
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING LATENT GRAPH STRUCTURES
AND THEIR UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks use relational information as an inductive bias to enhance
prediction performance. Not rarely, task-relevant relations are unknown and graph
structure learning approaches have been proposed to learn them from data. Given
their latent nature, no graph observations are available to provide a direct training
signal to the learnable relations. Therefore, graph topologies are typically learned
on the prediction task alongside the other graph neural network parameters. In this
paper, we demonstrate that minimizing point-prediction losses does not guarantee
proper learning of the latent relational information and its associated uncertainty.
Conversely, we prove that suitable loss functions on the stochastic model outputs
simultaneously grant solving two tasks: (i) learning the unknown distribution of
the latent graph and (ii) achieving optimal predictions of the model output. Finally,
we propose a sampling-based method that solves this joint learning task. Empiri-
cal results validate our theoretical claims and demonstrate the effectiveness of the
proposed approach.

1 INTRODUCTION

Relational information processing has provided breakthroughs in the analysis of rich and complex
data coming from, e.g., social networks, natural language, and biology. This side information takes
various forms, from structuring the data into clusters to defining causal relations and hierarchies, and
enables machine learning models to condition their predictions on dependency-related observations.
In this context, predictive models take the form y = fψ(x,A), where the input-output relation
x 7→ y – modeled by fψ and its parameters in ψ – is conditioned on the relational information
encoded in variable A. Graph Neural Networks (GNNs) [Scarselli et al., 2008] are one example
of models of this kind that rely on a graph structure represented as an adjacency matrix A and
have been demonstrated successful in a plethora of applications [Fout et al., 2017; Shlomi et al.,
2020]. Throughout this paper, we focus on predictors where A is an adjacency matrix, although the
theoretical results we develop are valid for A being any discrete latent random variable.

Indeed, relational information is needed to implement such a relational inductive bias and, in some
cases, it is provided at the application design phase. However, more frequently, such topological
information is not rich enough to address the problem at hand, and – not seldom – it is completely
unavailable. Therefore, Graph Structure Learning (GSL) emerges as an approach to learn the graph
topology [Kipf et al., 2018; Franceschi et al., 2019; Yu et al., 2021; Fatemi et al., 2021; Zhu et al.,
2021; Cini et al., 2023] alongside the predictive model fψ . This entails formulating a joint learning
process that learns the adjacency matrix A – or a parameterization of it – along with the predictor’s
parameters ψ. This can be achieved by optimizing a loss function, e.g., a point prediction measure
based on the square or the absolute prediction error.

Different sources of uncertainty affect the graph structure learning process, including epistemic un-
certainty in the data and variability inherent in the data-generating process. Learning appropriate
models of the data-generating process can provide valuable insights into the modeled environment
with uncertainty quantification enhancing explainability and interpretability, ultimately enabling
more informed decision-making. Examples of applications are found in the study of infection and
information spreading, as well as biological systems [Gomez Rodriguez et al., 2013; Lokhov, 2016;
Deleu et al., 2022]. It follows that a probabilistic framework is appropriate to accurately capture the
uncertainty in the learned relations whenever randomness affects the graph topology. Probabilistic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

approaches have been devised in recent years. For instance, research carried out in Franceschi et al.
[2019]; Zhang et al. [2019]; Elinas et al. [2020]; Cini et al. [2023] propose methods that learn a
parametric distribution P θA over the latent graph structure A. However, none of them have studied
whether these approaches were able to learn a calibrated latent distribution P θA, properly reflecting
the uncertainty associated with the learned topology.

In this paper, we address the joint problem of learning a predictive model yielding optimal point-
prediction performance of the output y and, contextually, a calibrated distribution for the latent
adjacency matrix A. In particular, the novel contributions can be summarized as:

1. We demonstrate that models trained to achieve optimal point predictions do not guarantee
calibration of the adjacency matrix distribution [Section 4].

2. We provide theoretical conditions on the predictive model and loss function that guarantee
both distribution calibration and optimal point-predictions [Section 5].

3. We propose a theoretically grounded sampling-based learning method to address the joint
learning problem [Section 5].

4. We empirically validate the theoretical developments and claims presented in this paper and
show that the proposed method is indeed able to solve the joint learning task [Section 6].

2 RELATED WORK

Graph Structure Learning GSL is often employed end-to-end with a predictive model to better
solve a downstream task. Examples include applications within graph deep learning methods for
static [Jiang et al., 2019; Yu et al., 2021; Kazi et al., 2022] and temporal data [Wu et al., 2019;
2020; Cini et al., 2023; De Felice et al., 2024]; a recent review is provided by Zhu et al. [2021].
Some approaches from the literature model the latent graph structure as stochastic [Kipf et al., 2018;
Franceschi et al., 2019; Elinas et al., 2020; Shang et al., 2021; Cini et al., 2023], mainly as a way to
enforce sparsity of the adjacency matrix. To operate on discrete latent random variables, Franceschi
et al. [2019] utilize straight-through gradient estimations, Cini et al. [2023] rely on score-based
gradient estimators, while Niepert et al. [2021] design an implicit maximum likelihood estimation
strategy. A different line of research is rooted in graph signal processing, where the graph is es-
timated from a constrained optimization problem and the smoothness assumption of the signals
[Kalofolias, 2016; Dong et al., 2016; Mateos et al., 2019; Coutino et al., 2020; Pu et al., 2021]. A
few works from the Bayesian literature have tackled the task of estimating uncertainties associated
with graph edges. The model-based approaches by Lokhov [2016]; Gray et al. [2020] are two ex-
amples tackling relevant applications benefiting from uncertainty quantification. Within the deep
learning literature, Zhang et al. [2019] propose a Bayesian Neural Network (BNN) modeling the
random graph realizations. Differently, Wasserman & Mateos [2024] develop a BNN designed over
graph signal processing principles. While some results on the output calibration are exhibited, to
the best of our knowledge, no guarantee or evidence of calibration of the latent variable is provided,
which we study in this paper instead.

Calibration of the model’s output Research on model calibration has primarily focused on ob-
taining accurate and consistent predictions of the statistical properties of the target (random) vari-
ables y, from which uncertainty estimates on the model’s predictions are derived. For discrete
outputs, such as in classification tasks, Guo et al. [2017] investigated the calibration of modern deep
learning models and proposed temperature scaling as a solution. Other techniques in the same con-
text include Histogram Binning [Zadrozny & Elkan, 2001], Cross Entropy loss with label smoothing
[Müller et al., 2019], and Focal Loss [Mukhoti et al., 2020]. For continuous output distributions,
Laves et al. [2020] proposed σ scaling, while Kuleshov et al. [2018] developed a technique inspired
by Platt scaling. More recently, conformal prediction techniques [Shafer & Vovk, 2008] have gained
popularity for providing confidence intervals in predictions. We stress that within this paper, we are
mainly concerned with latent variable calibration, rather than output calibration, although the two
are related to each other.

Deep latent variable models Latent variables are extensively used in deep generative modeling
[Kingma & Welling, 2013; Rezende et al., 2014], both with continuous and discrete latent variables
[Van Den Oord et al., 2017; Bartler et al., 2019]. In deep models, latent random variables often

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

lack direct physical meaning, with only the outputs being collected for training. Therefore, studies
mainly focused on maximizing the likelihood of the observed outputs in the training set, rather
than calibrating the latent distribution. A few works proposed regularization of the latent space to
improve stability and accuracy [Xu & Durrett, 2018; Joo et al., 2020], facilitate smoother transitions
in the output when the latent variable is slightly modified [Hadjeres et al., 2017], and apply other
techniques aimed at enhancing data generation or improving model performance in general [Connor
et al., 2021].

