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Abstract

When data is publicly released for human con-
sumption, it is unclear how to prevent its unautho-
rized usage for machine learning purposes. Suc-
cessful model training may be preventable with
carefully designed dataset modifications, and we
present a proof-of-concept approach for the image
classification setting. We propose methods based
on the notion of adversarial shortcuts, which
encourage models to rely on non-robust signals
rather than semantic features, and our experiments
demonstrate that these measures successfully pre-
vent deep learning models from achieving high
accuracy on real, unmodified data examples.

1. Introduction
Datasets are publicly released with a diverse set of use cases
(e.g., posting images for friends, promoting photography
work), but not all stakeholders will consent to the data’s
usage for machine learning (ML). Different parties may
desire that their copyright be respected, or they may wish
to avoid potentially harmful uses such as deepfakes, facial
recognition systems, or other biometric models.

To help manage such situations, we consider the problem
of modifying datasets to ensure that they are unusable for
ML purposes. By developing a disruptive modification that
preserves the data’s original semantics, we hope to provide
an orthogonal approach to traditional privacy preservation
avenues such as anti-scraping technology and legal agree-
ments, which in recent years have proved insufficient at
protecting user data (Hill et al., 2020).

Because this is a broad and challenging problem, our initial
focus is the canonical setting of multi-class image classifica-
tion. Our goal is to modify a clean dataset so that ML mod-
els, and primarily deep neural networks (DNNs), achieve
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Figure 1. ResNet18 train and validation accuracy on ImageNet
protected with the pixel-based modification at µ = 0.01, compared
with unmodified ImageNet. Validation accuracy can reach up
to 70% with unmodified data, but our modified dataset prevents
effective learning within the first several epochs.

high training accuracy while failing to generalize to unmod-
ified test examples. As a mechanism for such modifications,
we explore adversarial shortcuts, a method that encourages
DNNs to lazily rely on spurious signals rather than robust,
semantic features. While recent work focuses on the perils
of shortcuts in deep learning (DeGrave et al., 2021), we
identify a potential use-case as a security measure.

Our contributions in this work are as follows:

• We introduce the notion of adversarial shortcuts and
propose three dataset modification techniques to prevent
DNNs from learning useful classification functions.

• We evaluate each technique on the popular CIFAR-10
(Krizhevsky et al.) and ImageNet (Russakovsky et al.,
2015) datasets and find that the proposed techniques
severely limit the test set accuracy of state-of-the-art
models. We also verify that our techniques are robust to
certain simple countermeasures.

• We compare our approach to a concurrent proposal
(Fowl et al., 2021a) and show that our simpler approach
based on adversarial shortcuts proves more effective at
disrupting model training.
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2. Related Work
Our work focuses on making datasets unusable for train-
ing ML models. Concurrent work that considers the same
problem (Fowl et al., 2021a) proposed a poisoning approach
based on second-order gradients. Similarly, Shumailov et al.
(2021) proposed a method to disrupt training with a data
ordering attack, but our setting is more challenging in that
we do not assume control over model optimization. Other
closely related research directions are trojaning and back-
dooring (Schwarzschild et al., 2020; Goldblum et al., 2020),
where the adversary can influence the inputs at both training
and inference time, and in some cases the training procedure.
Data poisoning (Biggio et al., 2011; 2012) is another direc-
tion where subtle changes to the classification’s decision
boundary are induced by modifying a few training exam-
ples. Targeted data poisoning attacks focus on influencing
model behavior on specific inference examples, either in
a transfer learning setting (Shafahi et al., 2018; Zhu et al.,
2019; Aghakhani et al., 2020) or when training from scratch
(Muñoz-González et al., 2017; 2019; Huang et al., 2020a;
Geiping et al., 2020; Huang et al., 2021; Fowl et al., 2021b)

We explore shortcuts as a mechanism to disrupt model train-
ing, an idea with some precedent in prior work. Research
on the learning tendencies of DNNs has found that conven-
tionally trained models often rely on non-robust, localized,
texture-based features (Zhang et al., 2016; Jo & Bengio,
2017; Madry et al., 2017; Geirhos et al., 2018; Ilyas et al.,
2019), and, when available, confounders or shortcuts (Zech
et al., 2018; Badgeley et al., 2019; DeGrave et al., 2021).
Rather than attributing model failures to naturally occurring
shortcuts, we purposely introduce shortcuts to discourage a
model’s reliance on robust, semantic features.

Finally, our aim is the reverse of instance hiding (Huang
et al., 2020b; Carlini et al., 2020), which tries to create a
dataset that is useful for ML but uninterpretable to humans,
and our approach is similar in spirit to image watermarking
(Podilchuk & Delp, 2001; Singh & Chadha, 2013; Dekel
et al., 2017), which aims to prevent unauthorized usage of
publicly released image data.

