. Clue 1 says the engineer is directly left of the person using a Samsung Galaxy S21, so the engineer must be in House 1. Clue 10 states the person using an iPhone 13 is the teacher, and Clue 4 says Eric is the teacher, so Eric uses an iPhone 13. Clue 6 says the person using an iPhone 13 loves science fiction books, so Eric loves science fiction books. Clue 7 says the person who loves science fiction books is to the left of the person using a OnePlus 9, so Eric must be in a house to the left of the OnePlus 9 user. Clue 8 says the person using a OnePlus 9 is Arnold, so Arnold is in a house to the right of Eric. **Clue 3 says Alice is not in the second house**, and we already know House 2 has the person who loves fantasy books. **Clue 9 says the doctor loves mystery books**. Clue 10 already assigns Eric as the teacher. Clue 4 confirms Eric is the teacher. Clue 10 also says the person using an iPhone 13 is the teacher, so Eric uses an iPhone 13. Using this information, we can assign the rest of the attributes.

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

Solution:

```
{
    "House 1": { "Name": "Peter", "Occupation": "engineer", "BookGenre": "mystery",
    "PhoneModel": "google pixel 6" },
    "House 2": { "Name": "Alice", "Occupation": "doctor", "BookGenre": "fantasy",
    "PhoneModel": "samsung galaxy s21" },
    "House 3": { "Name": "Eric", "Occupation": "teacher", "BookGenre": "science fiction",
    "PhoneModel": "iphone 13" },
    "House 4": { "Name": "Arnold", "Occupation": "artist", "BookGenre": "romance",
    "PhoneModel": "oneplus 9" }
}
```

2026
2027
2028**Case 2: Response from Qwen3-8B-Chess. The entire reasoning process is divided into 6 systematic steps with clear logical structure, including a final verification process.**2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052

Table 21 (Continued): ZebraLogic Case Study

2053

2054

2055

2056

Reasoning:

Let's break down the clues step by step to solve the puzzle.

Step1: Key Information - Names: Alice, Eric, Arnold, Peter

- Occupations: artist, engineer, teacher, doctor

- BookGenres: fantasy, science fiction, mystery, romance

- PhoneModels: google pixel 6, iphone 13, oneplus 9, samsung galaxy s21

Step 2: Clues Analysis

Clue 1: The person who is an engineer is directly left of the person who uses a Samsung Galaxy S21. - This means the engineer is in a house with a number one less than the house of the Samsung Galaxy S21 user.

Clue 2: The person who loves fantasy books is in the second house. - House 2's BookGenre is fantasy.

- Eric's Occupation = teacher.

<For brevity and readability, the following of this step has been omitted.>

Step3: Step-by-Step Deduction

From Clue 5 and 2: - House 2's PhoneModel = samsung galaxy s21 (since BookGenre = fantasy).

From Clue 1: - The engineer is directly left of the Samsung Galaxy S21 user (House 2).

- So the engineer must be in House 1 (since only House 1 is directly left of House 2).

From Clue 10 and 4: - Eric is a teacher and uses an iPhone 13.

- So Eric's PhoneModel = iphone 13, and from Clue 6, his BookGenre = science fiction.

<Omitted.>

Step 4: Now, let's determine the positions

House 1: - Occupation = engineer

- Name = ? (Not Eric, not Arnold, not Alice in House 2)

- Possible names: Alice or Peter

House 2: - BookGenre = fantasy

- PhoneModel = samsung galaxy s21

- Name = ? (Not Alice, not Eric)

- Possible names: Arnold or Peter

Continued on the next page.

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

Table 21 (Continued): ZebraLogic Case Study

Case 2: Continue.

House 3:

- Possible: Eric (if he is not in House 2 or 1)
- But Eric's PhoneModel = iphone 13, and BookGenre = science fiction.

House 4:

- Possible: Arnold (if he is not in House 3)
- But Arnold's PhoneModel = oneplus 9.

Let's try to place Eric:

Eric must be in a house where:

- PhoneModel = iphone 13
- BookGenre = science fiction
- To the left of Arnold (oneplus 9 user)

Possible positions for Eric:

- If Eric is in House 2: But House 2's BookGenre = fantasy, not science fiction (contradicts Clue 6).
- If Eric is in House 3: Then Arnold must be in House 4 (since 3 < 4).
- If Eric is in House 1: Then Arnold must be in House 2 (but House 2's PhoneModel = samsung galaxy s21, not oneplus 9).

So the only valid position for Eric is **House 3**.

<Omitted.>

Step5: Let's check if we missed something(confirm):

Let's re-examine the occupations:

- Occupations: artist, engineer, teacher, doctor
- We have: - House 1: engineer (from Clue 1) - House 3: teacher (Eric) - So remaining: artist and doctor must be in Houses 2 and 4.

House 2: - BookGenre = fantasy (not mystery) - So not the doctor.

House 4: - BookGenre = romance (not mystery) - So not the doctor.

This is a problem. Let's check if we made a mistake.

Let's go back to the initial assumption about the engineer.

Clue 1: The person who is an engineer is directly left of the person who uses a Samsung Galaxy S21.

We assumed the engineer is in House 1 (since only House 1 is directly left of House 2).

<Omitted.>

Step 6: Verification

- Clue 1: Engineer (House 1) is directly left of Samsung Galaxy S21 user (House 2) → ✓
- Clue 2: BookGenre = fantasy in House 2 → ✓
- Clue 3: Alice ≠ House 2 → ✓ (Alice is in House 1)
- Clue 4: Eric is a teacher → ✓
- Clue 5: Samsung Galaxy S21 user = fantasy lover → ✓ (House 2)
- Clue 6: iPhone 13 user = science fiction lover → ✓ (Eric, House 3)
- Clue 7: Science fiction lover (House 3) is left of OnePlus 9 user (House 4) → ✓
- Clue 8: Arnold uses OnePlus 9 → ✓
- Clue 9: Doctor = mystery lover → ✓ (Arnold, House 4)
- Clue 10: iPhone 13 user = teacher → ✓ (Eric, House 3)

All clues are satisfied.