To the best of our knowledge, no prior work has studied the joint learning problem of calibrating the
latent graph distribution while achieving optimal point predictions.

3 PROBLEM FORMULATION

Consider a set of N interacting entities and the data-generating process{
A ∼ P ∗

A

y = f∗(x,A)
(1)

where y ∈ Y is the system output obtained from input x ∈ X through function f∗ and conditioned
on a realization of the latent adjacency matrix A ∈ A ⊆ {0, 1}N×N drawn from distribution P ∗

A;
input x is assumed to be drawn from any distribution P ∗

x and superscript ∗ refers to unknown entities.
Each entry of the adjacency matrix A is a binary value encoding the existence of a pairwise relation
between two nodes. In the sequel, x ∈ X ⊆ RN×din and y ∈ Y ⊆ RN×dout are stacks of N
node-level feature vectors of dimension din and dout, respectively, representing continuous inputs
and outputs.

Given a training dataset D = {(xi, yi)}ni=1 of n input-output observations from (1), we aim at
learning a probabilistic predictive model{

A ∼ P θA
ŷ = fψ(x,A)

(2)

from D, while learning at the same time distribution P θA approximating P ∗
A. The two parameter

vectors θ and ψ are trained to approximate distinct entities in (1), namely the distribution P ∗
A and

function f∗, respectively. We assume
Assumption 3.1. The family {P θA} of probability distributions P θA parametrized by θ and the family
of predictive functions {fψ} are expressive enough to contain the true latent distribution P ∗

A and
function f∗, respectively.

Assumption 3.1 implies that f∗ ∈ {fψ} and P ∗
A ∈ {P θA} but does not request uniqueness of the

parameters vectors ψ∗ and θ∗ such that fψ∗ = f∗ and P θ
∗

A = P ∗
A. Under such assumption the mini-

mum function approximation error is null and we can focus on the theoretical conditions requested
to guarantee successful learning, i.e., achieving both optimal point predictions and latent distribution
calibration. In Section 6.2, we empirically show that the theoretical results can extend beyond this
assumption in practice.

Optimal point predictions Outputs y and ŷ of probabilistic model (1) and (2) are random vari-
ables following push-forward distributions1 P ∗

y|x and P θ,ψy|x , respectively. A single point prediction
yPP ∈ Y can be obtained through an appropriate functional T [·] as

yPP = yPP (x, θ, ψ) ≡ T
[
P θ,ψy|x

]
. (3)

For example, T can be the expected value or the value at a specific quantile. We then define an
optimal predictor as one whose parameters θ and ψ minimize the expected point-prediction loss

Lpoint(θ, ψ) = Ex∼P∗
x

[
Ey∼P∗

y|x

[
ℓ
(
y, yPP (x, θ, ψ)

)]]
(4)

between the system output y and the point-prediction yPP , as measured by of a loss function ℓ :
Y × Y → R+.

1The distribution of y = f∗(x,A) originated from P ∗
A and of ŷ = fψ(x,A) originated from P θA.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Statistical functional T is coupled with the loss ℓ as the optimal functional T to employ given a
specific loss ℓ is often known [Berger, 1990; Gneiting, 2011], when P θ,ψy|x approximates well P ∗

y|x.
For instance, if ℓ is the Mean Absolute Error (MAE) the associated functional T is the median, if ℓ
is the Mean Squared Error (MSE) the associated functional is the expected value.

Latent distribution calibration Calibration of a parametrized distribution P θA requires learning
parameters θ, so that P θA aligns with true distribution P ∗

A. Quantitatively, a dissimilarity measure
∆cal : PA × PA → R+, defined over a set PA of distributions on A, assesses how close two
distributions are. The family of f -divergences [Rényi, 1961], such as the Kullback-Leibler diver-
gence, and the integral probability metrics [Müller, 1997], such as the maximum mean discrepancy
[Gretton et al., 2012] are examples of such dissimilarity measures. In this paper, we are interested
in those discrepancies for which ∆cal(P1, P2) = 0 ⇐⇒ P1 = P2 holds. It follows that the latent
distribution P θA is calibrated on P ∗

A if it minimizes the latent distribution loss
Lcal = Ex∼P∗

x

[
∆cal

(
P ∗
A, P

θ
A

)]
, (5)

or simply Lcal = ∆cal
(
P ∗
A, P

θ
A

)
, when A and x are independent.

The problem of designing a predictive model (2) that both yields optimal point predictions (i.e.,
minimizes Lpoint in (4)) and calibrates the latent distribution (i.e., minimizes Lcal in (5)) is non-
trivial for two main reasons. At first, as the latent distribution P ∗

A is unknown (and no samples from
it are available), we cannot directly estimate Lcal. Second, as shown in Section 4, multiple sets of θ
parameters may minimize Lpoint without minimizing Lcal.

4 LIMITATIONS OF POINT-PREDICTION OPTIMIZATION

In this section, we demonstrate that the optimization of a point prediction loss (Equation (4)) does
not generally grant calibration of the latent random variable A.
Proposition 4.1. Consider Assumption 3.1. Loss function Lpoint(θ, ψ) in (4) is minimized by all θ

and ψ s.t. T
[
P θ,ψy|x

]
= T

[
P ∗
y|x

]
almost surely on x and, in particular,

Lpoint(θ, ψ) is minimal ⇐=
≠⇒ P θ,ψy|x = P ∗

y|x.

Figure 1: A data generating model, as in (1), is
used to produce a dataset with latent distribution
parameter θ∗. Outputs are generated for different
values θ as in (2). In red, losses are computed as
in (4) with ℓ being the MAE. In blue, losses are
computed with our approach described further on.

The proof of the proposition is given in Ap-
pendix A.1; we provide a counterexample for
which calibration is not granted even when the
processing function fψ is equal to f∗ in Ap-
pendix A.2.

Figure 1 empirically demonstrates that optimiz-
ing point prediction losses does not necessarily
guarantee distribution calibration. In particular,
we compute different losses between data gen-
erated with a ground truth system model (model
(1) with optimal parameter θ∗) and outputs pro-
duced with a different model (model (2), with
varying θ parameters). In red, the MAE is used
as the loss function ℓ in the point prediction loss
Lpoint of (4). Since all θ ≥ 0.725 produce sta-
tistically equivalent losses, this simple experi-
ment demonstrates the inefficacy of minimiz-
ing Lpoint for latent distribution calibration. In
blue, we show the loss we propose in the next
section, which presents a minimum in θ∗. The
details of this experiment can be found in Section 6.1. However, we recommend reading the entire
paper first to better understand the experiment’s context and setting.

Given the provided negative result and the impossibility of assessing loss Lcal in (5), in the next
section, we propose another optimization objective that, as we will prove, allows us to both calibrate
the latent random variable and to have optimal point predictions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5 PREDICTIVE DISTRIBUTION OPTIMIZATION: TWO BIRDS WITH ONE STONE

In this section, we show that we can achieve an optimal point predictor (2) and a calibrated latent
distribution P θA by comparing push-forward distributions P ∗

y|x and P θ,ψy|x of the outputs y conditioned
on input x. In particular, Theorem 5.2 below proves that, under appropriate conditions, minimization
of the output distribution loss

Ldist(θ, ψ) = Ex∼P∗
x

[
∆(P ∗

y|x, P
θ,ψ
y|x)

]
(6)

provides calibrated P θA, even when P ∗
A is not available; ∆ : Py × Py → R+ is a dissimilarity

measure between distributions over space Y . We assume the following on dissimilarity measure ∆.
Assumption 5.1. ∆(P1, P2) ≥ 0 for all distributions P1 and P2 in Py and ∆(P1, P2) = 0 if and
only if P1 = P2.

