Under review as a conference paper at ICLR 2025

LEARNING LATENT GRAPH STRUCTURES
AND THEIR UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks use relational information as an inductive bias to enhance
prediction performance. Not rarely, task-relevant relations are unknown and graph
structure learning approaches have been proposed to learn them from data. Given
their latent nature, no graph observations are available to provide a direct training
signal to the learnable relations. Therefore, graph topologies are typically learned
on the prediction task alongside the other graph neural network parameters. In this
paper, we demonstrate that minimizing point-prediction losses does not guarantee
proper learning of the latent relational information and its associated uncertainty.
Conversely, we prove that suitable loss functions on the stochastic model outputs
simultaneously grant solving two tasks: (i) learning the unknown distribution of
the latent graph and (ii) achieving optimal predictions of the model output. Finally,
we propose a sampling-based method that solves this joint learning task. Empiri-
cal results validate our theoretical claims and demonstrate the effectiveness of the
proposed approach.

1 INTRODUCTION

Relational information processing has provided breakthroughs in the analysis of rich and complex
data coming from, e.g., social networks, natural language, and biology. This side information takes
various forms, from structuring the data into clusters to defining causal relations and hierarchies, and
enables machine learning models to condition their predictions on dependency-related observations.
In this context, predictive models take the form y = fy(z, A), where the input-output relation
z +— y — modeled by f, and its parameters in 7 — is conditioned on the relational information
encoded in variable A. Graph Neural Networks (GNNs) [Scarselli et al., 2008] are one example
of models of this kind that rely on a graph structure represented as an adjacency matrix A and
have been demonstrated successful in a plethora of applications [Fout et al., 2017; Shlomi et al.,
2020]. Throughout this paper, we focus on predictors where A is an adjacency matrix, although the
theoretical results we develop are valid for A being any discrete latent random variable.

Indeed, relational information is needed to implement such a relational inductive bias and, in some
cases, it is provided at the application design phase. However, more frequently, such topological
information is not rich enough to address the problem at hand, and — not seldom — it is completely
unavailable. Therefore, Graph Structure Learning (GSL) emerges as an approach to learn the graph
topology [Kipf et al., 2018; Franceschi et al., 2019; Yu et al., 2021; Fatemi et al., 2021; Zhu et al.,
2021; Cini et al., 2023] alongside the predictive model f,. This entails formulating a joint learning
process that learns the adjacency matrix A — or a parameterization of it — along with the predictor’s
parameters). This can be achieved by optimizing a loss function, e.g., a point prediction measure
based on the square or the absolute prediction error.

Different sources of uncertainty affect the graph structure learning process, including epistemic un-
certainty in the data and variability inherent in the data-generating process. Learning appropriate
models of the data-generating process can provide valuable insights into the modeled environment
with uncertainty quantification enhancing explainability and interpretability, ultimately enabling
more informed decision-making. Examples of applications are found in the study of infection and
information spreading, as well as biological systems [Gomez Rodriguez et al., 2013; Lokhov, 2016;
Deleu et al., 2022]. It follows that a probabilistic framework is appropriate to accurately capture the
uncertainty in the learned relations whenever randomness affects the graph topology. Probabilistic

Under review as a conference paper at ICLR 2025

approaches have been devised in recent years. For instance, research carried out in Franceschi et al.
[2019]; Zhang et al. [2019]; Elinas et al. [2020]; Cini et al. [2023] propose methods that learn a
parametric distribution Pf\ over the latent graph structure A. However, none of them have studied
whether these approaches were able to learn a calibrated latent distribution P9, properly reflecting
the uncertainty associated with the learned topology.

In this paper, we address the joint problem of learning a predictive model yielding optimal point-
prediction performance of the output y and, contextually, a calibrated distribution for the latent
adjacency matrix A. In particular, the novel contributions can be summarized as:

1. We demonstrate that models trained to achieve optimal point predictions do not guarantee
calibration of the adjacency matrix distribution [Section 4].

2. We provide theoretical conditions on the predictive model and loss function that guarantee
both distribution calibration and optimal point-predictions [Section 5].

3. We propose a theoretically grounded sampling-based learning method to address the joint
learning problem [Section 5].

4. We empirically validate the theoretical developments and claims presented in this paper and
show that the proposed method is indeed able to solve the joint learning task [Section 6].

2 RELATED WORK

Graph Structure Learning GSL is often employed end-to-end with a predictive model to better
solve a downstream task. Examples include applications within graph deep learning methods for
static [Jiang et al., 2019; Yu et al., 2021; Kazi et al., 2022] and temporal data [Wu et al., 2019;
2020; Cini et al., 2023; De Felice et al., 2024]; a recent review is provided by Zhu et al. [2021].
Some approaches from the literature model the latent graph structure as stochastic [Kipf et al., 2018;
Franceschi et al., 2019; Elinas et al., 2020; Shang et al., 2021; Cini et al., 2023], mainly as a way to
enforce sparsity of the adjacency matrix. To operate on discrete latent random variables, Franceschi
et al. [2019] utilize straight-through gradient estimations, Cini et al. [2023] rely on score-based
gradient estimators, while Niepert et al. [2021] design an implicit maximum likelihood estimation
strategy. A different line of research is rooted in graph signal processing, where the graph is es-
timated from a constrained optimization problem and the smoothness assumption of the signals
[Kalofolias, 2016; Dong et al., 2016; Mateos et al., 2019; Coutino et al., 2020; Pu et al., 2021]. A
few works from the Bayesian literature have tackled the task of estimating uncertainties associated
with graph edges. The model-based approaches by Lokhov [2016]; Gray et al. [2020] are two ex-
amples tackling relevant applications benefiting from uncertainty quantification. Within the deep
learning literature, Zhang et al. [2019] propose a Bayesian Neural Network (BNN) modeling the
random graph realizations. Differently, Wasserman & Mateos [2024] develop a BNN designed over
graph signal processing principles. While some results on the output calibration are exhibited, to
the best of our knowledge, no guarantee or evidence of calibration of the latent variable is provided,
which we study in this paper instead.

Calibration of the model’s output Research on model calibration has primarily focused on ob-
taining accurate and consistent predictions of the statistical properties of the target (random) vari-
ables y, from which uncertainty estimates on the model’s predictions are derived. For discrete
outputs, such as in classification tasks, Guo et al. [2017] investigated the calibration of modern deep
learning models and proposed temperature scaling as a solution. Other techniques in the same con-
text include Histogram Binning [Zadrozny & Elkan, 2001], Cross Entropy loss with label smoothing
[Miiller et al., 2019], and Focal Loss [Mukhoti et al., 2020]. For continuous output distributions,
Laves et al. [2020] proposed o scaling, while Kuleshov et al. [2018] developed a technique inspired
by Platt scaling. More recently, conformal prediction techniques [Shafer & Vovk, 2008] have gained
popularity for providing confidence intervals in predictions. We stress that within this paper, we are
mainly concerned with latent variable calibration, rather than output calibration, although the two
are related to each other.

Deep latent variable models Latent variables are extensively used in deep generative modeling
[Kingma & Welling, 2013; Rezende et al., 2014], both with continuous and discrete latent variables
[Van Den Oord et al., 2017; Bartler et al., 2019]. In deep models, latent random variables often

Under review as a conference paper at ICLR 2025

lack direct physical meaning, with only the outputs being collected for training. Therefore, studies
mainly focused on maximizing the likelihood of the observed outputs in the training set, rather
than calibrating the latent distribution. A few works proposed regularization of the latent space to
improve stability and accuracy [Xu & Durrett, 2018; Joo et al., 2020], facilitate smoother transitions
in the output when the latent variable is slightly modified [Hadjeres et al., 2017], and apply other
techniques aimed at enhancing data generation or improving model performance in general [Connor
etal., 2021].

To the best of our knowledge, no prior work has studied the joint learning problem of calibrating the
latent graph distribution while achieving optimal point predictions.

3 PROBLEM FORMULATION

Consider a set of NV interacting entities and the data-generating process

A~ Py
: 1
o= et v

where y € Y is the system output obtained from input € X through function f* and conditioned
on a realization of the latent adjacency matrix A € A C {0,1}¥*¥ drawn from distribution P};
input is assumed to be drawn from any distribution P, and superscript * refers to unknown entities.
Each entry of the adjacency matrix A is a binary value encoding the existence of a pairwise relation
between two nodes. In the sequel, x € X C RN*din and y € Y C RNXdout are stacks of N
node-level feature vectors of dimension d;,, and d,,;, respectively, representing continuous inputs
and outputs.