Solution: {

```

"House 1": { "Name": "Alice", "Occupation": "engineer", "BookGenre": "romance",
"PhoneModel": "google pixel 6" },
"House 2": { "Name": "Peter", "Occupation": "artist", "BookGenre": "fantasy",
"PhoneModel": "samsung galaxy s21" },
"House 3": { "Name": "Eric", "Occupation": "teacher", "BookGenre": "science fiction",
"PhoneModel": "iphone 13" },
"House 4": { "Name": "Arnold", "Occupation": "doctor", "BookGenre": "mystery",
"PhoneModel": "oneplus 9" }
}

```

2160

Table 21 (Continued): ZebraLogic Case Study

2161

2162 Puzzle 2: Qwen3-8B-Chess demonstrated different reasoning steps but failed to solve the
2163 problem within the token limit.

2164

2165

Puzzle to Solve:

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195 Ground-Truth

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

```
{
    "House 1": { "Name": "Carol", "Children": "Samantha", "MusicGenre": "rock", "Height": "average" },
    "House 2": { "Name": "Peter", "Children": "Fred", "MusicGenre": "country", "Height": "super tall" },
    "House 3": { "Name": "Arnold", "Children": "Bella", "MusicGenre": "hip hop", "Height": "short" },
    "House 4": { "Name": "Bob", "Children": "Alice", "MusicGenre": "jazz", "Height": "very tall" },
    "House 5": { "Name": "Eric", "Children": "Timothy", "MusicGenre": "pop", "Height": "very short" },
    "House 6": { "Name": "Alice", "Children": "Meredith", "MusicGenre": "classical", "Height": "tall" },
}
```

2214

Table 21 (Continued): ZebraLogic Case Study

2216 **Case 1: Response from Qwen3-8B. The model merely enumerates all clues without engaging**
2217 **in any substantive reasoning. The final answer exhibits multiple inconsistencies with the clues**
2218 **previously stated (highlighted in red).**

2219

Reasoning:

Let's break down the clues step by step and deduce the solution logically:

1. From clue 13: The person who is very short is in the fifth house. So, House 5 has Height very short.
2. From clue 12: There is one house between the person who is short and the person who is very short. Since House 5 is very short, the short person must be in House 3. So, House 3 has Height short.
3. From clue 10: The person who is super tall is somewhere to the right of the person who has an average height. **So, super tall must be in a house after the average height.**
4. From clue 16: The person who is very tall is not in the sixth house. **So, very tall must be in House 1-5.**
5. From clue 17: The person who loves classical music is in the sixth house. So, House 6 has MusicGenre: classical.
6. From clue 18: The person who loves rock music is in the first house. So, House 1 has MusicGenre: rock.
7. From clue 5: The person who loves pop music is Eric. **So, Eric's MusicGenre is pop.**
8. From clue 3: The person who loves country music is directly left of Arnold. **So, Arnold must be in a house to the right of the person who loves country music.**
9. From clue 2: The person's child is named Alice is Bob. So, Bob's child is Alice.
10. From clue 7: The person's child is named Fred is Peter. So, Peter's child is Fred.
11. From clue 8: The person's child is named Bella is the person who loves hip-hop music. **So, the person who loves hip-hop has a child named Bella.**
12. From clue 4: Alice is the person who is tall. **So, Alice's Height is tall.**
13. From clue 11: The person's child is named Alice is somewhere to the right of Arnold. **So, Bob is to the right of Arnold.**
14. From clue 15: Carol is somewhere to the left of the person who is the mother of Timothy. **So, Carol is to the left of the mother of Timothy.**
15. From clue 9: The person who is the mother of Timothy is not in the sixth house. So, the mother of Timothy is in House 1-5.
16. From clue 1: There is one house between the person's child is named Samantha and the person who is short. Since the person who is short is in House 3, the person with child Samantha must be in House 1 or 5. But House 5 is very short, **so the person with child Samantha is in House 1.**
17. From clue 6: Bob is somewhere to the right of the person who is super tall. So, **Bob is in a house after the super tall person.**

18. From clue 14: The person who loves jazz music is not in the fifth house. So

1-4 or 6.

By carefully placing all these constraints, the solution is deduced as follows:

Solution: {
 "House 1": { "Name": "Peter", "Children": "Fred", "MusicGenre": "rock", "Height": "super tall" },
 "House 2": { "Name": "Carol", "Children": "Timothy", "MusicGenre": "hip hop", "Height": "average" },
 "House 3": { "Name": "Bob", "Children": "Alice", "MusicGenre": "pop", "Height": "short" },
 "House 4": { "Name": "Eric", "Children": "Samantha", "MusicGenre": "jazz", "Height": "tall" },
 "House 5": { "Name": "Alice", "Children": "Bella", "MusicGenre": "country", "Height": "very short" },
 "House 6": { "Name": "Arnold", "Children": "Meredith", "MusicGenre": "classical", "Height": "very tall" }
}

2268
2269

Table 21 (Continued): ZebraLogic Case Study

2270 **Case 2: Response from Qwen3-8B-Chess. An error was introduced during the intermediate**
2271 **reasoning phase (specifically concerning Bob's house). Crucially, the model exhibited a failure**
2272 **in self-correction, propagating the flawed premise throughout the subsequent steps. The**
2273 **inference was ultimately truncated due to the token limit, preventing the derivation of a final**
2274 **answer.**

2275

Let's tackle this puzzle step by step, using the clues to deduce the correct arrangement.

2276

Step-by-step Reasoning:

2277

From Clue 13: - The person who is very short is in the fifth house. - So, House 5 has "Height" = "very short".

2278

From Clue 12: - There is one house between the person who is short and the person who is very short. - Since the very short is in House 5, the short must be in House 3 (since 3 and 5 are separated by one house). <Omitted.>

2279

Let's start placing known values:

2280

House 5: - "Height" = "very short" (from Clue 13)

2281

House 1: - "MusicGenre" = "rock" (from Clue 18)

2282

House 6: - "MusicGenre" = "classical" (from Clue 17)

2283

Now, let's deduce the positions of names and children.

2284

We know: - "Bob" = "Alice" (child) (from Clue 2) - "Peter" = "Fred" (child) (from Clue 7) - "Bella" = "hip hop" (from Clue 8) - "Eric" = "pop" (from Clue 5) - "Arnold" = "country" is to his left (from Clue 3)

2285

Let's consider possible positions for Arnold.

2286

If "country" is directly left of Arnold, then Arnold cannot be in House 1 (no house to the left). So Arnold must be in Houses 2-6.