3. Setup and Goals
Assume that we have a dataset Dtrain = {(xi, yi)}ni=1

where xi ∈ Rw×h×c are RGB images and yi ∈ {1, ...,K}
are the corresponding labels for a classification task. Dtrain

is assumed to be drawn from a data generating distribution
D, and as in standard supervised learning, we assume that
models trained on Dtrain are used to classify test samples
from Dtest, which is drawn independently from D.

Rather than releasing Dtrain directly, which can be used to
train a model that achieves high accuracy on Dtest, our goal
is to create a modified dataset D′train = {(x′i, yi)}ni=1 with

the following properties:

• Semantics in D′train are preserved. The modified im-
ages x′i should differ from the original images xi min-
imally, ideally being visually indistinguishable, but at
least retaining the important semantics (objects, shapes,
colors, etc). The labels yi are unmodified, and we as-
sume that a party obtaining our modified dataset may
reconstruct yi even if labels are not provided.

• Models trained on D′train achieve low accuracy on
Dtest. When DNNs are trained to predict the labels yi
given images x′i from the modified dataset, the models
should be unable to generalize to unmodified examples,
ensuring low accuracy on the test dataset Dtest.

4. Protective Dataset Modifications
In this section, we introduce dataset modifications that en-
courage DNNs to rely on spurious signals rather than robust,
generalizable features. We propose three approaches: a
sparse pixel-based pattern, a visible watermark, and a bright-
ness modulation. All three generate modifications that are
unique to each class k ∈ {1, . . . ,K}, creating a shortcut
that the DNN can use to quickly achieve high accuracy on
the training data while failing to generalize to unmodified
examples. We refer to such modifications as adversarial
shortcuts, and each technique is tuneable, allowing us to
control the tradeoff between disrupting training and preserv-
ing visual features in the data.

(a) Unmodified image (b) Pixel-based (µ = 0.01)

(c) Visual watermark (α = 0.5) (d) Brightness mod. (γ = 0.9)

Figure 2. Demonstration of our dataset modification techniques.
The image depicted here is available at https://www.flickr.
com/photos/volvob12b/9797687423, was accessed on
June 3, 2021, and is distributed in the public domain. This would
have class index 263 for “Pembroke, Pembroke Welsh corgi.”

https://www.flickr.com/photos/volvob12b/9797687423
https://www.flickr.com/photos/volvob12b/9797687423
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4.1. Sparse pixel-based patterns

The first approach we introduce is a sparse, pixel-based
modification. We generate random perturbation masks
∆k ∈ {0, 1}w×h×c for each class k ∈ {1, . . . ,K} with
entries determined as follows: for each value, we sample
δ ∼ N (µ, σ) and set the value to one if δ exceeds the middle
of the pixel brightness range (e.g., 0.5 with 0-1 normaliza-
tion), and zero otherwise. In practice, we fix σ = 0.2 and
experiment with different µ values.

With the masks fixed, we then modify images in the pixels
indicated by their corresponding perturbation masks. As-
suming that the maximum pixel value in the dataset is given
by xmax ∈ R, we generate the modified image x′i with label
yi = k using the formula

x′i = (1−∆k)� xi + ∆k · xmax. (1)

An example of this perturbation is shown in Figure 2, where
a small portion of pixels are set to the maximum brightness.

4.2. Visible watermarks

The next approach we introduce is a visible, class-specific
watermark. If the watermark is prominent and easy to detect,
a DNN can use it as a shortcut to achieve high accuracy
without relying on robust features. To generate shapes with
a sufficient degree of variation, which is known to make
watermarks more difficult to remove (Dekel et al., 2017), we
create watermarks by enumerating the class indices using
digits from the MNIST dataset (LeCun, 1998).

For example, in CIFAR-10 (Krizhevsky et al.) the “air-
plane” class has index 0, so we create a watermark for each
airplane example by randomly sampling a zero from the
MNIST dataset. For ImageNet, which has 1000 classes,
the watermarks require up to three randomly selected dig-
its. The watermark generation process for each class
k ∈ {1, . . . ,K} can be understood as sampling a binary
image M ∈ {0, 1}w×h×c from a random variableM(k),
which we then blend with the original image xi using a
parameter α ∈ [0, 1] as follows:

x′i = α ·M + (1− α) ·M · xi + (1−M) · xi. (2)

The blending parameter α controls how visible the water-
mark is, with α = 0 having no effect and α = 1 overlaying
the watermark on the original image. An example with
α = 0.5 is shown in Figure 2, with index 263 for the “Pem-
broke, Pembroke Welsh corgi” class.