Given a training dataset D = {(x;,y;)}"_; of n input-output observations from (1), we aim at
learning a probabilistic predictive model
A~ P§

= f'u,‘(;l?, A)

from D, while learning at the same time distribution P approximating P}. The two parameter
vectors ¢ and 1) are trained to approximate distinct entities in (1), namely the distribution P} and
function f*, respectively. We assume

Assumption 3.1. The family { P} } of probability distributions P¢ parametrized by 6 and the family
of predictive functions {f,} are expressive enough to contain the true latent distribution P} and
function f*, respectively.

Assumption 3.1 implies that f* € {f,} and P; € {P%} but does not request uniqueness of the

parameters vectors ©* and 6* such that f,« = f* and Pf‘* = Pj}. Under such assumption the mini-
mum function approximation error is null and we can focus on the theoretical conditions requested
to guarantee successful learning, i.e., achieving both optimal point predictions and latent distribution
calibration. In Section 6.2, we empirically show that the theoretical results can extend beyond this
assumption in practice.

Optimal point predictions Outputs y and ¢ of probabilistic model (1) and (2) are random vari-

ables following push-forward distributions' P;p; and Pgl’;l’, respectively. A single point prediction
ypp € Y can be obtained through an appropriate functional 7'[-] as

ypp =ypp(z,0,9) =T {Pe,w] . 3)

ylz

For example, T can be the expected value or the value at a specific quantile. We then define an
optimal predictor as one whose parameters 6 and) minimize the expected point-prediction loss

LPO(0,) = By e [EyNPL [ﬁ(y,ypp(x,e,w))]} 4)

>

between the system output y and the point-prediction ypp, as measured by of a loss function ¢ :
y X y — R+.

!The distribution of y = f*(z, A) originated from P} and of §j = f, (x, A) originated from P§.

Under review as a conference paper at ICLR 2025

Statistical functional 7" is coupled with the loss ¢ as the optimal functional 7" to employ given a
specific loss £ is often known [Berger, 1990; Gneiting, 2011], when Pya";f approximates well P;l .

For instance, if £ is the Mean Absolute Error (MAE) the associated functional T is the median, if ¢
is the Mean Squared Error (MSE) the associated functional is the expected value.

Latent distribution calibration Calibration of a parametrized distribution P§ requires learning
parameters 6, so that Pf‘ aligns with true distribution P}. Quantitatively, a dissimilarity measure
Acal . Py x Py — R, defined over a set P4 of distributions on A, assesses how close two
distributions are. The family of f-divergences [Rényi, 1961], such as the Kullback-Leibler diver-
gence, and the integral probability metrics [Miiller, 1997], such as the maximum mean discrepancy
[Gretton et al., 2012] are examples of such dissimilarity measures. In this paper, we are interested
in those discrepancies for which AC“Z(Pl7 P,) =0 <= P; = P, holds. It follows that the latent
distribution P§ is calibrated on P if it minimizes the latent distribution loss

ﬁcal _ EINPT* [Acal (P.Z?P.ZH , (5)
or simply £ = A (P4, P}), when A and z are independent.
The problem of designing a predictive model (2) that both yields optimal point predictions (i.e.,

minimizes £P°"t in (4)) and calibrates the latent distribution (i.e., minimizes £°* in (5)) is non-
trivial for two main reasons. At first, as the latent distribution P} is unknown (and no samples from

it are available), we cannot directly estimate L% Second, as shown in Section 4, multiple sets of §
parameters may minimize £P°"™ without minimizing £°*.

4 LIMITATIONS OF POINT-PREDICTION OPTIMIZATION

In this section, we demonstrate that the optimization of a point prediction loss (Equation (4)) does
not generally grant calibration of the latent random variable A.

Proposition 4.1. Consider Assumption 3.1. Loss function LP°™(0,4)) in (4) is minimized by all 0

and s.t. T {P;"ﬂ =T [Py*lgu} almost surely on x and, in particular,

oin . .. — 9, *
LPO (9, 4)) is minimal b Py‘;/’: ol

The proof of the proposition is given in Ap-

pendix A.l; we provide a counterexample for MAE and MMD Losses vs 6

which calibration is not granted even when the 0.34 * ig* ~0.898
processing function fy; is equal to f* in Ap- 033 j | ~0.899
pendix A.Z. $ 0.32 + * _ —0.900 §

V)] {

Figure 1 empirically demonstrates that optimiz- & 031 4 | 0901 §
ing point prediction losses does not necessarily ., **° H ~0.902 A
guarantee distribution calibration. In particular, g 0.29 | i + ~0.903 §
we compute different losses between data gen- 0.28 ¢ + * 0504
erated with a ground truth system model (model 0.27 + 4 * | bt t4

(1) with optimal parameter 8*) and outputs pro- 0.26 ' a0

duced with a different model (model (2), with 050 035 0.60 0.65 0.70 0.75 0.80 085 0.90

varying # parameters). In red, the MAE is used

as the loss function £ in the point prediction loss Figure 1: A data generating model, as in (1), is
ﬁ.p ‘?mt of (4): Since all § > 0-.725. produce sta- used to produce a dataset with latent distribution
tistically equivalent losses, this simple experi- parameter 6*. Outputs are generated for different
ment demonstrates the inefficacy of minimiz- values 0 as in (2). In red, losses are computed as
ing £P°™ for latent distribution calibration. In (4) with ¢ being the MAE. In blue, losses are

blue, we show the loss we propose in the next computed with our approach described further on.
section, which presents a minimum in 8*. The

details of this experiment can be found in Section 6.1. However, we recommend reading the entire
paper first to better understand the experiment’s context and setting.

Given the provided negative result and the impossibility of assessing loss £ in (5), in the next
section, we propose another optimization objective that, as we will prove, allows us to both calibrate
the latent random variable and to have optimal point predictions.

Under review as a conference paper at ICLR 2025

S5 PREDICTIVE DISTRIBUTION OPTIMIZATION: TWO BIRDS WITH ONE STONE

In this section, we show that we can achieve an optimal point predictor (2) and a calibrated latent
distribution P4 by comparing push-forward distributions P;‘m and le,;p of the outputs y conditioned

on input x. In particular, Theorem 5.2 below proves that, under appropriate conditions, minimization
of the output distribution loss

L8,) = By [A(By, PYY)] ©)

*
ylao " yle

provides calibrated P}, even when P} is not available; A : P, x P, — R, is a dissimilarity
measure between distributions over space). We assume the following on dissimilarity measure A.

Assumption 5.1. A(P;, P,) > 0 for all distributions P; and P, in P, and A(Py, P») = 0 if and
only if P, = P.

Several choices of A meet Assumption 5.1, e.g., f-divergences and some integral probability metrics
[Miiller, 1997]; the dissimilarity measure A employed in this paper is discussed in Section 5.1.

Theorem 5.2. Let I = {x : A — f*(x, A) is injective} C X be the set of points © € X such that
map A — f*(x, A) is injective. Under Assumptions 3.1 and 5.1, if Py p= (1) > 0, then

LPO(4h*) is minimal

dis *\
LU0, 9%) =0 = {.ccal(a)o,

where 1 is such that fy- = f*.

Theorem 5.2 is proven in Appendix A.3. Under the theorem’s hypotheses, a predictor that mini-
mizes £ is both calibrated on the latent random distribution and provides optimal point predic-
tions. This overcomes limits of Proposition 4.1 where optimization of £P°"*(, v)*) does not grant
L£eal(9) = 0.

The hypotheses under which Theorem 5.2 holds are rather mild. In fact, condition P, p- (1) > 0
pertains to the data-generating process and intuitively ensures that, for some z, different latent ran-
dom variables produce different outputs. A sufficient condition for P, px (1) > 0 to hold is the
existence of a point Z in the support of P, such that A — f*(z, A) is injective with f* continuous
w.r.t. T; see Corollary A.1 in Appendix A.3. Although only a single point Z is required, having more
points that satisfy the condition simplifies the training of the parameters. Corollary A.1 holds for
arbitrarily complex processing functions f*. More specifically, when considering simple GNN lay-
ers and discrete latent matrices A, we can prove that the condition P, p» (1) > 0 is — except from
pathological cases — always satisfied (see Proposition A.2 in Appendix A.3). Instead, condition
fy = f* is set to avoid scenarios of different, yet equivalent,” representations of the latent distribu-
tion. An empirical analysis of the theorem’s assumptions is provided in Section 6.2, demonstrating
that the theoretical results hold in practice, even when the assumption does not strictly apply.