Several choices of ∆ meet Assumption 5.1, e.g., f -divergences and some integral probability metrics
[Müller, 1997]; the dissimilarity measure ∆ employed in this paper is discussed in Section 5.1.
Theorem 5.2. Let I = {x : A 7→ f∗(x,A) is injective} ⊆ X be the set of points x ∈ X such that
map A 7→ f∗(x,A) is injective. Under Assumptions 3.1 and 5.1, if Px∼P∗

x
(I) > 0, then

Ldist(θ, ψ∗) = 0 =⇒
{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0,

where ψ∗ is such that fψ∗ = f∗.

Theorem 5.2 is proven in Appendix A.3. Under the theorem’s hypotheses, a predictor that mini-
mizes Ldist is both calibrated on the latent random distribution and provides optimal point predic-
tions. This overcomes limits of Proposition 4.1 where optimization of Lpoint(θ, ψ∗) does not grant
Lcal(θ) = 0.

The hypotheses under which Theorem 5.2 holds are rather mild. In fact, condition Px∼P∗
x
(I) > 0

pertains to the data-generating process and intuitively ensures that, for some x, different latent ran-
dom variables produce different outputs. A sufficient condition for Px∼P∗

x
(I) > 0 to hold is the

existence of a point x̄ in the support of P ∗
x such that A 7→ f∗(x̄, A) is injective with f∗ continuous

w.r.t. x̄; see Corollary A.1 in Appendix A.3. Although only a single point x̄ is required, having more
points that satisfy the condition simplifies the training of the parameters. Corollary A.1 holds for
arbitrarily complex processing functions f∗. More specifically, when considering simple GNN lay-
ers and discrete latent matrices A, we can prove that the condition Px∼P∗

x
(I) > 0 is − except from

pathological cases − always satisfied (see Proposition A.2 in Appendix A.3). Instead, condition
fψ = f∗ is set to avoid scenarios of different, yet equivalent,2 representations of the latent distribu-
tion. An empirical analysis of the theorem’s assumptions is provided in Section 6.2, demonstrating
that the theoretical results hold in practice, even when the assumption does not strictly apply.

Assumptions 3.1 and 5.1 can be met with an appropriate choice of model (2) and measure ∆; as
such they are controllable by the designer. Assumption 5.1 prevents from obtaining mismatched
output distributions when Ldist(θ, ψ) = 0 and can be easily satisfied. As mentioned above, popular
measures, e.g., the Kullback-Leibler divergence, meet the theorem’s assumptions and therefore can
be adopted as ∆. However, as f -divergences rely on the explicit evaluation of the likelihood of y,
they are not always practical to compute [Mohamed & Lakshminarayanan, 2016]. For this reason,
we propose considering the Maximum Mean Discrepancy (MMD) [Gretton et al., 2012] as a versa-
tile alternative that allows Monte Carlo computation without requiring evaluations of the likelihood
w.r.t. the output distributions P ∗

y|x and P θ,ψy|x . Energy distances [Székely & Rizzo, 2013] provide an
alternative feasible choice.

5.1 MAXIMUM MEAN DISCREPANCY

Given two distributions P1, P2 ∈ Py , MMD can be defined as

MMDG [P1, P2] = sup
g∈G

{
Ey∼P1

[
g(y)

]
− Ey∼P2

[
g(y)

]}
, (7)

2E.g., fψ(A, x) = f∗(1−A, x) and P θA encoding the absence of edges instead of their presence as in P ∗
A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

i.e., the supremum, taken over a set G of functions Y → R, of the difference between expected values
w.r.t. P1 and P2. An equivalent form is derived for a generic kernel function κ(·, ·) : Y × Y → R:

MMD2
Gκ [P1, P2] = E

y1,y′1∼P1

[
κ(y1, y

′
1)
]
− 2 E

y1∼P1
y2∼P2

[
κ(y1, y2)

]
+ E
y2,y′2∼P2

[
κ(y2, y

′
2)
]

(8)

and it is associated with the unit-ball Gk of functions in the reproducing kernel Hilbert space of κ;
note that (8) is the square of (7). Moreover, when universal kernels are considered (e.g., the Gaussian
one), then (8) fulfills Assumption 5.1 (see Theorem 5 of Gretton et al. [2012]). Dissimilarity in
(8) can be conveniently estimated via Monte Carlo (MC) and employed within a deep learning
framework. Accordingly, we set ∆ = MMD2

Gκ and learn parameter vectors ψ and θ by minimizing
Ldist(θ, ψ) via gradient-descent methods.

5.2 FINITE-SAMPLE COMPUTATION OF THE LOSS

To compute the gradient of Ldist(θ, ψ) = Ex∼P∗
x

[
MMD2

Gκ

[
P θ,ψy|x , P

∗
y|x

]]
w.r.t. parameter vectors

ψ and θ, we rely on MC sampling to estimate in (6) expectations over input x ∼ P ∗
x , target output

y ∼ P ∗
y|x and model output ŷ ∼ P θ,ψy|x . This amounts to substitute MMD2

Gκ with

M̂MD
2
(θ, ψ;x, y) =

∑Nadj
i=1

∑i−1
j=1 κ(ŷi, ŷj)

Nadj(Nadj − 1)
− 2

∑Nadj
i=1 κ(y, ŷi)

Nadj
(9)

In (9), Nadj > 1 is the number of adjacency matrices sampled from P θA to obtain output samples
ŷi = fψ(x,Ai) ∼ P θ,ψy|x , whereas the pair (x, y) is a pair from the training set D. We remark that in
(9) the third term of (8) – i.e., the one associated with the double expectation with respect to P ∗

y|x –
is neglected as it does not depend on ψ and θ.

Gradient ∇ψLdist(θ, ψ) is computed via automatic differentiation by averaging ∇ψM̂MD
2
(θ, ψ)

within a mini-batch of observed data pairs (xi, yi) ∈ D. For ∇θLdist(θ, ψ), the same approach is not
feasible. This limitation arises because the gradient is computed with respect to the same parameter
vector θ that defines the integrated distribution. Here, we rely on a score-function gradient estimator
(SFE) [Williams, 1992; Mohamed et al., 2020] which uses the log derivative trick to rewrite the
gradient of an expected loss L as ∇θEA∼P θ [L(A)] = EA∼P θ [L(A)∇θ logP

θ(A)], with P θ(A)
denoting the likelihood of A ∼ P θ. Applying the SFE to our problem the gradient of the loss
function w.r.t. θ reads:

∇θLdist(ψ, θ) = E
(x,y∗)∼P∗

x,y

[
E

ŷ1,ŷ2∼P θ,ψy|x

[
κ(ŷ1, ŷ2)∇θ log

(
P θ,ψy|x (ŷ1)P

θ,ψ
y|x (ŷ2)

)]
− 2 E

ŷ∼P θ,ψ
y|x

[
κ(y∗, ŷ)∇θ logP

θ,ψ
y|x (ŷ)

]]
(10)

An apparent setback of SFEs is their high variance [Mohamed et al., 2020], which we address
in Section 5.3 by deriving a variance-reduction technique based on control variates that requires
negligible computational overhead.