2287

Let's try placing Arnold in House 3: - Then "country" must be in House 2. Now, "Bob" is to the right of "super tall" (Clue 6), and "Bob" is to the right of Arnold (Clue 11). So if Arnold is in House 3, "Bob" must be in House 4 or 5 or 6.

2288

Also, "super tall" must be to the left of "Bob" (from Clue 6), and "super tall" must be to the left of "average" (from Clue 10). So "super tall" is somewhere in the left part of the grid.

2289

Let's try to place "super tall":

2290

If "super tall" is in House 2, then "Bob" must be in 3, 4, 5, or 6.

2291

But we already have "country" in House 2 (from above), so "super tall" cannot be in House 2.

2292

Try "super tall" in House 3: - Then "Bob" must be in 4, 5, or 6.

2293

But we have "Arnold" in House 3, so "super tall" cannot be in House 3.

2294

Try "super tall" in House 4: - Then "Bob" must be in 5 or 6.

2295

This could work.

2296

Now, "Bob" is in 5 or 6 ×, and "Arnold" is in 3.

2297

Also, "Bob" is to the right of "super tall" (which is in 4), so "Bob" could be in 5 or 6.

2298

Let's assume "super tall" is in House 4, and "Bob" is in House 5.

2299

Now, "Bob" is in House 5, and "Arnold" is in House 3.

2300

Now, "Eric" is in the grid, and "Eric" = "pop" (from Clue 5).

2301

We need to place "Eric" in a house where "pop" is not conflicting with other music genres.

2302

We already have "rock" in House 1, "classical" in House 6, "hip hop" (for Bella) somewhere, "country" in House 2, "pop" for Eric.

2303

So "Eric" must be in a house where "pop" is not already taken.

2304

Let's try placing "Eric" in House 2: - But "country" is in House 2 (from above), so this is **not possible.**

2305

Try "Eric" in House 5: - "Bob" is in House 5, so this is not possible.

2306

Try "Eric" in House 6: - "classical" is in House 6, so this is not possible.

2307

So "Eric" must be in House 3 or 4.

2308

But "Arnold" is in House 3, so "Eric" cannot be in House 3.

2309

So "Eric" must be in House 4.

2310

Now, "Eric" is in House 4, and "pop" is his genre.

2311

Try "Eric" in House 4: - But "super tall" is in House 4, so this is not possible.

2312

<Omitted.>

2313

So "Eric" must be in House 3 or 4. ×

2314

But "Arnold" is in House 3, so "Eric" cannot be in House 3.

2315

So "Eric" must be in House 4.

2316

Now, "Eric" is in House 4, and "pop" is his genre. ×

2317

43

2322
2323

Table 21 (Continued): ZebraLogic Case Study

2324
2325**Case 2: Continue**

2326

Now, let's check if this fits with other clues.

2327

We have: - "country" in House 2 (left of Arnold in House 3) - "super tall" in House 4 (left of "Bob" in House 5) - "Eric" in House 4 (with "pop")

2328

Now, "Bob" is in House 5, and "Alice" (the person who is tall) is not in House 6 (from Clue 16), so "Alice" must be in House 1-5.

2329

Also, "Alice" = "Bob" (from Clue 2), so "Bob" is "Alice" (the person), and "Alice" is the child of "Bob".

2330

So "Bob" is a parent, and his child is "Alice". ✓

2331

Now, "Alice" (the person) must be in a house where she is the parent of "Alice" (the child).

2332

But "Bob" is the parent of "Alice", so "Alice" (the person) cannot be "Bob".

2333

So "Alice" (the person) must be someone else.

2334

From the list of names: 'Bob', 'Alice', 'Peter', 'Eric', 'Arnold', 'Carol'.

2335

So "Alice" (the person) must be one of these, but not "Bob".

2336

So "Alice" (the person) could be "Carol", "Peter", "Eric", or "Arnold".

2337

But "Eric" is already placed in House 4.

2338

So "Alice" (the person) could be "Carol", "Peter", or "Arnold".

2339

But "Arnold" is already placed in House 3.

2340

So "Alice" (the person) could be "Carol" or "Peter".

2341

Now, **"Alice" (the person) is the one who is tall ✓** (from Clue 4), so "tall" = "Alice" (the person).

2342

So "Alice" (the person) must be in a house where "tall" is her height.

2343

Now, let's try to place "Alice" (the person).

2344

If "Alice" (the person) is in House 2: - Then "tall" = "Alice" (the person), and "country" is in House 2 (from above), so this is possible.

2345

If "Alice" (the person) is in House 3: - "Arnold" is in House 3, so this is not possible.

2346

If "Alice" (the person) is in House 4: - "Eric" is in House 4, so this is not possible.

2347

If "Alice" (the person) is in House 5: - "Bob" is in House 5, so this is not possible.

2348

If "Alice" (the person) is in House 6: - "classical" is in House 6, so this is not possible.

2349

So "Alice" (the person) must be in House 2.

2350

Now, let's check if this fits with other clues.

2351

From Clue 11: - "Bob" (the person) is to the right of Arnold (House 3), so "Bob" is in House 4 or 5 or 6.

2352

We already have "Bob" in House 5.

2353

From Clue 6: - "Bob" is to the right of "super tall" (House 4), so this fits.

2354

From Clue 3: - "country" is in House 2 (left of Arnold in House 3), so this fits.

2355

Now, let's place the remaining names: "Carol", "Peter".

2356

We have "Eric" in House 4, "Arnold" in House 3, "Bob" in House 5, "Alice" (the person) in House 2.

2357

So remaining names: "Carol", "Peter".

2358

These must be in Houses 1 and 6.

2359

From Clue 18: - House 1 has "rock" as music genre.

2360

From Clue 17: - House 6 has "classical" as music genre.

2361

So "rock" is in House 1, "classical" in House 6.

2362

Now, let's place "Carol" and "Peter".

2363

If "Carol" is in House 1: - Then "Peter" must be in House 6.

2364

If "Carol" is in House 6: - Then "Peter" must be in House 1.

2365

Let's try "Carol" in House 1: - Then "Peter" is in House 6.

2366

Now, check other clues.

2367

From Clue 7: - "Peter" = "Fred" (child), so "Fred" is the child of "Peter" (in House 6).

2368

From Clue 8: - "Bella" = "hip hop", so "Bella" is the child of someone who loves "hip hop".

2369

<Omitted.>

2370

Now, let's assume

2371

End from here because of token limit.