Assumptions 3.1 and 5.1 can be met with an appropriate choice of model (2) and measure A; as
such they are controllable by the designer. Assumption 5.1 prevents from obtaining mismatched
output distributions when £%%*(, 1)) = 0 and can be easily satisfied. As mentioned above, popular
measures, e.g., the Kullback-Leibler divergence, meet the theorem’s assumptions and therefore can
be adopted as A. However, as f-divergences rely on the explicit evaluation of the likelihood of v,
they are not always practical to compute [Mohamed & Lakshminarayanan, 2016]. For this reason,
we propose considering the Maximum Mean Discrepancy (MMD) [Gretton et al., 2012] as a versa-
tile alternative that allows Monte Carlo computation without requiring evaluations of the likelihood
w.r.t. the output distributions P;‘m and Pj"f. Energy distances [Székely & Rizzo, 2013] provide an
alternative feasible choice.

5.1 MAXIMUM MEAN DISCREPANCY

Given two distributions Py, P» € P,, MMD can be defined as
MMDg [P, P2 = sup {Ey~p, [9(0)] —Eynr, [9(¥)]}, @)
ge

’E.g., fu(A,x) = f.(1 — A, z) and P encoding the absence of edges instead of their presence as in Pj.

Under review as a conference paper at ICLR 2025

i.e., the supremum, taken over a set G of functions) — R, of the difference between expected values
w.r.t. P and P,. An equivalent form is derived for a generic kernel function x(-,-) : Y x Y — R:

MMDg [P, P]= E {H(yl,yi)}*Q E [H(ylva)}JF E {ﬁ(yg,yé)} (®)
y1,y1~P1 y1~1121 y2,y5~ P
Y2~ I

and it is associated with the unit-ball G, of functions in the reproducing kernel Hilbert space of «;
note that (8) is the square of (7). Moreover, when universal kernels are considered (e.g., the Gaussian
one), then (8) fulfills Assumption 5.1 (see Theorem 5 of Gretton et al. [2012]). Dissimilarity in
(8) can be conveniently estimated via Monte Carlo (MC) and employed within a deep learning
framework. Accordingly, we set A = MMDéN and learn parameter vectors ¢ and 6 by minimizing

L4t(6, 1)) via gradient-descent methods.

5.2 FINITE-SAMPLE COMPUTATION OF THE LOSS

To compute the gradient of £L%¢(6,) = E,.~ P [MMDEN {Pj"f, P;l -

1 and 6, we rely on MC sampling to estimate in (6) expectations over input x ~ P, target output
Y ~ P;‘m and model output § ~ Pf"f . This amounts to substitute MMD%H with
Nadgj x~i—=1 /a ~ ; .
> St g K85 S ey i)
Nadj(Nagj — 1) Nadgj

H w.r.t. parameter vectors

(©))

In (9), Nygj > 1 is the number of adjacency matrices sampled from Pff1 to obtain output samples
i = fyp(z, A;) ~ Pgl’;f, whereas the pair (x, y) is a pair from the training set D. We remark that in
(9) the third term of (8) —i.e., the one associated with the double expectation with respect to P;
is neglected as it does not depend on v and 6.

lz ™

Gradient V,,£%5¢(0,) is computed via automatic differentiation by averaging VwI\TI\EQ(Q,)
within a mini-batch of observed data pairs (x;, ;) € D. For VoL£%5(6, 1)), the same approach is not
feasible. This limitation arises because the gradient is computed with respect to the same parameter
vector 6 that defines the integrated distribution. Here, we rely on a score-function gradient estimator
(SFE) [Williams, 1992; Mohamed et al., 2020] which uses the log derivative trick to rewrite the
gradient of an expected loss L as VyE 4 po[L(A)] = E 4. ps[L(A)Vglog P?(A)], with PY(A)
denoting the likelihood of A ~ P?. Applying the SFE to our problem the gradient of the loss
function w.r.t. 6 reads:

VQEdiSt('L/)7 9) — E |: E |:K;(:g17 gg)v‘g log (lel/) (Q1)P;";p(@2)>}

~ PO 0,
(Ivy*) P;, yl7y2~Py\w

~2 E sy, §)Volog Pl ()] } (10)
g~PO Y
An apparent setback of SFEs is their high variance [Mohamed et al., 2020], which we address
in Section 5.3 by deriving a variance-reduction technique based on control variates that requires
negligible computational overhead.

5.3 VARIANCE-REDUCED LOSS FOR SFE

Two natural approaches to reduce the variance of MC estimates of (10) involve (i) increasing the
number B of training data points in the mini-batch used for each gradient estimate and (ii) increasing
the number N, 4; of adjacency matrices sampled for each data point in (9). These techniques act on
two different sources of noise. Increasing B decreases the variance coming from the data-generating
process, whereas increasing N,q; improves the approximation of the predictive distribution P;l’;b.
Nonetheless, by fixing B and Ngj, it is possible to further reduce the latter source of variance by
employing the control variates method [Mohamed et al., 2020] that, in our case, requires only a
negligible computational overhead but sensibly improves the training speed (see Section 6).

Under review as a conference paper at ICLR 2025

Consider the expectation E 4. ps [L(A)Vylog P?(A)] of the SFE — both terms in (10) can be cast
into that form. With the control variates method, L(A) is replaced by a surrogate function

L(A) = L(4) = B(h(A) ~ Eape [n(A)]) (1

that leads to a reduced variance in the MC estimator while maintaining it unbiased. In this paper, we
set function h(A) to Vg log P?(A) and show how to compute a near-optimal choice for scalar value
B, often called baseline in the literature. As the expected value of Vy log PG(A) is zero, gradient
(10) rewrites as

Vol — [(k(fo(x, Av), fu (@, A2)) — B1) Ve log (P4(A1)P(As))]

[E
(@y")~P5, [A1, A2~ P

~2 B (6057 fo(o. 4) =) Volog A | (12

In Appendix B, we show that in our setup the best values of 81 and 35 are approximated by

= IPP; {"ﬂ(fw(%Al)vfw(x,Az))}, B2 = (z,y*gENP;,y [/i(y*,fw(x,A))}, (13)
A1,Az~P§ AP

which can be efficiently computed via MC reusing the kernel values already computed for (12).

5.4 COMPUTATIONAL COMPLEXITY

Focusing on the most significant terms, for every data pair (z,y) in the training set, computing the
loss £4 requires O(N. gdj) kernel evaluations &(%;, ;) in (9), O(N4;) forward passes through the
GNN §; = fy(z, A;) in (9) and O(N,q;) likelihood computations P4 (4;) in (12). The computation
of baselines 31 and (35 in (13) requires virtually no overhead, as commented in previous Section 5.3.
Similarly, computing the loss gradients requires O(N. 2dj) derivatives for what concerns the kernels,

O(Ngq;) gradients V,; and Vg log Pj (A;). We empirically observed that for N,4; > 16, both the

latent distribution loss £% and the point prediction loss £P°™™ of final models are equivalent for
the considered problem. This suggests that Vy4; is not a critical hyperparameter.

Since we can employ sparse representations of adjacency matrices, the GNN processing costs scale
linearly in the number of nodes N for bounded-degree graphs. From our experience, the GNN
processing is the most demanding operation and the cost of quadratic components, such as the
parameterization of 0,;, do not pose significant overhead.

6 EXPERIMENTS

This section empirically validates the proposed technique and the main claims of the paper. To assess
the calibration performance of models, it is necessary to compare the learned graph distribution P§
with the ground-truth latent distribution P}. However, to our knowledge, no real-world datasets
provide such ground truth. Therefore, we developed theoretical guarantees to support the application
of these methods to real data and — in this section — we conduct the empirical validation using
synthetic data. Section 6.1 demonstrates that the proposed approach can successfully solve the joint
learning problem across different graph sizes, highlights the effectiveness of the variance reduction
technique, and reveals challenges in optimizing point prediction losses when also aiming for latent
variable calibration. Section 6.2 empirically investigates the generality of the theoretical results we
develop, demonstrating appropriate calibration of the latent distribution even in scenarios where the
assumptions of Theorem 5.2 do not hold.

In order to assess the latent variable calibration performance, i.e., the discrepancy between P} and
the learned P4, the ground-truth latent distribution P} must be given. Such ground-truth knowledge
is not available in real-world applications as the latent distribution is indeed unknown. For this rea-
son, we designed a synthetic dataset that allows us to evaluate different performance metrics on both
y and A while controlling several properties of the task, like the number of nodes and the probability
of each edge. We remark that the latent distribution P is used only to assess performance and does
not drive the model training in any way.