4.3. Brightness modulation

While the two previous approaches provide shortcuts that
can successfully disrupt model training, they may prove easy

to remove with basic countermeasures. Our next approach
is designed to be more difficult to circumvent. Rather than
creating a localized, visually distinguishable perturbation,
we now modify images using a randomized brightness mod-
ulation that either brightens or darkens pixels identically for
images in each class.

The brightness modulation for each class is generated as
follows. At the start, we randomly sample a location in the
image that serves as the center of a square; we then decide,
with equal probability, whether to darken or brighten the
corresponding pixels. Given a parameter γ ∈ [0.5, 1], we
darken pixels by multiplying them by γ or brighten them
by multiplying by 2 − γ. We perform T iterations of this
process with T distinct squares, which can and do overlap,
resulting in a checkerboard-type pattern.

This process is equivalent to sampling a class-specific mask
Bk ∈ Rw×h×c, where an image xi with class yi = k is
modified using the following formula:

x′i = Bk � xi. (3)

An example of this modification is shown in Figure 2 with
the parameter γ = 0.9 and T = 600 iterations. For all
experiments with ImageNet we set T = 600, and for CIFAR-
10 we use T = 32.

5. Evaluation
In this section, we evaluate our proposed techniques for
disrupting model training; see Appendix A for more details
on the setup. Although we do not reach state-of-the-art
training accuracy on CIFAR-10 and ImageNet, either due
to computational constraints or insufficient hyperparame-
ter tuning, we ensure a fair comparison by using identical
training procedures across all experiments.

5.1. Training on modified CIFAR-10

We first test our dataset modifications on CIFAR-10. Fig-
ure 3 summarizes the results from training a ResNet18 ar-
chitecture with various dataset modifications. Figures 6, 7,
and 8 provide more ablations and details, including different
model architectures and more parameter settings for each ad-
versarial shortcut. The best achievable validation accuracy
after 50 epochs with the unmodified version of CIFAR-10
is above 70% accuracy, while all of our modifications, even
at the weakest settings we tested, have a significant impact
on model performance.

Relatively small pixel-based perturbations are enough to
nearly halve the accuracy: with µ = 0.01, CIFAR-10 clas-
sifiers achieve at best no more than 40% accuracy. This
setting corresponds to modifying only 22 out of 3,072 pix-
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Figure 3. Best achievable test accuracy after 50 epochs when train-
ing ResNet18 on CIFAR-10 with different dataset modifications.

els, on average. Similarly, visible watermark perturbations
with a blend factor of α = 0.5 and brightness modulations
with parameter γ = 0.9 succeed in reducing the validation
accuracy to less than 40%.

Fowl et al. (2021a) shared a version of CIFAR-10 pro-
tected with their proposed approach, which we compared
with our methods.1 While the validation accuracy does not
reach 70%, as with training on the unprotected version of
the dataset, models trained on the dataset with Fowl et al.
(2021a) protections manage to achieve up to 60% accuracy,
which is significantly higher than our methods (also see
Figure 9).

We also tested the stability of our proposed modifications
for disrupting training when certain countermeasures are
in place. For this purpose, we considered two categories
of countermeasures: aggressive training set augmentations
and the addition of Gaussian noise. Results for the pixel-
based approach with these countermeasures are shown in
Figures 11, 12 and 13. Our findings generalize, and the best
achievable accuracy across the same set of hyperparameters
and random seeds remains the same. However, for the
brightness modulation method with γ = 0.9, aggressive
augmentations are effective at undoing the modifications and
allowing effective training (see Figure 13). We suggest using
a stronger setting of γ = 0.70 that makes the brightness
modulation more visible.

5.2. Training on modified ImageNet

Next, we perform experiments on ImageNet. Although we
do not have the computational resources to train with a va-

1The version of their defense that the authors shared with us
for this test has parameters ε = 8/255, but we note that stronger
training disruptions may be achieved with different parameters.

Figure 4. Validation accuracy when training ResNet18 on Ima-
geNet at different levels of sparse pixel-based pattern protections.

riety of hyperparameter and random seed choices, several
takeaways are apparent from Figure 4 and additional results
in Appendix A (Figure 5). First, sparse pixel-based pattern
protections and visible watermark protections remain effec-
tive. In both cases, the best achievable validation accuracy
is less than 30%, whereas training on the unprotected ver-
sion of ImageNet easily achieves more than 50% accuracy
with the same setup. This is again achievable with fairly
minor modifications, such as pixel-based with µ = 0.01 and
visible watermarking with α = 0.5.