2376
2377

Table 21 (Continued): ZebraLogic Case Study

2378 **Puzzle 3: Qwen3-8B-Chess similarly displayed an extensive number of reasoning steps. Cru-**
2379 **cially, it detected an initial error and subsequently engaged in a self-correction mechanism (or**
2380 **procedural adjustment).**

2381

2382

Puzzle to Solve

2383

There are 5 houses, numbered 1 to 5 from left to right, as seen from across the street. Each house
2384 is occupied by a different person. Each house has a unique attribute for each of the following
2385 characteristics:

2386

- Each person has a unique name: ‘Peter’, ‘Alice’, ‘Bob’, ‘Eric’, ‘Arnold’
- The people are of nationalities: ‘norwegian’, ‘german’, ‘dane’, ‘brit’, ‘swede’
- People have unique favorite book genres: ‘fantasy’, ‘biography’, ‘romance’, ‘mystery’, ‘science fiction’
- Everyone has something unique for lunch: ‘stir fry’, ‘grilled cheese’, ‘pizza’, ‘spaghetti’, ‘stew’
- Each person has a favorite color: ‘red’, ‘green’, ‘blue’, ‘yellow’, ‘white’
- The people keep unique animals: ‘bird’, ‘dog’, ‘cat’, ‘horse’, ‘fish’

2387

Clues:

2388

1. The person who loves fantasy books is the Norwegian.
2. The cat lover and the person who loves biography books are next to each other.
3. The German is Bob.
4. The person who loves yellow is Bob.
5. The person whose favorite color is green is Peter.
6. There is one house between the Dane and the person who is a pizza lover.
7. The person who loves blue is somewhere to the left of the Dane.
8. The person who loves eating grilled cheese is somewhere to the left of the Norwegian.
9. The person who loves the spaghetti eater is Peter.
10. The person who keeps horses is Alice.
11. The fish enthusiast is directly left of the person who loves science fiction books.
12. There is one house between the Norwegian and Arnold.
13. The person who loves romance books is the British person.
14. There are two houses between the Norwegian and Alice.
15. The bird keeper is the person whose favorite color is red.
16. The dog owner is directly left of the fish enthusiast.
17. The person who loves the stew is the Norwegian.

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

Ground-truth

2412

```
{
  "House 1": {"Name": "Bob", "Nationality": "german", "BookGenre": "mystery", "Food": "grilled cheese", "Color": "yellow", "Animal": "dog"},  

  "House 2": {"Name": "Eric", "Nationality": "norwegian", "BookGenre": "fantasy", "Food": "stew", "Color": "blue", "Animal": "fish"},  

  "House 3": {"Name": "Peter", "Nationality": "dane", "BookGenre": "science fiction", "Food": "spaghetti", "Color": "green", "Animal": "cat"},  

  "House 4": {"Name": "Arnold", "Nationality": "swede", "BookGenre": "biography", "Food": "stir fry", "Color": "red", "Animal": "bird"},  

  "House 5": {"Name": "Alice", "Nationality": "brit", "BookGenre": "romance", "Food": "pizza", "Color": "white", "Animal": "horse"}
}
```

2423

2424

2425

2426

2427

2428

2429

2430

Table 21 (Continued): ZebraLogic Case Study

2431

2432 **Case 1: Response from Qwen3-8B.**

2433

2434 **Reasoning:** Let's start by analyzing the clues step by step to deduce the attributes for each
2435 house.

1. From Clue 17, the Norwegian loves stew.
2. From Clue 8, the grilled cheese lover is to the left of the Norwegian.
3. From Clue 12, there is one house between the Norwegian and Arnold.
4. From Clue 14, there are two houses between the Norwegian and Alice.
5. From Clue 10, Alice keeps horses.
6. From Clue 3, the German is Bob.
7. From Clue 4, Bob loves yellow.
8. From Clue 5, Peter loves green.
9. From Clue 9, Peter loves spaghetti.
10. From Clue 13, the British person loves romance books.
11. From Clue 1, the Norwegian loves fantasy books.
12. From Clue 15, the bird keeper loves red.
13. From Clue 16, the dog owner is directly left of the fish enthusiast.
14. From Clue 11, the fish enthusiast is directly left of the science fiction lover. 15. From Clue 2, the cat lover and the biography lover are next to each other.
16. From Clue 6, there is one house between the Dane and the pizza lover.
17. From Clue 7, the blue lover is to the left of the Dane.

2447 Using these clues, we can deduce the following:

- The Norwegian must be in House 3 (since they are between the grilled cheese lover and Arnold, and two houses away from Alice).
- The grilled cheese lover is in House 2.
- Arnold is in House 4.
- Alice is in House 1 (two houses away from the Norwegian).
- Bob is the German and loves yellow.
- Peter is in House 5, loves green, and spaghetti.
- The British person (who loves romance books) is in House 2.
- The Dane is in House 4.
- The fish enthusiast is in House 5, and the science fiction lover is in House 6 (but since there are only 5 houses, this is invalid, so we must adjust).
- Adjusting, the fish enthusiast is in House 4, and the science fiction lover is in House 5.
- The dog owner is in House 3, and the fish enthusiast is in House 4.
- The cat lover and biography lover are next to each other.
- The bird keeper loves red and is in House 1.
- The Dane is in House 4, and the pizza lover is in House 3.
- The blue lover is in House 3, and the Dane is in House 4.

2468 Putting it all together, we get the final arrangement.

2469 **Solution:** {

```

"House 1": { "Name": "Alice", "Nationality": "Norwegian", "BookGenre": "Fantasy",
"Food": "Grilled Cheese", "Color": "Red", "Animal": "Bird" },
"House 2": { "Name": "Peter", "Nationality": "Brit", "BookGenre": "Romance", "Food": "Pizza",
"Color": "Green", "Animal": "Cat" },
"House 3": { "Name": "Bob", "Nationality": "German", "BookGenre": "Biography",
"Food": "Stir Fry", "Color": "Blue", "Animal": "Dog" },
"House 4": { "Name": "Arnold", "Nationality": "Dane", "BookGenre": "Science Fiction",
"Food": "Stew", "Color": "White", "Animal": "Fish" },
"House 5": { "Name": "Eric", "Nationality": "Swede", "BookGenre": "Mystery", "Food": "Spaghetti",
"Color": "Yellow", "Animal": "Horse" }
}

```

2479

2480

2481

2482

2483

Table 21 (Continued): ZebraLogic Case Study

Case 2: Response from Qwen3-8B-Chess.