Under review as a conference paper at ICLR 2025

MMD? Loss on Validation Mean Absolute Error on 6 parameters Point Prediction MAE Loss on Validation

--+ With variance reduction
0.45 —— Without variance reduction
= learn 6

| = lLearnfand y

0.40 ;\ ------ Numerical optimal value

Figure 2: Validation losses £4%5, L:f“l and £P°" during training. At epoch 5, the learning rate is
decreased to ensure convergence. £%** in Subfigure 2a is negative as the third term in (8) is constant
and not considered.

Dataset and models Consider data-generating process (1) with latent distribution P} = Pf*
producing N-node adjacency matrices. P} is defined by a set of N x N independent Bernoulli
distributions, each of which corresponds to the sampling probability of an edge. Function f, = fy-
is a generic GNN with node-level readout, i.e., fy« (-, A) : RNVXdin — RNXdout I the below
experiments, IV is set to 12, while input and output node feature dimensions are d;, = 4 and
dout = 1, respectively. The components 6* are set to either 0 or 3/4 according to the pattern
depicted in Figure 7; the specifics of fy« and P are detailed in Appendix C. We result in a dataset
of 35k input-output pairs (z,y), 80% of which are used as training set, 10% as validation set, and
the remaining 10% as test set. As predictive model family (2), we follow the same architecture
of fy~ and Pz* ensuring that during all the experiments Assumption 3.1 is fulfilled. The model
parameters are trained by optimizing the expected squared MMD in (9) with the rational quadratic
kernel [Binkowski et al., 2018].

6.1 GRAPH STRUCTURE LEARNING & OPTIMAL POINT PREDICTIONS

To test our method’s ability to both calibrate the latent distribution and make optimal predictions,
we train the model minimizing £%%* as described in Section 5.2.

Figure 2 reports the validation losses during training: MMD loss £%5? as in (6), MAE between the
learned parameters and the ground truth * as £°@ (5), and point-prediction loss £P°" as in (4)
with ¢ being the MAE. The results are averaged over 20 different model initializations and error bars
report =1 standard deviations from the mean. Results are reported with and without applying the
variance reduction (Section 5.3), by training only parameters 6 while freezing 1) to ¢* (same setting
of Theorem 5.2), and by joint training of both) and 6.

Solving the joint learning problem Figure 2a shows that the training succeeded and the MMD
loss L%t approached its minimum (dotted line). Having minimized £%!, from Figure 2b we see
that also the calibration of latent distribution Pf\ was successful; in particular, the figure shows that
the MAE on 6 parameters (N ~2||6* — 6]|1) approaches zero as training proceeds (MAE < 0.04).
Regarding the point predictions, Figure 2c confirms that £P°™ reached its minimum value; recall
that optimal prediction MAE is not 0, as the target variable y is random, and note that a learning
rate reduction is applied at epoch number 5. The optimality of the point-prediction is supported also
by the performance on separate test data and with respect to the MSE as point-prediction loss /.
Moreover, we observe that calibration is achieved regardless of the variance reduction and whether
or not parameters ¢ are trained. Lastly, Figure 4 shows the learned parameters 6 of the latent
distribution and the corresponding absolute discrepancy resulted from a (randomly chosen) training
run.

Optimization landscape of £P°"* and L£%** In this experiment, we analyze the values of
L£Pomt (% 9) and LI (p*,) for different values of §. L£P°™ is computed employing MAE as
loss function ¢. Specifically, we let scalar p vary from 1/2 to 1 and set all §;; = p for ¢, j where
07 = 3/4. Figure 1 reports the obtained results, highlighting an almost flat £P°"** for values

Under review as a conference paper at ICLR 2025

Learned theta parameters

[RINREA 0.01 %P 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00

[RZNES R ENRENRZ] 0.00 0.00 0.01 0.00 0.00 0.00 0.00
-0.01 CRE oaoo.ao 0.00 0.02 0.00 0.00 0.00 0.00 0.00 08
075 0.73077 [RENEN] 0.01 0.00 0.01 0.00 0.00 0.00
-0.04 CRZAWERRZIRENFE] 0.01 0.01 0.00 0.01 0.00 0.00
1n -0.02 0.03 0.00 PEENRENXFMEEY 0.01 0.00 0.01 0.00 0.00

-0.01 0.00 0.00 0.00 0.01 [RINELNNE] 0.01 [FEY 0.00 0.01

6

-0.00 0.00 0.00 0.00 0.00 0.00 [RFPICRENENNRENNE] 0.01

7

@ -0.00 0.00 0.01 0.00 0.00 0.00 0.01 ekl 0740.74 0.01
-0.01 0.01 0.00 0.00 0.00 0.00 [CkZd 0810.79 081 0.78
-0.00 0.00 0.00 0.00 0.00 0.00 0.00 (RAMEZERZNNEN N/

-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 PRZNEZNNL]

1n o1 9

o 1 2 3 4 5 6 7 8 9 10 1

0

6 5 4 3 2

7

m w0 9

Absolute error on theta parameters

-0.01 0.02 0.01 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00

-0.01 0.06 0.04 0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00

-0.01 0.03 0.05 0.02 0.05 0.00 0.02 0.00 0.00 0.00 0.00 0.00

-0.00 0.02 0.02 0.02 0.04 0.05 0.01 0.00 0.01 0.00 0.00 0.00

-0.04 0.02 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.00

-0.02 0.03 0.00 0.02 0.00 0.08 0.02 0.01 0.00 0.01 0.00 0.00

-0.01 0.00 0.00 0.00 0.01 0.01 0.05 0.02 0.01 0.00 0.00 0.01

-0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.05 0.00 0.02 0.01

-0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.03 0.01 0.01

-0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.06 0.04 0.04 0.06 0.03

-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.01 0.03 0.03

-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.04

0o 1 2 3 4 5 6 7 8 9 10 11

Figure 4: The learned parameters for the latent Figure 5: Absolute error made on the parameters
distribution corresponding to the stochastic adja- of the latent distribution.

cency matrix.

> 0.725. In contrast, £%** displays a pronounced concave shape with a clear minimum around 6*
which suggests that calibration is easier when we minimize £%*¢ instead of LP°"!,

Overall, we conclude that our approach is effective in
solving the joint learning problem of calibrating the la-
tent variable while producing optimal point predictions.

Variance reduction effectiveness Figures 2a, 2b and
2c demonstrate that the proposed variance reduction
method (Section 5.2) yields notable advantages training
speed up (roughly 50% faster). For this reason, the next
experiments rely on variance reduction.

Larger graphs The theoretical results developed hold
for any number of nodes /N. However, the number of pos-
sible edges scales quadratically in the number of nodes.
In Figure 3, we show all ~ 15K parameters of the con-
sidered Pz can be effectively learned even for relatively

Learned theta parameters

1.0

large graphs; the final MAE on 6 parameters is 0.003. Figure 3: Learned ¢ parameters for a

Note that for extremely large graphs the ratio between the =~ graph with ~ 15K possible edges.

number of free parameters in 6 and the size of the training set can become prohibitive. In these
cases, amortized learning of the edge probabilities is a potentially viable solution.

6.2 BEYOND ASSUMPTION 3.1

In this section, we empirically study whether Assumption 3.1 is restrictive in practical applications.
Specifically, we consider different degrees of model mismatch between the system model in (1) and
the approximating model in (2). Unless otherwise specified, we use the same dataset and experimen-
tal setup as described in Appendix C.1. Additional details and results are deferred to Appendix C.3.

Perturbed f,- As a first experiment, we
train P4 while keeping the parameters of the
predictive function fy, fixed to a random pertur-
bation of the data-generating model f* = fy-.
A perturbed version of f; is built by uniformly

Table 1: Calibration of Pf\ under varying levels of
misconfiguration for predictive function fy. Re-
sults are the mean =+ 1 standard deviation assessed
over 8 independent runs.

drawing independent perturbation scalar values Max pert. ¥ MAE on 6 Max AE on 6
d; ~ U[—T,], one for each of parameter 1)}

of fy~. Then, each parameter of GNN fy is 001 Oé) (l)g i 88(1)5 8}% i 881
given as 1); = (1 + 0;)1}. Table 1 shows that 02 002+£002 014+ 0.03
the learned latent distribution remains reason- 05 0.034+0.02 020+0.12
ably calibrated, even when parameters can be 0.8 0.07 &+ 0.02 0.36 & 0.08

modified up to 80%. In particular, the absolute

error (AE) on parameters 6 is under 10% on average and increases with W. Finally, Figures 8-11

Under review as a conference paper at ICLR 2025

show the learned parameter vectors 6 for randomly extracted runs and highlight that the maximum
AE of Table 1 is observed only sporadically.