5.3 VARIANCE-REDUCED LOSS FOR SFE

Two natural approaches to reduce the variance of MC estimates of (10) involve (i) increasing the
numberB of training data points in the mini-batch used for each gradient estimate and (ii) increasing
the number Nadj of adjacency matrices sampled for each data point in (9). These techniques act on
two different sources of noise. IncreasingB decreases the variance coming from the data-generating
process, whereas increasing Nadj improves the approximation of the predictive distribution P θ,ψy|x .
Nonetheless, by fixing B and Nadj , it is possible to further reduce the latter source of variance by
employing the control variates method [Mohamed et al., 2020] that, in our case, requires only a
negligible computational overhead but sensibly improves the training speed (see Section 6).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Consider the expectation EA∼P θ [L(A)∇θ logP
θ(A)] of the SFE – both terms in (10) can be cast

into that form. With the control variates method, L(A) is replaced by a surrogate function

L̃(A) = L(A)− β
(
h(A)− EA∼P θ [h(A)]

)
(11)

that leads to a reduced variance in the MC estimator while maintaining it unbiased. In this paper, we
set function h(A) to ∇θ logP

θ(A) and show how to compute a near-optimal choice for scalar value
β, often called baseline in the literature. As the expected value of ∇θ logP

θ(A) is zero, gradient
(10) rewrites as

∇θLdist = E
(x,y∗)∼P∗

x,y

[
E

A1,A2∼P θA

[
(κ(fψ(x,A1), fψ(x,A2))− β1) ∇θ log

(
P θA(A1)P

θ
A(A2)

)]
− 2 E

A∼P θA

[
(κ(y∗, fψ(x,A))− β2) ∇θ logP

θ
A(A)

]]
. (12)

In Appendix B, we show that in our setup the best values of β1 and β2 are approximated by

β̃1 = E
x∼P∗

x

A1,A2∼P θA

[
κ
(
fψ(x,A1), fψ(x,A2)

)]
, β̃2 = E

(x,y∗)∼P∗
x,y

A∼P θA

[
κ
(
y∗, fψ(x,A)

)]
, (13)

which can be efficiently computed via MC reusing the kernel values already computed for (12).

5.4 COMPUTATIONAL COMPLEXITY

Focusing on the most significant terms, for every data pair (x, y) in the training set, computing the
loss Ldist requires O(N2

adj) kernel evaluations κ(ŷi, ŷj) in (9), O(Nadj) forward passes through the
GNN ŷi = fψ(x,Ai) in (9) and O(Nadj) likelihood computations P θA(Ai) in (12). The computation
of baselines β1 and β2 in (13) requires virtually no overhead, as commented in previous Section 5.3.
Similarly, computing the loss gradients requires O(N2

adj) derivatives for what concerns the kernels,
O(Nadj) gradients ∇ψ ŷi and ∇θ logP

θ
A(Ai). We empirically observed that forNadj ≥ 16, both the

latent distribution loss Lcal and the point prediction loss Lpoint of final models are equivalent for
the considered problem. This suggests that Nadj is not a critical hyperparameter.

Since we can employ sparse representations of adjacency matrices, the GNN processing costs scale
linearly in the number of nodes N for bounded-degree graphs. From our experience, the GNN
processing is the most demanding operation and the cost of quadratic components, such as the
parameterization of θij , do not pose significant overhead.

6 EXPERIMENTS

This section empirically validates the proposed technique and the main claims of the paper. To assess
the calibration performance of models, it is necessary to compare the learned graph distribution P θA
with the ground-truth latent distribution P ∗

A. However, to our knowledge, no real-world datasets
provide such ground truth. Therefore, we developed theoretical guarantees to support the application
of these methods to real data and – in this section – we conduct the empirical validation using
synthetic data. Section 6.1 demonstrates that the proposed approach can successfully solve the joint
learning problem across different graph sizes, highlights the effectiveness of the variance reduction
technique, and reveals challenges in optimizing point prediction losses when also aiming for latent
variable calibration. Section 6.2 empirically investigates the generality of the theoretical results we
develop, demonstrating appropriate calibration of the latent distribution even in scenarios where the
assumptions of Theorem 5.2 do not hold.

In order to assess the latent variable calibration performance, i.e., the discrepancy between P ∗
A and

the learned P θA, the ground-truth latent distribution P ∗
A must be given. Such ground-truth knowledge

is not available in real-world applications as the latent distribution is indeed unknown. For this rea-
son, we designed a synthetic dataset that allows us to evaluate different performance metrics on both
y andA while controlling several properties of the task, like the number of nodes and the probability
of each edge. We remark that the latent distribution P ∗

A is used only to assess performance and does
not drive the model training in any way.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 2: Validation losses Ldist, Lcal and Lpoint during training. At epoch 5, the learning rate is
decreased to ensure convergence. Ldist in Subfigure 2a is negative as the third term in (8) is constant
and not considered.

Dataset and models Consider data-generating process (1) with latent distribution P ∗
A = P θ

∗

A
producing N -node adjacency matrices. P ∗

A is defined by a set of N × N independent Bernoulli
distributions, each of which corresponds to the sampling probability of an edge. Function f∗ = fψ∗

is a generic GNN with node-level readout, i.e., fψ∗(·, A) : RN×din → RN×dout . In the below
experiments, N is set to 12, while input and output node feature dimensions are din = 4 and
dout = 1, respectively. The components θ∗ are set to either 0 or 3/4 according to the pattern
depicted in Figure 7; the specifics of fψ∗ and P ∗

x are detailed in Appendix C. We result in a dataset
of 35k input-output pairs (x, y), 80% of which are used as training set, 10% as validation set, and
the remaining 10% as test set. As predictive model family (2), we follow the same architecture
of fψ∗ and P θ

∗

A ensuring that during all the experiments Assumption 3.1 is fulfilled. The model
parameters are trained by optimizing the expected squared MMD in (9) with the rational quadratic
kernel [Bińkowski et al., 2018].

6.1 GRAPH STRUCTURE LEARNING & OPTIMAL POINT PREDICTIONS

To test our method’s ability to both calibrate the latent distribution and make optimal predictions,
we train the model minimizing Ldist as described in Section 5.2.

Figure 2 reports the validation losses during training: MMD loss Ldist as in (6), MAE between the
learned parameters θ and the ground truth θ∗ as Lcal (5), and point-prediction loss Lpoint as in (4)
with ℓ being the MAE. The results are averaged over 20 different model initializations and error bars
report ±1 standard deviations from the mean. Results are reported with and without applying the
variance reduction (Section 5.3), by training only parameters θ while freezing ψ to ψ∗ (same setting
of Theorem 5.2), and by joint training of both ψ and θ.

Solving the joint learning problem Figure 2a shows that the training succeeded and the MMD
loss Ldist approached its minimum (dotted line). Having minimized Ldist, from Figure 2b we see
that also the calibration of latent distribution P θA was successful; in particular, the figure shows that
the MAE on θ parameters (N−2∥θ∗ − θ∥1) approaches zero as training proceeds (MAE < 0.04).
Regarding the point predictions, Figure 2c confirms that Lpoint reached its minimum value; recall
that optimal prediction MAE is not 0, as the target variable y is random, and note that a learning
rate reduction is applied at epoch number 5. The optimality of the point-prediction is supported also
by the performance on separate test data and with respect to the MSE as point-prediction loss ℓ.
Moreover, we observe that calibration is achieved regardless of the variance reduction and whether
or not parameters ψ are trained. Lastly, Figure 4 shows the learned parameters θ of the latent
distribution and the corresponding absolute discrepancy resulted from a (randomly chosen) training
run.