Let's tackle this step by step. First, let's list out all the clues and see what we can deduce:
Clues: 1. Fantasy books lover is Norwegian. 2. Cat lover and biography books lover are adjacent. 3. German is Bob. 4. Yellow color lover is Bob. 5. Green color lover is Peter. 6. One house between Dane and pizza lover. 7. Blue color lover is left of Dane. 8. Grilled cheese lover is left of Norwegian. 9. Spaghetti eater is Peter. 10. Horses lover is Alice. 11. Fish enthusiast is left of science fiction books lover. 12. One house between Norwegian and Arnold. 13. Romance books lover is British. 14. Two houses between Norwegian and Alice. 15. Bird keeper has red color. 16. Dog owner is left of fish enthusiast. 17. Stew lover is Norwegian.

Initial Deductions: - From clue 17: Norwegian's food is stew. - From clue 9: Peter's food is spaghetti. - From clue 5: Peter's color is green. - From clue 13: British person's book genre is romance. - From clue 10: Alice's animal is horse. - From clue 15: Bird keeper's color is red. - From clue 4: Bob's color is yellow. - From clue 3: Bob's nationality is German. - From clue 1: Norwegian's book genre is fantasy.

Let's start placing what we know:

Nationalities: - Norwegian: from clue 17, food is stew. - German: Bob (clue 3) - British: from clue 13, book genre is romance. - Dane: not yet placed. - Swede: not yet placed.

Names: - Peter: color green (clue 5), food spaghetti (clue 9) - Bob: nationality German (clue 3), color yellow (clue 4) - Alice: animal horse (clue 10) - Arnold: not yet placed. - Eric: not yet placed.

Book Genres: - Fantasy: Norwegian (clue 1) - Romance: British (clue 13) - Biography: not yet placed. - Mystery: not yet placed. - Science Fiction: not yet placed.

<Omitted.>

Clue 14: Two houses between Norwegian and Alice. - Norwegian and Alice are not adjacent, not one apart. **Possible positions: (1,3), (2,4), (3,5). ×**

Norwegian in house 4: - Grilled cheese lover must be in 3. - From clue 12: Arnold is in 2 or 6 (6 invalid). So Arnold in 2. - From clue 14: Alice is in 2 or 6 (6 invalid). So Alice in 2. But 2 is Arnold. Invalid.

Norwegian in house 5: - Grilled cheese lover must be in 4. - From clue 12: Arnold is in 3 or 7 (7 invalid). So Arnold in 3. - From clue 14: Alice is in 3 or 7 (7 invalid). So Alice in 3. But 3 is Arnold. Invalid.

So the only valid position for Norwegian is house 3.

<Omitted.>

So Dane must be in 5.

Then, blue color lover must be in 4 (Peter, color green). Doesn't work.

So this is a problem.

Maybe I need to **adjust**.

Let's go back to Norwegian in 3, Arnold in 5, Alice in 1.

This is Option 2.

Option 2: Norwegian in 3, Arnold in 5, Alice in 1.

- House 3: Norwegian, food stew, book genre fantasy. - House 5: Arnold. - House 1: Alice, animal horse.

Now, clue 8: Grilled cheese lover is left of Norwegian (3). So must be in 2.

House 2: Grilled cheese lover.

Now, let's place Peter.

Peter's food is spaghetti (clue 9), color is green (clue 5).

Possible houses: 4.

House 4: Peter, food spaghetti, color green.

Now, Bob's nationality is German (clue 3), color is yellow (clue 4).

Possible houses: 2 (grilled cheese), 4 (Peter), 5 (Arnold).

So Bob must be in 2.

House 2: Bob, nationality German, color yellow, food grilled cheese.

Now, clue 7: Blue color lover is left of Dane.

Possible positions:

If Dane is in 4, then blue color lover in 3 (Norwegian, color not yet known).

If Dane is in 5, then blue color lover in 4 (Peter, color green). Doesn't work.

If Dane is in 2, then blue color lover in 1 (Alice, color not yet known).

2538
2539

Table 21 (Continued): ZebraLogic Case Study

2540
2541**Case 2: Continue**

2542

Let's check if this works.

2543

Let's assume Dane is in 4.

2544

Then, blue color lover is in 3 (Norwegian).

2545

So Norwegian's color is blue.

2546

That works.

2547

Now, let's check clue 15: Bird keeper has red color.

2548

Possible houses: 1 (Alice, color not yet known), 2 (Bob, color yellow), 3 (Norwegian, color blue), 4 (Peter, color green), 5 (Arnold, color not yet known).

2549

So bird keeper must be in a house with red color.

2550

Possible: 5 (Arnold).

2551

So Arnold's color is red.

2552

That works.

2553

Now, let's place the remaining:

2554

- Dane is in 4. - Norwegian in 3 (color blue). - Bob in 2 (color yellow, food grilled cheese). -

2555

Peter in 4 (color green, food spaghetti). Wait, 4 is Dane. So Peter cannot be in 4.

2556

So Peter must be in 5.

2557

House 5: Peter, color green, food spaghetti.

2558

But 5 is Arnold. So this is invalid.

So this is a problem.

2559

Hmm, this is getting complex. Let's try to **use a table** to organize.

2560

Let's create a table:

2561

| House | Name | Nationality | Book Genre | Food | Color | Animal |

2562

| --- | --- | --- | --- | --- | --- | --- |

2563

| 1 | Alice | ? | ? | ? | ? | Horse |

2564

| 2 | Bob | German | ? | Grilled Cheese | Yellow | ? |

2565

| 3 | ? | Norwegian | Fantasy | Stew | ? | ? |

2566

| 4 | ? | ? | ? | ? | ? | ? |

2567

| 5 | Arnold | ? | ? | ? | ? | ? |

2568

Now, let's fill in what we know.

2569

Clue 10: Alice's animal is horse (house 1).

2570

Clue 3: Bob is German (house 2).

2571

Clue 4: Bob's color is yellow (house 2).

2572

Clue 17: Norwegian's food is stew (house 3).

2573

Clue 1: Norwegian's book genre is fantasy (house 3).

2574

Clue 8: Grilled cheese lover is left of Norwegian (house 2).

2575

Now, let's place Peter.

2576

Peter's food is spaghetti (clue 9), color is green (clue 5).