Generic GNN as f,, In this second experiment, we set fy, to be a generic multilayer GNN which
we jointly train with graph distribution P4. We comment that model family { fu } does not include
f*, as f* uses L-hop adjacency matrices generated from the sampled adjacency matrix A, while the
learnable f;, relies on multiple nonlinear 1-hop layers; details on the model architecture are reported
in Appendix C.3. Upon convergence, models achieved a MAE on 6 < 0.11 and £P°™ < 0.34 using
the MAE as loss function ¢ in (4); The performance is in line with results in Figure 2c and Table 1.
At last, we note that because the GNN used adds self-loops, the diagonal elements of the adjacency
matrix are learned as zero, resulting in a larger MAE on 6 (see Figure 12). However, this does not
impair the learning the off-diagonal 6,; parameters (i.e., for i # j). Notably, in the worst-performing
model, these off-diagonal parameters have a MAE of 0.05.

Misconfigured P} Finally, we violate Assumption 3.1 by fixing fy = f* and constraining some
components of 6 to incorrect values. Specifically, we force parameters 0; ; for all edges i, j associ-
ated with nodes with id 2 and 3 in Figure 6 to 0.25, instead of the correct value of 0;" ;= 0.75 as
in P}. Results indicate that the free parameters in 6 are learned appropriately. Notably, increased
uncertainty is observed for spurious edges linking to nodes in the first node community (see Fig-
ure 6). This is expected given that nearly 60% of the edges in the community were significantly
downsampled. Figures 13 and 14 in Appendix C.3 show the learned parameters from randomly
selected runs.

7 CONCLUSIONS

Graph structure learning has emerged as a research field focused on learning graph topologies in
support of solving downstream predictive tasks. Assuming stochastic latent graph structures, we
are led to a joint optimization objective: (i) learning the correct distribution of the latent topology
while (ii) achieving optimal predictions on the downstream task. In this paper, at first, we prove
both positive and negative theoretical results to demonstrate that appropriate loss functions must be
chosen to solve this joint learning problem. Second, we propose a sampling-based learning method
that does not require the computation of the predictive likelihood. Our empirical results demonstrate
that this approach achieves optimal point predictions on the considered downstream task while also
yielding calibrated latent graph distributions.

Finally, we acknowledge that the proposed method requires sampling and processing multiple ad-
jacency matrices for each input and, although the model and prediction accuracy is enhanced, a
computation overhead is requested. We plan future research to explore the applicability of this
method to other classes of neural networks beyond GNNs.

REFERENCES

Alexander Bartler, Felix Wiewel, Lukas Mauch, and Bin Yang. Training variational autoencoders
with discrete latent variables using importance sampling. In 2019 27th European Signal Process-
ing Conference (EUSIPCO), pp. 1-5. IEEE, 2019.

James O Berger. Statistical decision theory. In Time Series and Statistics, pp. 277-284. Springer,
1990.

Mikotaj Biikowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. In International Conference on Learning Representations, 2018.

Andrea Cini, Daniele Zambon, and Cesare Alippi. Sparse graph learning from spatiotemporal time
series. Journal of Machine Learning Research, 24:1-36, 2023.

Marissa Connor, Gregory Canal, and Christopher Rozell. Variational autoencoder with learned latent

structure. In International Conference on Artificial Intelligence and Statistics, pp. 2359-2367.
PMLR, 2021.

10

Under review as a conference paper at ICLR 2025

Mario Coutino, Elvin Isufi, Takanori Maehara, and Geert Leus. State-space network topology iden-
tification from partial observations. IEEE Transactions on Signal and Information Processing
over Networks, 6:211-225, 2020.

Giovanni De Felice, Andrea Cini, Daniele Zambon, Vladimir Gusev, and Cesare Alippi. Graph-
based Virtual Sensing from Sparse and Partial Multivariate Observations. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Tristan Deleu, Anténio Géis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518-528. PMLR, 2022.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian
matrix in smooth graph signal representations. IEEE Transactions on Signal Processing, 64(23):
6160-6173, 2016.

Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. Advances in Neural Information
Processing Systems, 33:18648-18660, 2020.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves struc-
ture learning for graph neural networks. Advances in Neural Information Processing Systems, 34:
22667-22681, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International conference on machine learning, pp. 1972-1982.
PMLR, 2019.

Tilmann Gneiting. Making and Evaluating Point Forecasts. Journal of the American Statistical
Association, 106(494):746-762, June 2011. ISSN 0162-1459. doi: 10.1198/jasa.2011.r10138.

Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Scholkopf. Structure and dynamics of
information pathways in online media. In Proceedings of the sixth ACM international conference
on Web search and data mining, pp. 23-32, 2013.

Caitlin Gray, Lewis Mitchell, and Matthew Roughan. Bayesian inference of network structure from
information cascades. IEEE Transactions on Signal and Information Processing over Networks,
6:371-381, 2020.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723-773, 2012.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321-1330. PMLR, 2017.

Gaétan Hadjeres, Frank Nielsen, and Frangois Pachet. Glsr-vae: Geodesic latent space regulariza-
tion for variational autoencoder architectures. In 2017 IEEE symposium series on computational
intelligence (SSCI), pp. 1-7. IEEE, 2017.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array program-
ming with numpy. Nature, 585(7825):357-362, 2020.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9
(03):90-95, 2007.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph
learning-convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11313-11320, 2019.

11

Under review as a conference paper at ICLR 2025

Weonyoung Joo, Wonsung Lee, Sungrae Park, and II-Chul Moon. Dirichlet variational autoencoder.
Pattern Recognition, 107:107514, 2020.

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial intelligence and statis-
tics, pp- 920-929. PMLR, 2016.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Dif-
ferentiable graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(2):1606-1617, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International conference on machine learning, pp. 2688—
2697. PMLR, 2018.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International conference on machine learning, pp. 2796-2804.
PMLR, 2018.

Max-Heinrich Laves, Sontje IThler, Jacob F Fast, Liider A Kahrs, and Tobias Ortmaier. Well-
calibrated regression uncertainty in medical imaging with deep learning. In Medical imaging
with deep learning, pp. 393—412. PMLR, 2020.

Andrey Lokhov. Reconstructing parameters of spreading models from partial observations. Ad-
vances in Neural Information Processing Systems, 29, 2016.

Gonzalo Mateos, Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Connecting the
dots: Identifying network structure via graph signal processing. IEEE Signal Processing Maga-
zine, 36(3):16-43, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928-1937. PMLR, 2016.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. 2016.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient es-
timation in machine learning. The Journal of Machine Learning Research, 21(1):5183-5244,
2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Doka-
nia. Calibrating deep neural networks using focal loss. Advances in Neural Information Process-
ing Systems, 33:15288-15299, 2020.

Alfred Miiller. Integral probability metrics and their generating classes of functions. Advances in
applied probability, 29(2):429-443, 1997.

Rafael Miiller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Ad-
vances in neural information processing systems, 32, 2019.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: Backpropagating
Through Discrete Exponential Family Distributions. In Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 14567-14579. Curran Associates, Inc., 2021.

12

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Xingyue Pu, Tianyue Cao, Xiaoyun Zhang, Xiaowen Dong, and Siheng Chen. Learning to learn
graph topologies. Advances in Neural Information Processing Systems, 34:4249-4262, 2021.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability, volume 1: contributions to the theory of
statistics, volume 4, pp. 547-562. University of California Press, 1961.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278-1286. PMLR, 2014.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61-80, 2008.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. In International Conference on Learning Representations, 2021.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch VIlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Gabor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on distances.
Journal of statistical planning and inference, 143(8):1249-1272, 2013.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Max Wasserman and Gonzalo Mateos. Graph structure learning with interpretable bayesian neural
networks. Transactions on machine learning research, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 1907-1913, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
753-763, 2020.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv
preprint arXiv:1808.10805, 2018.

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14—18, 2020, Proceedings, Part I,
pp- 378-393. Springer, 2021.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Icml, volume 1, pp. 609-616, 2001.

13

Under review as a conference paper at ICLR 2025

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional
neural networks for semi-supervised classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5829-5836, 2019.

Yangiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph struc-
ture learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, 14:1-1,
2021.

14

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOFS OF THE THEORETICAL RESULTS

A.1l MINIMIZING £P°"t DOES NOT GUARANTEE CALIBRATION

In this section, we prove Proposition 4.1.