Optimization landscape of Lpoint and Ldist In this experiment, we analyze the values of
Lpoint(ψ∗, θ) and Ldist(ψ∗, θ) for different values of θ. Lpoint is computed employing MAE as
loss function ℓ. Specifically, we let scalar p vary from 1/2 to 1 and set all θij = p for i, j where
θ∗ij = 3/4. Figure 1 reports the obtained results, highlighting an almost flat Lpoint for values

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: The learned parameters for the latent
distribution corresponding to the stochastic adja-
cency matrix.

Figure 5: Absolute error made on the parameters
of the latent distribution.

≥ 0.725. In contrast, Ldist displays a pronounced concave shape with a clear minimum around θ∗
which suggests that calibration is easier when we minimize Ldist instead of Lpoint.

Figure 3: Learned θ parameters for a
graph with ∼ 15K possible edges.

Overall, we conclude that our approach is effective in
solving the joint learning problem of calibrating the la-
tent variable while producing optimal point predictions.

Variance reduction effectiveness Figures 2a, 2b and
2c demonstrate that the proposed variance reduction
method (Section 5.2) yields notable advantages training
speed up (roughly 50% faster). For this reason, the next
experiments rely on variance reduction.

Larger graphs The theoretical results developed hold
for any number of nodesN . However, the number of pos-
sible edges scales quadratically in the number of nodes.
In Figure 3, we show all ∼ 15K parameters of the con-
sidered P θA can be effectively learned even for relatively
large graphs; the final MAE on θ parameters is 0.003.
Note that for extremely large graphs the ratio between the
number of free parameters in θ and the size of the training set can become prohibitive. In these
cases, amortized learning of the edge probabilities is a potentially viable solution.

6.2 BEYOND ASSUMPTION 3.1

In this section, we empirically study whether Assumption 3.1 is restrictive in practical applications.
Specifically, we consider different degrees of model mismatch between the system model in (1) and
the approximating model in (2). Unless otherwise specified, we use the same dataset and experimen-
tal setup as described in Appendix C.1. Additional details and results are deferred to Appendix C.3.

Table 1: Calibration of P θA under varying levels of
misconfiguration for predictive function fψ . Re-
sults are the mean ± 1 standard deviation assessed
over 8 independent runs.

Max pert. Ψ MAE on θ Max AE on θ

0 0.018 ± 0.005 0.12 ± 0.01
0.1 0.02 ± 0.01 0.12 ± 0.01
0.2 0.02 ± 0.02 0.14 ± 0.03
0.5 0.03 ± 0.02 0.20 ± 0.12
0.8 0.07 ± 0.02 0.36 ± 0.08

Perturbed fψ∗ As a first experiment, we
train P θA while keeping the parameters of the
predictive function fψ fixed to a random pertur-
bation of the data-generating model f∗ = fψ∗ .
A perturbed version of f∗ψ is built by uniformly
drawing independent perturbation scalar values
δi ∼ U [−Ψ,Ψ], one for each of parameter ψ∗

i
of fψ∗ . Then, each parameter of GNN fψ is
given as ψi = (1 + δi)ψ

∗
i . Table 1 shows that

the learned latent distribution remains reason-
ably calibrated, even when parameters can be
modified up to 80%. In particular, the absolute
error (AE) on parameters θ is under 10% on average and increases with Ψ. Finally, Figures 8-11

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

show the learned parameter vectors θ for randomly extracted runs and highlight that the maximum
AE of Table 1 is observed only sporadically.

Generic GNN as fψ In this second experiment, we set fψ to be a generic multilayer GNN which
we jointly train with graph distribution P θA. We comment that model family {fψ} does not include
f∗, as f∗ uses L-hop adjacency matrices generated from the sampled adjacency matrix A, while the
learnable fψ relies on multiple nonlinear 1-hop layers; details on the model architecture are reported
in Appendix C.3. Upon convergence, models achieved a MAE on θ < 0.11 and Lpoint < 0.34 using
the MAE as loss function ℓ in (4); The performance is in line with results in Figure 2c and Table 1.
At last, we note that because the GNN used adds self-loops, the diagonal elements of the adjacency
matrix are learned as zero, resulting in a larger MAE on θ (see Figure 12). However, this does not
impair the learning the off-diagonal θij parameters (i.e., for i ̸= j). Notably, in the worst-performing
model, these off-diagonal parameters have a MAE of 0.05.

Misconfigured P θA Finally, we violate Assumption 3.1 by fixing fψ = f∗ and constraining some
components of θ to incorrect values. Specifically, we force parameters θi,j for all edges i, j associ-
ated with nodes with id 2 and 3 in Figure 6 to 0.25, instead of the correct value of θ∗i,j = 0.75 as
in P ∗

A. Results indicate that the free parameters in θ are learned appropriately. Notably, increased
uncertainty is observed for spurious edges linking to nodes in the first node community (see Fig-
ure 6). This is expected given that nearly 60% of the edges in the community were significantly
downsampled. Figures 13 and 14 in Appendix C.3 show the learned parameters from randomly
selected runs.

7 CONCLUSIONS

Graph structure learning has emerged as a research field focused on learning graph topologies in
support of solving downstream predictive tasks. Assuming stochastic latent graph structures, we
are led to a joint optimization objective: (i) learning the correct distribution of the latent topology
while (ii) achieving optimal predictions on the downstream task. In this paper, at first, we prove
both positive and negative theoretical results to demonstrate that appropriate loss functions must be
chosen to solve this joint learning problem. Second, we propose a sampling-based learning method
that does not require the computation of the predictive likelihood. Our empirical results demonstrate
that this approach achieves optimal point predictions on the considered downstream task while also
yielding calibrated latent graph distributions.

Finally, we acknowledge that the proposed method requires sampling and processing multiple ad-
jacency matrices for each input and, although the model and prediction accuracy is enhanced, a
computation overhead is requested. We plan future research to explore the applicability of this
method to other classes of neural networks beyond GNNs.

REFERENCES

Alexander Bartler, Felix Wiewel, Lukas Mauch, and Bin Yang. Training variational autoencoders
with discrete latent variables using importance sampling. In 2019 27th European Signal Process-
ing Conference (EUSIPCO), pp. 1–5. IEEE, 2019.

James O Berger. Statistical decision theory. In Time Series and Statistics, pp. 277–284. Springer,
1990.

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. In International Conference on Learning Representations, 2018.

Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning from spatiotemporal time
series. Journal of Machine Learning Research, 24:1–36, 2023.

Marissa Connor, Gregory Canal, and Christopher Rozell. Variational autoencoder with learned latent
structure. In International Conference on Artificial Intelligence and Statistics, pp. 2359–2367.
PMLR, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mario Coutino, Elvin Isufi, Takanori Maehara, and Geert Leus. State-space network topology iden-
tification from partial observations. IEEE Transactions on Signal and Information Processing
over Networks, 6:211–225, 2020.

Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir Gusev, and Cesare Alippi. Graph-
based Virtual Sensing from Sparse and Partial Multivariate Observations. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Transactions on Signal Processing, 64(23):
6160–6173, 2016.

Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. Advances in Neural Information
Processing Systems, 33:18648–18660, 2020.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves struc-
ture learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667–22681, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International conference on machine learning, pp. 1972–1982.
PMLR, 2019.

Tilmann Gneiting. Making and Evaluating Point Forecasts. Journal of the American Statistical
Association, 106(494):746–762, June 2011. ISSN 0162-1459. doi: 10.1198/jasa.2011.r10138.

Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Structure and dynamics of
information pathways in online media. In Proceedings of the sixth ACM international conference
on Web search and data mining, pp. 23–32, 2013.

Caitlin Gray, Lewis Mitchell, and Matthew Roughan. Bayesian inference of network structure from
information cascades. IEEE Transactions on Signal and Information Processing over Networks,
6:371–381, 2020.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Gaëtan Hadjeres, Frank Nielsen, and François Pachet. Glsr-vae: Geodesic latent space regulariza-
tion for variational autoencoder architectures. In 2017 IEEE symposium series on computational
intelligence (SSCI), pp. 1–7. IEEE, 2017.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357–362, 2020.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9
(03):90–95, 2007.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph
learning-convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11313–11320, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational autoencoder.
Pattern Recognition, 107:107514, 2020.

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial intelligence and statis-
tics, pp. 920–929. PMLR, 2016.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Dif-
ferentiable graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(2):1606–1617, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International conference on machine learning, pp. 2688–
2697. PMLR, 2018.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International conference on machine learning, pp. 2796–2804.
PMLR, 2018.

Max-Heinrich Laves, Sontje Ihler, Jacob F Fast, Lüder A Kahrs, and Tobias Ortmaier. Well-
calibrated regression uncertainty in medical imaging with deep learning. In Medical imaging
with deep learning, pp. 393–412. PMLR, 2020.

Andrey Lokhov. Reconstructing parameters of spreading models from partial observations. Ad-
vances in Neural Information Processing Systems, 29, 2016.

Gonzalo Mateos, Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Connecting the
dots: Identifying network structure via graph signal processing. IEEE Signal Processing Maga-
zine, 36(3):16–43, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. 2016.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient es-
timation in machine learning. The Journal of Machine Learning Research, 21(1):5183–5244,
2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Doka-
nia. Calibrating deep neural networks using focal loss. Advances in Neural Information Process-
ing Systems, 33:15288–15299, 2020.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
applied probability, 29(2):429–443, 1997.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Ad-
vances in neural information processing systems, 32, 2019.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: Backpropagating
Through Discrete Exponential Family Distributions. In Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 14567–14579. Curran Associates, Inc., 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Xingyue Pu, Tianyue Cao, Xiaoyun Zhang, Xiaowen Dong, and Siheng Chen. Learning to learn
graph topologies. Advances in Neural Information Processing Systems, 34:4249–4262, 2021.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547–562. University of California Press, 1961.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. In International Conference on Learning Representations, 2021.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on distances.
Journal of statistical planning and inference, 143(8):1249–1272, 2013.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Max Wasserman and Gonzalo Mateos. Graph structure learning with interpretable bayesian neural
networks. Transactions on machine learning research, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 1907–1913, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753–763, 2020.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv
preprint arXiv:1808.10805, 2018.

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III,
pp. 378–393. Springer, 2021.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Icml, volume 1, pp. 609–616, 2001.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional
neural networks for semi-supervised classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5829–5836, 2019.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph struc-
ture learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, 14:1–1,
2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOFS OF THE THEORETICAL RESULTS

A.1 MINIMIZING Lpoint DOES NOT GUARANTEE CALIBRATION

In this section, we prove Proposition 4.1.

Proof of Proposition 4.1. Recall the definition of Lpoint in (4) using (3)

Lpoint(ψ, θ) = Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
P θ,ψy|x

])]]
Given loss function ℓ, T is, by definition [Berger, 1990; Gneiting, 2011], the functional that mini-
mizes

Ey∗∼P∗
y|x

[
ℓ
(
y∗, T

[
P ∗
y|x
])]

Therefore, if P θ,ψy|x = P ∗
y|x =⇒ Lpoint is minimal. If another distribution over y, namely, Pψ

′,θ′

y|x
parametrized by θ′ and ψ′ satisfies:

T
[
Pψ

′,θ′

y|x

]
= T

[
P ∗
y|x

]
almost surely on x, then,

Lpoint(θ′, ψ′) = Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
Pψ

′,θ′

y|x
])]]

= Ex
[
Ey∗∼P∗

y|x

[
ℓ
(
y∗, T

[
P ∗
y|x
])]]

Thus, Pψ
′,θ′

y|x minimizes Lpoint.

Appendix A.2 discusses graph distributions where T
[
Pψ

′,θ′

y|x
]
= T

[
P ∗
y|x
]

but Pψ
′,θ′

y|x ̸= P ∗
y|x. We

conclude that reaching the minimum of Lpoint(ψ, θ) does not imply Pψ,θy|x = P ∗
y|x.

A.2 MINIMIZING Lpoint DOES NOT GUARANTEE CALIBRATION: AN EXAMPLE WITH MAE

This section shows that Lpoint equipped with MAE as ℓ admits multiple global minima for different
parameters θ, even for simple models and fψ = f∗.

Consider a single Bernoulli of parameter θ∗ > 1/2 as latent variable A and a scalar function
f∗(x,A) such that f∗(x, 1) > f∗(x, 0) for all x. Given input x the value of functional T (P ∗

y|x)

that minimizes

Ey∼P∗
y|x

[∣∣∣y − T
[
P ∗
y|x
]∣∣∣] = θ∗

∣∣∣f∗(x, 1)− T
[
P ∗
y|x
]∣∣∣+ (1− θ∗)

∣∣∣f∗(x, 0)− T
[
P ∗
y|x
]∣∣∣

is T (P ∗
y|x) = f∗(x, 1); this derives from the fact that range of f∗ is {f∗(x, 0), f∗(x, 1)} and the

likelihood of f∗(x, 1) is larger than that of f∗(x, 0).

Note that T
[
P ∗
y|x
]
= f∗(x, 1) for all x, therefore also Lpoint is minimized by such T . Moreover,

T
[
P ∗
y|x
]

is function of θ∗ and equal to f∗(x, 1) for all θ > 1/2. We conclude that for any θ ̸= θ∗

distributions P θ,ψy|x and P ∗
y|x are different, yet both of them minimize Lpoint if θ > 1/2.

A similar reasoning applies for θ∗ < 1/2.

A.3 MINIMIZING Ldist GUARANTEES CALIBRATION AND OPTIMAL POINT PREDICTIONS

This section proves Theorem 5.2 and a corollary of it.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Theorem 5.2. Recall from Equation (6) that

Ldist(θ) = Ex
[
∆(P ∗

y|x, P
θ
y|x)
]

We start by proving that if Ldist(θ, ψ) = 0 =⇒ Lpoint(θ, ψ) is minimal.

Note that Ldist(θ, ψ) = 0 implies that ∆(P ∗
y|x, P

θ
y|x) = 0 almost surely in x. Then, by Assump-

tion 5.1, P ∗
y|x = Pψ,θy|x almost surely on x and, in particular, T [P ∗

y|x] = T [Pψ,θy|x], which leads to
Lpoint(ψ, θ) being minimal (Proposition 4.1).

We now prove that if Ldist(θ, ψ∗) = 0 =⇒ Lcal(θ) = 0.

From the previous step, we have that Ldist(θ, ψ) = 0 implies P ∗
y|x = Pψ,θy|x almost surely for x ∈ I .