<Omitted.>

2577

But clue 11: Fish enthusiast is left of science fiction books lover.

2578

So science fiction books lover must be in 4.

2579

That works.

2580

Now, let's check clue 11: Fish enthusiast (3) is left of science fiction books lover (4).

2581

Yes.

2582

Now, what about clue 2: Cat lover and biography books lover are adjacent.

End from here because of token limit.

2583

2584

2585

2586

G.4 LEGAL MOVES AS POTENTIAL CONSTRAINTS

2587

2588

In the aforementioned evaluation, we observed superior model performance under the "with legal moves" configuration, which aligns with theoretical expectations. This approach enables the model to select exclusively from predetermined legal moves, thereby virtually eliminating the possibility of generating illegal moves. Barring fundamental deficiencies in instruction-following capabilities, models can consistently select appropriate moves from the provided legal move set. However, this

2592 configuration may inadvertently constrain the model's full potential. We discovered that under
 2593 the "with legal moves" condition, models frequently exhibit diminished analytical engagement,
 2594 characterized by the tendency to bypass deliberative reasoning processes and directly output moves
 2595 without substantive thought. Conversely, when the same board state (FEN) is evaluated under
 2596 "without legal moves" constraints, models often generate superior move selections. Under these
 2597 unrestricted conditions, models engage in comprehensive tactical analysis, systematically considering
 2598 viable moves for each piece and conducting thorough evaluations of all possible move qualities. This
 2599 phenomenon manifests consistently across various non-reasoning models, including Qwen3-235b-
 2600 a22b (non-thinking) and Deepseek-V3. Illustrative examples of this behavioral pattern are presented
 2601 in Table 22 and Figure 8.

2602 Table 22: With legal moves, the model's potential may not be fully realized
 2603

2604 **Case 1: Qwen3 outputs a move directly (legal moves provided)**

2605 **Query:**

2606 **System prompt is omitted.**

2607 User:

2608 Current board position in FEN notation: rnbqbnr/pp2pppp/3p4/8/3pP3/5N2/PPP2PPP/
 2609 RNBQKB1R w KQkq - 0 4

2610 Legal moves in UCI notation: f3g5, f3e5, f3h4, f3d4, f3d2, f3g1, h1g1, f1a6, f1b5, f1c4, f1d3,
 2611 f1e2, e1e2, e1d2, d1d4, d1d3, d1e2, d1d2, c1h6, c1g5, c1f4, c1e3, c1d2, b1c3, b1a3, b1d2, e4e5,
 2612 h2h3, g2g3, c2c3, b2b3, a2a3, h2h4, g2g4, c2c4, b2b4, a2a4

2613
 2614
 2615 **Response from Qwen3-235b-a22b(Without any reasoning process, providing its answer**
 2616 **directly, exhibiting certain lazy behavior)**

2617
 2618 e4e5
 2619
 2620

2621 **Case 2: Qwen3 thinks carefully and outputs a better move (no legal moves provided)**

2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645

2646 Table 22 (Continued): With legal moves, the model's potential may not be fully realized
 2647
 2648
 2649

2650 **Query:**

2651 **System prompt is omitted.**

2652 User:

2653 Current board position in FEN notation: rnbqbnr/pp2pppp/3p4/8/3pP3/5N2/PPP2PPP/
 2654 RNBQKB1R w KQkq - 0 4

2655
 2656
 2657 **Response from Qwen3-235b-a22b**

2658 Let's analyze the position carefully.

2659
 2660 **Position in FEN:** rnbqbnr/pp2pppp/3p4/8/3pP3/5N2/PPP2PPP/RNBQKB1R w KQkq - 0 4

2661 **Interpretation:**

- 2662 - Side to move: White
- 2663 - Opening: This looks like a **Scotch Game** or a variation of it, with an early d4 by Black.
- 2664 - Material is equal
- 2665 - White has a central pawn on e4, and Black has pawns on d6 and d4, indicating a possible
 2666 gambit or aggressive central play by Black.
- 2667 - White has not yet developed much, but has the advantage of a tempo lead.
- 2668 - Black's queen is still on d8, and Black's kingside is intact.
- 2669 - White's knight is already on f3, and the e4 pawn is protected.
- 2670 - White's light-squared bishop and queen are still on their starting squares.

2671 **Candidate Moves:**

- 2672 1. **e4-e5** – Pushing the pawn to open the center and gain space.
- 2673 2. **Qxd4** – Capturing the pawn with the queen.
- 2674 3. **Nxd4** – Capturing the pawn with the knight.
- 2675 4. **Bc4** – Developing with a strong bishop eyeing f7.
- 2676 5. **c3** – Supporting a later d4 or preparing for development.

2677 **Evaluation:**

- 2678 - **e5** is a strong move, gaining space and limiting Black's options in the center.
- 2679 - **Qxd4** is playable, but exposes the queen early and may lead to early exchanges.
- 2680 - **Nxd4** is also playable, but after **Qxd4**, White must move the knight or queen again, giving
 2681 Black a tempo advantage.
- 2682 - **Bc4** is a good developing move, preparing castling and exerting pressure on the kingside.
- 2683 - **c3** is a bit slow here; White should focus on development and center control.

2684
 2685 **Best Plan:**

2686 Developing with **Bc4** is the most natural and strong move. It develops a piece, pressures the f7
 2687 square (which is always a weak point in the opening), and keeps all options open for White in
 2688 the center.

2689
 2690 **Final Move:**

2691
 2692 **f1c4**
 2693

2694
 2695
 2696
 2697
 2698
 2699

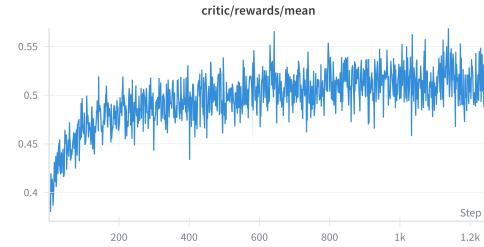
(a) Move from Qwen3 when providing legal moves. Qwen3 choose e4e5. It's a normal move.

(b) Move from Qwen3 when not providing legal moves. After careful consideration, Qwen3 choose f1f4. This move keeps options open for White in the center.