Proof of Proposition 4.1. Recall the definition of £P°""* in (4) using (3)

Lroint (4,) = E, {]Eymp;‘x [E(y*, T[PG.#’])H

ylo

Given loss function ¢, T is, by definition [Berger, 1990; Gneiting, 2011], the functional that mini-
mizes

Ey-np: . [é(y*,T[Ju])]

= [Po"t i minimal. If another distribution over y, namely, pv o

Therefore, if P%Y = P~ ylz

) ylz ylo
parametrized by 6’ and ¢’ satisfies:

ylx ylx

o) ol
almost surely on z, then,
Lo Q) = By [Byery, [0, TP]
—E. [Eyenry, [0, T(P)))]

NG R .
Thus, P;l’m’ minimizes £P"t.

Appendix A.2 discusses graph distributions where T[P;ﬁl;’gl] = T[Ple] but P‘;ﬂl;’g/ # Py, We

conclude that reaching the minimum of £P°¥"*(4, #) does not imply P;l’f = P;‘ o O

A.2 MINIMIZING £P°"" DOES NOT GUARANTEE CALIBRATION: AN EXAMPLE WITH MAE
This section shows that £P°""¢ equipped with MAE as ¢ admits multiple global minima for different
parameters 6, even for simple models and f, = f*.

Consider a single Bernoulli of parameter #* > 1/2 as latent variable A and a scalar function
f*(x, A) such that f*(x,1) > f*(«,0) for all z. Given input x the value of functional T'(P*

ylr)
that minimizes
] = 6" |f*(x,1) - T[P],] [(x,0) = T[Py,]

Ey~p;, Hy —T[P;.]
is T(P;‘x) = f*(x,1); this derives from the fact that range of f* is {f*(«,0), f*(x,1)} and the
likelihood of f*(x,1) is larger than that of f*(x,0).
Note that T[PJ‘J = f*(x,1) for all z, therefore also LPo1t js minimized by such 7. Moreover,
T[Py,] is function of §* and equal to f*(x,1) for all § > 1/2. We conclude that for any 6 # 6*

distributions Pj";f and P;“m are different, yet both of them minimize LPoint if g > 1 /2.

+(1-6%)

A similar reasoning applies for 6* < 1/2.

A.3 MINIMIZING L% GUARANTEES CALIBRATION AND OPTIMAL POINT PREDICTIONS

This section proves Theorem 5.2 and a corollary of it.

15

Under review as a conference paper at ICLR 2025

Proof of Theorem 5.2. Recall from Equation (6) that
LU(6) = B, [A(Py,. PY,)]

We start by proving that if £%5t(0,1)) =0 = £P°™*(0,4)) is minimal.

Note that £%¢(0,v)) = 0 implies that A(P* . P%) = 0 almost surely in z. Then, by Assump-

ylz * ylz
tion 5.1, P = ij almost surely on z and, in particular, '[Py, | = T[P:Tf] which leads to
LPeint (4 0) being minimal (Proposition 4.1).
We now prove that if L¥¢(6, %) =0 = L£(§) = 0.
From the previous step, we have that £%¢(6, 1) = 0 implies P*‘ o= P;l’x almost surely for x € I.

Under the assumption that f,, = f. and the injectivity of f, in such € I, for any output y a single
A exists such that f.(x, A) = y. Therefore, the probability mass function of y equals that of A.

Accordingly, P, = P/ implies P; = P

ylo T T yle

O

We also prove a corollary of Theorem 5.2.

Corollary A.1. Under Assumptions 3.1 and 5.1, if
1. 3z € Supp(P}) C X such that f*(Z;-) is injective,
2. f*(x, A) is continuous in TVA € A,

then

LPOE(Q 4h*) is minimal

dist *\
£y =0= {cml(a):o.

The corollary shows that it is sufficient that f* is continuous in x and there exists one point T where
f*(z, -) is injective to meet theorem’s hypothesis P, p (I) > 0; we observe that, as A is discrete,
the injectivity assumption is not as restrictive as if the domain were continuous.

Proof. As A is a finite set, the minimum € = ming arc 4|/ f*(Z, A) — f*(&, A")|| > 0 exists and,
by the injectivity assumption, is strictly positive.

By continuity of f*(-, A), for every ¢ < %E there exists d, such that for all x € B(Z,) we have
If*(z, A) — f*(z, A)|| < e. It follows that, Vo € B,

1f* (2, A) = f* (2, A

|
> (@A) = @ A = 1@ A) = f (@, A = I (@A) - (2, 4]
> |17, A) = £ (2, Al — 2¢
> |If*(@,A) - f*(z,A)| —e>0.

Finally, as Z € Supp(P;) and B(Z,) C I, we conclude that
Py (1) = Po(B(z,6)) > 0
therefore, we are in the hypothesis of Theorem 5.2 and can conclude that

LPomt (9 4h*) is minimal

dist *\
£y =0= {cwl(a)zo.

16

Under review as a conference paper at ICLR 2025

A.4 INJECTIVITY HYPOTHESIS FOR GRAPH NEURAL NETWORKS

Now, we show that hypothesis P, px (1) > 0 of Theorem 5.2 is always met for certain families of
graph neural networks.

Proposition A.2. Consider a I-layer GNN of the form f*(x, A) : o(Ax) =y, with v,y € RY and
nonlinear bijective activation function o. If the support Supp(P;) of x contains any ball B in RN
then Py p: (I) > 0.

To prove Proposition A.2, we rely on following lemma.

Lemma A.3. Given g(z,a) = az with a € {0,1}'*N and x € RN*L Let I, = {z :
g(x,a) is injective in a} C X be the set of points x € X such that map a — g(z,a) is injective.
The following implication holds:

rgl, = #0e{-1,0,1}"N st 5 La. (14)
Proof. We prove the two implications separately.

(=) If x ¢ I, then there exist a’,a” € {0,1}'*¥" with a’ # a” such that 'z = a”x. This
implies that (a’ — @)z = 0. Defining § as (¢’ — a’’), we have proven that there exist
§#0 € {-1,0,1}*¥ such that 5z = 0, i.e.,§ L z.

(<=) Assume that 3§ # 0 € {—1,0,1}'*¥ such that § L z. Each component §; of & can be

written as the difference between two values a}, a; € {0,1}. As ¢ # O then there exists at

least one index j € {1,..., N} such that a’; # a. This implies that 3 o', a" € {0, 1N
with @’ # @ s.t. (' — @)z = 0, which implies that = ¢ I,,.

O

Proof of Proposition A.2. We begin by considering the projection g(x, a) = ax with a € {0, 1}1*¥

and x € RN . Then we extend to A € {0, 1}*V*¥ and to nonlinear functions.
Let [gc = R¥ \ I; be the complement in RY of I;. Recalling Lemma A.3 and its notation, we

have 3% — 1 possible 6, defining a collection of (3% — 1)/2 hyperplanes of vectors perpendicular
to at least one J; set [5 is the union of such a finite collection of hyperplanes. By hypothesis,

Supp(P;) contains a ball B € RY, therfore Supp(P;) ¢ Ig and P, p- (Igc) < 1. We conclude
that Py p: (I3) = 1 = Pyops (IS) > 0.

A similar result is proven for G(z, A) = Az with A € {0,1}¥*N_ In fact, G is a stack of N
functions g above and I5 = I. Finally, composing injective function G with injective function o
leads to function g(x, A) = o(G(x, A)) being injective in A for the same points x for which G is
injective, thus proving the proposition. O

B ESTIMATION OF OPTIMAL f3; AND [,

Here we show that, when reducing the variance of the SFE via control variates in (12), the best 31
and (5 can be approximated by

Bl = IE-EP* [H(fw(x7A1)af’¢(x7A2)):|7 52 = (a:,y*%EiP;y I:K/ (y*,fw(l‘7A)) s (]5)
Ay, Az~ P4 A~P?

Consider generic function L(A) depending on a sample A of a parametric distribution P} (A) and
the surrogate loss L(A) in (11), i.e.,

L(A) = L(4) = B(h(4) = Eapo [a(4))); (16)

This choice is not new in the literature [Sutton et al., 1999; Mnih et al., 2016] where [is often
referred to as baseline. The 1-sample MC approximation of the loss becomes

VoEaps[L(A)] = L(A)Vglog P/(A") = (L(A") — B)Vglog P’ (A"), (17

17

Under review as a conference paper at ICLR 2025

o FHs0—d—d—0o—9d—3d—0

Figure 6: The adjacency matrices used in this paper are sampled from this graph. Each edge in
orange is independently sampled with probability 8*. In the picture, 3 communities of an arbitrarily
large graph are shown.

with A’ sampled from P. The variance of the estimator is
Vanpo [(L(A) = B)Vglog P’ (A)] = Va4 po [L(A)Vglog P’(A)] +
+ B2 Eape [(Volog P(4))*] =28 Eapo [L(4) (Volog P/(4))°] (18)
and the optimal value (8 that minimizes it is
Ewpo |L(4) (Volog P(4))°]
Eapo [(Volog P7(A))’]

B = (19)

If we approximate the numerator with E[L(A)]E[(Vglog P?(A))?], we obtain that § ~ E[L(A)].
By substituting L(A) with the two terms of (10) we get the values of 51 and (35 in (15).