Under the assumption that fψ = f∗ and the injectivity of f∗ in such x ∈ I , for any output y a single
A exists such that f∗(x,A) = y. Therefore, the probability mass function of y equals that of A.
Accordingly, P ∗

y|x = Pψ,θy|x implies P ∗
A = P θA.

We also prove a corollary of Theorem 5.2.

Corollary A.1. Under Assumptions 3.1 and 5.1, if

1. ∃x̄ ∈ Supp(P ∗
x) ⊆ X such that f∗(x̄; ·) is injective,

2. f∗(x,A) is continuous in x̄ ∀A ∈ A,

then

Ldist(θ, ψ∗) = 0 =⇒
{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0.

The corollary shows that it is sufficient that f∗ is continuous in x and there exists one point x̄ where
f∗(x̄, ·) is injective to meet theorem’s hypothesis Px∼P∗

x
(I) > 0; we observe that, as A is discrete,

the injectivity assumption is not as restrictive as if the domain were continuous.

Proof. As A is a finite set, the minimum ϵ̄ = minA,A′∈A∥f∗(x̄, A) − f∗(x̄, A′)∥ > 0 exists and,
by the injectivity assumption, is strictly positive.

By continuity of f∗(· , A), for every ϵ < 1
2 ϵ̄ there exists δ, such that for all x ∈ B(x̄, δ) we have

∥f∗(x̄, A)− f∗(x,A)∥ < ϵ. It follows that, ∀x ∈ B,

∥f∗(x,A)− f∗(x,A′)∥
≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − ∥f∗(x̄, A)− f∗(x,A)∥ − ∥f∗(x̄, A′)− f∗(x,A′)∥
≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − 2ϵ

≥ ∥f∗(x̄, A)− f∗(x̄, A′)∥ − ϵ̄ > 0.

Finally, as x̄ ∈ Supp(P ∗
x) and B(x̄, δ) ⊆ I , we conclude that

Px(I) ≥ Px(B(x̄, δ)) > 0,

therefore, we are in the hypothesis of Theorem 5.2 and can conclude that

Ldist(θ, ψ∗) = 0 =⇒
{
Lpoint(θ, ψ∗) is minimal
Lcal(θ) = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 INJECTIVITY HYPOTHESIS FOR GRAPH NEURAL NETWORKS

Now, we show that hypothesis Px∼P∗
x
(I) > 0 of Theorem 5.2 is always met for certain families of

graph neural networks.
Proposition A.2. Consider a 1-layer GNN of the form f∗(x,A) : σ(Ax) = y, with x, y ∈ RN and
nonlinear bijective activation function σ. If the support Supp(P ∗

x) of x contains any ball B in RN
then Px∼P∗

x
(I) > 0.

To prove Proposition A.2, we rely on following lemma.
Lemma A.3. Given g(x, a) = ax with a ∈ {0, 1}1×N and x ∈ RN×1. Let Ig = {x :
g(x, a) is injective in a} ⊆ X be the set of points x ∈ X such that map a 7→ g(x, a) is injective.
The following implication holds:

x ̸∈ Ig ⇐⇒ ∃δ ̸= 0 ∈ {−1, 0, 1}1×N s.t. δ ⊥ x. (14)

Proof. We prove the two implications separately.

(=⇒) If x ̸∈ Ig , then there exist a′, a′′ ∈ {0, 1}1×N with a′ ̸= a′′ such that a′x = a′′x. This
implies that (a′ − a′′)x = 0. Defining δ as (a′ − a′′), we have proven that there exist
δ ̸= 0 ∈ {−1, 0, 1}1×N such that δx = 0, i.e., δ ⊥ x.

(⇐=) Assume that ∃ δ ̸= 0 ∈ {−1, 0, 1}1×N such that δ ⊥ x. Each component δi of δ can be
written as the difference between two values a′i, a

′′
i ∈ {0, 1}. As δ ̸= 0 then there exists at

least one index j ∈ {1, . . . , N} such that a′j ̸= a′′j . This implies that ∃ a′, a′′ ∈ {0, 1}1×N
with a′ ̸= a′′ s.t. (a′ − a′′)x = 0, which implies that x ̸∈ Ig .

Proof of Proposition A.2. We begin by considering the projection ḡ(x, a) = axwith a ∈ {0, 1}1×N
and x ∈ RN . Then we extend to A ∈ {0, 1}N×N and to nonlinear functions.

Let ICḡ = RN \ Iḡ be the complement in RN of Iḡ . Recalling Lemma A.3 and its notation, we
have 3N − 1 possible δ, defining a collection of (3N − 1)/2 hyperplanes of vectors x perpendicular
to at least one δ; set ICḡ is the union of such a finite collection of hyperplanes. By hypothesis,
Supp(P ∗

x) contains a ball B ∈ RN , therfore Supp(P ∗
x) ̸⊂ ICḡ and Px∼P∗

x
(ICḡ) < 1. We conclude

that Px∼P∗
x
(Iḡ) = 1− Px∼P∗

x
(ICḡ) > 0.

A similar result is proven for Ḡ(x,A) = Ax with A ∈ {0, 1}N×N . In fact, Ḡ is a stack of N
functions ḡ above and IḠ = Iḡ . Finally, composing injective function G with injective function σ
leads to function g(x,A) = σ(G(x,A)) being injective in A for the same points x for which G is
injective, thus proving the proposition.

B ESTIMATION OF OPTIMAL β1 AND β2

Here we show that, when reducing the variance of the SFE via control variates in (12), the best β1
and β2 can be approximated by

β̃1 = E
x∼P∗

x

A1,A2∼P θA

[
κ (fψ(x,A1), fψ(x,A2))

]
, β̃2 = E

(x,y∗)∼P∗
x,y

A∼P θA

[
κ (y∗, fψ(x,A))

]
, (15)

Consider generic function L(A) depending on a sample A of a parametric distribution P θA(A) and
the surrogate loss L̃(A) in (11), i.e.,

L̃(A) = L(A)− β
(
h(A)− EA∼P θ [h(A)]

)
; (16)

This choice is not new in the literature [Sutton et al., 1999; Mnih et al., 2016] where β is often
referred to as baseline. The 1-sample MC approximation of the loss becomes

∇θEA∼P θ [L(A)] ≈ L̃(A′)∇θ logP
θ(A′) = (L(A′)− β)∇θ logP

θ(A′), (17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: The adjacency matrices used in this paper are sampled from this graph. Each edge in
orange is independently sampled with probability θ∗. In the picture, 3 communities of an arbitrarily
large graph are shown.

with A′ sampled from P θA. The variance of the estimator is

VA∼P θ
[
(L(A)− β)∇θ logP

θ(A)
]
= VA∼P θ

[
L(A)∇θ logP

θ(A)
]
+

+ β2 EA∼P θ
[(
∇θ logP

θ(A)
)2]− 2β EA∼P θ

[
L(A)

(
∇θ logP

θ(A)
)2]

(18)

and the optimal value β that minimizes it is

β̃ =
EA∼P θ

[
L(A)

(
∇θ logP

θ(A)
)2]

EA∼P θ
[
(∇θ logP θ(A))

2
] . (19)

If we approximate the numerator with E[L(A)]E[(∇θ logP
θ(A))2], we obtain that β̃ ≈ E[L(A)].

By substituting L(A) with the two terms of (10) we get the values of β1 and β2 in (15).

We experimentally validate the effectiveness of this choice of β in Section 6.