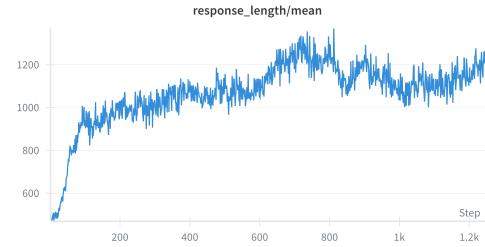
Figure 8: Providing legal moves may lock model's potential

G.5 RL TRAINING ANALYSIS

Training Curve Our RL training mean-reward and response length are shown in Figure 9, which were downloaded from WanDB⁶. Both mean reward and response length exhibit upward trends, indicating that the model's chess strategic reasoning capabilities are progressively improving.



(a) Mean Reward



(b) Response Length

Figure 9: Mean Reward and Response Length Curve of RL Training

Rollout We conducted a comprehensive analysis of the evolution in Qwen3-8B-Chess's board evaluation reasoning throughout reinforcement learning training. By examining the model's cognitive processes for identical chess positions across different training phases, we traced the development of its analytical capabilities. Cases 1 and 2 in Table 23 exemplify this progression. During the early training phase, while Qwen3-8B-Chess demonstrated fundamentally sound analysis, its strategic depth remained limited. Specifically, the model should have prioritized material capture over king threats, as such threats lacked tactical substance in the given position. In contrast, during the late training phase, the model exhibited a marked preference for material acquisition and engaged in systematic verification processes, critically evaluating the validity of its own reasoning. Furthermore, in Case 3 of Table 23, Qwen3-8B-Chess demonstrated enhanced analytical rigor through dual verification mechanisms and extended tactical calculations. The model began simulating move sequences systematically, employing this methodological approach to identify what it determined to be the optimal solution.

⁶<https://wandb.ai/>

2754 Table 23: Qwen3-8B-Chess thought difference between RL training early stage and late stage
 2755
 2756

2757 **Case 1: Qwen3-8B thought process of early training stage**

2758 **Query:**
 2759 System prompt is omitted.
 2760 User:
 2761 Current board position in FEN notation: 4k3/2R5/8/P6K/2p4b/2P2P2/P7/8 w - - 5 69
 2762 Legal moves in UCI notation: c7c8, c7h7, c7g7, c7f7, c7e7, c7d7, c7b7, c7a7, c7c6, c7c5, c7c4,
 2763 h5h6, h5g6, h5h4, h5g4, a5a6, f3f4, a2a3, a2a4
 2764
 2765
 2766

2767 **Response from Qwen3-8B-Chess in early RL training stage**

2768 Let's analyze the position carefully.
 2769 **FEN:** 4k3/2R5/8/P6K/2p4b/2P2P2/P7/8 w - - 5 69
 2770 This is a late-middlegame or early-endgame position. White has a rook on c7, a king on h5,
 2771 pawns on a5, c3, f3, and a2. Black has a king on e8, a bishop on h4, and a pawn on c4.
 2772 **Key Observations:**
 2773 - White Rook on c7 is active and can potentially promote if supported.
 2774 - Black Bishop on h4 is currently attacking the pawn on g3 (which doesn't exist yet), but more
 2775 importantly, it's eyeing the long diagonal.
 2776 - Black King on e8 is somewhat passive, but could become active depending on how the game
 2777 unfolds.
 2778 - White King on h5 is quite advanced and could support a pawn push on the kingside.
 2779 - Pawn Structure:
 2780 - White has a passed pawn on a5, which could be pushed.
 2781 - Black has a pawn on c4, which is isolated and potentially weak.
 2782 - White has pawns on c3 and f3, which are mostly defensive.
 2783 - White has a potential passed pawn on a2, but it's not very advanced.

2784 **Candidate Moves:**

2785 From the list of legal moves:
 2786 - Rook moves from c7:
 2787 - 'c7c8': Attacks the black king directly. Could lead to a check.
 2788 - 'c7h7', 'c7g7', 'c7f7', 'c7e7', 'c7d7', 'c7b7', 'c7a7': Various rook moves along the 7th rank.
 2789 - 'c7c6', 'c7c5', 'c7c4': Moving the rook down the file.
 2790 - King moves from h5:
 2791 - 'h5h6', 'h5g6', 'h5h4', 'h5g4': King moves toward the center or supports pawn advances.
 2792 - Pawn moves: - 'a5a6': Pushing the a-pawn forward.
 2793 - 'f3f4': Pushing the f-pawn.
 2794 - 'a2a3', 'a2a4': Pushing the a-pawn from a2.

2795 **Evaluation:**

2796 The most forcing move is 'c7c8', which puts the rook on the same file as the black king and
 2797 gives check. This forces the black king to move, and White can then possibly follow up with
 2798 more active play.
 2799 Let's look at that line:

2800 1. 'c7c8+' (Rook checks the king) - Black must move the king: 'Ke8-d7' or 'Ke8-e7'
 2801 2. Then White can continue to press with the rook, possibly supporting the a-pawn or advancing
 2802 the king.
 2803 Alternatively, moving the king ('h5g6') could also be useful to support the center, but it's less
 2804 immediate.
 2805 Pushing the a-pawn ('a5a6') is also a good idea, but it's slower and doesn't create an immediate
 2806 threat.

2807 **Best Move:**

2808 The most active and forcing move is:
 2809
 2810 c7c8
 2811
 2812

2808
2809

Table 23 (Continued): Qwen3-8B-Chess's thought during RL training

2810
2811**Case 2: Qwen3-8B thinks with confirm process.**

2812

Response from Qwen3-8B-Chess in the late RL training stage2813
2814

Let's analyze the position carefully.

2815

FEN: 4k3/2R5/8/P6K/2p4b/2P2P2/P7/8 w - - 5 69

2816

This is a late-middlegame or early-endgame position. White has a rook on c7, a king on h5, pawns on a5, c3, f3, a2. Black has a king on e8, a bishop on h4, and a pawn on c4.

2817

Key Observations:

2818

- White's rook is active on c7, but not yet fully optimized.
- Black's bishop is active on h4, controlling some diagonals.
- Black's king is in the center, but not immediately vulnerable.
- White's king is advanced on h5, which could be useful for supporting pawn advances or attacking.
- Pawn structure: White has a passed pawn on a5, and Black has a passed pawn on c4. Both sides have pawns that could become targets.