We experimentally validate the effectiveness of this choice of 5 in Section 6.

C FURTHER EXPERIMENTAL DETAILS

C.1 DATASET DESCRIPTION AND MODELS

In this section, we describe the considered synthetic dataset, generated from the system model (1).

The latent graph distribution P} is a multivariate Bernoulli distribution of parameters ¢;;: P; =
Py-(A) =11, H:f” (1- 0;})(1*‘4“). The components of 6* are all null, except for the edges of the
graph depicted in Figure 6 which are set to 3/4. A heatmap of the adjacency matrix can be found in
Figure 7.

True theta parameters

o {ENREY 0.00 [WREY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10

(RENR RN RENRE] 0.00 0.00 0.00 0.00 0.00 0.00 0.00

-0.00 [UREY 0.75@0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8
0.75 0.75@0.75 (WENWEY 0.00 0.00 0.00 0.00 0.00 0.00
-0.00 RRENREREERRENEES 0.00 0.00 0.00 0.00 0.00 0.00
-0.00 0.00 0.00 (ESEVREREENNE] 0.00 0.00 0.00 0.00 0.00
-0.00 0,00 0.00 0.00 0.00 [NENVEERNES 0.00 [RE] 0.00 0.00
-0.00 0,00 0.00 0.00 0.00 0,00 PRERNERFERNENRE] 0.00 o4
-0.00 0.00 0.00 0.00 0.00 0.00 0.00 (&) 0.75N [RE] 0.00
-0.00 0.00 0.00 0.00 0.00 0.00 [} 0.75“0.75 0.75 0.75 ~02

-0.00 0.00 0.00 0.00 0.00 0.00 0.00 (EENEENEENFENNE]

1 10 9 8 7 6 5 4 3 2

-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (RENEERNE]

o 1 2 3 4 5 6 7 8 9 10 1

Figure 7: 0;; parameters for each edge of the latent adjacency matrix. Each square corresponds to
an edge, and the number inside is the probability of sampling that edge for each prediction.

18

Under review as a conference paper at ICLR 2025

Table 2: Table of the parameters used to generate the synthetic dataset.

0* 0.75

O 1.5

N 12

din 4
dout

vy [-0.2,0.4, —0.8, 0.6]
vs [-0.3,0.8,0.2, —0.7]

Regarding the GNN function f*, we use the following system model:

L
y= fu-(A,z) = tanh (; 1[4 # owr) 0)
A~ Py (A)

where 1[-] is the element-wise indicator function: 1[a] =1 <= ais true. z € RY*%in are ran-
domly generated inputs: z ~ N(0,021). ; € Rout Xdin are part of the system model parameters.
We summarize the parameters considered in our experiment in Table 2.

The approximating model family (2) used in the experiment is the same as the data-generating
process, with all components of parameter vectors 6 and ¢ being trainable. The squared MMD
discrepancy is defined over Rational Quadratic kernel [Binkowski et al., 2018]

r_a 2\ T¢
H(y',y”) _ <1 + ”y2a32”2> (21)

of parameters 0 = 0.7 and o = 0.02.

The model is trained using Adam optimizer [Kingma & Ba, 2014] with parameters §; = 0.6,
B2 = 0.95. Where not specified, the learning rate is set to 0.1 and decreased to 0.01 after 5 epochs.
We grouped data points into batches of size 128. Initial values of § are independently sampled from
the 2/(0.25, 0.35) uniform distribution.

C.2 DESCRIPTION OF THE EXPERIMENT IN SECTION 4

In this experiment, we generate 512 data points using the system model described in Appendix C.1.

We construct a model identical to the system model, except that 6;; = p for all 7, j where 67 ; = 0.75

and 0 elsewhere. We vary scalar p from 0.5 to 1 with steps of 0.025. Therefore, only the model with
= (.75 is identical to the data-generating model.

For each input x in the dataset, a point prediction is produced by sampling N,q; = 32 adjacency
matrices and computing the median. This approach allows to estimate £P°" using the MAE as
loss function ¢, as depicted by the red points in Figure 1, for different values of 6. For comparison
purposes, we estimate £%* using the maximum mean discrepancy as proposed in Section 5.

C.3 ADDITIONAL DETAILS OF SECTION 6.2

We present here additional Figures discussed in Section 6.2.

Fixed perturbed f,, Figures in this paragraph correspond to the experiment where the processing
function f is fixed on a perturbed version of f*. Figures 8 — 11 correspond to runs with increasing
perturbation factor W.

19

Under review as a conference paper at ICLR 2025

earned theta parameters

o2 [F8 0.01 0.00 001 0.00 000 0.00 000 002

o Absolute error on theta parameters o
©-004 005 002 0.02 0.01 0.00 0.01 .00 000 0.00 000 001

001 000 000 0.00 000 0.00 001 ~-007 011 001 0.01 004 0.01 000 0.00 000 0.00 000 001

002 001 000 000 000 0.00 001 08 -001 000 006 0.02 001 002 0L 0.00 000 000 0.00 001 0s
000 0.00 001 0.00 000 001 m-0.05 002 0.01 004 0,05 002 0.00 000 0,01 000 0.00 001

001 000 000 0.00 000 0.00 -001 002 0.04 005 0.10 002 0.01 000 0.00 000 0.00 000

05 05
1n ~001 001 0.01 004 0,08 003 0.05 000 0,00 000 0.01 000
©~0.00 000 0.00 001 0,00 001 0.01 005 0.02 004 003 001
~ ~0.00 000 0.00 00D 0,00 000 0.03 009 0.04 005 005 001
= ~0.00 000 0,00 000 0,00 001 0.00 001 0.05 001 001 002

02 ~-000 000 000 00D 001 001 005 0.01 006 001 004 007 o
5-000 0.00 000 0,00 000 0.00 002 0.05 002 001 0.03 004
4000 0.00 002 0,00 000 0.00 001 0.03 000 003 0.01 001

506 7 & 9 1 om

(b)

o1 3 3 4

Figure 8: Learned 0;; parameters (a) and Abso-
lute Error (b) for maximum perturbation factor ¥
of 10%.

Learned theta parameters Absolute error on theta parameters

©-011 0.03 002 0.02 005 0.04 001 0.00 000 000 0.00 001

004 001 000 0.00 000 0.00 001 ~~002 0,00 0.00 0.01 009 0.04 001 0.00 D00 000 0.00 001

004 001 001 000 001 000 001 08 003 0.00 005 001 011 004 0,01 001 0.00 .01 000 0.01 o8

003 010 007 013 003 0.03 000 0.00 000 000 0.00 001

46 -002 DO7 005 001 006 003 000 000 0.00 001 0 0.00 06

~005 0.02 005 0,00 004 0.08 001 001 003 000 001 001
©-001 0.00 001 0.01 001 0.03 002 0.03 002 008 0.02 001
~ ~000 0,00 000 0,00 000 0.00 001 0.06 0.06 007 0.08 006
@ -001 0,00 000 0,00 000 0.00 005 0.08 012 007 0.07 007

02 = -001 000 000 001 00D 00 0.02 008 001 005 006 000 g
2000 0.01 000 0.00 000 001 001 0.06 002 005 0.01 001
=-000 0.01 001 0.00 000 001 003 012 004 001 0.03 014

01 2z 3 4 5 6 7 8 5 1o

(b)

Figure 10: Learned ¢;; parameters (a) and Abso-
lute Error (b) for maximum perturbation factor ¥
of 50%.

Generic GNN as f, To evaluate our ap-
proach in a more realistic setting, we use a
generic GNN as fy. Specifically, we imple-
ment GNNs from [Morris et al., 2019] with
varying numbers of layers and layer sizes. It
is important to note that the GNN implementa-
tion includes self-loops, which prevents the di-
agonal elements from being correctly learned.
However, this does not impede our method
from learning the remaining edges accurately.

Table 3 presents the network configurations
and whether they successfully converged to the
ground truth distribution. Since diagonal el-
ements artificially inflate the MAE for 6, we
consider a model to have converged if the final
MAE on 6 is less than 0.11.