C FURTHER EXPERIMENTAL DETAILS

C.1 DATASET DESCRIPTION AND MODELS

In this section, we describe the considered synthetic dataset, generated from the system model (1).
The latent graph distribution P ∗

A is a multivariate Bernoulli distribution of parameters θ∗ij : P
∗
A ≡

Pθ∗(A) =
∏
ij θ

∗Aij
ij (1− θ∗ij)(1−Aij). The components of θ∗ are all null, except for the edges of the

graph depicted in Figure 6 which are set to 3/4. A heatmap of the adjacency matrix can be found in
Figure 7.

Figure 7: θ∗ij parameters for each edge of the latent adjacency matrix. Each square corresponds to
an edge, and the number inside is the probability of sampling that edge for each prediction.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Table of the parameters used to generate the synthetic dataset.

θ∗ 0.75

σx 1.5

N 12

din 4

dout 1

ψ∗
1 [−0.2, 0.4, −0.8, 0.6]

ψ∗
2 [−0.3, 0.8, 0.2, −0.7]

Regarding the GNN function f∗, we use the following system model:y = fψ∗(A, x) = tanh

(
L∑
l=1

1[Al ̸= 0]xψ∗
l

)
A ∼ Pθ∗(A)

(20)

where 1[·] is the element-wise indicator function: 1[a] = 1 ⇐⇒ a is true. x ∈ RN x din are ran-
domly generated inputs: x ∼ N (0, σ2

xI). ψ∗
l ∈ Rdout x din are part of the system model parameters.

We summarize the parameters considered in our experiment in Table 2.

The approximating model family (2) used in the experiment is the same as the data-generating
process, with all components of parameter vectors θ and ψ being trainable. The squared MMD
discrepancy is defined over Rational Quadratic kernel [Bińkowski et al., 2018]

κ(y′, y′′) =

(
1 +

∥y′ − y′′∥22
2ασ2

)−α

(21)

of parameters σ = 0.7 and α = 0.02.

The model is trained using Adam optimizer [Kingma & Ba, 2014] with parameters β1 = 0.6,
β2 = 0.95. Where not specified, the learning rate is set to 0.1 and decreased to 0.01 after 5 epochs.
We grouped data points into batches of size 128. Initial values of θ are independently sampled from
the U(0.25, 0.35) uniform distribution.

C.2 DESCRIPTION OF THE EXPERIMENT IN SECTION 4

In this experiment, we generate 512 data points using the system model described in Appendix C.1.
We construct a model identical to the system model, except that θij = p for all i, j where θ∗i,j = 0.75
and 0 elsewhere. We vary scalar p from 0.5 to 1 with steps of 0.025. Therefore, only the model with
p = 0.75 is identical to the data-generating model.

For each input x in the dataset, a point prediction is produced by sampling Nadj = 32 adjacency
matrices and computing the median. This approach allows to estimate Lpoint using the MAE as
loss function ℓ, as depicted by the red points in Figure 1, for different values of θ. For comparison
purposes, we estimate Ldist using the maximum mean discrepancy as proposed in Section 5.

C.3 ADDITIONAL DETAILS OF SECTION 6.2

We present here additional Figures discussed in Section 6.2.

Fixed perturbed fψ Figures in this paragraph correspond to the experiment where the processing
function fψ is fixed on a perturbed version of f∗. Figures 8 − 11 correspond to runs with increasing
perturbation factor Ψ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 8: Learned θij parameters (a) and Abso-
lute Error (b) for maximum perturbation factor Ψ
of 10%.

(a) (b)

Figure 9: Learned θij parameters (a) and Abso-
lute Error (b) for maximum perturbation factor Ψ
of 20%.

(a) (b)

Figure 10: Learned θij parameters (a) and Abso-
lute Error (b) for maximum perturbation factor Ψ
of 50%.

(a) (b)

Figure 11: Learned θij parameters (a) and Abso-
lute Error (b) for maximum perturbation factor Ψ
of 80%.

Table 3: Network configurations and correspond-
ing convergence results.

Layers dimensions Convergence

[4, 1] x
[4, 1, 1] x
[4, 2, 1] ✓
[4, 8, 1] ✓
[4, 8, 2, 1] ✓
[4, 16, 8, 1] ✓
[4, 32, 8, 1] ✓
[4, 64, 8, 1] ✓
[4, 64, 16, 1] ✓
[4, 64, 32, 1] ✓
[4, 8, 8, 4, 1] ✓

Generic GNN as fψ To evaluate our ap-
proach in a more realistic setting, we use a
generic GNN as fψ . Specifically, we imple-
ment GNNs from [Morris et al., 2019] with
varying numbers of layers and layer sizes. It
is important to note that the GNN implementa-
tion includes self-loops, which prevents the di-
agonal elements from being correctly learned.
However, this does not impede our method
from learning the remaining edges accurately.

Table 3 presents the network configurations
and whether they successfully converged to the
ground truth distribution. Since diagonal el-
ements artificially inflate the MAE for θ, we
consider a model to have converged if the final
MAE on θ is less than 0.11.

Most of the models successfully converged, except those with high bias. This demonstrates that our
method is effective even beyond Assumption 3.1. In Figure 12 we show the learned parameters of
P θA for a randomly extracted run.

Misconfigured P θA Figures 13 and 14 correspond to the experiment where some θij values of P θA
are fixed at incorrect values, while the processing function fψ is fixed to the true one. In the commu-
nity affected by the perturbation, free θij values tend to be sampled more frequently to compensate
for the downsampling imposed by the perturbation. Interestingly, all the edges with at least one edge
in the second community (75% of the edges) appear unaffected by the perturbation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 12: (a) Learned θij parameters when the parametric processing function fψ is a generic GNN
as presented in [Morris et al., 2019] and (b) Absolute Error made with respect to true parameters
θ∗ij . As self-loops are deterministically added by the network, the diagonal elements should not be
considered.

(a) (b)

Figure 13: Learned θij parameters (a) and Abso-
lute Error (b) for misconfigured P θA

(a) (b)

Figure 14: Learned θij parameters (a) and Abso-
lute Error (b) for misconfigured P θA

C.4 COMPUTE RESOURCES AND OPEN-SOURCE SOFTWARE

The paper’s experiments were run on a workstation with AMD EPYC 7513 processors and NVIDIA
RTX A5000 GPUs; on average, a single model training terminates in a few minutes with a memory
usage of about 2GB.

The developed code relies on PyTorch [Paszke et al., 2019] and the following additional open-
source libraries: PyTorch Geometric [Fey & Lenssen, 2019], NumPy [Harris et al., 2020] and Mat-
plotlib [Hunter, 2007].

21

	Introduction
	Related work
	Problem formulation
	Limitations of point-prediction optimization
	Predictive distribution optimization: two birds with one stone
	Maximum mean discrepancy
	Finite-sample computation of the loss
	Variance-reduced loss for SFE
	Computational complexity

	Experiments
	Graph structure learning & optimal point predictions
	Beyond Assumption 3.1

	Conclusions
	Appendix
	Proofs of the theoretical results
	Minimizing Lpoint does not guarantee calibration
	Minimizing Lpoint does not guarantee calibration: an example with MAE
	Minimizing Ldist guarantees calibration and optimal point predictions
	Injectivity hypothesis for graph neural networks

	Estimation of optimal 1 and 2
	Further experimental details
	Dataset description and models
	Description of the experiment in Section 4
	Additional details of Section 6.2
	Compute resources and open-source software