Furthermore, the plots of accuracy on the clean validation
set and the protected training set in Figure 1 reveal an in-
teresting dynamic. While the model can fit the training set
extremely well, achieving up to 90% accuracy, it does not
generalize to the validation set. This suggests that our ob-
jective of disrupting training with a non-robust shortcut is
successful, and that the models fits the simple class-specific
pattern as opposed to the true semantics. This divergence in
training and validation accuracy, or the rapid increase in the
generalization gap, does not manifest when training with
the unmodified ImageNet data (Figure 1).

6. Discussion
Our experiments show that it is possible to disrupt DNN
training by modifying datasets with simple patterns, such
as our adversarial shortcuts, that discourage models from
relying on robust, generalizable features. These modifica-
tions can reduce model accuracy on clean data while having
minimal impact on the image semantics. Our work focuses
on the narrow setting of multi-class image classification, but
there is great potential for future work that considers more
effective dataset modifications, attempts to undo protective
modifications, and develops new approaches for different
ML tasks, e.g., preventing the unauthorized development of
deepfakes or facial recognition systems.
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A. Experimental Setup
We experiment with two standard image classification
datasets: CIFAR-10 (Krizhevsky et al.) and Ima-
geNet (Deng et al., 2009). In both cases, we apply our
protective modifications to the training set and keep the val-
idation set intact. By measuring accuracy on the validation
set, we can observe how well the trained models solve their
intended classification task. If our protections are successful,
the best achievable accuracy should be considerably lower
than when training on an unprotected dataset.

For the experiments with CIFAR-10, we run training for 50
epochs at a batch size of 1024 and vary the learning rate,
the model architecture and the random seed. Specifically,
we experiment with learning rates 0.1, 0.01, 0.001, 0.0001;
with the ResNet18 (He et al., 2016), DenseNet201 (Huang
et al., 2017), VGG11 (Simonyan & Zisserman, 2014), and
SqueezeNet (Iandola et al., 2016) architectures; and with
seeds 3525462, 15254521, 63246662, 32542462. We then
report the best achievable accuracy across all the runs for
several different settings of each of our intensity parameters
(µ for pixel-based patterns, α for watermarks, and γ for
brightness modulations). All models are as implemented

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 5. Validation accuracy when training ResNet18 on Ima-
geNet at different levels of visible watermarking protections.

in torchvision (Paszke et al., 2019) and are trained from
scratch.

For ImageNet, we use the training script available at
https://github.com/pytorch/examples/
tree/master/imagenet and the ResNet18 (He
et al., 2016) architecture. We only train using the default
hyperparameter values due to our limited computational
resources.

For testing the stability of our approach with aggressive
augmentations, we employ random cropping of 28 by 28
images, random horizontal flips, random Affine transforma-
tions (translation by up to 0.1 and rotation between -30 and
30 degrees), random color jitter (brightness adjustment by
up to 0.8 and contrast adjustment between 0.9 and 1.08).
Each augmentation is sampled at random for each new train-
ing image and for each epoch during training. When testing
the stability of our approach with Gaussian noise, we add
noise with mean 0.0 and σ = 0.05.

B. Additional Figures
Here, we include figures that do not fit in the page limit.

Figure 6. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the pixel-based modifi-
cation. µ = 0 corresponds to the unmodified, clean dataset for this
approach.

Figure 7. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the visible watermark
approach. α = 0 corresponds to the unmodified, clean dataset for
this approach.

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
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Figure 8. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the brightness modu-
lation approach. γ = 1.0 corresponds to the unmodified, clean
dataset for this approach.

Figure 9. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the Fowl et al. (2021a)
approach

Figure 10. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the pixel-based approach
after applying Gaussian noise to the images. µ = 0 corresponds to
the unmodified, clean dataset for this approach.

Figure 11. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the pixel-based approach
after applying aggressive training-time augmentations. µ = 0
corresponds to the unmodified, clean dataset for this approach.

Figure 12. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the visible watermark
approach after applying aggressive training-time augmentations.
α = 0 corresponds to the unmodified, clean dataset for this ap-
proach.
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Figure 13. Best achievable accuracy after 50 epochs across a range
of hyperparameters and random seeds for the brightness modula-
tion approach after applying aggressive training-time augmenta-
tions. γ = 1.0 corresponds to the unmodified, clean dataset for
this approach.
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Figure 14. Examples of perturbed CIFAR-10 data with the pixel-based modification at various settings of the parameter µ.



Disrupting Model Training with Adversarial Shortcuts

Figure 15. Examples of perturbed CIFAR-10 data with the visual watermark modification at various settings of the parameter α.
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Figure 16. Examples of perturbed CIFAR-10 data with the brightness modulation modification at various settings of the parameter γ.