Learned theta parameters

PYRYE] o.co BB .03 0.00 000 001 000 000 000 001

To Absolute error on theta parameters o
©-009 005 000 0.03 0.03 000 0.00 001 0.00 0.00 0.00 001

~-000 0,08 007 0,01 001 001 D00 000 0.00 000 0.00 000
~-007 002 0.03 001 001 001 000 0,00 000 0.00 000 0.00 o8
000 0.00 000 001 000 0.00 m~0.00 001 0.01 003 0.03 0.03 000 0.00 000 001 000 0.00
1 000 0.00 001 0.00 000 +-001 001 002 001 0.02 0,03 001 0,00 000 001 000 0.00
1n ~0.00 001 0.00 003 0.04 0.04 007 0.00 000 0.0 001 0.00
1@ -0.00 000 0.00 000 0.00 0,03 004 0,04 001 001 002 005
** 1~ 000 000 001 000 0,00 001 013 009 0.00 005 010 001
= -0.02 000 001 000 0.00 0.01 002 0.02 000 003 000 005
02 -000 000 000 000 001 0.00 007 0.0 001 013 011 007 g
2000 0.00 000 0.00 000 000 003 004 0.06 002 0.03 004
£4-000 0.00 000 0.00 000 004 001 010 001 004 0.03 001

5 1 2 3 4 5 5 7 8 5 1 m

(b)

Figure 9: Learned 6;; parameters (a) and Abso-
lute Error (b) for maximum perturbation factor ¥
of 20%.

Learned theta parameters

o TR o.06 [010 0:10 010 005 004 001 001 001

Absolute error on theta parameters

© 2020 012 005 012 0.10 0.10 010 005 004 001 001 001

~ JAERYRPPRESTIRN 0c 004 0.01 004 001 006 001

v -002 RXEREH 0.05 BBB 0.04 004 0.01 001 002 0.08 004 08
 JENRH 0.0 PERXTIEA 000 0.04 002 006 0.03 001

~-010 011 010 0,05 001 005 0.04 001 0.04 001 0.06 001

~-002 012 018 005 0.03 0,04 004 001 001 0.02 004 0.04 08

m -0.06 003 018 013 0.08 0.03 000 0.04 002 0.6 003 001
+ ~015 005 010 010 014 0,03 003 005 000 010 003 001
1n ~0.06 006 0.06 007 010 011 003 D1 002 0.04 009 0.07
@ -0.02 005 0.05 003 0.03 0,03 010 0.06 006 0.02 002 014
~-003 001 0.01 003 0.01 0.05 009 0.13 014 0.03 003 009
= -001 003 0.02 008 0.01 0.10 008 0.06 021 0.05 008 0.04
02 ©-001 001 001 004 003 009 016 000 0.03 007 014 005 g3
2-003 0.02 002 0.01 001 007 0.08 004 0.08 007 0.14 008
£4-001 0.03 001 0.01 010 009 002 013 0.05 000 0.09 023

5 1 2 3 4 5 6 7 8 5 1 om

()

Figure 11: Learned 6;; parameters (a) and Abso-
lute Error (b) for maximum perturbation factor ¥
of 80%.

Table 3: Network configurations and correspond-
ing convergence results.

Layers dimensions ~ Convergence

[4,1] x
[4,1,1] x
[4,2,1] v
4,8, 1] v

[47)) 1] J
[4,16,8, 1] v
4,32,8, 1] v
[4,64,8, 1] v
(4,64, 16, 1] v
[4,64,32,1] v
4,8,8,4,1] v

Most of the models successfully converged, except those with high bias. This demonstrates that our
method is effective even beyond Assumption 3.1. In Figure 12 we show the learned parameters of

P4 for a randomly extracted run.

Misconfigured P} Figures 13 and 14 correspond to the experiment where some 0;; values of P4
are fixed at incorrect values, while the processing function fy, is fixed to the true one. In the commu-
nity affected by the perturbation, free ;; values tend to be sampled more frequently to compensate
for the downsampling imposed by the perturbation. Interestingly, all the edges with at least one edge
in the second community (75% of the edges) appear unaffected by the perturbation.

20

Under review as a conference paper at ICLR 2025

Learned theta parameters Absolute error on theta parameters

08 o . 08

.
06 .- 06

-02

1m 10 9
°
4

. -00
(a) (b)

Figure 12: (a) Learned 0;; parameters when the parametric processing function f, is a generic GNN
as presented in [Morris et al., 2019] and (b) Absolute Error made with respect to true parameters
07;. As self-loops are deterministically added by the network, the diagonal elements should not be
considered.

Learned theta parameters o Absolute error on theta parameters o Learned theta parameters o Absolute error on theta parameters o
58] 025 028 015 002 001 001 000 001 001 017 019 [GRBIEY 028 015 002 001 001 000 001 001 35 025 025 011 001 000 000 001 001 000 o -011 008 [038FF8 025 011 001 000 000 001 001 000
012 0.00 000 001 000 001 001 015 020 N8 014 012 000 000 001 000 001 001 25 023 fJas 001 a1 001 000 001 002 ~-017 003 [EES 008 025 001 001 001 000 001 001
~-026 025 025 033 025 019 004 001 001 001 001 001 08 026 [ENEY 033 [F] 019 004 001 001 001 001 001 08 1033 025 025037 025 009 002 001 001 00D 001 001 08 o 033 [EEN 0378 000 002 001 001 000 001 001 o8
025 025 029 025 025 025 001 002 001 001 000 001 o [T 02 [ELENT 001 002 001 001 000 001 ~025 025 035 025 025 025 003 001 001 004 00D 000 o LR 035 FEEENREN 003 001 001 004 000 000
,,mm 025 001 001 000 001 000 000 Ml |+ -009 004 [N 013 019 001 001 000 001 000 000 e og 022 05 [EEH 015 036 003 000 000 001 0ot 000 o6

009 014 025 025 -009 014 025 [0.14 0,09 009 0.00 002 0.00 001 0.01 «-008 011 028K 012 015 008 000 001 0.01 000 0.01

0,01 002 005 005 0,01 004 010 0.09 001 006 002 002 ' -0.02 001 008 004 001 003 003 001 001 005 0,04 003
0,00 001 001 006 0.01 002 001 0.05 006 002 0.7 002 '~ -001 001 001 001 001 002 €09 003 005 003 005 001
Joos 28000 @ -0.01 001 002 002 0,01 001 006 014 013 009 005 003 @ -000 001 001 002 002 001 013 014 004 003 003 008
43 o2 @ -000 000 002 001 001 001 000 012 007 005 007 001 | gz Loz @-002 001 001 004 001 001 001 005 003 009 011 001 | o
©-001 001 000 0.04 002 002 0.03 005 012 007 012 002 ©-001 001 001 001 001 002 002 001 000 005 001 002
£4-002 001 001 0.01 001 001 0.02 002 002 001 011 010 £4-001 001 001 0.02 002 004 0,01 005 001 011 005 013

o1 2 3 4 5 6 7 8 9 won

(b)

O 1 3 3 4 5 6 7 5 5 oM

(2) (b)

Figure 13: Learned 0,; parameters (a) and Abso- Figure 14: Learned 6;; parameters (a) and Abso-
lute Error (b) for misconfigured P§ lute Error (b) for misconfigured P

C.4 COMPUTE RESOURCES AND OPEN-SOURCE SOFTWARE

The paper’s experiments were run on a workstation with AMD EPYC 7513 processors and NVIDIA
RTX A5000 GPUs; on average, a single model training terminates in a few minutes with a memory
usage of about 2GB.

The developed code relies on PyTorch [Paszke et al., 2019] and the following additional open-
source libraries: PyTorch Geometric [Fey & Lenssen, 2019], NumPy [Harris et al., 2020] and Mat-
plotlib [Hunter, 2007].

21

	Introduction
	Related work
	Problem formulation
	Limitations of point-prediction optimization
	Predictive distribution optimization: two birds with one stone
	Maximum mean discrepancy
	Finite-sample computation of the loss
	Variance-reduced loss for SFE
	Computational complexity

	Experiments
	Graph structure learning & optimal point predictions
	Beyond Assumption 3.1

	Conclusions
	Appendix
	Proofs of the theoretical results
	Minimizing Lpoint does not guarantee calibration
	Minimizing Lpoint does not guarantee calibration: an example with MAE
	Minimizing Ldist guarantees calibration and optimal point predictions
	Injectivity hypothesis for graph neural networks

	Estimation of optimal 1 and 2
	Further experimental details
	Dataset description and models
	Description of the experiment in Section 4
	Additional details of Section 6.2
	Compute resources and open-source software