2823

Candidate Moves:

2824

From the list of legal moves: - 'c7c8': Rook moves to c8 (could be useful if aiming to control the back rank)

2825

- 'c7h7': Rook moves to h7 (could support king on h5)
- 'c7g7': Rook moves to g7 (could control g-file)
- 'c7f7': Rook moves to f7 (could control f-file)
- 'c7e7': Rook moves to e7 (could control e-file)
- 'c7d7': Rook moves to d7 (could control d-file)
- 'c7b7': Rook moves to b7 (could control b-file)
- 'c7a7': Rook moves to a7 (could support a-pawn)
- 'c7c6': Rook moves to c6 (could attack c4 pawn)
- 'c7c5': Rook moves to c5 (could control c-file)
- 'c7c4': Rook captures on c4 (could win a pawn)
- 'h5h6': King moves forward (could support pawn advance)
- 'h5g6': King moves toward center (could be risky)
- 'h5h4': King captures bishop (if bishop is not protected)
- 'h5g4': King moves toward center (could be risky)
- 'a5a6': Pawn advances (could create a passed pawn)
- 'f3f4': Pawn advances (could control center)
- 'a2a3': Pawn advances (could support a5 pawn)
- 'a2a4': Pawn advances (could create a passed pawn)

2844

Evaluation:

2845

Most Promising Moves: - 'c7c4': Capturing the pawn on c4 would give White a material advantage (rook for pawn). But we need to check if it's safe.

2846

- 'h5h4': Capturing the bishop on h4. This would be a major material gain (king captures bishop).

2847

But is the bishop protected? Let's see: - After 'h5h4', Black can respond with 'g5g4' (if there's a pawn on g5), but there isn't. So the bishop is not protected. So this is a free bishop. So 'h5h4' is a **very strong move**, winning a bishop.

2848

Let's confirm: - Is the bishop on h4 protected? No.

2849

- Is the king on h5 safe after capturing? Yes, because the bishop is not protected, and no immediate threats.

2850

So 'h5h4' is a **free bishop**, which is a major material advantage.

2851

Conclusion:

2852

The best move is to capture the bishop with the king.

2853

~~~

2854

h5h4

2855

~~~

2856

Case 3: Qwen3-8B thinks with some double-check and moving sequence analysis process.

2857

Table 23 (Continued): Qwen3-8B-Chess's thought during RL training

2862 Let's analyze the position carefully.
 2863 **FEN:** 2bq2k1/5p2/p4rn1/1pb1pNQ1/2p1P1P1/2P5/PPB2PN1/4R1K1 w - - 1 30
 2864 You are playing as **White**.
 2865
Key Observations:
King Safety:
 2870 - White king is on g1, relatively safe for now. Black king is on g8, also fairly safe.
Piece Activity:
 2872 - White's knight on f5 is active. White's queen on g5 is active and could be dangerous. Black's knight on
 2873 g6 is defending h8 and f8 squares. Black's bishop on c5 is active. Black's rook on f6 is active. White's
 2874 bishop on c2 is somewhat passive but can become active. White's rook on e1 is on an open file (e-file).
Pawn Structure:
 2875 - White has a pawn on e4, which is advanced. Black has a pawn on c4, which is also advanced. There are
 2876 some isolated and potential weak pawns.
Threats:
 2877 - White's queen on g5 is eyeing the g-file and could potentially threaten the black king if supported. The
 2878 knight on f5 could jump to d6 or h6. Black's knight on g6 is protecting the king and may be involved in
 2879 defense. Black's bishop on c5 is targeting the e3 square and could be part of a diagonal.
Candidate Moves:
 2881 Let's look at some promising moves for White:
1. f5d6
 2882 - Knight moves to d6, attacking the bishop on c8 and possibly threatening to fork. Also attacks the pawn on
 2883 e5. Could disrupt Black's structure.
2. f5h6
 2885 - Knight moves to h6, attacking the rook on f6. Could lead to a tactical opportunity if the rook moves. But
 2886 Black can just move the rook.
3. g5g6
 2887 - Queen moves to g6, attacking the knight on g6. If knight moves, White can possibly capture on f6. But
 2888 Black can play ...Rh8 or ...Qe8 to defend.
4. c2a4
 2889 - Bishop moves to a4, targeting the pawn on c4. Could put pressure on Black's queenside.
5. f5g7
 2890 - Knight moves to g7, attacking the pawn on g7. But that's not useful since it's a pawn and not a piece.
6. g5f6
 2891 - Queen captures rook on f6! This is a very tempting move.
Let's check if it's safe:
 2892 - After 'g5f6', Black must recapture with the knight ('g6f6').
 2893 - Then White can play 'f5d6', attacking the bishop on c8 and threatening to win material.
 2894 - Also, White gains a rook for a queen? No, wait: Queen takes rook, then knight takes queen.
 2895 - So White wins a rook and loses a queen? That's a bad trade.
 2896 - Unless there's a follow-up.
Wait, let's double-check:
 2897 - 'g5f6' (Queen takes rook). Black must respond with 'g6f6' (knight takes queen). Now White can play
 2898 'f5d6', attacking the bishop on c8 and the pawn on e5. Bishop on c8 is defended by queen (which is gone),
 2899 so not immediately vulnerable. But White now has a knight on d6, which is strong.
 2900 But is this a good trade? Queen for rook and knight?
Yes! Because Black's knight was defending the king, and now it's gone. Also, White's knight on d6 is
 2901 very active.
 2902 So this seems like a **good tactical opportunity**.
 2903 Let's confirm: 'g5f6' (Qxf6) -> 'g6f6' (NxQ) -> 'f5d6' (Ng6-e5 or Ng6-c7?)
 2904 But after 'f5d6', Black can play 'c8d7' (Bxd7), and White can play 'd6e8' (Nxe8), winning the queen!
Wait, let's walk through:
 2905 1. 'g5f6' (Qxf6) 2. 'g6f6' (NxQ) 3. 'f5d6' (Ng6-e5 or Ng6-c7?) 4. 'c8d7' (Bxd7) 5. 'd6e8' (Nxe8) —
 2906 White wins the queen!
Yes! That's a winning sequence.
 2907 So the move 'g5f6' leads to a forced win of the queen.
 2908 Is there any way Black can avoid this? No, because after 'g5f6', Black must take with the knight. If they
 2909 don't, White keeps the rook.
 2910 So the best move is:
 2911 '~~~ g5f6 ~~~'
 2912 This is a tactical shot that wins material and gives White a clear advantage.